1
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Lynn BK, De Leenheer P, Schuster M. Putting theory to the test: An integrated computational/experimental chemostat model of the tragedy of the commons. PLoS One 2024; 19:e0300887. [PMID: 38598418 PMCID: PMC11006152 DOI: 10.1371/journal.pone.0300887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social cheaters can exploit the public goods provided by cooperating individuals to gain a fitness advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in particular, a 'Collapsing' Tragedy defined as the extinction of the entire population if the public good is essential. However, there is little empirical evidence of the Collapsing Tragedy in evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-culture chemostat. In a growth medium that requires extracellular protein digestion, we find that P. aeruginosa populations maintain a high density when entirely composed of cooperating, protease-producing cells but completely collapse when non-producing cheater cells are introduced. We formulate a mechanistic mathematical model that recapitulates experimental observations and suggests key parameters, such as the dilution rate and the cost of public good production, that define the stability of cooperative behavior. We combine model prediction with experimental validation to explain striking differences in the long-term cheater trajectories of replicate cocultures through mutational events that increase cheater fitness. Taken together, our integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy in a microbial population, and provides a quantitative, mechanistic framework for generating testable predictions of social behavior.
Collapse
Affiliation(s)
- Bryan K. Lynn
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Patrick De Leenheer
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Mathematics, Oregon State University, Corvallis, Oregon, United States of America
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
3
|
Raj N, Saini S. Increased privatization of a public resource leads to spread of cooperation in a microbial population. Microbiol Spectr 2024; 12:e0235823. [PMID: 38206031 PMCID: PMC10846273 DOI: 10.1128/spectrum.02358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
The phenomenon of cooperation is prevalent at all levels of life. In one such manifestation of cooperation in microbial communities, some cells produce costly extracellular resources that are freely available to others. These resources are referred to as public goods. Saccharomyces cerevisiae secretes invertase (public good) in the periplasm to hydrolyze sucrose into glucose and fructose, which are then imported by the cells. After hydrolysis of sucrose, a cooperator retains only 1% of the monosaccharides, while 99% of the monosaccharides diffuse into the environment and can be utilized by any cell. The non-producers of invertase (cheaters) exploit the invertase-producing cells (cooperators) by utilizing the monosaccharides and not paying the metabolic cost of producing the invertase. In this work, we investigate the evolutionary dynamics of this cheater-cooperator system. In a co-culture, if cheaters are selected for their higher fitness, the population will collapse. On the other hand, for cooperators to survive in the population, a strategy to increase fitness would likely be required. To understand the adaptation of cooperators in sucrose, we performed a coevolution experiment in sucrose. Our results show that cooperators increase in fitness as the experiment progresses. This phenomenon was not observed in environments which involved a non-public good system. Genome sequencing reveals duplication of several HXT transporters in the evolved cooperators. Based on these results, we hypothesize that increased privatization of the monosaccharides is the most likely explanation of spread of cooperators in the population.IMPORTANCEHow is cooperation, as a trait, maintained in a population? In order to answer this question, we perform a coevolution experiment between two strains of yeast-one which produces a public good to release glucose and fructose in the media, thus generating a public resource, and the other which does not produce public resource and merely benefits from the presence of the cooperator strain. What is the outcome of this coevolution experiment? We demonstrate that after ~200 generations of coevolution, cooperators increase in frequency in the co-culture. Remarkably, in all parallel lines of our experiment, this is obtained via duplication of regions which likely allow greater privatization of glucose and fructose. Thus, increased privatization, which is intuitively thought to be a strategy against cooperation, enables spread of cooperation.
Collapse
Affiliation(s)
- Namratha Raj
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
4
|
Hosoda K, Seno S, Murakami N, Matsuda H, Osada Y, Kamiura R, Kondoh M. Synthetic model ecosystem of 12 cryopreservable microbial species allowing for a noninvasive approach. Biosystems 2024; 235:105087. [PMID: 37989470 DOI: 10.1016/j.biosystems.2023.105087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Simultaneous understanding of both population and ecosystem dynamics is crucial in an era marked by the degradation of ecosystem services. Experimental ecosystems are a powerful tool for understanding these dynamics; however, they often face technical challenges, typically falling into two categories: "complex but with limited replicability microcosms" and "highly replicable but overly simplistic microcosms." Herein, we present a high-throughput synthetic microcosm system comprising 12 functionally and phylogenetically diverse microbial species. These species are axenically culturable, cryopreservable, and can be measured noninvasively via microscopy, aided by machine learning. This system includes prokaryotic and eukaryotic producers and decomposers, and eukaryotic consumers to ensure functional redundancy. Our model system exhibited key features of a complex ecosystem: (i) various positive and negative interspecific interactions, (ii) higher-order interactions beyond two-species dynamics, (iii) probabilistic dynamics leading to divergent outcomes, and (iv) stable nonlinear transitions. We identified several conditions under which at least one species from each of the three functional groups-producers, consumers, and decomposers-and one functionally redundant species, persisted for over six months. These conditions set the stage for detailed investigations in the future. Given its designability and experimental replicability, our model ecosystem offers a promising platform for deeper insights integrating both population and ecosystem dynamics.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan; Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan; Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naomi Murakami
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Osada
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Rikuto Kamiura
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
5
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
6
|
Martin JS, Jaeggi AV, Koski SE. The social evolution of individual differences: Future directions for a comparative science of personality in social behavior. Neurosci Biobehav Rev 2023; 144:104980. [PMID: 36463970 DOI: 10.1016/j.neubiorev.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Personality is essential for understanding the evolution of cooperation and conflict in behavior. However, personality science remains disconnected from the field of social evolution, limiting our ability to explain how personality and plasticity shape phenotypic adaptation in social behavior. Researchers also lack an integrative framework for comparing personality in the contextualized and multifaceted behaviors central to social interactions among humans and other animals. Here we address these challenges by developing a social evolutionary approach to personality, synthesizing theory, methods, and organizing questions in the study of individuality and sociality in behavior. We critically review current measurement practices and introduce social reaction norm models for comparative research on the evolution of personality in social environments. These models demonstrate that social plasticity affects the heritable variance of personality, and that individual differences in social plasticity can further modify the rate and direction of adaptive social evolution. Future empirical studies of frequency- and density-dependent social selection on personality are crucial for further developing this framework and testing adaptive theory of social niche specialization.
Collapse
Affiliation(s)
- Jordan S Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| | - Adrian V Jaeggi
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| | - Sonja E Koski
- Organismal and Evolutionary Biology, University of Helsinki, Finland.
| |
Collapse
|
7
|
Schaal KA, Yu YTN, Vasse M, Velicer GJ. Allopatric divergence of cooperators confers cheating resistance and limits effects of a defector mutation. BMC Ecol Evol 2022; 22:141. [PMID: 36510120 PMCID: PMC9746145 DOI: 10.1186/s12862-022-02094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals. Some strains (cheaters) are unable to sporulate effectively in pure culture due to mutations that reduce signal production but can exploit and outcompete cooperators within mixed groups. RESULTS In this study, interactions between a cheater disrupted at the signaling gene csgA and allopatrically diversified cooperators reveal a very small cheating range. Expectedly, the cheater failed to cheat on all natural-isolate cooperators owing to non-cheater-specific antagonisms. Surprisingly, some lab-evolved cooperators had already exited the csgA mutant's cheating range after accumulating fewer than 20 mutations and without experiencing cheating during evolution. Cooperators might also diversify in the potential for a mutation to reduce expression of a cooperative trait or generate a cheating phenotype. A new csgA mutation constructed in several highly diverged cooperators generated diverse sporulation phenotypes, ranging from a complete defect to no defect, indicating that genetic backgrounds can limit the set of genomes in which a mutation creates a defector. CONCLUSIONS Our results demonstrate that natural populations may feature geographic mosaics of cooperators that have diversified in their susceptibility to particular cheaters, limiting defectors' cheating ranges and preventing them from spreading. This diversification may also lead to variation in the phenotypes generated by any given cooperation-gene mutation, further decreasing the chance of a cheater emerging which threatens the persistence of cooperation in the system.
Collapse
Affiliation(s)
- Kaitlin A. Schaal
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Marie Vasse
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland ,grid.121334.60000 0001 2097 0141Institute MIVEGEC (UMR 5290 CNRS, IRD, UM), 34394 Montpellier, France
| | - Gregory J. Velicer
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Li S, Xiao J, Sun T, Yu F, Zhang K, Feng Y, Xu C, Wang B, Cheng L. Synthetic microbial consortia with programmable ecological interactions. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuyao Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Jing Xiao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Tianzheng Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Fangjian Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Kaihang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Yuantao Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Chenchao Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| | - Baojun Wang
- Hangzhou Innovation Center & College of Chemical and Biological Engineering Zhejiang University Hangzhou 311200 China
- Research Centre for Biological Computation, Zhejiang Laboratory Hangzhou 311100 China
| | - Lei Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou 310058 China
| |
Collapse
|
9
|
Gurney J, Simonet C, Wollein Waldetoft K, Brown SP. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat Prod Rep 2021; 39:325-334. [PMID: 34913456 DOI: 10.1039/d1np00053e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1999 to 2021Bacterial pathogens can be highly social, communicating and cooperating within multi-cellular groups to make us sick. The requirement for collective action in pathogens presents novel therapeutic avenues that seek to undermine cooperative behavior, what we call here 'cheat therapies'. We review two broad avenues of cheat therapy: first, the introduction of genetically engineered 'cheat' strains (bio-control cheats), and second the chemical induction of 'cheat' behavior in the infecting pathogens (chemical-control cheats). Both genetically engineered and chemically induced cheats can socially exploit the cooperative wildtype infection, reducing pathogen burden and the severity of disease. We review the costs and benefits of cheat therapies, highlighting advantages of evolutionary robustness and also the challenges of low to moderate efficacy, compared to conventional antibiotic treatments. We end with a summary of what we see as the most valuable next steps, focusing on adjuvant treatments and use as alternate therapies for mild, self-resolving infections - allowing the reservation of current and highly effective antibiotics for more critical patient needs.
Collapse
Affiliation(s)
- James Gurney
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristofer Wollein Waldetoft
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.,Torsby Hospital, Torsby, Sweden
| | - Sam P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| |
Collapse
|
10
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
11
|
Turkarslan S, Stopnisek N, Thompson AW, Arens CE, Valenzuela JJ, Wilson J, Hunt KA, Hardwicke J, de Lomana ALG, Lim S, Seah YM, Fu Y, Wu L, Zhou J, Hillesland KL, Stahl DA, Baliga NS. Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions. THE ISME JOURNAL 2021; 15:2233-2247. [PMID: 33612833 PMCID: PMC8319347 DOI: 10.1038/s41396-021-00919-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/18/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one community down to the single-cell level. We discovered extensive parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance within many evolution lines of a rare lineage of Dv that retained sulfate-respiration (SR+) capability, which is not required for metabolic cross-feeding. An in-depth investigation revealed that synergistic epistasis across pairings of Dv and Mm genotypes had enhanced cooperativity within SR- and SR+ assemblages, enabling their coexistence within the same community. Thus, our findings demonstrate that cooperativity of a mutualism can improve through synergistic epistasis between genomes of the interacting species, enabling the coexistence of mutualistic assemblages of generalists and their specialized variants.
Collapse
Affiliation(s)
- Serdar Turkarslan
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - Nejc Stopnisek
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Anne W. Thompson
- grid.262075.40000 0001 1087 1481Department of Biology, Portland State University, Portland, OR 97201 USA
| | - Christina E. Arens
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - Jacob J. Valenzuela
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - James Wilson
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| | - Kristopher A. Hunt
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Jessica Hardwicke
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | | | - Sujung Lim
- grid.20861.3d0000000107068890Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 USA
| | - Yee Mey Seah
- grid.462982.30000 0000 8883 2602Biological Sciences, University of Washington Bothell, Bothell, WA 98011 USA
| | - Ying Fu
- grid.266900.b0000 0004 0447 0018Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK 73072 USA
| | - Liyou Wu
- grid.266900.b0000 0004 0447 0018Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK 73072 USA
| | - Jizhong Zhou
- grid.266900.b0000 0004 0447 0018Institute for Environmental Genomics and Department of Microbiology & Plant Biology, University of Oklahoma, Norman, OK 73072 USA
| | - Kristina L. Hillesland
- grid.462982.30000 0000 8883 2602Biological Sciences, University of Washington Bothell, Bothell, WA 98011 USA
| | - David A. Stahl
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Nitin S. Baliga
- grid.64212.330000 0004 0463 2320Institute for Systems Biology, Seattle, WA 98109 USA
| |
Collapse
|
12
|
Wright ES, Gupta R, Vetsigian KH. Multi-stable bacterial communities exhibit extreme sensitivity to initial conditions. FEMS Microbiol Ecol 2021; 97:6280976. [PMID: 34021563 DOI: 10.1093/femsec/fiab073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/20/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial communities can have dramatically different compositions even among similar environments. This might be due to the existence of multiple alternative stable states, yet there exists little experimental evidence supporting this possibility. Here, we gathered a large collection of absolute population abundances capturing population dynamics in one- to four-strain communities of soil bacteria with a complex life cycle in a feast-or-famine environment. This dataset led to several observations: (i) some pairwise competitions resulted in bistability with a separatrix near a 1:1 initial ratio across a range of population densities; (ii) bistability propagated to multi-stability in multispecies communities; and (iii) replicate microbial communities reached different stable states when starting close to initial conditions separating basins of attraction, indicating finite-sized regions where the dynamics are unpredictable. The generalized Lotka-Volterra equations qualitatively captured most competition outcomes but were unable to quantitatively recapitulate the observed dynamics. This was partly due to complex and diverse growth dynamics in monocultures that ranged from Allee effects to nonmonotonic behaviors. Overall, our results highlight that multi-stability might be generic in multispecies communities and, combined with ecological noise, can lead to unpredictable community assembly, even in simple environments.
Collapse
Affiliation(s)
- Erik S Wright
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Raveena Gupta
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kalin H Vetsigian
- Department of Bacteriology and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Tobramycin Adaptation Enhances Policing of Social Cheaters in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:e0002921. [PMID: 33837019 DOI: 10.1128/aem.00029-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa LasR-LasI (LasR-I) quorum sensing system regulates secreted proteases that can be exploited by cheaters, such as quorum sensing receptor-defective (lasR) mutants. lasR mutants emerge in populations growing on casein as a sole source of carbon and energy. These mutants are exploitative cheaters because they avoid the substantial cost of engaging in quorum sensing. Previous studies showed that quorum sensing increases resistance to some antibiotics, such as tobramycin. Here, we show that tobramycin suppressed the emergence of lasR mutants in casein-passaged populations. Several mutations accumulated in those populations, indicating evidence of antibiotic adaptation. We found that mutations in one gene, ptsP, increased antibiotic resistance and also pleiotropically increased production of a quorum sensing-controlled phenazine, pyocyanin. When passaged on casein, ptsP mutants suppressed cheaters in a manner that was tobramycin independent. We found that the mechanism of cheater suppression in ptsP mutants relied on pyocyanin, which acts as a policing toxin by selectively blocking growth of cheaters. Thus, tobramycin suppresses lasR mutants through two mechanisms: first, through direct effects on cheaters and, second, by selecting mutations in ptsP that suppressed cheating in a tobramycin-independent manner. This work demonstrates how adaptive mutations can alter the dynamics of cooperator-cheater relationships, which might be important for populations adapting to antibiotics during interspecies competition or infections. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa is a model for understanding quorum sensing, a type of cell-cell signaling important for cooperation. Quorum sensing controls production of cooperative goods, such as exoenzymes, which are vulnerable to cheating by quorum sensing-defective mutants. Because uncontrolled cheating can ultimately cause a population to collapse, much focus has been on understanding how P. aeruginosa can control cheaters. We show that an antibiotic, tobramycin, can suppress cheaters in cooperating P. aeruginosa populations. Tobramycin suppresses cheaters directly because the cheaters are more susceptible to tobramycin than cooperators. Tobramycin also selects for mutations in a gene, ptsP, that suppresses cheaters independent of tobramycin through pleiotropic regulation of a policing toxin, pyocyanin. This work supports the idea that adaptation to antibiotics can have unexpected effects on the evolution of quorum sensing and has implications for understanding how cooperation evolves in dynamic bacterial communities.
Collapse
|
14
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
15
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
16
|
|
17
|
Hammarlund SP, Gedeon T, Carlson RP, Harcombe WR. Limitation by a shared mutualist promotes coexistence of multiple competing partners. Nat Commun 2021; 12:619. [PMID: 33504808 PMCID: PMC7840915 DOI: 10.1038/s41467-021-20922-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Although mutualisms are often studied as simple pairwise interactions, they typically involve complex networks of interacting species. How multiple mutualistic partners that provide the same service and compete for resources are maintained in mutualistic networks is an open question. We use a model bacterial community in which multiple 'partner strains' of Escherichia coli compete for a carbon source and exchange resources with a 'shared mutualist' strain of Salmonella enterica. In laboratory experiments, competing E. coli strains readily coexist in the presence of S. enterica, despite differences in their competitive abilities. We use ecological modeling to demonstrate that a shared mutualist can create temporary resource niche partitioning by limiting growth rates, even if yield is set by a resource external to a mutualism. This mechanism can extend to maintain multiple competing partner species. Our results improve our understanding of complex mutualistic communities and aid efforts to design stable microbial communities.
Collapse
Affiliation(s)
- Sarah P Hammarlund
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - William R Harcombe
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
18
|
Hart SFM, Chen CC, Shou W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 2021; 10:57838. [PMID: 33501915 PMCID: PMC8184212 DOI: 10.7554/elife.57838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Cooperation, paying a cost to benefit others, is widespread. Cooperation can be promoted by pleiotropic ‘win-win’ mutations which directly benefit self (self-serving) and partner (partner-serving). Previously, we showed that partner-serving should be defined as increased benefit supply rate per intake benefit. Here, we report that win-win mutations can rapidly evolve even under conditions unfavorable for cooperation. Specifically, in a well-mixed environment we evolved engineered yeast cooperative communities where two strains exchanged costly metabolites, lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, ecm21 mutations repeatedly arose. ecm21 is self-serving, improving self’s growth rate in limiting lysine. ecm21 is also partner-serving, increasing hypoxanthine release rate per lysine consumption and the steady state growth rate of partner and of community. ecm21 also arose in monocultures evolving in lysine-limited chemostats. Thus, even without any history of cooperation or pressure to maintain cooperation, pleiotropic win-win mutations may readily evolve to promote cooperation.
Collapse
Affiliation(s)
| | - Chi-Chun Chen
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States
| | - Wenying Shou
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States.,University College London, Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution (CLOE), London, United Kingdom
| |
Collapse
|
19
|
Abstract
Flow cytometry is an important technology for the study of microbial communities. It grants the ability to rapidly generate phenotypic single-cell data that are both quantitative, multivariate and of high temporal resolution. The complexity and amount of data necessitate an objective and streamlined data processing workflow that extends beyond commercial instrument software. No full overview of the necessary steps regarding the computational analysis of microbial flow cytometry data currently exists. In this review, we provide an overview of the full data analysis pipeline, ranging from measurement to data interpretation, tailored toward studies in microbial ecology. At every step, we highlight computational methods that are potentially useful, for which we provide a short nontechnical description. We place this overview in the context of a number of open challenges to the field and offer further motivation for the use of standardized flow cytometry in microbial ecology research.
Collapse
Affiliation(s)
| | - Ruben Props
- Center for Microbial Ecology & Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Cai J, Tan T, Joshua Chan SH. Predicting Nash equilibria for microbial metabolic interactions. Bioinformatics 2020; 36:5649-5655. [PMID: 33315094 DOI: 10.1093/bioinformatics/btaa1014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION Microbial metabolic interactions impact ecosystems, human health and biotechnology profoundly. However, their determination remains elusive, invoking an urgent need for predictive models seamlessly integrating metabolism with evolutionary principles that shape community interactions. RESULTS Inspired by the evolutionary game theory, we formulated a bi-level optimization framework termed NECom for which any feasible solutions are Nash equilibria of microbial community metabolic models with/without an outer-level (community) objective function. Distinct from discrete matrix games, NECom models the continuous interdependent strategy space of metabolic fluxes. We showed that NECom successfully predicted several classical games in the context of metabolic interactions that were falsely or incompletely predicted by existing methods, including prisoner's dilemma, snowdrift and cooperation. The improved capability originates from the novel formulation to prevent 'forced altruism' hidden in previous static algorithms while allowing for sensing all potential metabolite exchanges to determine evolutionarily favorable interactions between members, a feature missing in dynamic methods. The results provided insights into why mutualism is favorable despite seemingly costly cross-feeding metabolites and demonstrated similarities and differences between games in the continuous metabolic flux space and matrix games. NECom was then applied to a reported algae-yeast co-culture system that shares typical cross-feeding features of lichen, a model system of mutualism. 488 growth conditions corresponding to 3,221 experimental data points were simulated. Without training any parameters using the data, NECom is more predictive of species' growth rates given uptake rates compared with flux balance analysis with an overall 63.5% and 81.7% reduction in root-mean-square error for the two species. AVAILABILITY Simulation code and data are available at https://github.com/Jingyi-Cai/NECom.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jingyi Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, China
| | - S H Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME JOURNAL 2020; 14:2816-2828. [PMID: 32788711 DOI: 10.1038/s41396-020-00737-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023]
Abstract
Interactive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered a cross-feeding coculture between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excretes essential nitrogen as NH4+ to E. coli, while E. coli excretes essential carbon as fermentation products to R. palustris. Here, we sought to determine whether a reciprocal cross-feeding relationship would evolve spontaneously in cocultures with wild-type R. palustris, which is not known to excrete NH4+. Indeed, we observed the emergence of NH4+ cross-feeding, but driven by adaptation of E. coli alone. A missense mutation in E. coli NtrC, a regulator of nitrogen scavenging, resulted in constitutive activation of an NH4+ transporter. This activity likely allowed E. coli to subsist on the small amount of leaked NH4+ and better reciprocate through elevated excretion of fermentation products from a larger E. coli population. Our results indicate that enhanced nutrient uptake by recipients, rather than increased excretion by producers, is an underappreciated yet possibly prevalent mechanism by which cross-feeding can emerge.
Collapse
|
22
|
Green R, Sonal, Wang L, Hart SFM, Lu W, Skelding D, Burton JC, Mi H, Capel A, Chen HA, Lin A, Subramaniam AR, Rabinowitz JD, Shou W. Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect. PLoS Biol 2020; 18:e3000757. [PMID: 32833957 PMCID: PMC7470746 DOI: 10.1371/journal.pbio.3000757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/03/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.
Collapse
Affiliation(s)
- Robin Green
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sonal
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lin Wang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel F. M. Hart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Skelding
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Justin C. Burton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hanbing Mi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aric Capel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hung Alex Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aaron Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Evolutionary Stabilization of Cooperative Toxin Production through a Bacterium-Plasmid-Phage Interplay. mBio 2020; 11:mBio.00912-20. [PMID: 32694140 PMCID: PMC7374059 DOI: 10.1128/mbio.00912-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Colicins are toxins produced and released by Enterobacteriaceae to kill competitors in the gut. While group A colicins employ a division of labor strategy to liberate the toxin into the environment via colicin-specific lysis, group B colicin systems lack cognate lysis genes. In Salmonella enterica serovar Typhimurium (S. Tm), the group B colicin Ib (ColIb) is released by temperate phage-mediated bacteriolysis. Phage-mediated ColIb release promotes S. Tm fitness against competing Escherichia coli It remained unclear how prophage-mediated lysis is realized in a clonal population of ColIb producers and if prophages contribute to evolutionary stability of toxin release in S. Tm. Here, we show that prophage-mediated lysis occurs in an S. Tm subpopulation only, thereby introducing phenotypic heterogeneity to the system. We established a mathematical model to study the dynamic interplay of S. Tm, ColIb, and a temperate phage in the presence of a competing species. Using this model, we studied long-term evolution of phage lysis rates in a fluctuating infection scenario. This revealed that phage lysis evolves as bet-hedging strategy that maximizes phage spread, regardless of whether colicin is present or not. We conclude that the ColIb system, lacking its own lysis gene, is making use of the evolutionary stable phage strategy to be released. Prophage lysis genes are highly prevalent in nontyphoidal Salmonella genomes. This suggests that the release of ColIb by temperate phages is widespread. In conclusion, our findings shed new light on the evolution and ecology of group B colicin systems.IMPORTANCE Bacteria are excellent model organisms to study mechanisms of social evolution. The production of public goods, e.g., toxin release by cell lysis in clonal bacterial populations, is a frequently studied example of cooperative behavior. Here, we analyze evolutionary stabilization of toxin release by the enteric pathogen Salmonella The release of colicin Ib (ColIb), which is used by Salmonella to gain an edge against competing microbiota following infection, is coupled to bacterial lysis mediated by temperate phages. Here, we show that phage-dependent lysis and subsequent release of colicin and phage particles occurs only in part of the ColIb-expressing Salmonella population. This phenotypic heterogeneity in lysis, which represents an essential step in the temperate phage life cycle, has evolved as a bet-hedging strategy under fluctuating environments such as the gastrointestinal tract. Our findings suggest that prophages can thereby evolutionarily stabilize costly toxin release in bacterial populations.
Collapse
|
24
|
Smith P, Cozart J, Lynn BK, Alberts E, Frangipani E, Schuster M. Bacterial Cheaters Evade Punishment by Cyanide. iScience 2019; 19:101-109. [PMID: 31357168 PMCID: PMC6664145 DOI: 10.1016/j.isci.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
In all domains of life, mechanisms exist that protect cooperating groups from exploitation by cheaters. Recent observations with the bacterium Pseudomonas aeruginosa have suggested a paradigmatic cheater control mechanism in which cooperator cells punish or "police" cheater cells by cyanide poisoning. These cheater cells are deficient in a pleiotropic quorum-sensing regulator that controls the production of cooperative secretions including cyanide, and presumably also cyanide resistance. In this study, we directly tested and refuted the cyanide policing model. Contrary to the hypothesis, cheater fitness was unaffected by the presence of cyanide. Cheater mutants grew equally well in co-cultures with either cyanide-proficient or cyanide-deficient cooperators, and they were as resistant to exogenous cyanide as wild-type cells. We show that these behaviors are the result of quorum-sensing-independent and cyanide-responsive resistance gene regulation. Our results highlight the role of genetic architecture in the evolution of cooperative behavior.
Collapse
Affiliation(s)
- Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jamison Cozart
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Bryan K Lynn
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin Alberts
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029 Urbino (PU), Italy
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
25
|
Macchi M, Festa S, Vega-Vela NE, Morelli IS, Coppotelli BM. Assessing interactions, predicting function, and increasing degradation potential of a PAH-degrading bacterial consortium by effect of an inoculant strain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25932-25944. [PMID: 31273663 DOI: 10.1007/s11356-019-05760-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 05/22/2023]
Abstract
A natural phenanthrene-degrading consortium CON was inoculated with an exogenous strain Sphingobium sp. (ex Sp. paucimobilis) 20006FA yielding the consortium called I-CON, in order to study ecological interactions into the bacterial community. DGGE and proteomic profiles and analyses by HTS (High-Throughput Sequencing) technologies demonstrated inoculant establishment and changes on CON composition. Inoculation increased degradation efficiency in I-CON and prevented intermediate HNA accumulation. This could be explained not only by the inoculation, but also by enrichment in Achromobacter genus at expense of a decrease in Klebsiella genus. After inoculation, cooperation between Sphingobium and Achromobacter genera were improved, thereby, some competition could have been generated, and as a consequence, species in minor proportion (cheaters), as Inquilinus sp. and Luteibacter sp., were not detected. Sequences of Sphingobium (corresponding to the inoculated strain) did not vary. PICRUSt predicted a network with bacterial phylotypes connected with enzymes, showing functional redundancy in the phenanthrene pathway, with exception of the first enzymes biphenyl-2,3-diol 1,2-dioxygenase and protocatechuate 4,5-dioxygenase that were only encoded in Sphingobium sp. This is the first report where a natural consortium that has been characterized by HTS technologies is inoculated with an exogenous strain in order to study competitiveness and interactions.
Collapse
Affiliation(s)
- Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Nelson E Vega-Vela
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.
| |
Collapse
|
26
|
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 2019; 46:1343-1358. [PMID: 31278525 DOI: 10.1007/s10295-019-02211-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Functional differentiation and metabolite exchange enable microbial consortia to perform complex metabolic tasks and efficiently cycle the nutrients. Inspired by the cooperative relationships in environmental microbial consortia, synthetic microbial consortia have great promise for studying the microbial interactions in nature and more importantly for various engineering applications. However, challenges coexist with promises, and the potential of consortium-based technologies is far from being fully harnessed. Thorough understanding of the underlying molecular mechanisms of microbial interactions is greatly needed for the rational design and optimization of defined consortia. These knowledge gaps could be potentially filled with the assistance of the ongoing revolution in systems biology and synthetic biology tools. As current fundamental and technical obstacles down the road being removed, we would expect new avenues with synthetic microbial consortia playing important roles in biological and environmental engineering processes such as bioproduction of desired chemicals and fuels, as well as biodegradation of persistent contaminants.
Collapse
|
27
|
Hart SFM, Pineda JMB, Chen CC, Green R, Shou W. Disentangling strictly self-serving mutations from win-win mutations in a mutualistic microbial community. eLife 2019; 8:e44812. [PMID: 31162049 PMCID: PMC6548503 DOI: 10.7554/elife.44812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Mutualisms can be promoted by pleiotropic win-win mutations which directly benefit self (self-serving) and partner (partner-serving). Intuitively, partner-serving phenotype could be quantified as an individual's benefit supply rate to partners. Here, we demonstrate the inadequacy of this thinking, and propose an alternative. Specifically, we evolved well-mixed mutualistic communities where two engineered yeast strains exchanged essential metabolites lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, a chromosome duplication mutation seemed win-win: it improved cell's affinity for lysine (self-serving), and increased hypoxanthine release rate per cell (partner-serving). However, increased release rate was due to increased cell size accompanied by increased lysine utilization per birth. Consequently, total hypoxanthine release rate per lysine utilization (defined as 'exchange ratio') remained unchanged. Indeed, this mutation did not increase the steady state growth rate of partner, and is thus solely self-serving during long-term growth. By extension, reduced benefit production rate by an individual may not imply cheating.
Collapse
Affiliation(s)
| | | | - Chi-Chun Chen
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Robin Green
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Wenying Shou
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
28
|
Xie L, Yuan AE, Shou W. Simulations reveal challenges to artificial community selection and possible strategies for success. PLoS Biol 2019; 17:e3000295. [PMID: 31237866 PMCID: PMC6658139 DOI: 10.1371/journal.pbio.3000295] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/25/2019] [Accepted: 05/13/2019] [Indexed: 02/04/2023] Open
Abstract
Multispecies microbial communities often display "community functions" arising from interactions of member species. Interactions are often difficult to decipher, making it challenging to design communities with desired functions. Alternatively, similar to artificial selection for individuals in agriculture and industry, one could repeatedly choose communities with the highest community functions to reproduce by randomly partitioning each into multiple "Newborn" communities for the next cycle. However, previous efforts in selecting complex communities have generated mixed outcomes that are difficult to interpret. To understand how to effectively enact community selection, we simulated community selection to improve a community function that requires 2 species and imposes a fitness cost on one or both species. Our simulations predict that improvement could be easily stalled unless various aspects of selection are carefully considered. These aspects include promoting species coexistence, suppressing noncontributors, choosing additional communities besides the highest functioning ones to reproduce, and reducing stochastic fluctuations in the biomass of each member species in Newborn communities. These considerations can be addressed experimentally. When executed effectively, community selection is predicted to improve costly community function, and may even force species to evolve slow growth to achieve species coexistence. Our conclusions hold under various alternative model assumptions and are therefore applicable to a variety of communities.
Collapse
Affiliation(s)
- Li Xie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alex E. Yuan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD program, University of Washington, Seattle, Washington, United States of America
| | - Wenying Shou
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
29
|
|
30
|
Hart SFM, Skelding D, Waite AJ, Burton JC, Shou W. High-throughput quantification of microbial birth and death dynamics using fluorescence microscopy. QUANTITATIVE BIOLOGY 2019; 7:69-81. [PMID: 31598381 PMCID: PMC6785046 DOI: 10.1007/s40484-018-0160-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Microbes live in dynamic environments where nutrient concentrations fluctuate. Quantifying fitness in terms of birth rate and death rate in a wide range of environments is critical for understanding microbial evolution and ecology. METHODS Here, using high-throughput time-lapse microscopy, we have quantified how Saccharomyces cerevisiae mutants incapable of synthesizing an essential metabolite (auxotrophs) grow or die in various concentrations of the required metabolite. We establish that cells normally expressing fluorescent proteins lose fluorescence upon death and that the total fluorescence in an imaging frame is proportional to the number of live cells even when cells form multiple layers. We validate our microscopy approach of measuring birth and death rates using flow cytometry, cell counting, and chemostat culturing. RESULTS For lysine-requiring cells, very low concentrations of lysine are not detectably consumed and do not support cell birth, but delay the onset of death phase and reduce the death rate compared to no lysine. In contrast, in low hypoxanthine, hypoxanthine-requiring cells can produce new cells, yet also die faster than in the absence of hypoxanthine. For both strains, birth rates under various metabolite concentrations are better described by the sigmoidal-shaped Moser model than the well-known Monod model, while death rates can vary with metabolite concentration and time. CONCLUSIONS Our work reveals how time-lapse microscopy can be used to discover non-intuitive microbial birth and death dynamics and to quantify growth rates in many environments.
Collapse
Affiliation(s)
| | | | | | | | - Wenying Shou
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Sun Z, Koffel T, Stump SM, Grimaud GM, Klausmeier CA. Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters. J Theor Biol 2019; 465:63-77. [DOI: 10.1016/j.jtbi.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023]
|
32
|
Hart SFM, Mi H, Green R, Xie L, Pineda JMB, Momeni B, Shou W. Uncovering and resolving challenges of quantitative modeling in a simplified community of interacting cells. PLoS Biol 2019; 17:e3000135. [PMID: 30794534 PMCID: PMC6402699 DOI: 10.1371/journal.pbio.3000135] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/06/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Quantitative modeling is useful for predicting behaviors of a system and for rationally constructing or modifying the system. The predictive power of a model relies on accurate quantification of model parameters. Here, we illustrate challenges in parameter quantification and offer means to overcome these challenges, using a case example in which we quantitatively predict the growth rate of a cooperative community. Specifically, the community consists of two Saccharomyces cerevisiae strains, each engineered to release a metabolite required and consumed by its partner. The initial model, employing parameters measured in batch monocultures with zero or excess metabolite, failed to quantitatively predict experimental results. To resolve the model-experiment discrepancy, we chemically identified the correct exchanged metabolites, but this did not improve model performance. We then remeasured strain phenotypes in chemostats mimicking the metabolite-limited community environments, while mitigating or incorporating effects of rapid evolution. Almost all phenotypes we measured, including death rate, metabolite release rate, and the amount of metabolite consumed per cell birth, varied significantly with the metabolite environment. Once we used parameters measured in a range of community-like chemostat environments, prediction quantitatively agreed with experimental results. In summary, using a simplified community, we uncovered and devised means to resolve modeling challenges that are likely general to living systems.
Collapse
Affiliation(s)
- Samuel F. M. Hart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hanbing Mi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robin Green
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Li Xie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jose Mario Bello Pineda
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Babak Momeni
- Department of Biology, Boston College, Boston, Massachusetts, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Schepens D, Carlson RP, Heys J, Beck AE, Gedeon T. Role of resource allocation and transport in emergence of cross-feeding in microbial consortia. J Theor Biol 2019; 467:150-163. [PMID: 30707974 DOI: 10.1016/j.jtbi.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Microbial communities that implement mutual cross-feeding are commonly observed in nature and with synthetic constructs in laboratory experiments. A mathematical model of competition in a chemostat is developed to investigate the role that resource allocation and transport of metabolites play in cooperation. The model contains four cell types that differ by whether they produce two, one, or none of two essential metabolites. Producing cell types may export these resources into the environment, and those that do not produce both metabolites must import the missing resource. The contribution to the emergence of a collaborative consortium of single resource producers from the transport rate of these metabolites and the type of transport used by the cell (active vs. passive) is studied. Multiple instances of bi-stability and tri-stability are observed, and the effect of the initial concentration of a non-cooperative cheater cell type on the final outcome of the competition is examined. When the cost of producing metabolites is introduced into the model, significant changes to the outcome of the competition are observed, including coexistence of multiple cell types.
Collapse
Affiliation(s)
| | | | - Jeff Heys
- Montana State University, Bozeman, MT 59717, USA
| | | | - Tomáš Gedeon
- Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
34
|
Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun 2019; 10:103. [PMID: 30626871 PMCID: PMC6327061 DOI: 10.1038/s41467-018-07946-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023] Open
Abstract
Metabolic exchange mediates interactions among microbes, helping explain diversity in microbial communities. As these interactions often involve a fitness cost, it is unclear how stable cooperation can emerge. Here we use genome-scale metabolic models to investigate whether the release of “costless” metabolites (i.e. those that cause no fitness cost to the producer), can be a prominent driver of intermicrobial interactions. By performing over 2 million pairwise growth simulations of 24 species in a combinatorial assortment of environments, we identify a large space of metabolites that can be secreted without cost, thus generating ample cross-feeding opportunities. In addition to providing an atlas of putative interactions, we show that anoxic conditions can promote mutualisms by providing more opportunities for exchange of costless metabolites, resulting in an overrepresentation of stable ecological network motifs. These results may help identify interaction patterns in natural communities and inform the design of synthetic microbial consortia. In considering cross-feeding among microbes within communities, it is typically assumed that metabolic secretions are costly to produce. However, Pacheco et al. use metabolic models to show that ‘costless’ secretions could be common in some environments and important for structuring interactions among microbes.
Collapse
|
35
|
Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol 2018; 3:1451-1460. [PMID: 30297741 DOI: 10.1038/s41564-018-0263-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022]
Abstract
Closely related microorganisms often cooperate, but the prevalence and stability of cooperation between different genotypes remain debatable. Here, we track the evolution of pellicle biofilms formed through genetic division of labour and ask whether partially deficient partners can evolve autonomy. Pellicles of Bacillus subtilis rely on an extracellular matrix composed of exopolysaccharide (EPS) and the fibre protein TasA. In monocultures, ∆eps and ∆tasA mutants fail to form pellicles, but, facilitated by cooperation, they succeed in co-culture. Interestingly, cooperation collapses on an evolutionary timescale and ∆tasA gradually outcompetes its partner ∆eps. Pellicle formation can evolve independently from division of labour in ∆eps and ∆tasA monocultures, by selection acting on the residual matrix component, TasA or EPS, respectively. Using a set of interdisciplinary tools, we unravel that the TasA producer (∆eps) evolves via an unconventional but reproducible substitution in TasA that modulates the biochemical properties of the protein. Conversely, the EPS producer (ΔtasA) undergoes genetically variable adaptations, all leading to enhanced EPS secretion and biofilms with different biomechanical properties. Finally, we revisit the collapse of division of labour between Δeps and ΔtasA in light of a strong frequency versus exploitability trade-off that manifested in the solitarily evolving partners. We propose that such trade-off differences may represent an additional barrier to evolution of division of labour between genetically distinct microorganisms.
Collapse
|
36
|
Garcia J, Kao-Kniffin J. Microbial Group Dynamics in Plant Rhizospheres and Their Implications on Nutrient Cycling. Front Microbiol 2018; 9:1516. [PMID: 30050510 PMCID: PMC6050453 DOI: 10.3389/fmicb.2018.01516] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Plant rhizospheres encompass a dynamic zone of interactions between microorganisms and their respective plant hosts. For decades, researchers have worked to understand how these complex interactions influence different aspects of plant growth, development, and evolution. Studies of plant-microbial interactions in the root zone have typically focused on the effect of single microbial species or strains on a plant host. These studies, however, provide only a snapshot of the complex interactions that occur in the rhizosphere, leaving researchers with a limited understanding of how the complex microbiome influences the biology of the plant host. To better understand how rhizosphere interactions influence plant growth and development, novel frameworks and research methodologies could be implemented. In this perspective, we propose applying concepts in evolutionary biology to microbiome experiments for improved understanding of group-to-group and community-level microbial interactions influencing soil nutrient cycling. We also put forth simple experimental designs utilizing -omics techniques that can reveal important changes in the rhizosphere impacting the plant host. A greater focus on the components of complexity of the microbiome and how these impact plant host biology could yield more insight into previously unexplored aspects of host-microbe biology relevant to crop production and protection.
Collapse
Affiliation(s)
| | - Jenny Kao-Kniffin
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
37
|
Cheating on Cheaters Stabilizes Cooperation in Pseudomonas aeruginosa. Curr Biol 2018; 28:2070-2080.e6. [DOI: 10.1016/j.cub.2018.04.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
|
38
|
D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 2018; 35:455-488. [PMID: 29799048 DOI: 10.1039/c8np00009c] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Literature covered: early 2000s to late 2017Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has shown that bacterial genotypes can significantly benefit from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight general principles that underlie the adaptive evolution of interconnected microbial metabolic networks as well as the evolutionary consequences that result for cells living in such communities.
Collapse
Affiliation(s)
- Glen D'Souza
- Department of Environmental Systems Sciences, ETH-Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun 2018; 9:1383. [PMID: 29643375 PMCID: PMC5895777 DOI: 10.1038/s41467-018-03791-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
Understanding the mechanisms that promote cooperative behaviors of bacteria in their hosts is of great significance to clinical therapies. Environmental stress is generally believed to increase competition and reduce cooperation in bacteria. Here, we show that bacterial cooperation can in fact be maintained because of environmental stress. We show that Pseudomonas aeruginosa regulates the secretion of iron-scavenging siderophores in the presence of different environmental stresses, reserving this public good for private use in protection against reactive oxygen species when under stress. We term this strategy "conditional privatization". Using a combination of experimental evolution and theoretical modeling, we demonstrate that in the presence of environmental stress the conditional privatization strategy is resistant to invasion by non-producing cheaters. These findings show how the regulation of public goods secretion under stress affects the evolutionary stability of cooperation in a pathogenic population, which may assist in the rational development of novel therapies.
Collapse
|
40
|
Dolinšek J, Goldschmidt F, Johnson DR. Synthetic microbial ecology and the dynamic interplay between microbial genotypes. FEMS Microbiol Rev 2018; 40:961-979. [PMID: 28201744 DOI: 10.1093/femsre/fuw024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/27/2016] [Accepted: 07/04/2016] [Indexed: 01/27/2023] Open
Abstract
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
Collapse
Affiliation(s)
- Jan Dolinšek
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Felix Goldschmidt
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
41
|
Free A, McDonald MA, Pagaling E. Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:131-189. [PMID: 30342721 DOI: 10.1016/bs.aambs.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The connection between ecosystem function and taxonomic diversity has been of interest and relevance to macroecologists for decades. After many years of lagging behind due to the difficulty of assigning both taxonomy and function to poorly distinguishable microscopic cells, microbial ecology now has access to a suite of powerful molecular tools which allow its practitioners to generate data relating to diversity and function of a microbial community on an unprecedented scale. Instead, the problem facing today's microbial ecologists is coupling the ease of generation of these datasets with the formulation and testing of workable hypotheses relating the diversity and function of environmental, host-associated, and engineered microbial communities. Here, we review the current state of knowledge regarding the links between taxonomic alpha- and beta-diversity and ecosystem function, comparing our knowledge in this area to that obtained by macroecologists who use more traditional techniques. We consider the methodologies that can be applied to study these properties and how successful they are at linking function to diversity, using examples from the study of model microbial ecosystems, methanogenic bioreactors (anaerobic digesters), and host-associated microbiota. Finally, we assess ways in which our newly acquired understanding might be used to manipulate diversity in ecosystems of interest in order to improve function for the benefit of us or the environment in general through the provision of ecosystem services.
Collapse
Affiliation(s)
- Andrew Free
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A McDonald
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Eulyn Pagaling
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
| |
Collapse
|
42
|
Abstract
We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. Whereas the tragedy is commonly set in a game theoretical context, and attributed to an underlying Prisoner’s Dilemma, we take an alternative approach based on basic mechanistic principles of species growth that does not rely on the specification of payoffs which may be difficult to determine in practice. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the “Commons” in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.
Collapse
|
43
|
Hillesland KL. Evolution on the bright side of life: microorganisms and the evolution of mutualism. Ann N Y Acad Sci 2017; 1422:88-103. [PMID: 29194650 DOI: 10.1111/nyas.13515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023]
Abstract
Mutualistic interactions, where two interacting species have a net beneficial effect on each other's fitness, play a crucial role in the survival and evolution of many species. Despite substantial empirical and theoretical work in past decades, the impact of these interactions on natural selection is not fully understood. In addition, mutualisms between microorganisms have been largely ignored, even though they are ecologically important and can be used as tools to bridge the gap between theory and empirical work. Here, I describe two problems with our current understanding of natural selection in mutualism and highlight the properties of microbial mutualisms that could help solve them. One problem is that bias and methodological problems have limited our understanding of the variety of mechanisms by which species may adapt to mutualism. Another problem is that it is rare for experiments testing coevolution in mutualism to address whether each species has adapted to evolutionary changes in its partner. These problems can be addressed with genome resequencing and time-shift experiments, techniques that are easier to perform in microorganisms. In addition, microbial mutualisms may inspire novel insights and hypotheses about natural selection in mutualism.
Collapse
|
44
|
Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait Scenarios. J Bacteriol 2017; 199:JB.00297-17. [PMID: 28847922 DOI: 10.1128/jb.00297-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.
Collapse
|
45
|
Amor DR, Montañez R, Duran-Nebreda S, Solé R. Spatial dynamics of synthetic microbial mutualists and their parasites. PLoS Comput Biol 2017; 13:e1005689. [PMID: 28827802 PMCID: PMC5584972 DOI: 10.1371/journal.pcbi.1005689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/05/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
A major force contributing to the emergence of novelty in nature is the presence of cooperative interactions, where two or more components of a system act in synergy, sometimes leading to higher-order, emergent phenomena. Within molecular evolution, the so called hypercycle defines the simplest model of an autocatalytic cycle, providing major theoretical insights on the evolution of cooperation in the early biosphere. These closed cooperative loops have also inspired our understanding of how catalytic loops appear in ecological systems. In both cases, hypercycle and ecological cooperative loops, the role played by space seems to be crucial for their stability and resilience against parasites. However, it is difficult to test these ideas in natural ecosystems, where time and spatial scales introduce considerable limitations. Here, we use engineered bacteria as a model system to a variety of environmental scenarios identifying trends that transcend the specific model system, such an enhanced genetic diversity in environments requiring mutualistic interactions. Interestingly, we show that improved environments can slow down mutualistic range expansions as a result of genetic drift effects preceding local resource depletion. Moreover, we show that a parasitic strain is excluded from the population during range expansions (which acknowledges a classical prediction). Nevertheless, environmental deterioration can reshape population interactions, this same strain becoming part of a three-species mutualistic web in scenarios in which the two-strain mutualism becomes non functional. The evolutionary and ecological implications for the design of synthetic ecosystems are outlined.
Collapse
Affiliation(s)
- Daniel R. Amor
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Raúl Montañez
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (ISCIII), Málaga, Spain
| | - Salva Duran-Nebreda
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
46
|
Schuster M, Sexton DJ, Hense BA. Why Quorum Sensing Controls Private Goods. Front Microbiol 2017; 8:885. [PMID: 28579979 PMCID: PMC5437708 DOI: 10.3389/fmicb.2017.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication, also termed quorum sensing (QS), is a widespread process that coordinates gene expression in bacterial populations. The generally accepted view is that QS optimizes the cell density-dependent benefit attained from cooperative behaviors, often in the form of secreted products referred to as "public goods." This view is challenged by an increasing number of cell-associated products or "private goods" reported to be under QS-control for which a collective benefit is not apparent. A prominent example is nucleoside hydrolase from Pseudomonas aeruginosa, a periplasmic enzyme that catabolizes adenosine. Several recent studies have shown that private goods can function to stabilize cooperation by co-regulated public goods, seemingly explaining their control by QS. Here we argue that this property is a by-product of selection for other benefits rather than an adaptation. Emphasizing ecophysiological context, we propose alternative explanations for the QS control of private goods. We suggest that the benefit attained from private goods is associated with high cell density, either because a relevant ecological condition correlates with density, or because the private good is, directly or indirectly, involved in cooperative behavior. Our analysis helps guide a systems approach to QS, with implications for antivirulence drug design and synthetic biology.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - D Joseph Sexton
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum MünchenNeuherberg, Germany
| |
Collapse
|
47
|
|
48
|
Eco-evolutionary feedbacks can rescue cooperation in microbial populations. Sci Rep 2017; 7:42561. [PMID: 28211914 PMCID: PMC5304172 DOI: 10.1038/srep42561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 11/08/2022] Open
Abstract
Bacterial populations whose growth depends on the cooperative production of public goods are usually threatened by the rise of cheaters that do not contribute but just consume the common resource. Minimizing cheater invasions appears then as a necessary mechanism to maintain these populations. However, that invasions result instead in the persistence of cooperation is a prospect that has yet remained largely unexplored. Here, we show that the demographic collapse induced by cheaters in the population can actually contribute to the rescue of cooperation, in a clear illustration of how ecology and evolution can influence each other. The effect is made possible by the interplay between spatial constraints and the essentiality of the shared resource. We validate this result by carefully combining theory and experiments, with the engineering of a synthetic bacterial community in which the public compound allows survival to a lethal stress. The characterization of the experimental system identifies additional factors that can matter, like the impact of the lag phase on the tolerance to stress, or the appearance of spontaneous mutants. Our work explains the unanticipated dynamics that eco-evolutionary feedbacks can generate in microbial communities, feedbacks that reveal fundamental for the adaptive change of ecosystems at all scales.
Collapse
|
49
|
Friedman J, Gore J. Ecological systems biology: The dynamics of interacting populations. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2016.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Antibiotic stress selects against cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:546-551. [PMID: 28049833 DOI: 10.1073/pnas.1612522114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cheats are a pervasive threat to public goods production in natural and human communities, as they benefit from the commons without contributing to it. Although ecological antagonisms such as predation, parasitism, competition, and abiotic environmental stress play key roles in shaping population biology, it is unknown how such stresses generally affect the ability of cheats to undermine cooperation. We used theory and experiments to address this question in the pathogenic bacterium, Pseudomonas aeruginosa Although public goods producers were selected against in all populations, our competition experiments showed that antibiotics significantly increased the advantage of nonproducers. Moreover, the dominance of nonproducers in mixed cultures was associated with higher resistance to antibiotics than in either monoculture. Mathematical modeling indicates that accentuated costs to producer phenotypes underlie the observed patterns. Mathematical analysis further shows how these patterns should generalize to other taxa with public goods behaviors. Our findings suggest that explaining the maintenance of cooperative public goods behaviors in certain natural systems will be more challenging than previously thought. Our results also have specific implications for the control of pathogenic bacteria using antibiotics and for understanding natural bacterial ecosystems, where subinhibitory concentrations of antimicrobials frequently occur.
Collapse
|