1
|
Chang X, Zhang Q, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytother Res 2024; 38:2496-2517. [PMID: 38447978 DOI: 10.1002/ptr.8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Sottile ML, Gómez LC, Redondo A, Ibarra J, García MB, Gonzalez L, Vargas-Roig LM, Nadin SB. Relevance of Comet Assay and Phosphorylated-Hsp90α in Cancer Patients' Peripheral Blood Leukocytes as Tools to Assess Cisplatin-based Chemotherapy Clinical Response and Disease Outcome. J Histochem Cytochem 2024; 72:173-188. [PMID: 38439738 PMCID: PMC10956442 DOI: 10.1369/00221554241236241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Cisplatin (cPt) is a commonly used treatment for solid tumors. The main target of its cytotoxicity is the DNA molecule, which makes the DNA damage response (DDR) crucial for cPt-based chemotherapy. Therefore, it is essential to identify biomarkers that can accurately predict the individual clinical response and prognosis. Our goal was to assess the usefulness of alkaline comet assay and immunocytochemical staining of phosphorylated Hsp90α (p-Hsp90α), γH2AX, and 53BP1 as predictive/prognostic markers. Pre-chemotherapy peripheral blood leukocytes were exposed to cPt in vitro and collected at 0, 24 (T24), and 48 (T48) hr post-drug removal. Healthy subjects were also included. Baseline DNA damage was elevated in cancer patients (variability between individuals was observed). After cPt, patients showed increased γH2AX foci/nucleus (T24 and T48). Both in healthy persons and patients, the nuclear p-Hsp90α and N/C (nuclear/cytoplasmic) ratio augmented (T24), decreasing at T48. Favorable clinical response was associated with high DNA damage and p-Hsp90α N/C ratio following cPt. For the first time, p-Hsp90α significance as a predictive marker is highlighted. Post-cPt-DNA damage was associated with longer disease-free survival and overall survival. Our findings indicate that comet assay and p-Hsp90α (a marker of DDR) would be promising prognostic/predictive tools in cP-treated cancer patients.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Scientific and Technical Research Council, National University of Cuyo, Mendoza, Argentina
- Medical Sciences School, Mendoza University, Mendoza, Argentina
| | - Laura C Gómez
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Scientific and Technical Research Council, National University of Cuyo, Mendoza, Argentina
- Medical Sciences School, Mendoza University, Mendoza, Argentina
| | - Analía Redondo
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Scientific and Technical Research Council, National University of Cuyo, Mendoza, Argentina
| | - Jorge Ibarra
- Regional Integration Cancer Center, Mendoza, Argentina
| | | | | | - Laura M Vargas-Roig
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Scientific and Technical Research Council, National University of Cuyo, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, National Scientific and Technical Research Council, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Kumar R, Mendonca J, Shetty A, Yang Y, Owoyemi O, Wilson L, Boyapati K, Topiwala D, Thomas N, Nguyen H, Luo J, Paller CJ, Denmeade S, Carducci MA, Kachhap SK. CRM1 regulates androgen receptor stability and impacts DNA repair pathways in prostate cancer, independent of the androgen receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579966. [PMID: 38405771 PMCID: PMC10888881 DOI: 10.1101/2024.02.13.579966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival. It examines the role of CRM1 in regulating androgen receptor (AR) and DNA repair in prostate cancer. Our findings reveal that CRM1 influences AR mRNA and protein stability, leading to a loss of AR protein upon CRM1 inhibition. Furthermore, it highlights the involvement of HSP90 alpha, a known AR chaperone, in the CRM1-dependent regulation of AR protein stability. The combination of CRM1 inhibition with an HSP90 inhibitor demonstrates potent effects on decreasing prostate cancer cell growth and survival. The study further explores the influence of CRM1 on DNA repair proteins and proposes a strategy of combining CRM1 inhibitors with DNA repair pathway inhibitors to decrease prostate cancer growth. Overall, the findings suggest that CRM1 plays a crucial role in prostate cancer growth, and a combination of inhibitors targeting CRM1 and DNA repair pathways could be a promising therapeutic strategy.
Collapse
|
4
|
Deng B, Vanagas L, Alonso AM, Angel SO. Proteomics Applications in Toxoplasma gondii: Unveiling the Host-Parasite Interactions and Therapeutic Target Discovery. Pathogens 2023; 13:33. [PMID: 38251340 PMCID: PMC10821451 DOI: 10.3390/pathogens13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A comprehensive understanding of the intricate molecular interactions between T. gondii and its host is pivotal for the development of effective therapeutic strategies. This review emphasizes the crucial role of proteomics in T. gondii research, with a specific focus on host-parasite interactions, post-translational modifications (PTMs), PTM crosstalk, and ongoing efforts in drug discovery. Additionally, we provide an overview of recent advancements in proteomics techniques, encompassing interactome sample preparation methods such as BioID (BirA*-mediated proximity-dependent biotin identification), APEX (ascorbate peroxidase-mediated proximity labeling), and Y2H (yeast two hybrid), as well as various proteomics approaches, including single-cell analysis, DIA (data-independent acquisition), targeted, top-down, and plasma proteomics. Furthermore, we discuss bioinformatics and the integration of proteomics with other omics technologies, highlighting its potential in unraveling the intricate mechanisms of T. gondii pathogenesis and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Bin Deng
- Department of Biology and VBRN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Andres M. Alonso
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| |
Collapse
|
5
|
Backe SJ, Sager RA, Heritz JA, Wengert LA, Meluni KA, Aran-Guiu X, Panaretou B, Woodford MR, Prodromou C, Bourboulia D, Mollapour M. Activation of autophagy depends on Atg1/Ulk1-mediated phosphorylation and inhibition of the Hsp90 chaperone machinery. Cell Rep 2023; 42:112807. [PMID: 37453059 PMCID: PMC10529509 DOI: 10.1016/j.celrep.2023.112807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular homeostasis relies on both the chaperoning of proteins and the intracellular degradation system that delivers cytoplasmic constituents to the lysosome, a process known as autophagy. The crosstalk between these processes and their underlying regulatory mechanisms is poorly understood. Here, we show that the molecular chaperone heat shock protein 90 (Hsp90) forms a complex with the autophagy-initiating kinase Atg1 (yeast)/Ulk1 (mammalian), which suppresses its kinase activity. Conversely, environmental cues lead to Atg1/Ulk1-mediated phosphorylation of a conserved serine in the amino domain of Hsp90, inhibiting its ATPase activity and altering the chaperone dynamics. These events impact a conformotypic peptide adjacent to the activation and catalytic loop of Atg1/Ulk1. Finally, Atg1/Ulk1-mediated phosphorylation of Hsp90 leads to dissociation of the Hsp90:Atg1/Ulk1 complex and activation of Atg1/Ulk1, which is essential for initiation of autophagy. Our work indicates a reciprocal regulatory mechanism between the chaperone Hsp90 and the autophagy kinase Atg1/Ulk1 and consequent maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine A Meluni
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Xavier Aran-Guiu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London SE1 9NQ, UK
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Factors to Consider for the Correct Use of γH2AX in the Evaluation of DNA Double-Strand Breaks Damage Caused by Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14246204. [PMID: 36551689 PMCID: PMC9776434 DOI: 10.3390/cancers14246204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
People exposed to ionizing radiation (IR) both for diagnostic and therapeutic purposes is constantly increasing. Since the use of IR involves a risk of harmful effects, such as the DNA DSB induction, an accurate determination of this induced DNA damage and a correct evaluation of the risk-benefit ratio in the clinical field are of key relevance. γH2AX (the phosphorylated form of the histone variant H2AX) is a very early marker of DSBs that can be induced both in physiological conditions, such as in the absence of specific external agents, and by external factors such as smoking, heat, background environmental radiation, and drugs. All these internal and external conditions result in a basal level of γH2AX which must be considered for the correct assessment of the DSBs after IR exposure. In this review we analyze the most common conditions that induce H2AX phosphorylation, including specific exogenous stimuli, cellular states, basic environmental factors, and lifestyles. Moreover, we discuss the most widely used methods for γH2AX determination and describe the principal applications of γH2AX scoring, paying particular attention to clinical studies. This knowledge will help us optimize the use of available methods in order to discern the specific γH2AX following IR-induced DSBs from the basal level of γH2AX in the cells.
Collapse
|
7
|
Kim S, Backe SJ, Wengert LA, Johnson AE, Isakov RV, Bratslavsky MS, Woodford MR. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration. Cell Stress Chaperones 2022; 27:573-585. [PMID: 35976490 PMCID: PMC9485411 DOI: 10.1007/s12192-022-01293-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
The molecular chaperone TNF-receptor-associated protein-1 (TRAP1) controls mitochondrial respiration through regulation of Krebs cycle and electron transport chain activity. Post-translational modification (PTM) of TRAP1 regulates its activity, thereby controlling global metabolic flux. O-GlcNAcylation is one PTM that is known to impact mitochondrial metabolism, however the major effectors of this regulatory PTM remain inadequately resolved. Here we demonstrate that TRAP1-O-GlcNAcylation decreases TRAP1 ATPase activity, leading to increased mitochondrial metabolism. O-GlcNAcylation of TRAP1 occurs following mitochondrial import and provides critical regulatory feedback, as the impact of O-GlcNAcylation on mitochondrial metabolism shows TRAP1-dependence. Mechanistically, loss of TRAP1-O-GlcNAcylation decreased TRAP1 binding to ATP, and interaction with its client protein succinate dehydrogenase (SDHB). Taken together, TRAP1-O-GlcNAcylation serves to regulate mitochondrial metabolism by the reversible attenuation of TRAP1 chaperone activity.
Collapse
Affiliation(s)
- Seungchan Kim
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Anna E Johnson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Roman V Isakov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael S Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
8
|
Maiti S, Picard D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022; 12:1166. [PMID: 36139005 PMCID: PMC9496497 DOI: 10.3390/biom12091166] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.
Collapse
Affiliation(s)
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Geneve, Switzerland
| |
Collapse
|
9
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
10
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
11
|
Sottile ML, Cuello-Carrión FD, Gómez LC, Semino S, Ibarra J, García MB, Gonzalez L, Vargas-Roig LM, Nadin SB. DNA Damage Repair Proteins, HSP27, and Phosphorylated-HSP90α as Predictive/Prognostic Biomarkers of Platinum-based Cancer Chemotherapy: An Exploratory Study. Appl Immunohistochem Mol Morphol 2022; 30:425-434. [PMID: 35639358 DOI: 10.1097/pai.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Platinum analogs are commonly used for cancer treatment. There is increasing interest in finding biomarkers which could predict and overcome resistance, because to date there is no reliable predictive/prognostic marker for these compounds. Here we studied the immunohistochemical expression of proteins involved in DNA damage response and repair (γH2AX, 53BP1, ERCC1, MLH1, and MSH2) in primary tumor tissues from patients treated with platinum-based chemotherapy. Levels and localization of Heat Shock Protein (HSP)27 and phospho-(Thr5/7)-HSP90α (p-HSP90α) were also determined. The implications in clinical response, disease-free survival and overall survival were analyzed. High γH2AX and 53BP1 expressions were associated with poor clinical response. Nuclear p-HSP90α, as well as nuclear absence and low cytoplasmic expression of HSP27 correlated with good response. Patients with high γH2AX and high cytoplasmic HSP27 expressions had shorter overall survival and disease-free survival. MLH1, MSH2, or ERCC1 were not associated with clinical response or survival. We report the potential utility of p-HSP90α, HSP27, γH2AX, and 53BP1 as predictive/prognostic markers for platinum-based chemotherapy. We present the first study that evaluates the predictive and prognostic value of p-HSP90α in primary tumors. Our research opens new possibilities for clinical oncology and shows the usefulness of immunohistochemistry for predicting chemotherapy response and prognosis in cancer.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory
- Medical Sciences School, Mendoza University
| | | | - Laura C Gómez
- Tumor Biology Laboratory
- Medical Sciences School, Mendoza University
| | | | - Jorge Ibarra
- Regional Integration Cancer Center, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
12
|
Dylgjeri E, Kothari V, Shafi AA, Semenova G, Gallagher PT, Guan YF, Pang A, Goodwin JF, Irani S, McCann JJ, Mandigo AC, Chand S, McNair CM, Vasilevskaya I, Schiewer MJ, Lallas CD, McCue PA, Gomella LG, Seifert EL, Carroll JS, Butler LM, Holst J, Kelly WK, Knudsen KE. A Novel Role for DNA-PK in Metabolism by Regulating Glycolysis in Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:1446-1459. [PMID: 35078861 PMCID: PMC9365345 DOI: 10.1158/1078-0432.ccr-21-1846] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vishal Kothari
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ayesha A. Shafi
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Galina Semenova
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter T. Gallagher
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yi F. Guan
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - Angel Pang
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - Jonathan F. Goodwin
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Swati Irani
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School and Freemasons Foundation Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia
| | - Jennifer J. McCann
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amy C. Mandigo
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati Chand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher M. McNair
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irina Vasilevskaya
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J. Schiewer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D. Lallas
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A. McCue
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G. Gomella
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Erin L. Seifert
- Department of Pathology, Anatomy and Cell Biology and MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jason S. Carroll
- Cancer Research UK Cambridge Research Institute, England, United Kingdom
| | - Lisa M. Butler
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School and Freemasons Foundation Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia
| | - Jeff Holst
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - William K. Kelly
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Wang S, Zhu H, Li R, Mui D, Toan S, Chang X, Zhou H. DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury. Sci Signal 2022; 15:eabh1121. [PMID: 35290083 DOI: 10.1126/scisignal.abh1121] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) regulates cell death. We sought to determine whether DNA-PKcs played a role in the tubular damage that occurs during acute kidney injury (AKI) induced by LPS injection (to mimic sepsis), cisplatin administration, or renal ischemia/reperfusion injury. Although DNA-PKcs normally localizes to the nucleus, we detected cytoplasmic DNA-PKcs in mouse kidney tissues and urinary sediments of human patients with septic AKI. Increased cytoplasmic amounts of DNA-PKcs correlated with renal dysfunction. Tubule cell-specific DNA-PKcs deletion attenuated AKI-mediated tubular cell death and changes in the abundance of various proteins with mitochondrial functions or roles in apoptotic pathways. DNA-PKcs interacted with Fis1 and phosphorylated it at Thr34 in its TQ motif, which increased the affinity of Fis1 for Drp1 and induced mitochondrial fragmentation. Knockin mice expressing a nonphosphorylatable T34A mutant exhibited improved renal function and histological features and reduced mitochondrial fragmentation upon induction of AKI. Phosphorylation of Thr34 in Fis1 was detectable in urinary sediments of human patients with septic AKI and correlated with renal dysfunction. Our findings provide insight into the role of cytoplasmic DNA-PKcs and phosphorylated Fis1 in AKI development.
Collapse
Affiliation(s)
- Shiyuan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Hang Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ruibing Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Xing Chang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Hao Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
14
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
15
|
Liu H, Lu Z, Shi X, Liu L, Zhang P, Golemis EA, Tu Z. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem 2021; 297:100996. [PMID: 34302809 PMCID: PMC8363837 DOI: 10.1016/j.jbc.2021.100996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an especially aggressive and highly heterogeneous mature B-cell lymphoma. Heat shock protein 90 (HSP90) is considered an attractive therapeutic target in a variety of cancers, including MCL, but no HSP90 inhibitors have succeeded in the clinical trials to date. Exploring fine mechanisms of HSP90 inhibition in cancer cells may shed light on novel therapeutic strategies. Here, we found that HSP90 knockdown and continuous inhibition with ganetespib inhibited growth of MCL cells in vitro and in vivo. To our surprise, transient exposure over 12 h was almost as efficient as continuous exposure, and treatment with ganetespib for 12 h efficiently inhibited growth and induced G1 cell cycle arrest and apoptosis of MCL cells. Transcriptome analysis complemented by functional studies was performed to define critical MCL signaling pathways that are exceptionally sensitive to HSP90 inhibition and vital to cell fate. Six genes (cell division cycle 6, cell division cycle 45, minichromosome maintenance 4, minichromosome maintenance 7, RecQ-mediated genome instability 2, and DNA primase polypeptide 1) involved in DNA replication and repair were identified as consistently downregulated in three MCL cell lines after transient ganetespib treatment. E2F1, an important transcription factor essential for cell cycle progression, was identified as a ganetespib target mediating transcriptional downregulation of these six genes, and its stability was also demonstrated to be maintained by HSP90. This study identifies E2F1 as a novel client protein of HSP90 that is very sensitive and worthy of targeting and also finds that HSP90 inhibitors may be useful in combination therapies for MCL.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaofeng Shi
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanlan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
16
|
Wang CM, Li HF, Wang XK, Li WG, Su Q, Xiao X, Hao TF, Chen W, Zhang YW, Zhang HY, Wu W, Hu ZR, Zhao GY, Huo MY, He YL, Zhang CH. Ailanthus Altissima-derived Ailanthone enhances Gastric Cancer Cell Apoptosis by Inducing the Repression of Base Excision Repair by Downregulating p23 Expression. Int J Biol Sci 2021; 17:2811-2825. [PMID: 34345209 PMCID: PMC8326126 DOI: 10.7150/ijbs.60674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy plays an irreplaceable role in the treatment of GC, but currently available chemotherapeutic drugs are not ideal. The application of medicinal plants is an important direction for new drug discovery. Through drug screening of GC organoids, we determined that ailanthone has an anticancer effect on GC cells in vitro and in vivo. We also found that AIL can induce DNA damage and apoptosis in GC cells. Further transcriptome sequencing of PDX tissue indicated that AIL inhibited the expression of XRCC1, which plays an important role in DNA damage repair, and the results were also confirmed by western blotting. In addition, we found that AIL inhibited the expression of P23 and that inhibition of P23 decreased the expression of XRCC1, indicating that AIL can regulate XRCC1 via P23. The results of coimmunoprecipitation showed that AIL can inhibit the binding of P23 and XRCC1 to HSP90. These findings indicate that AIL can induce DNA damage and apoptosis in GC cells. Meanwhile, AIL can decrease XRCC1 activity by downregulating P23 expression to inhibit DNA damage repair. The present study sheds light on the potential application of new drugs isolated from natural medicinal plants for GC therapy.
Collapse
Affiliation(s)
- Chun-Ming Wang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China.,Department of Intervention, The People's Hospital of Guangxi Zhuang Autonomous Region,Nanning Guangxi 530021,P.R. China
| | - Hua-Fu Li
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.,The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Xiao-Kun Wang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wu-Guo Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Xing Xiao
- Scientific research center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - Teng-Fei Hao
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Chen
- Scientific research center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - Ya-Wei Zhang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hai-Yong Zhang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wang Wu
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhen-Ran Hu
- Scientific research center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - Guang-Yin Zhao
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Ming-Yu Huo
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yu-Long He
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chang-Hua Zhang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
17
|
Moradi-Ozarlou M, Moshari S, Rezaei Agdam H, Nomanzadeh A, Shahmohamadlou S, Razi M. High-fat diet-induced obesity amplifies HSP70-2a and HSP90 expression in testicular tissue; correlation with proliferating cell nuclear antigen (PCNA). Life Sci 2021; 279:119633. [PMID: 34022201 DOI: 10.1016/j.lfs.2021.119633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
AIMS Current study was conducted to uncover the effect of high-fat diet (HFD)-induced obesity on heat shock proteins 70-2a and 90 expression levels and to investigate the network between these proteins with PCNA expression, endocrine status of testicular tissue and nucleotide backbone damages. MAIN METHODS For this purpose, 20 mature male Wistar rats were divided into two groups of control and HFD-received obese animals (n = 10/group). After 8 weeks from obesity approval, the animals were euthanized. The expression levels of Hsp70-2a, Hsp90 and PCNA were analyzed by qRT-PCR and immunohistochemical staining techniques. The Leydig cell distribution/mm2 of interstitial tissue, serum level of testosterone, testicular total antioxidant capacity (TAC), and mRNA and DNA damage were investigated. KEY FINDINGS The obese (HFD-received) animals represented a remarkable (p < 0.05) increment in the mRNA levels of hsp70-2a and Hsp90, and the percentages of Hsp70-2a+ and Hsp90+ cells/seminiferous tubules with the same criteria. The PCNA mRNA level and the percentage of PCNA+ cells were decreased in the obese (HFD-received) group. The obesity, significantly decreased testicular TAC and with no effect on the Leydig cell distribution, but by reducing their steroidogenic activity resulted in a remarkable (p < 0.05) reduction in serum testosterone level. Finally, severe mRNA and DNA damage were revealed in the obese (HFD-received) group. SIGNIFICANCE Therefore, considering massive testicular DNA damage in the obese (HFD-received) animals, we can conclude that an increased expression of Hsp70-2a and Hsp90 with no harmony with PCNA could not properly maintain the cellular DNA integrity and/or appropriately finalize the DNA repair process.
Collapse
Affiliation(s)
- Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Sana Moshari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | - Hamed Rezaei Agdam
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | - Amir Nomanzadeh
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | - Simineh Shahmohamadlou
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
18
|
Yu L, Lang Y, Guo J, Cai J, Shang ZF, Chen BPC. DNA-PKcs inhibition impairs HDAC6-mediated HSP90 chaperone function on Aurora A and enhances HDACs inhibitor-induced cell killing by increasing mitotic aberrant spindle assembly. Cell Cycle 2021; 20:211-224. [PMID: 33404279 DOI: 10.1080/15384101.2020.1867790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression. Histone deacetylase (HDACs) inhibitors commonly lead to mitotic aberration and have been approved for treating various cancers in the clinic. We showed that DNA-PKcs depletion or kinase activity inhibition increases cancer cells' sensitivity to HDACs inhibitors in vitro and in vivo. DNA-PKcs deficiency significantly enhances HDACs inhibitors (HDACi)-induced mitotic arrest and is followed by apoptotic cell death. Mechanistically, we found that DNA-PKcs binds to HDAC6 and facilitates its acetylase activity. HDACi is more likely to impair HDAC6-induced deacetylation of HSP90 and abrogate HSP90's chaperone function on Aurora A, a critical mitotic kinase that regulates centrosome separation and mitotic spindle assembly in DNA-PKcs-deficient cells. Our current work indicates crosstalk between DNA-PKcs and HDACs signaling pathways, and highlights that the combined targeting of DNA-PKcs and HDACs can be used in cancer therapy. Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit, HDACs, Histone deacetylases, DSBs, DNA double-strand breaks, ATM, ataxia telangiectasia mutated, ATR, ATM-Rad3-related.
Collapse
Affiliation(s)
- Lan Yu
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, China
| | - Jiaming Guo
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA.,Department of Radiation Medicine, College of Naval Medicine, Naval Medical University , Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University , Shanghai, China
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA
| |
Collapse
|
19
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
20
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
21
|
Gorska-Ponikowska M, Kuban-Jankowska A, Marino Gammazza A, Daca A, Wierzbicka JM, Zmijewski MA, Luu HH, Wozniak M, Cappello F. The Major Heat Shock Proteins, Hsp70 and Hsp90, in 2-Methoxyestradiol-Mediated Osteosarcoma Cell Death Model. Int J Mol Sci 2020; 21:E616. [PMID: 31963524 PMCID: PMC7014403 DOI: 10.3390/ijms21020616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
2-Methoxyestradiol is one of the natural 17β-estradiol derivatives and a potential novel anticancer agent currently being under evaluation in advanced phases of clinical trials. However, the mechanism of anticancer action of 2-methoxyestradiol has not been yet fully established. In our previous studies we have demonstrated that 2-methoxyestradiol selectively induces the expression and nuclear translocation of neuronal nitric oxide synthase in osteosarcoma 143B cells. Heat shock proteins (Hsps) are factors involved in the regulation of expression and activity of nitric oxide synthases. Herein, we chose osteosarcoma cell lines differed in metastatic potential, metastatic 143B and highly metastatic MG63.2 cells, in order to further investigate the anticancer mechanism of 2-methoxyestradiol. The current study aimed to determine the role of major heat shock proteins, Hsp90 and Hsp70 in 2-methoxyestradiol-induced osteosarcoma cell death. We focused on the implication of Hsp90 and Hsp70 in control under expression of neuronal nitric oxide synthase, localization of the enzyme, and further generation of nitro-oxidative stress. To give the insight into the role of Hsp90 in regulation of anticancer efficacy of 2-methoxyestradiol, we used geldanamycin as a potent Hsp90 inhibitor. Herein, we evidenced that inhibition of Hsp90 controls the protein expression of 2-methoxyestradiol-induced neuronal nitric oxide synthase and inhibits enzyme nuclear translocation. We propose that decreased level of neuronal nitric oxide synthase protein after a combined treatment with 2-methoxyestradiol and geldanamycin is directly associated with the accompanying upregulation of Hsp70 and downregulation of Hsp90. This interaction resulted in abrogation of anticancer efficacy of 2-methoxyestradiol by geldanamycin.
Collapse
Affiliation(s)
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.K.-J.); (M.W.)
| | - Antonella Marino Gammazza
- Euro-Mediterranean Institute of Science and Technology, 90127 Palermo, Italy; (A.M.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Justyna M. Wierzbicka
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.M.W.); (M.A.Z.)
| | - Michal A. Zmijewski
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.M.W.); (M.A.Z.)
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.K.-J.); (M.W.)
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, 90127 Palermo, Italy; (A.M.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
22
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Wolmarans A, Kwantes A, LaPointe P. A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro. Biol Chem 2019; 400:487-500. [PMID: 30265648 DOI: 10.1515/hsz-2018-0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
SUMO is covalently attached to lysine side chains in target proteins by the action of a cascade of E1, E2, and E3 ligases. Unlike ubiquitin, SUMO does not target proteins for degradation but rather plays a regulatory role in activating target proteins or directing them to multiprotein complexes. Isolating SUMOylated proteins from native sources is challenging because of the low stoichiometry of SUMOylation that occurs for any given target protein in cells. Here we report a novel strategy to couple SUMO to the site of a target lysine for the purpose of in vitro study. Introduction of a single cysteine after the C terminal diglycine motif and a cysteine in place of a target lysine in a substrate protein allows for efficient and specific crosslinking of SUMO using a homo-bifunctional maleimide crosslinker. We demonstrate that SUMO can be crosslinked in this manner to amino acid position 178 in the dimeric molecular chaperone, Hsp90. Chemically SUMOylated Hsp90 has very similar ATPase activity compared to unmodified Hsp90 but displays preferential co-chaperone binding in vivo. Our novel strategy can easily be applied to other SUMOylated or ubiquitinated target protein in vitro.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Allison Kwantes
- Department of Biology, The King's University, Edmonton T6B 2H3, Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| |
Collapse
|
24
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
25
|
Ibler AEM, ElGhazaly M, Naylor KL, Bulgakova NA, F El-Khamisy S, Humphreys D. Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection. Nat Commun 2019; 10:4040. [PMID: 31492859 PMCID: PMC6731267 DOI: 10.1038/s41467-019-12064-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Typhi activates the host DNA damage response through the typhoid toxin, facilitating typhoid symptoms and chronic infections. Here we reveal a non-canonical DNA damage response, which we call RING (response induced by a genotoxin), characterized by accumulation of phosphorylated histone H2AX (γH2AX) at the nuclear periphery. RING is the result of persistent DNA damage mediated by toxin nuclease activity and is characterized by hyperphosphorylation of RPA, a sensor of single-stranded DNA (ssDNA) and DNA replication stress. The toxin overloads the RPA pathway with ssDNA substrate, causing RPA exhaustion and senescence. Senescence is also induced by canonical γΗ2ΑΧ foci revealing distinct mechanisms. Senescence is transmitted to non-intoxicated bystander cells by an unidentified senescence-associated secreted factor that enhances Salmonella infections. Thus, our work uncovers a mechanism by which genotoxic Salmonella exhausts the RPA response by inducing ssDNA formation, driving host cell senescence and facilitating infection.
Collapse
Affiliation(s)
- Angela E M Ibler
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kathryn L Naylor
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sherif F El-Khamisy
- The Healthy Life Span Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Center of Genomics, Zewail City of Science and Technology, Giza, Egypt
| | - Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
26
|
Jette NR, Radhamani S, Arthur G, Ye R, Goutam S, Bolyos A, Petersen LF, Bose P, Bebb DG, Lees-Miller SP. Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells. Br J Cancer 2019; 121:600-610. [PMID: 31481733 PMCID: PMC6889280 DOI: 10.1038/s41416-019-0565-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Up to 40% of lung adenocarcinoma have been reported to lack ataxia-telangiectasia mutated (ATM) protein expression. We asked whether ATM-deficient lung cancer cell lines are sensitive to poly-ADP ribose polymerase (PARP) inhibitors and determined the mechanism of action of olaparib in ATM-deficient A549 cells. Methods We analysed drug sensitivity data for olaparib and talazoparib in lung adenocarcinoma cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) project. We deleted ATM from A549 lung adenocarcinoma cells using CRISPR/Cas9 and determined the effects of olaparib and the ATM/Rad3-related (ATR) inhibitor VE-821 on cell viability. Results IC50 values for both olaparib and talazoparib positively correlated with ATM mRNA levels and gene amplification status in lung adenocarcinoma cell lines. ATM mutation was associated with a significant decrease in the IC50 for olaparib while a similar trend was observed for talazoparib. A549 cells with deletion of ATM were sensitive to ionising radiation and olaparib. Olaparib induced phosphorylation of DNA damage markers and reversible G2 arrest in ATM-deficient cells, while the combination of olaparib and VE-821 induced cell death. Conclusions Patients with tumours characterised by ATM-deficiency may benefit from treatment with a PARP inhibitor in combination with an ATR inhibitor.
Collapse
Affiliation(s)
- Nicholas R Jette
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Suraj Radhamani
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Greydon Arthur
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ruiqiong Ye
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Siddhartha Goutam
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Anthony Bolyos
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lars F Petersen
- Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Pinaki Bose
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada.,Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - D Gwyn Bebb
- Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Susan P Lees-Miller
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada. .,Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
27
|
Wu S, Ma S, Yin X, Yi P, Liu J. An integrated PKD1-dependent signaling network amplifies IRE1 prosurvival signaling. J Biol Chem 2019; 294:11119-11130. [PMID: 31167779 DOI: 10.1074/jbc.ra118.003311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Following the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), a condition known as ER stress in this compartment triggers an adaptive signaling pathway referred to as the unfolded protein response (UPR). The UPR aims at restoring ER homeostasis; if the ER stress cannot be resolved, apoptosis is triggered. However, the mechanisms responsible for regulating the balance between cell life and death decisions that occur after exposure to ER stress remain unclear. Protein kinase D1 (PKD1) has been reported to initiate protective signaling against oxidative stress or ischemia, two conditions that impinge on the induction of ER stress. In addition, the high levels of expression of PKD1, observed in highly proliferative cancers and tumors with poor prognosis, contribute to enhanced resistance to chemotherapy. In this study, we show that the ER stress inducers tunicamycin and thapsigargin lead to the activation of PKD1 in human prostate cancer PC-3 cells and in hepatoma HepG2 cells through a PKCδ-dependent mechanism. Moreover, our data indicate that PKD1 is required for the stabilization of inositol-requiring enzyme 1 (IRE1) and the subsequent regulation of its activity. PKD1 activation contributes to the phosphorylation of mitogen-activated protein kinase phosphatase 1, resulting in decreased IRE1-mediated c-Jun N-terminal kinase activation. This study unveils the existence of a novel PKD1-dependent prosurvival mechanism that is activated upon ER stress and selectively enhances IRE1 prosurvival signaling.
Collapse
Affiliation(s)
- Shiyong Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Shumin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Xueliang Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| |
Collapse
|
28
|
Manissorn J, Singhto N, Thongboonkerd V. Characterizations of HSP90-Interacting Complex in Renal Cells Using Tandem Affinity Purification and Its Potential Role in Kidney Stone Formation. Proteomics 2018; 18:e1800004. [DOI: 10.1002/pmic.201800004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/22/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Juthatip Manissorn
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Nilubon Singhto
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| |
Collapse
|
29
|
The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet 2018; 14:e1007462. [PMID: 30452489 PMCID: PMC6277125 DOI: 10.1371/journal.pgen.1007462] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/03/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Hsp70 is a well-conserved molecular chaperone involved in the folding, stabilization, and eventual degradation of many “client” proteins. Hsp70 is regulated by a suite of co-chaperone molecules that assist in Hsp70-client interaction and stimulate the intrinsic ATPase activity of Hsp70. While previous studies have shown the anticancer target ribonucleotide reductase (RNR) is a client of Hsp70, the regulatory co-chaperones involved remain to be determined. To identify co-chaperone(s) involved in RNR activity, 28 yeast co-chaperone knockout mutants were screened for sensitivity to the RNR-perturbing agent Hydroxyurea. Ydj1, an important cytoplasmic Hsp70 co-chaperone was identified to be required for growth on HU. Ydj1 bound the RNR subunit Rnr2 and cells lacking Ydj1 showed a destabilized RNR complex. Suggesting broad conservation from yeast to human, HDJ2 binds R2B and regulates RNR stability in human cells. Perturbation of the Ssa1-Ydj1 interaction through mutation or Hsp70-HDJ2 via the small molecule 116-9e compromised RNR function, suggesting chaperone dependence of this novel role. Mammalian cells lacking HDJ2 were significantly more sensitive to RNR inhibiting drugs such as hydroxyurea, gemcitabine and triapine. Taken together, this work suggests a novel anticancer strategy-inhibition of RNR by targeting Hsp70 co-chaperone function. Ribonucleotide reductase (RNR) is a key enzyme in the synthesis of DNA and inhibition of RNR leads to cellular sensitivity to radiation. As such, RNR is a well-validated therapeutic target for a variety of diseases including cancer. Anti-RNR drugs are effective but are associated with a range of side effects in patients. Our previous work had identified that the Hsp90 and Hsp70 molecular chaperone proteins regulate RNR. The specificity and activity of Hsp70 and Hsp90 are regulated by “co-chaperone” proteins. We examined RNR activity in cells lacking individual co-chaperones and identified the Ydj1/HDJ2 protein as a novel regulator of RNR in yeast and human cells. Importantly, we demonstrate that inhibiting HDJ2 sensitizes cells to currently used anticancer drugs.
Collapse
|
30
|
Uehara Y, Temma K, Kobayashi Y, Irie N, Yamaguchi T. Reduction of Thermotolerance by Heat Shock Protein 90 Inhibitors in Murine Erythroleukemia Cells. Biol Pharm Bull 2018; 41:1393-1400. [PMID: 30175776 DOI: 10.1248/bpb.b18-00190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells induce heat shock proteins (HSPs) against various stress. However, murine erythroleukemia (MEL) cells do not express HSP72, a heat-inducible member of HSP70 family. So, it is of interest to examine how MEL cells respond to heat stress (44°C, 30 min). Heat stress-induced apoptosis was suppressed by pretreatment of heat shock (44°C, 10 min). Such suppressive effects were maximal at 6 h after heat shock and remained up to 12 h. Interestingly, such effects of heat shock were abrogated by specific inhibitors of HSP90 such as 17-allylamino-17-demethoxygeldanamycin (17-AAG) and novobiocin. From flow cytometric analysis, it was found that MEL cells arrest in G2 phase at 6 h after heat shock, but restore original cell cycle at 12 h. High expression level of HSP90 was maintained before and after heat shock. Phosphorylation of HSP90α was observed in apoptotic cells induced by heat stress, but inhibited by pretreatment of heat shock. Such inhibition was abrogated by 17-AAG. Moreover, c-Jun NH2-terminal kinase (JNK) was activated in heat stress-induced apoptotic cells. Taken together, these results suggest that HSP90α in MEL cells plays an important role in the thermotolerance, i.e., suppression of heat stress-induced apoptosis by heat shock.
Collapse
Affiliation(s)
- Yousuke Uehara
- Department of Chemistry, Faculty of Science, Fukuoka University
| | - Kazunari Temma
- Department of Chemistry, Faculty of Science, Fukuoka University
| | - Yuuya Kobayashi
- Department of Chemistry, Faculty of Science, Fukuoka University
| | - Nobuyuki Irie
- Department of Chemistry, Faculty of Science, Fukuoka University
| | - Takeo Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University
| |
Collapse
|
31
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
32
|
Morishima Y, Mehta RK, Yoshimura M, Lau M, Southworth DR, Lawrence TS, Pratt WB, Nyati MK, Osawa Y. Chaperone Activity and Dimerization Properties of Hsp90 α and Hsp90 β in Glucocorticoid Receptor Activation by the Multiprotein Hsp90/Hsp70-Dependent Chaperone Machinery. Mol Pharmacol 2018; 94:984-991. [PMID: 29941666 DOI: 10.1124/mol.118.112516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022] Open
Abstract
Several hundred proteins cycle into heterocomplexes with a dimer of the chaperone heat shock protein 90 (Hsp90), regulating their activity and turnover. There are two isoforms of Hsp90, Hsp90α and Hsp90β, and their relative chaperone activities and composition in these client protein•Hsp90 heterocomplexes has not been determined. Here, we examined the activity of human Hsp90α and Hsp90β in a purified five-protein chaperone machinery that assembles glucocorticoid receptor (GR)•Hsp90 heterocomplexes to generate high-affinity steroid-binding activity. We found that human Hsp90α and Hsp90β have equivalent chaperone activities, and when mixed together in this assay, they formed only GR•Hsp90αα and GR•Hsp90ββ homodimers and no GR•Hsp90αβ heterodimers. In contrast, GR•Hsp90 heterocomplexes formed in human embryonic kidney (HEK) cells also contain GR•Hsp90αβ heterodimers. The formation of GR•Hsp90αβ heterodimers in HEK cells probably reflects the longer time permitted for exchange to form Hsp90αβ heterodimers in the cell versus in the cell-free assembly conditions. This purified GR-activating chaperone machinery can be used to determine how modifications of Hsp90 affect its chaperone activity. To that effect, we have tested whether the unique phosphorylation of Hsp90α at threonines 5 and 7 that occurs during DNA damage repair affects its chaperone activity. We showed that the phosphomimetic mutant Hsp90α T5/7D has the same intrinsic chaperone activity as wild-type human Hsp90α in activation of GR steroid-binding activity by the five-protein machinery, supporting the conclusion that T5/7 phosphorylation does not affect Hsp90α chaperone activity.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Ranjit K Mehta
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Miyako Yoshimura
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Miranda Lau
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Daniel R Southworth
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Theodore S Lawrence
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - William B Pratt
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Mukesh K Nyati
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| | - Yoichi Osawa
- Departments of Pharmacology (Y.M., M.Y., M.L., W.B.P., Y.O.) and Radiation Oncology (R.K.M., T.S.L., M.K.N.), University of Michigan Medical School, Ann Arbor, Michigan; and Life Sciences Institute and Departments of Biochemistry and Biophysics, University of Michigan, Ann Arbor, Michigan (D.R.S.)
| |
Collapse
|
33
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
34
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Frinchi M, Scaduto P, Cappello F, Belluardo N, Mudò G. Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. J Cell Physiol 2018; 233:6107-6116. [DOI: 10.1002/jcp.26454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Pietro Scaduto
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, div. of AnatomyUniversity of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and TechnologyPalermoItaly
- Department of BiologyTemple UniversityPhiladelphiaPennsylvania
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscienc es, div. of Human PhysiologyUniversity of PalermoPalermoItaly
| |
Collapse
|
36
|
Elaimy AL, Ahsan A, Marsh K, Pratt WB, Ray D, Lawrence TS, Nyati MK. ATM is the primary kinase responsible for phosphorylation of Hsp90α after ionizing radiation. Oncotarget 2018; 7:82450-82457. [PMID: 27738310 PMCID: PMC5347704 DOI: 10.18632/oncotarget.12557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 90 is a chaperone that plays an essential role in the stabilization of a large number of signal transduction molecules, many of which are associated with oncogenesis. An Hsp90 isoform (Hsp90α) has been shown to be selectively phosphorylated on two N-terminal threonine residues (threonine 5 and 7) and is involved in the DNA damage response and apoptosis. However, the kinase that phosphorylates Hsp90α after ionizing radiation (IR) and its role in post-radiation DNA repair remains unclear. Inasmuch as several proteins of the DNA damage response machinery are Hsp90 clients, the functional consequences of Hsp90α phosphorylation following IR have implications for the design of novel radiosensitizing agents that specifically target the Hsp90α isoform. Here we show that ATM phosphorylates Hsp90α at the T5/7 residues immediately after IR. The kinetics of Hsp90α T5/7 phosphorylation correlate with the kinetics of H2AX S139 phosphorylation (γH2AX). Although Hsp90α is located in both the cytoplasm and nucleus, only nuclear Hsp90α is phosphorylated by ATM after IR. The siRNA mediated knockdown of Hsp90α sensitizes head and neck squamous cell carcinoma cells, lung cancer cells and lung fibroblasts to IR. Furthermore, MEF cells that are Hsp90α null have reduced levels of γH2AX indicating that Hsp90α is important for the formation of γH2AX. Thus, this study provides evidence that Hsp90α is a component of the signal transduction events mediated by ATM following IR, and that Hsp90α loss decreases γH2AX levels. This work supports additional investigation into Hsp90α T5/7 phosphorylation with the goal of developing targeted radiosensitizing therapies.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Aarif Ahsan
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Katherine Marsh
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - William B Pratt
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
37
|
Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat Commun 2018; 9:265. [PMID: 29343704 PMCID: PMC5772613 DOI: 10.1038/s41467-017-02711-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
During the Hsp90-mediated chaperoning of protein kinases, the core components of the machinery, Hsp90 and the cochaperone Cdc37, recycle between different phosphorylation states that regulate progression of the chaperone cycle. We show that Cdc37 phosphorylation at Y298 results in partial unfolding of the C-terminal domain and the population of folding intermediates. Unfolding facilitates Hsp90 phosphorylation at Y197 by unmasking a phosphopeptide sequence, which serves as a docking site to recruit non-receptor tyrosine kinases to the chaperone complex via their SH2 domains. In turn, Hsp90 phosphorylation at Y197 specifically regulates its interaction with Cdc37 and thus affects the chaperoning of only protein kinase clients. In summary, we find that by providing client class specificity, Hsp90 cochaperones such as Cdc37 do not merely assist in client recruitment but also shape the post-translational modification landscape of Hsp90 in a client class-specific manner. The Hsp90 chaperone cycle is influenced by multiple phosphorylation events but their regulatory functions are poorly understood. Here, the authors show that phosphorylation and unfolding of cochaperone Cdc37 tailors the Hsp90 chaperone cycle by recruiting kinases that promote distinct phosphorylation patterns.
Collapse
|
38
|
Abstract
The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones as well as posttranslational modifications (phosphorylation, SUMOylation, and ubiquitination) are important for its stability and regulation of the ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and also detect its posttranslational modifications by immunoblotting.
Collapse
|
39
|
Yuno A, Lee MJ, Lee S, Tomita Y, Rekhtman D, Moore B, Trepel JB. Clinical Evaluation and Biomarker Profiling of Hsp90 Inhibitors. Methods Mol Biol 2018; 1709:423-441. [PMID: 29177675 DOI: 10.1007/978-1-4939-7477-1_29] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) have been in clinical development as anticancer agents since 1998. There have been 18 Hsp90 inhibitors (Hsp90i) that have entered the clinic, all of which, though structurally distinct, target the ATP-binding Bergerat fold of the chaperone N-terminus. Currently, there are five Hsp90 inhibitors in clinical trial and no approved drug in this class. One impediment to development of a clinically efficacious Hsp90 inhibitor has been the very low percentage of clinical trials that have codeveloped a predictive or pharmacodynamic marker of the anticancer activity inherent in this class of drugs. Here, we provide an overview of the clinical development of Hsp90 inhibitors, review the pharmacodynamic assays that have been employed in the past, and highlight new approaches to Hsp90 inhibitor clinical development.
Collapse
Affiliation(s)
- Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - David Rekhtman
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Brittni Moore
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bldg 10, Rm 12C432A, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Lin Z, Xu W, Li C, Wang Y, Yang L, Zou B, Gao S, Yao W, Song Z, Liu G. β-8-Oxoguanine DNA Glycosylase Overexpression Reduces Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis Through the JNK Signaling Pathway in Human Bronchial Epithelial Cells. DNA Cell Biol 2017; 36:1071-1080. [PMID: 29227732 DOI: 10.1089/dna.2017.3769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenya Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunyan Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bao'an Zou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
41
|
Bakker E, Tian K, Mutti L, Demonacos C, Schwartz JM, Krstic-Demonacos M. Insight into glucocorticoid receptor signalling through interactome model analysis. PLoS Comput Biol 2017; 13:e1005825. [PMID: 29107989 PMCID: PMC5690696 DOI: 10.1371/journal.pcbi.1005825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/16/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid hormones (GCs) are used to treat a variety of diseases because of their potent anti-inflammatory effect and their ability to induce apoptosis in lymphoid malignancies through the glucocorticoid receptor (GR). Despite ongoing research, high glucocorticoid efficacy and widespread usage in medicine, resistance, disease relapse and toxicity remain factors that need addressing. Understanding the mechanisms of glucocorticoid signalling and how resistance may arise is highly important towards improving therapy. To gain insight into this we undertook a systems biology approach, aiming to generate a Boolean model of the glucocorticoid receptor protein interaction network that encapsulates functional relationships between the GR, its target genes or genes that target GR, and the interactions between the genes that interact with the GR. This model named GEB052 consists of 52 nodes representing genes or proteins, the model input (GC) and model outputs (cell death and inflammation), connected by 241 logical interactions of activation or inhibition. 323 changes in the relationships between model constituents following in silico knockouts were uncovered, and steady-state analysis followed by cell-based microarray genome-wide model validation led to an average of 57% correct predictions, which was taken further by assessment of model predictions against patient microarray data. Lastly, semi-quantitative model analysis via microarray data superimposed onto the model with a score flow algorithm has also been performed, which demonstrated significantly higher correct prediction ratios (average of 80%), and the model has been assessed as a predictive clinical tool using published patient microarray data. In summary we present an in silico simulation of the glucocorticoid receptor interaction network, linked to downstream biological processes that can be analysed to uncover relationships between GR and its interactants. Ultimately the model provides a platform for future development both by directing laboratory research and allowing for incorporation of further components, encapsulating more interactions/genes involved in glucocorticoid receptor signalling. Here we present modelling of the glucocorticoid receptor (GR) signalling network. The GR is the effector for a class of drugs known as corticosteroids, which are widely used in medicine for their anti-inflammatory effects and ability to induce apoptosis in leukaemic cells. However, side effects, treatment-related toxicity and glucocorticoid resistance remain and therefore increased understanding of the glucocorticoid receptor mechanism of action may improve therapeutic outcomes. The GEB052 model presented herein has been used to generate predictions for how the network is altered between glucocorticoid-sensitive and glucocorticoid-resistant scenarios, and these predictions have been verified using published gene expression data from established cell lines (for both qualitative and semi-quantitative analysis). The model has also been preliminarily assessed as a predictive clinical tool by correlating model predictions with clinical outcomes of thirteen leukaemia patients. Thus, the GEB052 model demonstrates successful modelling to understand GR function. GEB052 provides accurate predictions and has indicated potential routes through which glucocorticoid resistance may arise. The work presented herein thus demonstrates a proof-of-principle of this modelling approach to furthering GR research, and provides insight into potential mechanisms of corticosteroids resistance.
Collapse
Affiliation(s)
- Emyr Bakker
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Kun Tian
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Luciano Mutti
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Constantinos Demonacos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (JMS); (MKD)
| | - Marija Krstic-Demonacos
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
- * E-mail: (JMS); (MKD)
| |
Collapse
|
42
|
Hyttinen JMT, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2017; 36:64-77. [PMID: 28351686 DOI: 10.1016/j.arr.2017.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
In this review we will discuss the links between autophagy, a mechanism involved in the maintenance of cellular homeostasis and controlling cellular waste management, and the DNA damage response (DDR), comprising various mechanisms preserving the integrity and stability of the genome. A reduced autophagy capacity in retinal pigment epithelium has been shown to be connected in the pathogenesis of age-related macular degeneration (AMD), an eye disease. This degenerative disease is a major and increasing cause of vision loss in the elderly in developed countries, primarily due to the profound accumulation of intra- and extracellular waste: lipofuscin and drusen. An abundance of reactive oxygen species is produced in the retina since this tissue has a high oxygen demand and contains mitochondria-rich cells. The retina is exposed to light and it also houses many photoactive molecules. These factors are clearly reflected in both the autophagy and DNA damage rates, and in both nuclear and mitochondrial genomes. It remains to be revealed whether DNA damage and DDR capacity have a more direct role in the development of AMD.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Minna Niittykoski
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| |
Collapse
|
43
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that is involved in the activation of disparate client proteins. This implicates Hsp90 in diverse biological processes that require a variety of co-ordinated regulatory mechanisms to control its activity. Perhaps the most important regulator is heat shock factor 1 (HSF1), which is primarily responsible for upregulating Hsp90 by binding heat shock elements (HSEs) within Hsp90 promoters. HSF1 is itself subject to a variety of regulatory processes and can directly respond to stress. HSF1 also interacts with a variety of transcriptional factors that help integrate biological signals, which in turn regulate Hsp90 appropriately. Because of the diverse clientele of Hsp90 a whole variety of co-chaperones also regulate its activity and some are directly responsible for delivery of client protein. Consequently, co-chaperones themselves, like Hsp90, are also subject to regulatory mechanisms such as post translational modification. This review, looks at the many different levels by which Hsp90 activity is ultimately regulated.
Collapse
|
44
|
Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, Xu X, Yang S, Um JH, Koch LG, Britton SL, Lieber RL, Philp A, Baar K, Kohama SG, Abel ED, Kim MK, Chung JH. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging. Cell Metab 2017; 25:1135-1146.e7. [PMID: 28467930 PMCID: PMC5485859 DOI: 10.1016/j.cmet.2017.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/25/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity.
Collapse
Affiliation(s)
- Sung-Jun Park
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra L Brown
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamie E Soto
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, University of California and V.A. Medical Centers, San Diego, La Jolla, CA 92093, USA
| | - Jeonghan Kim
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xihui Xu
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shutong Yang
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jee-Hyun Um
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren G Koch
- Department of Anesthesiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven L Britton
- Department of Anesthesiology, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard L Lieber
- Department of Orthopedic Surgery, University of California and V.A. Medical Centers, San Diego, La Jolla, CA 92093, USA
| | - Andrew Philp
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA USA 95616
| | - Keith Baar
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA USA 95616
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - E Dale Abel
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Myung K Kim
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
|
46
|
Abstract
The ability of Hsp90 to activate a disparate clientele implicates this chaperone in diverse biological processes. To accommodate such varied roles, Hsp90 requires a variety of regulatory mechanisms that are coordinated in order to modulate its activity appropriately. Amongst these, the master-regulator heat shock factor 1 (HSF1) is critically important in upregulating Hsp90 during stress, but is also responsible, through interaction with specific transcription factors (such as STAT1 and Strap/p300) for the integration of a variety of biological signals that ultimately modulate Hsp90 expression. Additionally, transcription factors, such as STAT1, STAT3 (including STAT1-STAT3 oligomers), NF-IL6, and NF-kB, are known to influence Hsp90 expression directly. Co-chaperones offer another mechanism for Hsp90 regulation, and these can modulate the chaperone cycle appropriately for specific clientele. Co-chaperones include those that deliver specific clients to Hsp90, and others that regulate the chaperone cycle for specific Hsp90-client complexes by modulating Hsp90s ATPase activity. Finally, post-translational modification (PTM) of Hsp90 and its co-chaperones helps too further regulate the variety of different Hsp90 complexes found in cells.
Collapse
|
47
|
Khan C, Muliyil S, Ayyub C, Rao BJ. DNA damage signalling in D. melanogaster requires non-apoptotic function of initiator caspase Dronc. J Cell Sci 2017; 130:2984-2995. [DOI: 10.1242/jcs.200782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/24/2017] [Indexed: 01/31/2023] Open
Abstract
ϒH2Av response constitutes an important signalling event in DNA damage sensing ensuring effective repair by recruiting DNA repair machinery. In contrast, the occurrence of ϒH2Av response has also been reported in dying cells where it is shown to require activation of CAD (caspase activated DNase). Moreover, caspases are known to be required downstream of DNA damage for cell death execution. We show, for the first time, that initiator caspase Dronc, independent of executioner caspases, acts as an upstream regulator of DNA Damage Response (DDR) by facilitating ϒH2Av signalling perhaps involving non-apoptotic function. Such ϒH2Av response is mediated by ATM rather than ATR, suggesting that Dronc function is required upstream of ATM. In contrast, ϒH2Av appearance during cell death requires effector caspase and is associated with fragmented nuclei. Our study uncovers a novel function of Dronc in response to DNA damage aimed at promoting DDR via ϒH2Av signalling in intact nuclei. We propose that Dronc plays a dual role that can either initiate DDR or apoptosis depending upon the level and the required threshold of its activation in damaged cells.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Sonia Muliyil
- Current affiliation: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - B. J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
48
|
Wolmarans A, Lee B, Spyracopoulos L, LaPointe P. The Mechanism of Hsp90 ATPase Stimulation by Aha1. Sci Rep 2016; 6:33179. [PMID: 27615124 PMCID: PMC5018835 DOI: 10.1038/srep33179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called ‘clients’. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p. Only one molecule of Aha1p is required to fully stimulate the Hsp90 dimer despite the existence of two, presumably identical, binding sites for this regulator. Using ATPase assays with Hsp90 heterodimers, we find that Aha1p stimulates ATPase activity by a three-step mechanism via the catalytic loop in the middle domain of Hsp90. Binding of the Aha1p N domain to the Hsp90 middle domain exerts a small stimulatory effect but also drives a separate conformational rearrangement in the Hsp90 N domains. This second event drives a rearrangement in the N domain of the opposite subunit and is required for the stimulatory action of the Aha1p C domain. Furthermore, the second event can be blocked by a mutation in one subunit of the Hsp90 dimer but not the other. This work provides a foundation for understanding how post-translational modifications regulate co-chaperone engagement with the Hsp90 dimer.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Brian Lee
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
49
|
NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG. PLoS One 2016; 11:e0153181. [PMID: 27045471 PMCID: PMC4821458 DOI: 10.1371/journal.pone.0153181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
The KEAP1-NRF2 pathway regulates cellular redox homeostasis by transcriptional induction of genes associated with antioxidant synthesis and detoxification in response to oxidative stress. Previously, we reported that KEAP1 mutation elicits constitutive NRF2 activation and resistance to cisplatin (CDDP) and dacarbazine (DTIC) in human melanomas. The present study was conducted to clarify whether an HSP90 inhibitor, 17-AAG, efficiently eliminates melanoma with KEAP1 mutation, as the NRF2 target gene, NQO1, is a key enzyme in 17-AAG bioactivation. In melanoma and non-small cell lung carcinoma cell lines with or without KEAP1 mutations, NQO1 expression and 17-AAG sensitivity are inversely correlated. NQO1 is highly expressed in normal melanocytes and in several melanoma cell lines despite the presence of wild-type KEAP1, and the NQO1 expression is dependent on NRF2 activation. Because either CDDP or DTIC produces reactive oxygen species that activate NRF2, we determined whether these agents would sensitize NQO1-low melanoma cells to 17-AAG. Synergistic cytotoxicity of the 17-AAG and CDDP combination was detected in four out of five NQO1-low cell lines, but not in the cell line with KEAP1 mutation. These data indicate that 17-AAG could be a potential chemotherapeutic agent for melanoma with KEAP1 mutation or NQO1 expression.
Collapse
|
50
|
Ghosh S, Shinogle HE, Galeva NA, Dobrowsky RT, Blagg BSJ. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J Biol Chem 2016; 291:8309-23. [PMID: 26872972 DOI: 10.1074/jbc.m115.688374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is up-regulated in cancer and is required for the folding of numerous signaling proteins. Consequently, HSP90 represents an ideal target for the development of new anti-cancer agents. The human HSP90 isoform, glucose-regulated protein 94 (GRP94), resides in the endoplasmic reticulum and regulates secretory pathways, integrins, and Toll-like receptors, which contribute to regulating immunity and metastasis. However, the cellular function of GRP94 remains underinvestigated. We report that GRP94 knockdown cells are defective in intracellular transport and, consequently, negatively impact the trafficking of F-actin toward the cellular cortex, integrin α2 and integrin αL toward the cell membrane and filopodia, and secretory vesicles containing the HSP90α-AHA1-survivin complex toward the leading edge. As a result, GRP94 knockdown cells form a multipolar spindle instead of bipolar morphology and consequently manifest a defect in cell migration and adhesion.
Collapse
Affiliation(s)
| | | | | | - Rick T Dobrowsky
- the Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | | |
Collapse
|