1
|
Smith KM, Francisco SG, Zhu Y, LeRoith T, Davis ML, Crott JW, Barger K, Greenberg AS, Smith DE, Taylor A, Yeruva L, Rowan S. Dietary prevention of antibiotic-induced dysbiosis and mortality upon aging in mice. FASEB J 2024; 38:e70241. [PMID: 39655692 PMCID: PMC11629448 DOI: 10.1096/fj.202402262r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Oral antibiotic use is both widespread and frequent in older adults and has been linked to dysbiosis of the gut microbiota, enteric infection, and chronic diseases. Diet and nutrients, particularly prebiotics, may modify the susceptibility of the gut microbiome to antibiotic-induced dysbiosis. We fed 12-month-old mice a high glycemic (HG) or low glycemic (LG) diet with or without antibiotics (ampicillin and neomycin) for an additional 11 months. The glycemic index was modulated by the ratio of rapidly digested amylopectin starch to slowly digested amylose, a type-2-resistant starch. We observed a significant decrease in survival of mice fed a HG diet containing antibiotics (HGAbx) relative to those fed a LG diet containing antibiotics (LGAbx). HGAbx mice died with an enlarged and hemorrhagic cecum, which is associated with colonic hyperplasia and goblet cell depletion. Gut microbiome analysis revealed a pronounced expansion of Proteobacteria and a near-complete loss of Bacteroidota and Firmicutes commensal bacteria in HGAbx, whereas the LGAbx group maintained a population of Bacteroides and more closely resembled the LG microbiome. The predicted functional capacity for bile salt hydrolase activity was lost in HGAbx mice but retained in LGAbx mice. An LG diet containing amylose may therefore be a potential therapeutic to prevent antibiotic-induced dysbiosis and morbidity.
Collapse
Affiliation(s)
- Kelsey M. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Sarah G. Francisco
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Ying Zhu
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Tanya LeRoith
- Department of Biomedical Sciences and PathobiologyVA‐MD College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - Meredith L. Davis
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Jimmy W. Crott
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- Department of Pathology & Laboratory MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Donald E. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Laxmi Yeruva
- USDA‐ARS, Microbiome and Metabolism Research UnitArkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Sheldon Rowan
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Xue Y, Xue B, Zhang L. Multi-Omics Integrative Analysis to Reveal the Impacts of Shewanella algae on the Development and Lifespan of Marine Nematode Litoditis marina. Int J Mol Sci 2024; 25:9111. [PMID: 39201797 PMCID: PMC11354469 DOI: 10.3390/ijms25169111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Understanding how habitat bacteria affect animal development, reproduction, and aging is essential for deciphering animal biology. Our recent study showed that Shewanella algae impaired Litoditis marina development and lifespan, compared with Escherichia coli OP50 feeding; however, the underlying mechanisms remain unclear. Here, multi-omics approaches, including the transcriptome of both L. marina and bacteria, as well as the comparative bacterial metabolome, were utilized to investigate how bacterial food affects animal fitness and physiology. We found that genes related to iron ion binding and oxidoreductase activity pathways, such as agmo-1, cdo-1, haao-1, and tdo-2, were significantly upregulated in L. marina grown on S. algae, while extracellular structural components-related genes were significantly downregulated. Next, we observed that bacterial genes belonging to amino acid metabolism and ubiquinol-8 biosynthesis were repressed, while virulence genes were significantly elevated in S. algae. Furthermore, metabolomic analysis revealed that several toxic metabolites, such as puromycin, were enriched in S. algae, while many nucleotides were significantly enriched in OP50. Moreover, we found that the "two-component system" was enriched in S. algae, whereas "purine metabolism" and "one-carbon pool by folate" were significantly enriched in E. coli OP50. Collectively, our data provide new insights to decipher how diet modulates animal fitness and biology.
Collapse
Affiliation(s)
- Yiming Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.X.); (B.X.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beining Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.X.); (B.X.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.X.); (B.X.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
3
|
Bhat A, Carranza FR, Tuckowski AM, Leiser SF. Flavin-containing monooxygenase (FMO): Beyond xenobiotics. Bioessays 2024; 46:e2400029. [PMID: 38713170 PMCID: PMC11447872 DOI: 10.1002/bies.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.
Collapse
Affiliation(s)
- Ajay Bhat
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Faith R Carranza
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Scorsone E, Stewart S, Hamel M. Highly Sensitive and Selective Detection of L-Tryptophan by ECL Using Boron-Doped Diamond Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:3627. [PMID: 38894416 PMCID: PMC11175342 DOI: 10.3390/s24113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report on a new electrochemiluminescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL response efficiency is directly related to H2O2 production at the electrode surface and propose a mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we show that the ECL response to L-tryptophan is directly linear with concentration in the range of 0.005 to 1 µM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin, 3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of interest.
Collapse
Affiliation(s)
- Emmanuel Scorsone
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France; (S.S.)
| | | | | |
Collapse
|
5
|
Hull BT, Miller KM, Corban C, Backer G, Sheehan S, Korstanje R, Sutphin GL. 3-Hydroxyanthranilic Acid Delays Paralysis in Caenorhabditis elegans Models of Amyloid-Beta and Polyglutamine Proteotoxicity. Biomolecules 2024; 14:599. [PMID: 38786006 PMCID: PMC11117628 DOI: 10.3390/biom14050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.
Collapse
Affiliation(s)
- Bradford T. Hull
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla M. Miller
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
| | | | - Grant Backer
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - George L. Sutphin
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Gabrawy MM, Westbrook R, King A, Khosravian N, Ochaney N, DeCarvalho T, Wang Q, Yu Y, Huang Q, Said A, Abadir M, Zhang C, Khare P, Fairman JE, Le A, Milne GL, Vonhoff FJ, Walston JD, Abadir PM. Dual treatment with kynurenine pathway inhibitors and NAD + precursors synergistically extends life span in Drosophila. Aging Cell 2024; 23:e14102. [PMID: 38481042 PMCID: PMC11019140 DOI: 10.1111/acel.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 04/17/2024] Open
Abstract
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.
Collapse
Affiliation(s)
- Mariann M. Gabrawy
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Reyhan Westbrook
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Austin King
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Nick Khosravian
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Neeraj Ochaney
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Tagide DeCarvalho
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Qinchuan Wang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yuqiong Yu
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Qiao Huang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Adam Said
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Emory UniversityAtlantaGeorgiaUSA
| | - Michael Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- University of Maryland, College ParkCollege ParkMarylandUSA
| | | | | | - Jennifer E. Fairman
- Department of Arts as Applied to MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Anne Le
- Gigantest Inc.BaltimoreMarylandUSA
| | - Ginger L. Milne
- Vanderbilt UniversityVanderbilt Brain Institute, Neurochemistry CoreNashvilleTennesseeUSA
| | - Fernando J. Vonhoff
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jeremy D. Walston
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter M. Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
7
|
Kaleta M, Hényková E, Menšíková K, Friedecký D, Kvasnička A, Klíčová K, Koníčková D, Strnad M, Kaňovský P, Novák O. Patients with Neurodegenerative Proteinopathies Exhibit Altered Tryptophan Metabolism in the Serum and Cerebrospinal Fluid. ACS Chem Neurosci 2024; 15:582-592. [PMID: 38194490 PMCID: PMC10853934 DOI: 10.1021/acschemneuro.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Some pathological conditions affecting the human body can also disrupt metabolic pathways and thus alter the overall metabolic profile. Knowledge of metabolic disturbances in specific diseases could thus enable the differential diagnosis of otherwise similar conditions. This work therefore aimed to comprehensively characterize changes in tryptophan metabolism in selected neurodegenerative diseases. Levels of 18 tryptophan-related neuroactive substances were determined by high throughput and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry in time-linked blood serum and cerebrospinal fluid samples from 100 age-matched participants belonging to five cohorts: healthy volunteers (n = 21) and patients with Lewy body disease (Parkinson's disease and dementia with Lewy bodies; n = 31), four-repeat tauopathy (progressive supranuclear palsy and corticobasal syndrome; n = 10), multiple system atrophy (n = 13), and Alzheimer's disease (n = 25). Although these conditions have different pathologies and clinical symptoms, the discovery of new biomarkers is still important. The most statistically significant differences (with p-values of ≤0.05 to ≤0.0001) between the study cohorts were observed for three tryptophan metabolites: l-kynurenine in cerebrospinal fluid and 3-hydroxy-l-kynurenine and 5-hydroxy-l-tryptophan in blood serum. This led to the discovery of distinctive correlation patterns between the profiled cerebrospinal fluid and serum metabolites that could provide a basis for the differential diagnosis of neurodegenerative tauopathies and synucleinopathies. However, further large-scale studies are needed to determine the direct involvement of these metabolites in the studied neuropathologies, their response to medication, and their potential therapeutic relevance.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Eva Hényková
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - David Friedecký
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry,
University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Zdravotníků 248/7, 779 00 Olomouc, Czech Republic
| | - Aleš Kvasnička
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry,
University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Zdravotníků 248/7, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department
of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Institute of Experimental
Botany of the Czech Academy of Sciences & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Chopra T, Parkesh R. Microwave-Assisted Synthesis of Functionalized Carbon Nanospheres Using Banana Peels: pH-Dependent Synthesis, Characterization, and Selective Sensing Applications. ACS OMEGA 2024; 9:4555-4571. [PMID: 38313540 PMCID: PMC10831994 DOI: 10.1021/acsomega.3c07544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This work presents a microwave-based green synthesis method for producing carbon nanospheres (CNSs) and investigates the impact of presynthesis pH on their size and assembly. The resulting CNSs are monodispersed, averaging 35 nm in size, and exhibit notable characteristics including high water solubility, photostability, and a narrow size distribution, achieved within a synthesis time of 15 min. The synthesized CNS features functional groups such as -OH, -COOH, -NH, -C-O-C, =C-H, and -CH. This diversity empowers the CNS for various applications including sensing. The CNS exhibits a distinct UV peak at 282 nm and emits intense fluorescence at 430 nm upon excitation at 350 nm. These functionalized CNSs enable selective and specific sensing of Cu2+ ions and the amino acid tryptophan (Trp) in aqueous solutions. In the presence of Cu2+ ions, static-based quenching of CNS fluorescence was observed due to the chelation-enhanced quenching (CHEQ) effect. Notably, Cu2+ ions induce a substantial change in UV spectra alongside a red-shift in the peak position. The limits of detection and quantification for Cu2+ ions with CNS are determined as 0.73 and 2.45 μg/mL, respectively. Additionally, on interaction with tryptophan, the UV spectra of CNS display a marked increase in the peak at 282 nm, accompanied by a red-shift phenomenon. The limits of detection and quantification for l-tryptophan are 4.510 × 10-3 and 1.50 × 10-2 μg/mL, respectively, indicating its significant potential for biological applications. Furthermore, the practical applicability of CNSs is demonstrated by their successful implementation in analyzing real water samples and filter paper-based examination, showcasing their effectiveness for on-site sensing.
Collapse
Affiliation(s)
- Tavishi Chopra
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Raman Parkesh
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
9
|
Wu Y, Chen Y, Yu X, Zhang M, Li Z. Towards Understanding Neurodegenerative Diseases: Insights from Caenorhabditis elegans. Int J Mol Sci 2023; 25:443. [PMID: 38203614 PMCID: PMC10778690 DOI: 10.3390/ijms25010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The elevated occurrence of debilitating neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Machado-Joseph disease (MJD), demands urgent disease-modifying therapeutics. Owing to the evolutionarily conserved molecular signalling pathways with mammalian species and facile genetic manipulation, the nematode Caenorhabditis elegans (C. elegans) emerges as a powerful and manipulative model system for mechanistic insights into neurodegenerative diseases. Herein, we review several representative C. elegans models established for five common neurodegenerative diseases, which closely simulate disease phenotypes specifically in the gain-of-function aspect. We exemplify applications of high-throughput genetic and drug screenings to illustrate the potential of C. elegans to probe novel therapeutic targets. This review highlights the utility of C. elegans as a comprehensive and versatile platform for the dissection of neurodegenerative diseases at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoyu Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.W.); (Y.C.); (X.Y.); (M.Z.)
| |
Collapse
|
10
|
Lemieux GA, Yoo S, Lin L, Vohra M, Ashrafi K. The steroid hormone ADIOL promotes learning by reducing neural kynurenic acid levels. Genes Dev 2023; 37:998-1016. [PMID: 38092521 PMCID: PMC10760639 DOI: 10.1101/gad.350745.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3β, 17β-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Shinja Yoo
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Mihir Vohra
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
11
|
Dang H, Castro-Portuguez R, Espejo L, Backer G, Freitas S, Spence E, Meyers J, Shuck K, Gardea EA, Chang LM, Balsa J, Thorns N, Corban C, Liu T, Bean S, Sheehan S, Korstanje R, Sutphin GL. On the benefits of the tryptophan metabolite 3-hydroxyanthranilic acid in Caenorhabditis elegans and mouse aging. Nat Commun 2023; 14:8338. [PMID: 38097593 PMCID: PMC10721613 DOI: 10.1038/s41467-023-43527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Tryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates. Here we report that knockdown of haao-1, a fourth gene encoding the enzyme 3-hydroxyanthranilic acid (3HAA) dioxygenase (HAAO), extends lifespan by ~30% and delays age-associated health decline in Caenorhabditis elegans. Lifespan extension is mediated by increased physiological levels of the HAAO substrate 3HAA. 3HAA increases oxidative stress resistance and activates the Nrf2/SKN-1 oxidative stress response. In pilot studies, female Haao knockout mice or aging wild type male mice fed 3HAA supplemented diet were also long-lived. HAAO and 3HAA represent potential therapeutic targets for aging and age-associated disease.
Collapse
Affiliation(s)
- Hope Dang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Luis Espejo
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Samuel Freitas
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Erica Spence
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jeremy Meyers
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Karissa Shuck
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Emily A Gardea
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Leah M Chang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jonah Balsa
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Niall Thorns
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Teresa Liu
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | - George L Sutphin
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
Sultana S, Elengickal A, Bensreti H, de Chantemèle EB, McGee-Lawrence ME, Hamrick MW. The kynurenine pathway in HIV, frailty and inflammaging. Front Immunol 2023; 14:1244622. [PMID: 37744363 PMCID: PMC10514395 DOI: 10.3389/fimmu.2023.1244622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Kynurenine (Kyn) is a circulating tryptophan (Trp) catabolite generated by enzymes including IDO1 that are induced by inflammatory cytokines such as interferon-gamma. Kyn levels in circulation increase with age and Kyn is implicated in several age-related disorders including neurodegeneration, osteoporosis, and sarcopenia. Importantly, Kyn increases with progressive disease in HIV patients, and antiretroviral therapy does not normalize IDO1 activity in these subjects. Kyn is now recognized as an endogenous agonist of the aryl hydrocarbon receptor, and AhR activation itself has been found to induce muscle atrophy, increase the activity of bone-resorbing osteoclasts, decrease matrix formation by osteoblasts, and lead to senescence of bone marrow stem cells. Several IDO1 and AhR inhibitors are now in clinical trials as potential cancer therapies. We propose that some of these drugs may be repurposed to improve musculoskeletal health in older adults living with HIV.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
13
|
Guo M, Qiao X, Wang Y, Li ZH, Shi C, Chen Y, Kang L, Chen C, Zhou XL. Mitochondrial translational defect extends lifespan in C. elegans by activating UPR mt. Redox Biol 2023; 63:102722. [PMID: 37167879 DOI: 10.1016/j.redox.2023.102722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are indispensable players in translation. Usually, two or three genes encode cytoplasmic and mitochondrial threonyl-tRNA synthetases (ThrRSs) in eukaryotes. Here, we reported that Caenorhabditis elegans harbors only one tars-1, generating cytoplasmic and mitochondrial ThrRSs via translational reinitiation. Mitochondrial tars-1 knockdown decreased mitochondrial tRNAThr charging and translation and caused pleotropic phenotypes of delayed development, decreased motor ability and prolonged lifespan, which could be rescued by replenishing mitochondrial tars-1. Mitochondrial tars-1 deficiency leads to compromised mitochondrial functions including the decrease in oxygen consumption rate, complex Ⅰ activity and the activation of the mitochondrial unfolded protein response (UPRmt), which contributes to longevity. Furthermore, deficiency of other eight mitochondrial aaRSs in C. elegans and five in mammal also caused activation of the UPRmt. In summary, we deciphered the mechanism of one tars-1, generating two aaRSs, and elucidated the biochemical features and physiological function of C. elegans tars-1. We further uncovered a conserved connection between mitochondrial translation deficiency and UPRmt.
Collapse
Affiliation(s)
- Miaomiao Guo
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi-Han Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiao-Long Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
14
|
Heylen A, Vermeiren Y, Kema IP, van Faassen M, van der Ley C, Van Dam D, De Deyn PP. Brain Kynurenine Pathway Metabolite Levels May Reflect Extent of Neuroinflammation in ALS, FTD and Early Onset AD. Pharmaceuticals (Basel) 2023; 16:ph16040615. [PMID: 37111372 PMCID: PMC10143579 DOI: 10.3390/ph16040615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES Despite distinct clinical profiles, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients share a remarkable portion of pathological features, with a substantial percentage of patients displaying a mixed disease phenotype. Kynurenine metabolism seems to play a role in dementia-associated neuroinflammation and has been linked to both diseases. We aimed to explore dissimilarities in kynurenine pathway metabolites in these early onset neurodegenerative disorders in a brain-region-specific manner. METHODS Using liquid chromatography mass spectrometry (LC-MS/MS), kynurenine metabolite levels were determined in the brain samples of 98 healthy control subjects (n = 20) and patients with early onset Alzheimer's disease (EOAD) (n = 23), ALS (n = 20), FTD (n = 24) or a mixed FTD-ALS (n = 11) disease profile. RESULTS Overall, the kynurenine pathway metabolite levels were significantly lower in patients with ALS compared to FTD, EOAD and control subjects in the frontal cortex, substantia nigra, hippocampus and neostriatum. Anthranilic acid levels and kynurenine-to-tryptophan ratios were consistently lower in all investigated brain regions in ALS compared to the other diagnostic groups. CONCLUSIONS These results suggest that the contribution of kynurenine metabolism in neuroinflammation is lower in ALS than in FTD or EOAD and may also be traced back to differences in the age of onset between these disorders. Further research is necessary to confirm the potential of the kynurenine system as a therapeutic target in these early onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Annelies Heylen
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, 6708 Wageningen, The Netherlands
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
15
|
Oxenkrug G, Navrotska V. Extension of life span by down-regulation of enzymes catalyzing tryptophan conversion into kynurenine: Possible implications for mechanisms of aging. Exp Biol Med (Maywood) 2023; 248:573-577. [PMID: 37300401 PMCID: PMC10350802 DOI: 10.1177/15353702231179411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
The end products of catabolism of tryptophan (Trp), an essential amino acid, are known to affect mechanism(s) of aging, a neurodegenerative condition. This review focuses on the possible role of the initial step of Trp catabolism, kynurenine (Kyn) formation from Trp, in aging mechanism(s). Rate-limiting enzymes of Trp conversion into Kyn are tryptophan 2,3-dioxygenase 2 (TDO) or indoleamine 2,3-dioxygenase (IDO). Aging is associated with up-regulated production of cortisol, an activator of TDO, and pro-inflammatory cytokines, inducers of IDO. The other rate-limiting enzyme of Kyn formation from Trp is ATP-binding cassette (ABC) transporter that regulates Trp availability as a substrate for TDO. Inhibitors of TDO (alpha-methyl tryptophan) and ABC transporter (5-methyltryptophan) extended life span of wild-type Drosophila. Life span prolongation was observed in TDO knockdown of Caenorhabditis elegans and in TDO or ABC transporter-deficient Drosophila mutants. Down-regulation of enzymes catalyzing Kyn conversion into kynurenic acid (KYNA) and 3-hydroxykynurenine decreases life span. Considering that down-regulation of Methuselah (MTH) gene prolonged life span, aging-accelerating effect of KYNA, a GPR35/MTH agonist, might depend on MTH gene activation. Mice treated with TDO inhibitor, benserazide, an ingredient of anti-Parkinson medication carbidopa, and TDO-deficient Drosophila mutants were resistant to inducement of aging-associated Metabolic Syndrome by high-sugar or high-fat diets. Up-regulation of Kyn formation was associated with accelerated aging and increased mortality in human subjects. Trp-Kyn pathway is evolutionary conserved (from yeasts, through insects, worms, vertebrates to humans). Further studies might explore possible antiaging effect of down-regulation of Kyn formation from Trp by dietary, pharmacological, and genetic interventions.
Collapse
|
16
|
Liu X, Zou L, Nie C, Qin Y, Tong X, Wang J, Yang H, Xu X, Jin X, Xiao L, Zhang T, Min J, Zeng Y, Jia H, Hou Y. Mendelian randomization analyses reveal causal relationships between the human microbiome and longevity. Sci Rep 2023; 13:5127. [PMID: 36991009 PMCID: PMC10052271 DOI: 10.1038/s41598-023-31115-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Although recent studies have revealed the association between the human microbiome especially gut microbiota and longevity, their causality remains unclear. Here, we assess the causal relationships between the human microbiome (gut and oral microbiota) and longevity, by leveraging bidirectional two-sample Mendelian randomization (MR) analyses based on genome-wide association studies (GWAS) summary statistics of the gut and oral microbiome from the 4D-SZ cohort and longevity from the CLHLS cohort. We found that some disease-protected gut microbiota such as Coriobacteriaceae and Oxalobacter as well as the probiotic Lactobacillus amylovorus were related to increased odds of longevity, whereas the other gut microbiota such as colorectal cancer pathogen Fusobacterium nucleatum, Coprococcus, Streptococcus, Lactobacillus, and Neisseria were negatively associated with longevity. The reverse MR analysis further revealed genetically longevous individuals tended to have higher abundances of Prevotella and Paraprevotella but lower abundances of Bacteroides and Fusobacterium species. Few overlaps of gut microbiota-longevity interactions were identified across different populations. We also identified abundant links between the oral microbiome and longevity. The additional analysis suggested that centenarians genetically had a lower gut microbial diversity, but no difference in oral microbiota. Our findings strongly implicate these bacteria to play a role in human longevity and underscore the relocation of commensal microbes among different body sites that would need to be monitored for long and healthy life.
Collapse
Affiliation(s)
- Xiaomin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Chao Nie
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xin Tong
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Tao Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Junxia Min
- School of Medicine, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China.
| | - Huijue Jia
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China.
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
17
|
Shen H, Xu X, Bai Y, Wang X, Wu Y, Zhong J, Wu Q, Luo Y, Shang T, Shen R, Xi M, Sun H. Therapeutic potential of targeting kynurenine pathway in neurodegenerative diseases. Eur J Med Chem 2023; 251:115258. [PMID: 36917881 DOI: 10.1016/j.ejmech.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Kynurenine pathway (KP), the primary pathway of L-tryptophan (Trp) metabolism in mammals, contains several neuroactive metabolites such as kynurenic acid (KA) and quinolinic acid (QA). Its imbalance involved in aging and neurodegenerative diseases (NDs) has attracted much interest in therapeutically targeting KP enzymes and KP metabolite-associated receptors, especially kynurenine monooxygenase (KMO). Currently, many agents have been discovered with significant improvement in animal models but only one aryl hydrocarbon receptor (AHR) agonist 30 (laquinimod) has entered clinical trials for treating Huntington's disease (HD). In this review, we describe neuroactive KP metabolites, discuss the dysregulation of KP in aging and NDs and summarize the development of KP regulators in preclinical and clinical studies, offering an outlook of targeting KP for NDs treatment in future.
Collapse
Affiliation(s)
- Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xinde Xu
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | - Yalong Bai
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | | | - Yibin Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jia Zhong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qiyi Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tianbo Shang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|
19
|
Huang G, Ma Y, Xie D, Zhao C, Zhu L, Xie G, Wu P, Wang W, Zhao Z, Cai Z. Evaluation of nanoplastics toxicity in the soil nematode Caenorhabditis elegans by iTRAQ-based quantitative proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160646. [PMID: 36493839 DOI: 10.1016/j.scitotenv.2022.160646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plastic pollution is recognized as a major threat to ecosystems in the 21st century. Large plastic objects undergo biotic and abiotic degradation to generate micro- and nano-sized plastic pieces. Despite tremendous efforts to evaluate the adverse effects of microplastics, a comprehensive understanding of the toxicity of nanoplastics remains elusive, especially at the protein level. To this end, we used isobaric-tag-for-relative-and-absolute-quantitation-based quantitative proteomics to investigate the proteome dynamics of the soil nematode Caenorhabditis elegans in response to exposure to 100 nm polystyrene nanoplastics (PS-NPs). After 48 h of exposure to 0.1, 1, or 10 mg/L PS-NPs, 136 out of 1684 proteins were differentially expressed and 108 of these proteins were upregulated. These proteins were related to ribosome biogenesis, translation, proteolysis, kinases, protein processing in the endoplasmic reticulum, and energy metabolism. Remarkably, changes in proteome dynamics in response to exposure to PS-NPs were consistent with the phenotypic defects of C. elegans. Collectively, our findings demonstrate that disruption of proteome homeostasis is a biological consequence of PS-NPs accumulation in C. elegans, which provides insights into the molecular mechanisms underlying the toxicology of nanoplastics.
Collapse
Affiliation(s)
- Gefei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, 999077, Hong Kong
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, 999077, Hong Kong
| | - Cunmin Zhao
- Department of Biology, Hong Kong Baptist University, 999077, Hong Kong
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, 999077, Hong Kong
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong.
| |
Collapse
|
20
|
Choi HS, Bhat A, Howington MB, Schaller ML, Cox RL, Huang S, Beydoun S, Miller HA, Tuckowski AM, Mecano J, Dean ES, Jensen L, Beard DA, Evans CR, Leiser SF. FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans. Nat Commun 2023; 14:562. [PMID: 36732543 PMCID: PMC9894935 DOI: 10.1038/s41467-023-36181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.
Collapse
Affiliation(s)
- Hyo Sub Choi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay Bhat
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Megan L Schaller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rebecca L Cox
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Safa Beydoun
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hillary A Miller
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joy Mecano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth S Dean
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lindy Jensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Schoeppe R, Babl N, Decking SM, Schönhammer G, Siegmund A, Bruss C, Dettmer K, Oefner PJ, Frick L, Weigert A, Jantsch J, Herr W, Rehli M, Renner K, Kreutz M. Glutamine synthetase expression rescues human dendritic cell survival in a glutamine-deprived environment. Front Oncol 2023; 13:1120194. [PMID: 36741028 PMCID: PMC9894315 DOI: 10.3389/fonc.2023.1120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Glutamine deficiency is a well-known feature of the tumor environment. Here we analyzed the impact of glutamine deprivation on human myeloid cell survival and function. Methods Different types of myeloid cells were cultured in the absence or presence of glutamine and/or with L-methionine-S-sulfoximine (MSO), an irreversible glutamine synthetase (GS) inhibitor. GS expression was analyzed on mRNA and protein level. GS activity and the conversion of glutamate to glutamine by myeloid cells was followed by 13C tracing analyses. Results The absence of extracellular glutamine only slightly affected postmitotic human monocyte to dendritic cell (DC) differentiation, function and survival. Similar results were obtained for monocyte-derived macrophages. In contrast, proliferation of the monocytic leukemia cell line THP-1 was significantly suppressed. While macrophages exhibited high constitutive GS expression, glutamine deprivation induced GS in DC and THP-1. Accordingly, proliferation of THP-1 was rescued by addition of the GS substrate glutamate and 13C tracing analyses revealed conversion of glutamate to glutamine. Supplementation with the GS inhibitor MSO reduced the survival of DC and macrophages and counteracted the proliferation rescue of THP-1 by glutamate. Discussion Our results show that GS supports myeloid cell survival in a glutamine poor environment. Notably, in addition to suppressing proliferation and survival of tumor cells, the blockade of GS also targets immune cells such as DCs and macrophages.
Collapse
Affiliation(s)
- Robert Schoeppe
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department for Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Gabriele Schönhammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Siegmund
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Gynecology and Obstetrics, University Hospital Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Linus Frick
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department for Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| |
Collapse
|
22
|
Feng M, Gao B, Garcia LR, Sun Q. Microbiota-derived metabolites in regulating the development and physiology of Caenorhabditis elegans. Front Microbiol 2023; 14:1035582. [PMID: 36925470 PMCID: PMC10011103 DOI: 10.3389/fmicb.2023.1035582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Microbiota consist of microorganisms that provide essential health benefits and contribute to the animal's physiological homeostasis. Microbiota-derived metabolites are crucial mediators in regulating host development, system homeostasis, and overall fitness. In this review, by focusing on the animal model Caenorhabditis elegans, we summarize key microbial metabolites and their molecular mechanisms that affect animal development. We also provide, from a bacterial perspective, an overview of host-microbiota interaction networks used for maintaining host physiological homeostasis. Moreover, we discuss applicable methodologies for profiling new bacterial metabolites that modulate host developmental signaling pathways. Microbiota-derived metabolites have the potential to be diagnostic biomarkers for diseases, as well as promising targets for engineering therapeutic interventions against animal developmental or health-related defects.
Collapse
Affiliation(s)
- Min Feng
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
23
|
Schifano E, Conta G, Preziosi A, Ferrante C, Batignani G, Mancini P, Tomassini A, Sciubba F, Scopigno T, Uccelletti D, Miccheli A. 2-hydroxyisobutyric acid (2-HIBA) modulates ageing and fat deposition in Caenorhabditis elegans. Front Mol Biosci 2022; 9:986022. [PMID: 36533081 PMCID: PMC9749906 DOI: 10.3389/fmolb.2022.986022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 06/30/2024] Open
Abstract
High levels of 2-hydroxyisobutyric acid (2-HIBA) were found in urines of patients with obesity and hepatic steatosis, suggesting a potential involvement of this metabolite in clinical conditions. The gut microbial origin of 2-HIBA was hypothesized, however its actual origin and role in biological processes are still not clear. We investigated how treatment with 2-HIBA affected the physiology of the model organism Caenorhabditis elegans, in both standard and high-glucose diet (HGD) growth conditions, by targeted transcriptomic and metabolomic analyses, Coherent Anti-Stokes Raman Scattering (CARS) and two-photon fluorescence microscopy. In standard conditions, 2-HIBA resulted particularly effective to extend the lifespan, delay ageing processes and stimulate the oxidative stress resistance in wild type nematodes through the activation of insulin/IGF-1 signaling (IIS) and p38 MAPK pathways and, consequently, through a reduction of ROS levels. Moreover, variations of lipid accumulation observed in treated worms correlated with transcriptional levels of fatty acid synthesis genes and with the involvement of peptide transporter PEP-2. In HGD conditions, the effect of 2-HIBA on C. elegans resulted in a reduction of the lipid droplets deposition, accordingly with an increase of acs-2 gene transcription, involved in β-oxidation processes. In addition, the pro-longevity effect appeared to be correlated to higher levels of tryptophan, which may play a role in restoring the decreased viability observed in the HGD untreated nematodes.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giorgia Conta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Adele Preziosi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Carino Ferrante
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giovanni Batignani
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberta Tomassini
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Tullio Scopigno
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5019752. [PMID: 36312896 PMCID: PMC9616658 DOI: 10.1155/2022/5019752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022]
Abstract
The kynurenine pathway is implicated in aging, longevity, and immune regulation, but longitudinal studies and assessment of the cerebrospinal fluid (CSF) are lacking. We investigated tryptophan (Trp) and downstream kynurenine metabolites and their associations with age and change over time in four cohorts using comprehensive, targeted metabolomics. The study included 1574 participants in two cohorts with repeated metabolite measurements (mean age at baseline 58 years ± 8 SD and 62 ± 10 SD), 3161 community-dwelling older adults (age range 71-74 years), and 109 CSF donors (mean age 73 years ± 7 SD). In the first two cohorts, age was associated with kynurenine (Kyn), quinolinic acid (QA), and the kynurenine to tryptophan ratio (KTR), and inversely with Trp. Consistent with these findings, Kyn, QA, and KTR increased over time, whereas Trp decreased. Similarly, QA and KTR were higher in community-dwelling older adults of age 74 compared to 71, whereas Trp was lower. Kyn and QA were more strongly correlated with age in the CSF compared to serum and increased in a subset of participants with repeated CSF sampling (n = 33) over four years. We assessed associations with frailty and mortality in two cohorts. QA and KTR were most strongly associated with mortality and frailty. Our study provides robust evidence of changes in tryptophan and kynurenine metabolism with human aging and supports links with adverse health outcomes. Our results suggest that aging activates the inflammation and stress-driven kynurenine pathway systemically and in the brain, but we cannot determine whether this activation is harmful or adaptive. We identified a relatively stronger age-related increase of the potentially neurotoxic end-product QA in brain.
Collapse
|
25
|
A feasible and efficient voltammetric sensor based on electropolymerized L-arginine for the detection of L-tryptophan in dietary supplements. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Cristina B, Veronica R, Silvia A, Andrea G, Sara C, Luca P, Nicoletta B, M.C. BJ, Silvio B, Fabio T. Identification and characterization of the kynurenine pathway in the pond snail Lymnaea stagnalis. Sci Rep 2022; 12:15617. [PMID: 36114337 PMCID: PMC9481534 DOI: 10.1038/s41598-022-19652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Dysregulation of the kynurenine pathway (KP) is implicated in many human diseases and disorders, from immunological, metabolic, neurodegenerative, and neuropsychiatric conditions to cancer, and represents an appealing target for new therapeutic approaches. In this intricate scenario, invertebrates, like Lymnaea stagnalis (LS), provide a flexible tool to unravel the complexity of the KP. Starting from the available LS genome and transcriptome, we identified putative transcripts of all KP enzymes containing an ORF; each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate model organisms. Sequences were confirmed by qualitative PCR and sequencing. At the same time, the qRT-PCR analysis revealed that Lym IDO-like, Lym TDO-like, Lym AFMID-like, Lym KMO-like, Lym AADAT-like, Lym KYAT I/III-like, Lym KYNU-like, Lym HAAO-like, and Lym ACMSD-like showed widespread tissue expression. Then, tryptophan, kynurenine, kynurenic acid, anthranilic acid, 3-hydroxy-kynurenine, xanthurenic acid, picolinic acid, and quinolinic acid were identified in the hemolymph of LS by UHPLC-Q exactive mass spectrometer. Our study provides the most thorough characterization to date of the KP in an invertebrate model, supporting the value of LS for future functional studies of this pathway at the cellular, synaptic, and behavioral levels.
Collapse
|
27
|
Fadil F, Samol C, Berger RS, Kellermeier F, Gronwald W, Oefner PJ, Dettmer K. Isotope Ratio Outlier Analysis (IROA) for HPLC-TOFMS-Based Metabolomics of Human Urine. Metabolites 2022; 12:741. [PMID: 36005614 PMCID: PMC9414531 DOI: 10.3390/metabo12080741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic fingerprinting by mass spectrometry aims at the comprehensive, semiquantitative analysis of metabolites. Isotope dilution, if successfully implemented, may provide a more reliable, relative quantification. Therefore, the 13C labeled yeast extract of the IROA TruQuant kit was added as an internal standard (IS) to human urine samples measured in full-scan mode on a high-performance liquid chromatography-time-of-flight mass spectrometer (HPLC-TOFMS) system. The isotope ratio approach enabled the analysis of 112 metabolites. The correlation with reference data did not improve significantly using 12C/13C ratios compared to absolute 12C peak areas. Moreover, using an intricate 13C-labeled standard increased the complexity of the mass spectra, which made correct signal annotation more challenging. On the positive side, the ratio approach helps to reduce batch effects, but it does not perform better than computational methods such as the "removebatcheffect" function in the R package Limma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
28
|
Feldmeyer B, Gstöttl C, Wallner J, Jongepier E, Séguret A, Grasso DA, Bornberg-Bauer E, Foitzik S, Heinze J. Evidence for a conserved queen-worker genetic toolkit across slave-making ants and their ant hosts. Mol Ecol 2022; 31:4991-5004. [PMID: 35920076 DOI: 10.1111/mec.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialised morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in non-parasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of co-expressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - C Gstöttl
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - J Wallner
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - E Jongepier
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - A Séguret
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - D A Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parma, Italy
| | - E Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - S Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - J Heinze
- Zoology / Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. Int J Tryptophan Res 2022; 15:11786469221096643. [PMID: 35784899 PMCID: PMC9248048 DOI: 10.1177/11786469221096643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Kynurenine pathway is the main route of tryptophan metabolism and produces several metabolites with various biologic properties. It has been uncovered that several cardiovascular diseases are associated with the overactivation of kynurenine pathway and kynurenine and its metabolites have diagnostic and prognostic value in cardiovascular diseases. Furthermore, it was found that several kynurenine metabolites can differently affect cardiovascular health. For instance, preclinical studies have shown that kynurenine, xanthurenic acid and cis-WOOH decrease blood pressure; kynurenine and 3-hydroxyanthranilic acid prevent atherosclerosis; kynurenic acid supplementation and kynurenine 3-monooxygenase (KMO) inhibition improve the outcome of stroke. Indoleamine 2,3-dioxygenase (IDO) overactivity and increased kynurenine levels improve cardiac and vascular transplantation outcomes, whereas exacerbating the outcome of myocardial ischemia, post-ischemic myocardial remodeling, and abdominal aorta aneurysm. IDO inhibition and KMO inhibition are also protective against viral myocarditis. In addition, dysregulation of kynurenine pathway is observed in several conditions such as senescence, depression, diabetes, chronic kidney disease (CKD), cirrhosis, and cancer closely connected to cardiovascular dysfunction. It is worth defining the exact effect of each metabolite of kynurenine pathway on cardiovascular health. This narrative review is the first review that separately discusses the involvement of kynurenine pathway in different cardiovascular diseases and dissects the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
30
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
31
|
Frick L, Hinterland L, Renner K, Vogl M, Babl N, Heckscher S, Weigert A, Weiß S, Gläsner J, Berger R, Oefner PJ, Dettmer K, Kreutz M, Schatz V, Jantsch J. Acidic Microenvironments Found in Cutaneous Leishmania Lesions Curtail NO-Dependent Antiparasitic Macrophage Activity. Front Immunol 2022; 13:789366. [PMID: 35493523 PMCID: PMC9047701 DOI: 10.3389/fimmu.2022.789366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Local tissue acidosis affects anti-tumor immunity. In contrast, data on tissue pH levels in infected tissues and their impact on antimicrobial activity is sparse. In this study, we assessed the pH levels in cutaneous Leishmania lesions. Leishmania major-infected skin tissue displayed pH levels of 6.7 indicating that lesional pH is acidic. Next, we tested the effect of low extracellular pH on the ability of macrophages to produce leishmanicidal NO and to fight the protozoan parasite Leishmania major. Extracellular acidification led to a marked decrease in both NO production and leishmanicidal activity of lipopolysaccharide (LPS) and interferon γ (IFN-γ)-coactivated macrophages. This was not directly caused by a disruption of NOS2 expression, a shortage of reducing equivalents (NAPDH) or substrate (L-arginine), but by a direct, pH-mediated inhibition of NOS2 enzyme activity. Normalization of intracellular pH significantly increased NO production and antiparasitic activity of macrophages even in an acidic microenvironment. Overall, these findings indicate that low local tissue pH can curtail NO production and leishmanicidal activity of macrophages.
Collapse
Affiliation(s)
- Linus Frick
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Linda Hinterland
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Marion Vogl
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Simon Heckscher
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Susanne Weiß
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Joachim Gläsner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Raffaela Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany,*Correspondence: Jonathan Jantsch,
| |
Collapse
|
32
|
Ferulic Acid Exerts Neuroprotective Effects via Autophagy Induction in C. elegans and Cellular Models of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3723567. [PMID: 35242276 PMCID: PMC8888115 DOI: 10.1155/2022/3723567] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a complex neurological disorder characterized by motor and nonmotor features. Although some drugs have been developed for the therapy of PD in a clinical setting, they only alleviate the clinical symptoms and have yet to show a cure. In this study, by employing the C. elegans model of PD, we found that ferulic acid (FA) significantly inhibited α-synuclein accumulation and improved dyskinesia in NL5901 worms. Meanwhile, FA remarkably decreased the degeneration of dopaminergic (DA) neurons, improved the food-sensing behavior, and reduced the level of reactive oxygen species (ROS) in 6-OHDA-induced BZ555 worms. The mechanistic study discovered that FA could activate autophagy in C. elegans, while the knockdown of 3 key autophagy-related genes significantly revoked the neuroprotective effects of FA in α-synuclein- and 6-OHDA-induced C. elegans models of PD, demonstrating that FA exerts an anti-PD effect via autophagy induction in C. elegans. Furthermore, we found that FA could reduce 6-OHDA- or H2O2-induced cell death and apoptosis in PC-12 cells. Moreover, FA was able to induce autophagy in stable GFP-RFP-LC3 U87 cells and PC-12 cells, while bafilomycin A1 (Baf, an autophagy inhibitor) partly eliminated the protective effects of FA against 6-OHDA- and H2O2-induced cell death and ROS production in PC-12 cells, further confirming that FA exerts an anti-PD effect via autophagy induction in vitro. Collectively, our study provides novel insights for FA as a potent autophagy enhancer to effectively prevent neurodegenerative diseases such as PD in the future.
Collapse
|
33
|
Mahalakshmi AM, Paneyala S, Ray B, Essa MM, Dehhaghi M, Heng B, Guillemin GJ, Babu Chidambaram S. Alterations in Tryptophan Metabolism Affect Vascular Functions: Connected to Ageing Population Vulnerability to COVID-19 Infection? Int J Tryptophan Res 2022; 15:11786469221083946. [PMID: 35645571 PMCID: PMC9133873 DOI: 10.1177/11786469221083946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Visiting Professor, Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA
| | - Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.org
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.org
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.org
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
34
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
35
|
Boros FA, Vécsei L. Tryptophan 2,3-dioxygenase, a novel therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2021; 25:877-888. [PMID: 34720020 DOI: 10.1080/14728222.2021.1999928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alterations in the activity of tryptophan 2,3-dioxygenase (TDO) cause imbalances in the levels of serotonin and other neuroactive metabolites which can contribute to motor, psychiatric, gastrointestinal, and other dysfunctions often seen in Parkinson's disease (PD). TDO is a key enzyme of tryptophan metabolism at the entry of the kynurenine pathway (KP) which moderates production of neuroactive compounds primarily outside the central nervous system (CNS). Recent data from experimental models indicate that TDO modulation could have beneficial effects on PD symptoms not targeted by traditional dopamine substitution therapies. AREAS COVERED Based on data available in PubMed and ClinicalTrials databases up until 1 August 2021, we summarize current knowledge of KP alterations in relation to PD. We overview effects of TDO inhibition in preclinical models of neurodegeneration and discuss findings of the impact of enzyme inhibition on motor, memory and gastrointestinal dysfunctions, and neuronal cell loss. EXPERT OPINION TDO inhibition potentially alleviates motor and non-motor dysfunctions of PD. However, data suggesting harmful effects of long-term TDO inhibition raise concerns. To exploit possibilities of TDO inhibitory treatment, development of further selective TDO inhibitor compounds with good bioavailability features and models adequately replicating PD symptoms of systemic origin should be prioritized.
Collapse
Affiliation(s)
- Fanni Annamária Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE, Neuroscience Research Group Szeged Hungary.,Interdisciplinary Excellence Center, Department of Neurology, Szeged, Hungary
| |
Collapse
|
36
|
Kaya A, Phua CZJ, Lee M, Wang L, Tyshkovskiy A, Ma S, Barre B, Liu W, Harrison BR, Zhao X, Zhou X, Wasko BM, Bammler TK, Promislow DEL, Kaeberlein M, Gladyshev VN. Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. eLife 2021; 10:e64860. [PMID: 34751131 PMCID: PMC8612763 DOI: 10.7554/elife.64860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/04/2021] [Indexed: 01/29/2023] Open
Abstract
To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan (RLS). Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in RLS across wild yeast isolates, as well as genes, metabolites, and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism, and mitochondrial function in long-lived strains. Overall, our multiomic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.
Collapse
Affiliation(s)
- Alaattin Kaya
- Department of Biology, Virginia Commonwealth UniversityRichmondUnited States
| | - Cheryl Zi Jin Phua
- Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Mitchell Lee
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of WashingtonSeattleUnited States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscowRussian Federation
| | - Siming Ma
- Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Benjamin Barre
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of ZoologyBeijingChina
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Xiaqing Zhao
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Brian M Wasko
- Department of Biology, University of Houston - Clear LakeHoustonUnited States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of WashingtonSeattleUnited States
| | - Daniel EL Promislow
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
37
|
Landis GN, Hilsabeck TAU, Bell HS, Ronnen-Oron T, Wang L, Doherty DV, Tejawinata FI, Erickson K, Vu W, Promislow DEL, Kapahi P, Tower J. Mifepristone Increases Life Span of Virgin Female Drosophila on Regular and High-fat Diet Without Reducing Food Intake. Front Genet 2021; 12:751647. [PMID: 34659367 PMCID: PMC8511958 DOI: 10.3389/fgene.2021.751647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The synthetic steroid mifepristone is reported to have anti-obesity and anti-diabetic effects in mammals on normal and high-fat diets (HFD). We previously reported that mifepristone blocks the negative effect on life span caused by mating in female Drosophila melanogaster. Methods: Here we asked if mifepristone could protect virgin females from the life span-shortening effect of HFD. Mifepristone was assayed for effects on life span in virgin females, in repeated assays, on regular media and on media supplemented with coconut oil (HFD). The excrement quantification (EX-Q) assay was used to measure food intake of the flies after 12 days mifepristone treatment. In addition, experiments were conducted to compare the effects of mifepristone in virgin and mated females, and to identify candidate mifepristone targets and mechanisms. Results: Mifepristone increased life span of virgin females on regular media, as well as on media supplemented with either 2.5 or 5% coconut oil. Food intake was not reduced in any assay, and was significantly increased by mifepristone in half of the assays. To ask if mifepristone might rescue virgin females from all life span-shortening stresses, the oxidative stressor paraquat was tested, and mifepristone produced little to no rescue. Analysis of extant metabolomics and transcriptomics data suggested similarities between effects of mifepristone in virgin and mated females, including reduced tryptophan breakdown and similarities to dietary restriction. Bioinformatics analysis identified candidate mifepristone targets, including transcription factors Paired and Extra-extra. In addition to shortening life span, mating also causes midgut hypertrophy and activation of the lipid metabolism regulatory factor SREBP. Mifepristone blocked the increase in midgut size caused by mating, but did not detectably affect midgut size in virgins. Finally, mating increased activity of a SREBP reporter in abdominal tissues, as expected, but reporter activity was not detectably reduced by mifepristone in either mated or virgin females. Conclusion: Mifepristone increases life span of virgin females on regular and HFD without reducing food intake. Metabolomics and transcriptomics analyses suggest some similar effects of mifepristone between virgin and mated females, however reduced midgut size was observed only in mated females. The results are discussed regarding possible mifepristone mechanisms and targets.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tyler A. U. Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, United States
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, United States
| | - Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tal Ronnen-Oron
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Devon V. Doherty
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Felicia I. Tejawinata
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Katherine Erickson
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - William Vu
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, United States
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
38
|
Petersen AØ, Jokinen M, Plichta DR, Liebisch G, Gronwald W, Dettmer K, Oefner PJ, Vlamakis H, Chung DC, Ranki A, Xavier RJ. Cytokine-specific autoantibodies shape the gut microbiome in autoimmune polyendocrine syndrome type 1. J Allergy Clin Immunol 2021; 148:876-888. [PMID: 33819509 PMCID: PMC8429070 DOI: 10.1016/j.jaci.2021.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastrointestinal dysfunction is a frequent and disabling manifestation of autoimmune polyendocrine syndrome type 1 (APS-1), a rare monogenic multiorgan autoimmune disease caused by the loss of central AIRE-controlled immune tolerance. OBJECTIVES This study aimed to understand the role of the gut microbiome in APS-1 symptoms and potentially alleviate common gastrointestinal symptoms by probiotic intervention. METHODS This study characterized the fecal microbiomes of 28 patients with APS-1 and searched for associations with gastrointestinal symptoms, circulating anti-cytokine autoantibodies, and tryptophan-related metabolites. Additionally, daily doses of the probiotic Lactobacillus rhamnosus GG were administered for 3 months. RESULTS Of 581 metagenomic operational taxonomic units (mOTUs) characterized in total, 14 were significantly associated with patients with APS-1 compared with healthy controls, with 6 mOTUs depleted and 8 enriched in patients with APS-1. Four overabundant mOTUs were significantly associated with severity of constipation. Phylogenetically conserved microbial associations with autoantibodies against cytokines were observed. After the 3-month intervention with the probiotic L rhamnosus GG, a subset of gastrointestinal symptoms were alleviated. L rhamnosus GG abundance was increased postintervention and corresponded with decreased abundances of Alistipes onderdonkii and Collinsella aerofaciens, 2 species positively associated with severity of diarrhea in patients with APS-1. CONCLUSIONS The APS-1 microbiome correlates with several APS-1 symptoms, some of which are alleviated after a 3-month L rhamnosus GG intervention. Autoantibodies against cytokines appear to shape the gut microbiome by positively correlating with a taxonomically consistent group of bacteria.
Collapse
Affiliation(s)
- Anders Ø Petersen
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martta Jokinen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Damian R Plichta
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
39
|
Li JQ, Fang JS, Qin XM, Gao L. Metabolomics profiling reveals the mechanism of caffeic acid in extending lifespan in Drosophila melanogaster. Food Funct 2021; 11:8202-8213. [PMID: 32966485 DOI: 10.1039/d0fo01332c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caffeic acid is a phenolic compound widely synthesized by plants, which has shown health benefits for multiple aging-related diseases. The aim of this study was to investigate the life-extending effect of caffeic acid and its underlying mechanisms. The effects of caffeic acid on lifespan, climbing behavior, starvation resistance, and heat sensitivity of Drosophila melanogaster (D. melanogaster) were evaluated. 1H-NMR-based metabolomics and biochemical detection were performed to explore the potential mechanisms. The results demonstrated that supplementation with caffeic acid extended the lifespan, and improved climbing behavior and stress resistance in D. melanogaster. Additionally, continuous supplementation with caffeic acid caused the metabolic profile of 30-day D. melanogaster closer to that of 3-day D. melanogaster, among which 17 differential metabolites were significantly regulated by caffeic acid, involved in amino acid metabolism and mitochondrial metabolism. Furthermore, caffeic acid significantly prevented oxidative damage and improved mitochondrial function. Correlation analysis indicated that the differential metabolites regulated by caffeic acid were correlated with its antioxidant effect and mitochondrial improvement function. In conclusion, our data support that caffeic acid could extend lifespan in D. melanogaster through regulation of metabolic abnormality and improvement of mitochondrial function.
Collapse
Affiliation(s)
- Jia-Qi Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China.
| | - Jian-Song Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
40
|
Perni M, Mannini B, Xu CK, Kumita JR, Dobson CM, Chiti F, Vendruscolo M. Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Sci Rep 2021; 11:14391. [PMID: 34257326 PMCID: PMC8277765 DOI: 10.1038/s41598-021-93527-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance.
Collapse
Affiliation(s)
- Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
41
|
Joshi P, Perni M, Limbocker R, Mannini B, Casford S, Chia S, Habchi J, Labbadia J, Dobson CM, Vendruscolo M. Two human metabolites rescue a C. elegans model of Alzheimer's disease via a cytosolic unfolded protein response. Commun Biol 2021; 4:843. [PMID: 34234268 PMCID: PMC8263720 DOI: 10.1038/s42003-021-02218-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer's disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.
Collapse
Affiliation(s)
- Priyanka Joshi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.47840.3f0000 0001 2181 7878Present Address: The California Institute for Quantitative Biosciences (QB3-Berkeley), University of California, Berkeley, CA USA
| | - Michele Perni
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Ryan Limbocker
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.419884.80000 0001 2287 2270Present Address: Department of Chemistry and Life Science, United States Military Academy, West Point, NY USA
| | - Benedetta Mannini
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sam Casford
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sean Chia
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnny Habchi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnathan Labbadia
- grid.83440.3b0000000121901201Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
McIntyre G, Wright J, Wong HT, Lamendella R, Chan J. Effects of FUdR on gene expression in the C. elegans bacterial diet OP50. BMC Res Notes 2021; 14:207. [PMID: 34103088 PMCID: PMC8186096 DOI: 10.1186/s13104-021-05624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Many C. elegans aging studies use the compound 5-fluro-2ʹ-deoxyuridine (FUdR) to produce a synchronous population of worms. However, the effects of FUdR on the bacterial gene expression of OP50 E. coli, the primary laboratory C. elegans food source, is not fully understood. This is particularly relevant as studies suggest that intestinal microbes can affect C. elegans physiology. Therefore, it is imperative that we understand how exposure to FUdR can affect gene expression changes in OP50 E. coli. Results An RNAseq dataset comprised of expression patterns of 2900 E. coli genes in the strain OP50, which were seeded on either nematode growth media (NGM) plates or on FUdR (50 µM) supplemented NGM plates, was analyzed. Analysis showed differential gene expression in genes involved in general transport, amino acid biosynthesis, transcription, iron transport, and antibiotic resistance. We specifically highlight metabolic enzymes in the l-histidine biosynthesis pathway as differentially expressed between NGM and FUdR exposed OP50. We conclude that OP50 exposed to FUdR results in differential expression of many genes, including those in amino acid biosynthetic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05624-6.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Biology, Marian University, 3200 Cold Spring Rd, Indianapolis, IN, 46222, USA
| | - Justin Wright
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Hoi Tong Wong
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Regina Lamendella
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Jason Chan
- Department of Biology, Marian University, 3200 Cold Spring Rd, Indianapolis, IN, 46222, USA.
| |
Collapse
|
43
|
Yang Y, Chen T, Zhang X, Wang X. Age-related functional changes of intestinal flora in rats. FEMS Microbiol Lett 2021; 368:6277806. [PMID: 34003293 DOI: 10.1093/femsle/fnab051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Intestinal flora structure and function change with age and have been associated with a variety of aging-related diseases. Until now, how age affects the functions of gut bacteria has not been fully understood. We used 16S-rRNA-sequencing technology and PICRUSt2 analysis to predict the functions encoded by intestinal flora in male Wistar rats across lifespan. We found that the abundance of gut microbiota genes encoding the L-tryptophan, L-histidine, L-leucine, inositol and catechol degradation pathways as well as L-arginine, ectoine, flavin and ubiquinol synthesis pathways increased with age. Differential analysis of the associated genera revealed that Rhodococcus spp. were significantly abundant during middle-old aged stage. This genus contributed greatly to the L-tryptophan, catechol and inositol degradation pathways as well as ectoine and L-arginine biosynthesis pathways. We concluded that gut bacteria-encoded functions such as amino acid metabolism, B vitamin metabolism, aromatic compound metabolism and energy metabolism varied in an age-dependent manner, and Rhodococcus spp. were the most associated functional bacteria in middle-old aged rats. These may be closely associated with the physiological phenotype of the aging process, which offers new insights for evaluating the relationship between intestinal flora and aging.
Collapse
Affiliation(s)
- Yuping Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xia Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Bradner JM, Kalia V, Lau FK, Sharma M, Bucher ML, Johnson M, Chen M, Walker DI, Jones DP, Miller GW. Genetic or Toxicant-Induced Disruption of Vesicular Monoamine Storage and Global Metabolic Profiling in Caenorhabditis elegans. Toxicol Sci 2021; 180:313-324. [PMID: 33538833 PMCID: PMC8041460 DOI: 10.1093/toxsci/kfab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The proper storage and release of monoamines contributes to a wide range of neuronal activity. Here, we examine the effects of altered vesicular monoamine transport in the nematode Caenorhabditis elegans. The gene cat-1 is responsible for the encoding of the vesicular monoamine transporter (VMAT) in C. elegans and is analogous to the mammalian vesicular monoamine transporter 2 (VMAT2). Our laboratory has previously shown that reduced VMAT2 activity confers vulnerability on catecholamine neurons in mice. The purpose of this article was to determine whether this function is conserved and to determine the impact of reduced VMAT activity in C. elegans. Here we show that deletion of cat-1/VMAT increases sensitivity to the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) as measured by enhanced degeneration of dopamine neurons. Reduced cat-1/VMAT also induces changes in dopamine-mediated behaviors. High-resolution mass spectrometry-based metabolomics in the whole organism reveals changes in amino acid metabolism, including tyrosine metabolism in the cat-1/VMAT mutants. Treatment with MPP+ disrupted tryptophan metabolism. Both conditions altered glycerophospholipid metabolism, suggesting a convergent pathway of neuronal dysfunction. Our results demonstrate the evolutionarily conserved nature of monoamine function in C. elegans and further suggest that high-resolution mass spectrometry-based metabolomics can be used in this model to study environmental and genetic contributors to complex human disease.
Collapse
Affiliation(s)
- Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Monica Sharma
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Michelle Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Merry Chen
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30303, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| |
Collapse
|
45
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
46
|
Perni M, van der Goot A, Limbocker R, van Ham TJ, Aprile FA, Xu CK, Flagmeier P, Thijssen K, Sormanni P, Fusco G, Chen SW, Challa PK, Kirkegaard JB, Laine RF, Ma KY, Müller MBD, Sinnige T, Kumita JR, Cohen SIA, Seinstra R, Kaminski Schierle GS, Kaminski CF, Barbut D, De Simone A, Knowles TPJ, Zasloff M, Nollen EAA, Vendruscolo M, Dobson CM. Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Front Cell Dev Biol 2021; 9:552549. [PMID: 33829010 PMCID: PMC8019828 DOI: 10.3389/fcell.2021.552549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research.
Collapse
Affiliation(s)
- Michele Perni
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Annemieke van der Goot
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Ryan Limbocker
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Francesco A. Aprile
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Catherine K. Xu
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Flagmeier
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Karen Thijssen
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Pietro Sormanni
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Serene W. Chen
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Pavan K. Challa
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Julius B. Kirkegaard
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology (LMCB) University College London, London, United Kingdom
| | - Kai Yu Ma
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Martin B. D. Müller
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Tessa Sinnige
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Janet R. Kumita
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Samuel I. A. Cohen
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Renée Seinstra
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | | | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Denise Barbut
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Michael Zasloff
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, United States
| | - Ellen A. A. Nollen
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands,*Correspondence: Ellen A. A. Nollen
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,Michele Vendruscolo
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Perez-Pardo P, Grobben Y, Willemsen-Seegers N, Hartog M, Tutone M, Muller M, Adolfs Y, Pasterkamp RJ, Vu-Pham D, van Doornmalen AM, van Cauter F, de Wit J, Gerard Sterrenburg J, Uitdehaag JCM, de Man J, Buijsman RC, Zaman GJR, Kraneveld AD. Pharmacological validation of TDO as a target for Parkinson's disease. FEBS J 2021; 288:4311-4331. [PMID: 33471408 PMCID: PMC8359396 DOI: 10.1111/febs.15721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/24/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease patients suffer from both motor and nonmotor impairments. There is currently no cure for Parkinson’s disease, and the most commonly used treatment, levodopa, only functions as a temporary relief of motor symptoms. Inhibition of the expression of the L‐tryptophan‐catabolizing enzyme tryptophan 2,3‐dioxygenase (TDO) has been shown to inhibit aging‐related α‐synuclein toxicity in Caenorhabditis elegans. To evaluate TDO inhibition as a potential therapeutic strategy for Parkinson’s disease, a brain‐penetrable, small molecule TDO inhibitor was developed, referred to as NTRC 3531‐0. This compound potently inhibits human and mouse TDO in biochemical and cell‐based assays and is selective over IDO1, an evolutionary unrelated enzyme that catalyzes the same reaction. In mice, NTRC 3531‐0 increased plasma and brain L‐tryptophan levels after oral administration, demonstrating inhibition of TDO activity in vivo. The effect on Parkinson’s disease symptoms was evaluated in a rotenone‐induced Parkinson’s disease mouse model. A structurally dissimilar TDO inhibitor, LM10, was evaluated in parallel. Both inhibitors had beneficial effects on rotenone‐induced motor and cognitive dysfunction as well as rotenone‐induced dopaminergic cell loss and neuroinflammation in the substantia nigra. Moreover, both inhibitors improved intestinal transit and enhanced colon length, which indicates a reduction of the rotenone‐induced intestinal dysfunction. Consistent with this, mice treated with TDO inhibitor showed decreased expression of rotenone‐induced glial fibrillary acidic protein, which is a marker of enteric glial cells, and decreased α‐synuclein accumulation in the enteric plexus. Our data support TDO inhibition as a potential therapeutic strategy to decrease motor, cognitive, and gastrointestinal symptoms in Parkinson’s disease.
Collapse
Affiliation(s)
- Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Grobben
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Mitch Hartog
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michaela Tutone
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle Muller
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Diep Vu-Pham
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Joeri de Wit
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | | | - Jos de Man
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Guido J R Zaman
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Sorgdrager F, van Der Ley CP, van Faassen M, Calus E, Nollen EA, Kema IP, van Dam D, De Deyn PP. The Effect of Tryptophan 2,3-Dioxygenase Inhibition on Kynurenine Metabolism and Cognitive Function in the APP23 Mouse Model of Alzheimer's Disease. Int J Tryptophan Res 2020; 13:1178646920972657. [PMID: 33447045 PMCID: PMC7780178 DOI: 10.1177/1178646920972657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is associated with progressive endogenous neurotoxicity and hampered inflammatory regulation. The kynurenine (Kyn) pathway, which is controlled by tryptophan 2,3-dioxygenase (TDO), produces neuroactive and anti-inflammatory metabolites. Age-related Kyn pathway activation might contribute to AD pathology in humans, and inhibition of TDO was found to reduce AD-related cellular toxicity and behavioral deficits in animal models. To further explore the effect of aging on the Kyn pathway in the context of AD, we analyzed Kyn metabolite profiles in serum and brain tissue of the APP23 amyloidosis mouse model. We found that aging had genotype-independent effects on Kyn metabolite profiles in serum, cortex, hippocampus and cerebellum, whereas serum concentrations of many Kyn metabolites were reduced in APP23 mice. Next, to further establish the role of TDO in AD-related behavioral deficits, we investigated the effect of long-term pharmacological TDO inhibition on cognitive performance in APP23 mice. Our results indicated that TDO inhibition reversed recognition memory deficits without producing measurable changes in cerebral Kyn metabolites. TDO inhibition did not affect spatial learning and memory or anxiety-related behavior. These data indicate that age-related Kyn pathway activation is not specific for humans and could represent a cross-species phenotype of aging. These data warrant further investigation on the role of peripheral Kyn pathway disturbances and cerebral TDO activity in AD pathophysiology.
Collapse
Affiliation(s)
- Fjh Sorgdrager
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C P van Der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Calus
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - E A Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - I P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D van Dam
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - P P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
49
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
50
|
Venkatesan D, Iyer M, Narayanasamy A, Siva K, Vellingiri B. Kynurenine pathway in Parkinson's disease-An update. eNeurologicalSci 2020; 21:100270. [PMID: 33134567 PMCID: PMC7585940 DOI: 10.1016/j.ensci.2020.100270] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a complex multi-factorial neurodegenerative disorder where various altered metabolic pathways contribute to the progression of the disease. Tryptophan (TRP) is a major precursor in kynurenine pathway (KP) and it has been discussed in various in vitro studies that the metabolites quinolinic acid (QUIN) causes neurotoxicity and kynurenic acid (KYNA) acts as neuroprotectant respectively. More studies are also focused on the effects of other KP metabolites and its enzymes as it has an association with ageing and PD pathogenesis. Until now, very few studies have targeted the role of genetic mutations in abnormal KP metabolism in adverse conditions of PD. Therefore, the present review gives an updated research studies on KP in connection with PD. Moreover, the review emphasizes on the urge for the development of biomarkers and also this would be an initiative in generating an alternative therapeutic approach for PD.
Collapse
Key Words
- 3-HAA, 3-hydroxyanthranilic acid
- 3-HK, 3-hydroxykynurenine
- 6-OHDA, 6-hydroxydopamine
- AA, anthranilic acid
- ACMSD, amino-carboxymuconatesemialdehyde decarboxylase
- AD, Alzheimer's disease
- ATP, adenosine triphosphate
- Ageing
- AhR, aryl hydrocarbon receptor
- Biomarkers
- CNS, central nervous system
- CSF, cerebrospinal fluid
- DA, dopaminergic
- FAM, formamidase
- IDO-1, indoleamine-2,3-dioxygenases
- IFN-γ, interferon-γ
- KATs, kynurenine aminotransferases
- KMO, kynurenine −3-monooxygenase
- KP, Kynurenine pathway
- KYN, kynurenine
- KYNA, kynurenic acid
- Kynurenine pathway (KP)
- L-DOPA, L-dopamine
- LID, L-DOPA-induced dyskinesia
- MPTP, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
- NAD+, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NFK, N′-formylkynurenine
- NMDA, N-methyl-d-aspartate
- PA, picolinic acid
- PD, Parkinson's disease
- Parkinson's disease (PD)
- QUIN, quinolinic acid
- RBCs, red blood cells
- SNpc, substantianigra pars compacta
- TDO, tryptophan 2,3-dioxygenase
- TRP, tryptophan
- Therapeutics
- XA, xanthurenic acid
- ZNS, zonisamide
- α-synuclein, αSyn
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kamalakannan Siva
- National Centre for Disease Control, Ministry of Health and Family Welfare, Government of India, New Delhi 110054, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|