1
|
Zhang Z, Raymond JE, Lahann J, Pena-Francesch A. Janus Swarm Metamaterials for Information Display, Memory, and Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406149. [PMID: 39279608 DOI: 10.1002/adma.202406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Indexed: 09/18/2024]
Abstract
Metamaterials are emerging as an unconventional platform to perform computing abstractions in physical systems by processing environmental stimuli into information. While computation functions have been demonstrated in mechanical systems, they rely on compliant mechanisms to achieve predefined states, which impose inherent design restrictions that limit their miniaturization, deployment, reconfigurability, and functionality. Here, a metamaterial system is described based on responsive magnetoactive Janus particle (MAJP) swarms with multiple programmable functions. MAJPs are designed with tunable structure and properties in mind, that is, encoded swarming behavior and fully reversible switching mechanisms, to enable programmable dynamic display, non-volatile and semi-volatile memory, Boolean logic, and information encryption functions in soft, wearable devices. MAJPs and their unique swarming behavior open new functions for the design of multifunctional and reconfigurable display devices, and constitute a promising building block to develop the next generation of soft physical computing devices, with growing applications in security, defense, anti-counterfeiting, camouflage, soft robotics, and human-robot interaction.
Collapse
Affiliation(s)
- Zenghao Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffery E Raymond
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Helft M, Zhang Z, Kinane C, Black N, Pena-Francesch A. Thermomechanical and Morphological Properties of Loligo vulgaris Squid Sucker Ring Teeth. Integr Comp Biol 2024; 64:234-242. [PMID: 38467389 DOI: 10.1093/icb/icae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Climate change is accelerating the increase of temperatures across the planet and resulting in the warming of oceans. Ocean warming threatens the survival of many aquatic species, including squids, and has introduced physiological, behavioral, and developmental changes, as well as physical changes in their biological materials composition, structure, and properties. Here, we characterize and analyze how the structure, morphology, and mechanical properties of European common squid Loligo vulgaris sucker ring teeth (SRT) are affected by temperature. SRT are predatory teethed structures located inside the suction cups of squids that are used to capture prey and are composed of semicrystalline structural proteins with a high modulus (GPa-range). We observed here that this biological material reversibly softens with temperature, undergoing a glass transition at ∼35°C, to a MPa-range modulus. We analyzed the SRT protein nanostructures as a function of temperature, as well as microscale and macroscale morphological changes, to understand their impact in the material properties. The results suggested that even small deviations from their habitat temperatures can result in significant softening of the material (up to 40% in modulus loss). Temperature changes following recent global climate trends and predictions might affect environmental adaptation in squid species and pose emerging survival challenges to adapt to increasing ocean temperatures.
Collapse
Affiliation(s)
- Margot Helft
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zenghao Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cecelia Kinane
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noah Black
- Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Yang H, Jiang L, Guo K, Xiang N. Static droplet array for the synthesis of nonspherical microparticles. Electrophoresis 2023; 44:563-572. [PMID: 36593724 DOI: 10.1002/elps.202200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.
Collapse
Affiliation(s)
- Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
4
|
Tanjeem N, Minnis MB, Hayward RC, Shields CW. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105758. [PMID: 34741359 PMCID: PMC9579005 DOI: 10.1002/adma.202105758] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Indexed: 05/05/2023]
Abstract
Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale. Consequently, shape-morphing particles are rapidly emerging in a variety of contexts, including photonics, microfluidics, microrobotics, and biomedicine. Herein, the key mechanisms and materials that facilitate shape changes of microscale and nanoscale particles are discussed. Recent progress in the applications made possible by these particles is summarized, and perspectives on their promise and key open challenges in the field are discussed.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Montana B Minnis
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Ryan C Hayward
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Charles Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
5
|
Friess F, Lendlein A, Wischke C. Switching microobjects from low to high aspect ratios using a shape-memory effect. SOFT MATTER 2021; 17:9326-9331. [PMID: 34605513 DOI: 10.1039/d1sm00947h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical particles from shape-memory polymers (SMP) can be stretched to ellipsoids with high aspect ratio (AR) and temporarily stabilized. They can switch back to low AR upon thermal stimulation. Here, the creation of an alternative shape-switching capability of particles from low to high AR is introduced, where a SMP matrix from polyvinyl alcohol (PVA) is used to create crosslinked high AR particles and to program the embedded micrometer-sized particles from a second SMP (oligo(ε-caprolactone) micronetworks, MN) with a low switching temperature Tsw. This programming proceeds through shape-recovery of the PVA matrix, from which the MN are harvested by PVA matrix dissolution. The use of a dissolvable SMP matrix may be a general strategy to efficiently create systems with complex moving capabilities.
Collapse
Affiliation(s)
- Fabian Friess
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany.
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 25, 14476 Potsdam, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany.
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 25, 14476 Potsdam, Germany
| | - Christian Wischke
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany.
| |
Collapse
|
6
|
Lee J, Moon S, Han YB, Yang SJ, Lahann J, Lee KJ. Facile Fabrication of Anisotropic Multicompartmental Microfibers Using Charge Reversal Electrohydrodynamic Co-Jetting. Macromol Rapid Commun 2021; 43:e2100560. [PMID: 34643980 DOI: 10.1002/marc.202100560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Indexed: 12/13/2022]
Abstract
Anisotropic microstructures are utilized in various fields owing to their unique properties, such as reversible shape transitions or on-demand and sequential release of drug combinations. In this study, anisotropic multicompartmental microfibers composed of different polymers are prepared via charge reversal electrohydrodynamic (EHD) co-jetting. The combination of various polymers, such as thermoplastic polyurethane, poly(D,L-lactide-co-glycolide), poly(vinyl cinnamate), and poly(methyl methacrylate), results in microfibers with distinct compositional boundaries. Charge reversal during EHD co-jetting enables facile fabrication of multicompartmental microfibers with the desired composition and tunable inner architecture, broadening their spectrum of potential applications, such as functional microfibers and cell scaffolds with multiple physical and chemical properties.
Collapse
Affiliation(s)
- Jaeyu Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seongjun Moon
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (st), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Bin Han
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea
| | - Seung Jae Yang
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Kozlovskaya V, Kharlampieva E. Anisotropic Particles through Multilayer Assembly. Macromol Biosci 2021; 22:e2100328. [PMID: 34644008 DOI: 10.1002/mabi.202100328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Indexed: 12/17/2022]
Abstract
The anisotropy in the shape of polymeric particles has been demonstrated to have many advantages over spherical particulates, including bio-mimetic behavior, shaped-directed flow, deformation, surface adhesion, targeting, motion, and permeability. The layer-by-layer (LbL) assembly is uniquely suited for synthesizing anisotropic particles as this method allows for simple and versatile replication of diverse colloid geometries with precise control over their chemical and physical properties. This review highlights recent progress in anisotropic particles of micrometer and nanometer sizes produced by a templated multilayer assembly of synthetic and biological macromolecules. Synthetic approaches to produce capsules and hydrogels utilizing anisotropic templates such as biological, polymeric, bulk hydrogel, inorganic colloids, and metal-organic framework crystals as sacrificial templates are overviewed. Structure-property relationships controlled by the anisotropy in particle shape and surface are discussed and compared with their spherical counterparts. Advances and challenges in controlling particle properties through varying shape anisotropy and surface asymmetry are outlined. The perspective applications of anisotropic colloids in biomedicine, including programmed behavior in the blood and tissues as artificial cells, nano-motors/sensors, and intelligent drug carriers are also discussed.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Chemistry Department, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eugenia Kharlampieva
- Chemistry Department, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,UAB Center for Nanomaterials and Biointegration, UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
8
|
Zarket BC, Wang H, Subraveti SN, Raghavan SR. Multilayer tubes that constrict, dilate, and curl in response to stimuli. SOFT MATTER 2021; 17:4180-4190. [PMID: 33881039 DOI: 10.1039/d0sm01704c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tubular structures in nature have the ability to respond to their environment-for example, blood vessels can constrict or dilate, thereby regulating flow velocity and blood pressure. These tubes have multiple concentric layers, with each layer having a distinct composition and properties. Inspired by such natural structures, we have synthesized responsive multilayer tubes in the laboratory without resorting to complex equipment such as a 3-D printer. Each layer of our tubes is a polymer gel formed by free-radical polymerization of water-soluble monomers. We can precisely control the inner diameter of the tube, the number of layers in the tube wall, and the thickness and chemistry of each layer. Tubes synthesized in this manner are robust, flexible, and stretchable. Moreover, our technique allows us to incorporate stimuli-responsive polymers into distinct regions of these tubes, and the resulting tubes can change their shape in response to external stimuli such as pH or temperature. In the case of laterally patterned tubes, the tube can be made to constrict or dilate over a particular segment-a behavior that is reminiscent of blood vessels. In the case of longitudinally patterned tubes, a straight tube can be induced to systematically curl into a coil. The versatility of our technique is further shown by constructing complex tubular architectures, including branched networks. On the whole, the polymeric tubes shown in this paper exhibit remarkable properties that cannot be realized by other techniques. Such tubes could find utility in biomedical engineering to construct anatomically realistic mimics of various tissues.
Collapse
Affiliation(s)
- Brady C Zarket
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Hanchu Wang
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Sai N Subraveti
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
9
|
Moon S, Jones MS, Seo E, Lee J, Lahann L, Jordahl JH, Lee KJ, Lahann J. 3D jet writing of mechanically actuated tandem scaffolds. SCIENCE ADVANCES 2021; 7:7/16/eabf5289. [PMID: 33853783 PMCID: PMC8046364 DOI: 10.1126/sciadv.abf5289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 05/05/2023]
Abstract
The need for high-precision microprinting processes that are controllable, scalable, and compatible with different materials persists throughout a range of biomedical fields. Electrospinning techniques offer scalability and compatibility with a wide arsenal of polymers, but typically lack precise three-dimensional (3D) control. We found that charge reversal during 3D jet writing can enable the high-throughput production of precisely engineered 3D structures. The trajectory of the jet is governed by a balance of destabilizing charge-charge repulsion and restorative viscoelastic forces. The reversal of the voltage polarity lowers the net surface potential carried by the jet and thus dampens the occurrence of bending instabilities typically observed during conventional electrospinning. In the absence of bending instabilities, precise deposition of polymer fibers becomes attainable. The same principles can be applied to 3D jet writing using an array of needles resulting in complex composite materials that undergo reversible shape transitions due to their unprecedented structural control.
Collapse
Affiliation(s)
- Seongjun Moon
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Michael S Jones
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eunbyeol Seo
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Jaeyu Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Lucas Lahann
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacob H Jordahl
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Republic of Korea.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Ni K, Peng Q, Gao E, Wang K, Shao Q, Huang H, Xue L, Wang Z. Core-Shell Magnetic Micropillars for Reprogrammable Actuation. ACS NANO 2021; 15:4747-4758. [PMID: 33617237 DOI: 10.1021/acsnano.0c09298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimuli-responsive micro/nanostructures that exhibit not only programmable but also reprogrammable actuation behaviors are highly desirable for various advanced engineering applications (e.g., anticounterfeiting, information encoding, dynamic imaging and display, microrobotics, etc.) but yet to be realized with state-of-the-art technologies. Here we report a concept and a corresponding experimental technique for core-shell magnetic micropillars enabling simultaneously programmable and reprogrammable actuations using a simple magnetic field. The micropillars are composed of elastomeric hollow shells for shaping encapsulated with liquid magnetic nanocomposite resin cores for actuating. The spatial distribution of the magnetic nanoparticles inside the resin channels can be dynamically modulated within individual micropillars, which consequently regulates the magnetomechanical responses of the pillars upon actuation (bending deformation varied near 1 order of magnitude under the same actuation field). We demonstrate that the micropillars with contrasting bending responses can be configured in an arbitrary spatial pattern by direct magnetic writing, and the written pattern can then be easily magnetically erased to facilitate next-round rewriting and reconfiguration. This reprogrammable actuation capability of the micropillars is further demonstrated by their potential applications for rewritable paper and recyclable displays, where various microscale characteristics can be controlled to dynamically appear and disappear at the same or different locations of one single micropillar array. The core-shell magnetic micropillars reported here provide a universal prototype for reprogrammable responsive micro/nanostructures through rational design and facile fabrication from conventional materials.
Collapse
Affiliation(s)
- Ke Ni
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Qi Peng
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Kun Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Qian Shao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhengzhi Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
11
|
Moore TC, Anderson JA, Glotzer SC. Shape-driven entropic self-assembly of an open, reconfigurable, binary host-guest colloidal crystal. SOFT MATTER 2021; 17:2840-2848. [PMID: 33564812 DOI: 10.1039/d0sm02073g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Entropically driven self-assembly of hard anisotropic particles, where particle shape gives rise to emergent valencies, provides a useful perspective for the design of nanoparticle and colloidal systems. Hard particles self-assemble into a rich variety of crystal structures, ranging in complexity from simple close-packed structures to structures with 432 particles in the unit cell. Entropic crystallization of open structures, however, is missing from this landscape. Here, we report the self-assembly of a two-dimensional binary mixture of hard particles into an open host-guest structure, where nonconvex, triangular host particles form a honeycomb lattice that encapsulates smaller guest particles. Notably, this open structure forms in the absence of enthalpic interactions by effectively splitting the structure into low- and high-entropy sublattices. This is the first such structure to be reported in a two-dimensional athermal system. We discuss the observed compartmentalization of entropy in this system, and show that the effect of the size of the guest particle on the stability of the structure gives rise to a reentrant phase behavior. This reentrance suggests the possibility for a reconfigurable colloidal material, and we provide a proof-of-concept by showing the assembly behavior while changing the size of the guest particles in situ. Our findings provide a strategy for designing open colloidal crystals, as well as binary systems that exhibit co-crystallization, which have been elusive thus far.
Collapse
Affiliation(s)
- Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Joshua A Anderson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Bai Y, Zhang J, Ju J, Liu J, Chen X. Shape memory microparticles with permanent shape reconfiguration ability and near infrared light responsiveness. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Mirza I, Saha S. Biocompatible Anisotropic Polymeric Particles: Synthesis, Characterization, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8241-8270. [DOI: 10.1021/acsabm.0c01075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ifra Mirza
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
14
|
Du CX, van Anders G, Dshemuchadse J, Dodd PM, Glotzer SC. Inverse design of compression-induced solid – solid transitions in colloids. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1798005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chrisy Xiyu Du
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Greg van Anders
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
- Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, Canada
| | - Julia Dshemuchadse
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Paul M. Dodd
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sharon C. Glotzer
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
16
|
Slutzky M, Stone HA, Nunes JK. A quantitative study of the effect of flow on the photopolymerization of fibers. SOFT MATTER 2019; 15:9553-9564. [PMID: 31714571 DOI: 10.1039/c9sm01485c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pulsed-UV light in the continuous flow of a photo-crosslinkable liquid can result in gelation and is a useful method to produce soft microfibers with uniform sizes. With modeling and experiments, we characterize some aspects of this fiber fabrication process. We model the spatial concentration profiles of radical species and molecular oxygen in the flow direction during light exposure, and predict the critical conditions for the onset of fiber formation and compare these predictions with experimental observations. We also characterize the different regimes of microfiber production (no polymerization, non-uniform fibers, and uniform microfibers), qualitatively characterize the rigidity of the fibers, and demonstrate that we can predictably control the length of the produced microfibers for a range of process parameters.
Collapse
Affiliation(s)
- Malcolm Slutzky
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
17
|
Wan D, Du CX, van Anders G, Glotzer SC. FCC ↔ BCC Phase Transitions in Convex and Concave Hard Particle Systems. J Phys Chem B 2019; 123:9038-9043. [PMID: 31573808 DOI: 10.1021/acs.jpcb.9b08310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solid-solid transitions are ubiquitous in nature and are important for technology. Understanding and exploiting transitions are complicated by the fact that multiple transition pathways can exist between small unit cell structures such as face-centered cubic (FCC) and body-centered cubic (BCC). By symmetry, FCC ↔ BCC transitions can occur via a pair of continuous transitions or via a discontinuous, first-order transition. However, how to, or whether it is possible to, select between pathways is unclear. Here, we use particle shape change to induce FCC ↔ BCC transitions in systems where particle valence is malleable. Though some particle shapes can eliminate metastable HCP stacking faults, we find that for both convex and concave particles, transitions are first-order.
Collapse
Affiliation(s)
- Duanduan Wan
- School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | | | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | | |
Collapse
|
18
|
Deng K, Liu Z, Hu J, Liu W, Zhang L, Xie R, Ju X, Wang W, Chu L. Composite bilayer films with organic compound-triggered bending properties. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Grosjean S, Wawryszyn M, Mutlu H, Bräse S, Lahann J, Theato P. Soft Matter Technology at KIT: Chemical Perspective from Nanoarchitectures to Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806334. [PMID: 30740772 DOI: 10.1002/adma.201806334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Bioinspiration has emerged as an important design principle in the rapidly growing field of materials science and especially its subarea, soft matter science. For example, biological cells form hierarchically organized tissues that not only are optimized and designed for durability, but also have to adapt to their external environment, undergo self-repair, and perform many highly complex functions. Being able to create artificial soft materials that mimic those highly complex functions will enable future materials applications. Herein, soft matter technologies that are used to realize bioinspired material structures are described, and potential pathways to integrate these into a comprehensive soft matter research environment are addressed. Solutions become available because soft matter technologies are benefitting from the synergies between organic synthesis, polymer chemistry, and materials science.
Collapse
Affiliation(s)
- Sylvain Grosjean
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mirella Wawryszyn
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Joerg Lahann
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Jung CW, Lee JS, Jalani G, Hwang EY, Lim DW. Thermally-Induced Actuations of Stimuli-Responsive, Bicompartmental Nanofibers for Decoupled Drug Release. Front Chem 2019; 7:73. [PMID: 30838199 PMCID: PMC6390475 DOI: 10.3389/fchem.2019.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Stimuli-responsive anisotropic microstructures and nanostructures with different physicochemical properties in discrete compartments, have been developed as advanced materials for drug delivery systems, tissue engineering, regenerative medicine, and biosensing applications. Moreover, their stimuli-triggered actuations would be of great interest for the introduction of the functionality of drug delivery reservoirs and tissue engineering scaffolds. In this study, stimuli-responsive bicompartmental nanofibers (BCNFs), with completely different polymer compositions, were prepared through electrohydrodynamic co-jetting with side-by-side needle geometry. One compartment with thermo-responsiveness was composed of methacrylated poly(N-isopropylacrylamide-co-allylamine hydrochloride) (poly(NIPAM-co-AAh)), while the counter compartment was made of poly(ethylene glycol) dimethacrylates (PEGDMA). Both methacrylated poly(NIPAM-co-AAh) and PEGDMA in distinct compartments were chemically crosslinked in a solid phase by UV irradiation and swelled under aqueous conditions, because of the hydrophilicity of both poly(NIPAM-co-AAh) and PEGDMA. As the temperature increased, BCNFs maintained a clear interface between compartments and showed thermally-induced actuation at the nanoscale due to the collapsed poly(NIPAM-co-AAh) compartment under the PEGDMA compartment of identical dimensions. Different model drugs, bovine serum albumin, and dexamethasone phosphate were alternately loaded into each compartment and released at different rates depending on the temperature and molecular weight of the drugs. These BCNFs, as intelligent nanomaterials, have great potential as tissue engineering scaffolds and multi-modal drug delivery reservoirs with stimuli-triggered actuation and decoupled drug release.
Collapse
Affiliation(s)
| | | | | | | | - Dong Woo Lim
- Department of Bionano Engineering and Bionanotechnology, College of Engineering Sciences, Hanyang University, Ansan, South Korea
| |
Collapse
|
21
|
Solomon MJ. Tools and Functions of Reconfigurable Colloidal Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11205-11219. [PMID: 29397742 DOI: 10.1021/acs.langmuir.7b03748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
Collapse
|
22
|
Controlled network structures of chitosan-poly(ethylene glycol) hydrogel microspheres and their impact on protein conjugation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Gil M, Moon S, Yoon J, Rhamani S, Shin J, Lee KJ, Lahann J. Compartmentalized Microhelices Prepared via Electrohydrodynamic Cojetting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800024. [PMID: 29938185 PMCID: PMC6009775 DOI: 10.1002/advs.201800024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Anisotropically compartmentalized microparticles have attracted increasing interest in areas ranging from sensing, drug delivery, and catalysis to microactuators. Herein, a facile method is reported for the preparation of helically decorated microbuilding blocks, using a modified electrohydrodynamic cojetting method. Bicompartmental microfibers are twisted in situ, during electrojetting, resulting in helical microfibers. Subsequent cryosectioning of aligned fiber bundles provides access to helically decorated microcylinders. The unique helical structure endows the microfibers/microcylinders with several novel functions such as translational motion in response to rotating magnetic fields. Finally, microspheres with helically patterned compartments are obtained after interfacially driven shape shifting of helically decorated microcylinders.
Collapse
Affiliation(s)
- Manjae Gil
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Seongjun Moon
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Jaewon Yoon
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Sahar Rhamani
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Institute of Functional InterfacesKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| | - Jae‐Won Shin
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
| | - Kyung Jin Lee
- Department of Fine Chemical Engineering and Applied ChemistryCollege of EngineeringChungnam National University99 Daehak‐ro (st)Yuseong‐guDaejeon305‐764Republic of Korea
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
- Institute of Functional InterfacesKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
24
|
Misra AC, Lahann J. Progress of Multicompartmental Particles for Medical Applications. Adv Healthc Mater 2018; 7:e1701319. [PMID: 29405610 DOI: 10.1002/adhm.201701319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Particulate materials are becoming increasingly used in the literature for medical applications, but translation to the clinical setting has remained challenging as many particle systems face challenges from in vivo barriers. Multicompartmental particles that can incorporate several materials in an individual particle may allow for more intricate control and addressing of issues that otherwise standard particles are unable to. Here, some of the advances made in the use of multicompartmental particles for medical applications are briefly described.
Collapse
Affiliation(s)
- Asish C. Misra
- Department of Surgery Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Institute of Functional Interfaces Karlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
25
|
Synthesis and interfacial activity of PMMA/PtBMA Janus and homogeneous nanoparticles at water/oil interfaces. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2016.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. Chem 2017. [DOI: 10.1016/j.chempr.2017.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, Rose JC, Haraszti T, De Laporte L. An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702207. [PMID: 28783255 DOI: 10.1002/smll.201702207] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 06/07/2023]
Abstract
To regenerate soft aligned tissues in living organisms, low invasive biomaterials are required to create 3D microenvironments with a structural complexity to mimic the tissue's native architecture. Here, a tunable injectable hydrogel is reported, which allows precise engineering of the construct's anisotropy in situ. This material is defined as an Anisogel, representing a new type of tissue regenerative therapy. The Anisogel comprises a soft hydrogel, surrounding magneto-responsive, cell adhesive, short fibers, which orient in situ in the direction of a low external magnetic field, before complete gelation of the matrix. The magnetic field can be removed after gelation of the biocompatible gel precursor, which fixes the aligned fibers and preserves the anisotropic structure of the Anisogel. Fibroblasts and nerve cells grow and extend unidirectionally within the Anisogels, in comparison to hydrogels without fibers or with randomly oriented fibers. The neurons inside the Anisogel show spontaneous electrical activity with calcium signals propagating along the anisotropy axis of the material. The reported system is simple and elegant and the short magneto-responsive fibers can be produced with an effective high-throughput method, ideal for a minimal invasive route for aligned tissue therapy.
Collapse
Affiliation(s)
| | - Sarah Boesveld
- DWI Leibniz Institute for Interactive Materials, Aachen, 52074, Germany
| | | | - Jonas C Rose
- DWI Leibniz Institute for Interactive Materials, Aachen, 52074, Germany
| | - Tamás Haraszti
- DWI Leibniz Institute for Interactive Materials, Aachen, 52074, Germany
| | - Laura De Laporte
- DWI Leibniz Institute for Interactive Materials, Aachen, 52074, Germany
| |
Collapse
|
28
|
Zhang J, Grzybowski BA, Granick S. Janus Particle Synthesis, Assembly, and Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6964-6977. [PMID: 28678499 DOI: 10.1021/acs.langmuir.7b01123] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Janus particles are colloidal particles with more than a single type of surface chemistry or composition, ranging in size from hundreds of nanometers to a few micrometers. Like traditional colloids, they are large enough to be observed under optical microscopy in real time and small enough to diffuse by Brownian motion, but their interesting and useful new properties of directional interaction bring new research opportunities to the fields of soft matter and fundamental materials research as well as to applications in other disciplines and in technologies such as electronic paper and other multiphase engineering. In this review, a variety of methods that have been used to synthesize Janus particles are introduced. Following this, we summarize the use of Janus particles as basic units that assemble into novel structures and tune important material properties. The concluding sections highlight some of the technological applications, including recent progress in using Janus particles as microprobes, micromotors, electronic paper, and solid surfactants.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Materials Science and Engineering, University of Illinois , Urbana, Illinois 61801, United States
| | | | - Steve Granick
- IBS Center for Soft and Living Matter, UNIST , Ulsan 689-798, South Korea
| |
Collapse
|
29
|
Abstract
Solid-solid phase transitions are the most ubiquitous in nature, and many technologies rely on them. However, studying them in detail is difficult because of the extreme conditions (high pressure/temperature) under which many such transitions occur and the high-resolution equipment needed to capture the intermediate states of the transformations. These difficulties mean that basic questions remain unanswered, such as whether so-called diffusionless solid-solid transitions, which have only local particle rearrangement, require thermal activation. Here, we introduce a family of minimal model systems that exhibits solid-solid phase transitions that are driven by changes in the shape of colloidal particles. By using particle shape as the control variable, we entropically reshape the coordination polyhedra of the particles in the system, a change that occurs indirectly in atomic solid-solid phase transitions via changes in temperature, pressure, or density. We carry out a detailed investigation of the thermodynamics of a series of isochoric, diffusionless solid-solid phase transitions within a single shape family and find both transitions that require thermal activation or are "discontinuous" and transitions that occur without thermal activation or are "continuous." In the discontinuous case, we find that sufficiently large shape changes can drive reconfiguration on timescales comparable with those for self-assembly and without an intermediate fluid phase, and in the continuous case, solid-solid reconfiguration happens on shorter timescales than self-assembly, providing guidance for developing means of generating reconfigurable colloidal materials.
Collapse
|
30
|
Choi A, Seo KD, Kim DW, Kim BC, Kim DS. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications. LAB ON A CHIP 2017; 17:591-613. [PMID: 28101538 DOI: 10.1039/c6lc01023g] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Do Wan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Bum Chang Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| |
Collapse
|
31
|
Anselmo AC, Prabhakarpandian B, Pant K, Mitragotri S. Clinical and commercial translation of advanced polymeric nanoparticle systems: opportunities and material challenges. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/2053-1613/aa5468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Tian L, Li X, Wan D, Ali Z, Zhang Q. Large-scale fabrication of polymer ellipsoids with controllable patches via the viscosity-induced deformation of spherical particles. Polym Chem 2017. [DOI: 10.1039/c7py00475c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and controllable strategy to synthesize polymer ellipsoids via the viscosity-induced deformation of spherical particles is proposed.
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xue Li
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Dewei Wan
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Zafar Ali
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| |
Collapse
|
33
|
Jordahl JH, Ramcharan S, Gregory JV, Lahann J. Needleless Electrohydrodynamic Cojetting of Bicompartmental Particles and Fibers from an Extended Fluid Interface. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/17/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Jacob H. Jordahl
- Biointerfaces Institute Department of Chemical Engineering University of Michigan 2800 Plymouth Rd Ann Arbor MI 48109 USA
| | - Stacy Ramcharan
- Biointerfaces Institute Department of Chemical Engineering University of Michigan 2800 Plymouth Rd Ann Arbor MI 48109 USA
| | - Jason V. Gregory
- Biointerfaces Institute Department of Chemical Engineering University of Michigan 2800 Plymouth Rd Ann Arbor MI 48109 USA
| | - Joerg Lahann
- Biointerfaces Institute Department of Chemical Engineering University of Michigan 2800 Plymouth Rd Ann Arbor MI 48109 USA
- Department of Biomedical Engineering Material Science and Engineering and Macromolecular Science and Engineering University of Michigan 2800 Plymouth Rd Ann Arbor MI 48109 USA
| |
Collapse
|
34
|
Jung S, Choi CH, Lee CS, Yi H. Integrated fabrication-conjugation methods for polymeric and hybrid microparticles for programmable drug delivery and biosensing applications. Biotechnol J 2016; 11:1561-1571. [PMID: 27365166 DOI: 10.1002/biot.201500298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Functionalized polymeric microparticles possess significant potential for controlled drug delivery and biosensing applications, yet current fabrication techniques face challenges in simple and scalable fabrication and biofunctionalization. For programmable manufacture of biofunctional microparticles in a simple manner, we have developed robust micromolding methods combined with biopolymeric conjugation handles and bioorthogonal click reactions. In this focused minireview, we present detailed methods for our integrated approaches for fabrication of microparticles with controlled 2D and 3D shapes and dimensions toward controlled release, and for biomacromolecular conjugation via strain promoted alkyne-azide cycloaddition (SPAAC) and tetrazine-trans-cyclooctene (Tz-TCO) ligation reactions utilizing a potent aminopolysaccharide chitosan as an efficient conjugation handle. We believe that the fabrication-conjugation methods reported here from a range of our recent reports illustrate the simple, robust and readily reproducible nature of our approaches to creating multifaceted microparticles in a programmable, cost-efficient and scalable manner toward a wide range of medical and biotechnological application areas.
Collapse
Affiliation(s)
- Sukwon Jung
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Chang-Hyung Choi
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.,Current Affiliation: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
35
|
Rahmani S, Ashraf S, Hartmann R, Dishman AF, Zyuzin MV, Yu CKJ, Parak WJ, Lahann J. Engineering of nanoparticle size via electrohydrodynamic jetting. Bioeng Transl Med 2016; 1:82-93. [PMID: 29313008 PMCID: PMC5689507 DOI: 10.1002/btm2.10010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 12/27/2022] Open
Abstract
Engineering the physical properties of particles, especially their size, is an important parameter in the fabrication of successful carrier systems for the delivery of therapeutics. Here, various routes were explored for the fabrication of particles in the nanosize regime. It was demonstrated that the use of a charged species and/or solvent with high dielectric constant can influence the size and distribution of particles, with the charged species having a greater effect on the size of the particles and the solvent a greater effect on the distribution of the particles. In addition to the fabrication of nanoparticles, their fractionation into specific size ranges using centrifugation was also investigated. The in vitro particle uptake and intracellular transport of these nanoparticles was studied as a function of size and incubation period. The highest level of intralysosomal localization was observed for the smallest nanoparticle group (average of 174 nm), followed by the groups with increasing sizes (averages of 378 and 575 nm), most likely due to the faster endosomal uptake of smaller particles. In addition, the internalization of nanoparticle clusters and number of nanoparticles per cell increased with longer incubation periods. This work establishes a technological approach to compartmentalized nanoparticles with defined sizes. This is especially important as relatively subtle differences in size can modulate cell uptake and determine intercellular fate. Future work will need to address the role of specific targeting ligands on cellular uptake and intracellular transport of compartmentalized nanoparticles.
Collapse
Affiliation(s)
- Sahar Rahmani
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Biomedical Engineering University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Sumaira Ashraf
- Dept. of Physics Philipps University of Marburg Marburg Germany
| | - Raimo Hartmann
- Dept. of Physics Philipps University of Marburg Marburg Germany
| | - Acacia F Dishman
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | | | - Chris K J Yu
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Biomedical Engineering University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | | | - Joerg Lahann
- Biointerfaces Institute, University of Michigan Ann Arbor MI 48109.,Biomedical Engineering University of Michigan Ann Arbor MI 48109.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany.,Chemical Engineering University of Michigan Ann Arbor MI 48109
| |
Collapse
|
36
|
Na JH, Bende NP, Bae J, Santangelo CD, Hayward RC. Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates. SOFT MATTER 2016; 12:4985-4990. [PMID: 27169886 DOI: 10.1039/c6sm00714g] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape programmable materials capable of morphing from a flat sheet into controlled three dimensional (3D) shapes offer promise in diverse areas including soft robotics, tunable optics, and bio-engineering. We describe a simple method of 'grayscale gel lithography' that relies on a digital micromirror array device (DMD) to control the dose of ultraviolet (UV) light, and therefore the extent of swelling of a photocrosslinkable poly(N-isopropyl acrylamide) (PNIPAm) copolymer film, with micrometer-scale spatial resolution. This approach allows for effectively smooth profiles of swelling to be prescribed, enabling the preparation of buckled 3D shapes with programmed Gaussian curvature.
Collapse
Affiliation(s)
- Jun-Hee Na
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst 01003, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
37
|
Rutkowski DM, Velev OD, Klapp SHL, Hall CK. The effect of charge separation on the phase behavior of dipolar colloidal rods. SOFT MATTER 2016; 12:4932-4943. [PMID: 27151445 DOI: 10.1039/c6sm00317f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Colloids with anisotropic shape and charge distribution can assemble into a variety of structures that could find use as novel materials for optical, photonic, electronic and structural applications. Because experimental characterization of the many possible types of multi-shape and multipolar colloidal particles that could form useful structures is difficult, the search for novel colloidal materials can be enhanced by simulations of colloidal particle assembly. We have simulated a system of dipolar colloidal rods at fixed aspect ratio using discontinuous molecular dynamics (DMD) to investigate how the charge separation of an embedded dipole affects the types of assemblies that occur. Each dipolar rod is modeled as several overlapping spheres fixed in an elongated shape to represent excluded volume and two smaller, embedded spheres to represent the charges that make up the extended dipole. Large charge separations predominately form structures where the rods link head-to-tail while small charge separations predominately form structures where the rods stack side-by-side. Rods with small charge separations tend to form dense aggregates while rods with large charge separations tend to form coarse gel-like structures. Structural phase boundaries between fluid, string-fluid, and "gel" (networked) phases are mapped out and characterized as to whether they have global head-to-tail or global side-by-side order. A structural coarsening transition is observed for particles with large charge separations in which the head-tail networks thicken as temperature is lowered due to an increased tendency to form side-by-side structures. Triangularly connected networks form at small charge separations; these may be useful for encapsulating smaller particles.
Collapse
Affiliation(s)
- David M Rutkowski
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
38
|
Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther 2016; 3:45-57. [PMID: 31245472 PMCID: PMC6581842 DOI: 10.1016/j.reth.2016.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The development of biologically relevant three-dimensional (3D) tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.
Collapse
Affiliation(s)
- Fumiki Yanagawa
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
39
|
Sitt A, Soukupova J, Miller D, Verdi D, Zboril R, Hess H, Lahann J. Microscale Rockets and Picoliter Containers Engineered from Electrospun Polymeric Microtubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1432-1439. [PMID: 26797691 DOI: 10.1002/smll.201503467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Chemically functional core/shell microtubes made of biodegradable polymers are fabricated using coaxial electrospinning. The luminal walls are chemically functionalized, allowing for regioselective chemical binding or adsorption inside the microtube. Attaching catalytic nanoparticles or enzymes to the luminal walls converts the microtubes into bubble-propelled microrockets. Upon exposure to ultrasound, the microtubes undergo shape shifting, transforming them into picoliter-scale containers.
Collapse
Affiliation(s)
- Amit Sitt
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
| | - Jana Soukupova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc, 78371, Czech Republic
| | - David Miller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - David Verdi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc, 78371, Czech Republic
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joerg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
- Department of Chemical Engineering and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
40
|
Tian L, Li X, Zhao P, Ali Z, Zhang Q. Impressed pressure-facilitated seeded emulsion polymerization: design of fast swelling strategies for massive fabrication of patchy microparticles. Polym Chem 2016. [DOI: 10.1039/c6py01778a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-pressure and ultrasound swelling polymerization promote the fast and large-scale fabrication of patchy particles for potential applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xue Li
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Panpan Zhao
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Zafar Ali
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| |
Collapse
|
41
|
Kriechbaum K, Cerrón-Infantes DA, Stöger B, Unterlass MM. Shape-Anisotropic Polyimide Particles by Solid-State Polycondensation of Monomer Salt Single Crystals. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Konstantin Kriechbaum
- Institute of Materials Chemistry, ‡Institute of Chemical
Technologies and Analytics, and ⊥X-ray Center Technische Universität Wien, 1060 Vienna, Austria
| | - D. Alonso Cerrón-Infantes
- Institute of Materials Chemistry, ‡Institute of Chemical
Technologies and Analytics, and ⊥X-ray Center Technische Universität Wien, 1060 Vienna, Austria
| | - Berthold Stöger
- Institute of Materials Chemistry, ‡Institute of Chemical
Technologies and Analytics, and ⊥X-ray Center Technische Universität Wien, 1060 Vienna, Austria
| | - Miriam M. Unterlass
- Institute of Materials Chemistry, ‡Institute of Chemical
Technologies and Analytics, and ⊥X-ray Center Technische Universität Wien, 1060 Vienna, Austria
| |
Collapse
|
42
|
Epstein E, Yoon J, Madhukar A, Hsia KJ, Braun PV. Colloidal Particles that Rapidly Change Shape via Elastic Instabilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6051-6057. [PMID: 26449185 DOI: 10.1002/smll.201502198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/03/2015] [Indexed: 06/05/2023]
Abstract
The fabrication and properties of pH-responsive colloidal particles are reported, which change shape rapidly (less than 200 ms), nearly independent of the diffusion of the pH altering species that trigger their actuation, and far more rapid than their Brownian motion. These particles are mechanically bistable, as revealed by their hysteretic shape response. Finite element analysis (FEA) shows that mechanical hysteresis and bistability derives from the colloids' spherical curvature. Mechanical characterization of the bilayered polymers comprising the colloidal particles shows that viscoelastic relaxation plays a non-negligible role in limiting the shape switching rate; however, energy landscapes obtained from FEA simulations suggest that by tuning the elastic moduli and thicknesses of the constituent polymer layers, microparticles of the size shown here may be fabricated to actuate on timescales as fast as 1 μs.
Collapse
Affiliation(s)
- Eric Epstein
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaewon Yoon
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amit Madhukar
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - K Jimmy Hsia
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul V Braun
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
43
|
Fang Y, Ni Y, Leo SY, Wang B, Basile V, Taylor C, Jiang P. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23650-9. [PMID: 26447681 DOI: 10.1021/acsami.5b07220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
Collapse
Affiliation(s)
- Yin Fang
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Sin-Yen Leo
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Bingchen Wang
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Vito Basile
- ITIA-CNR, Industrial Technologies and Automation Institute, National Council of Research, Via Bassini, 15, 20133 Milano, Italy
| | - Curtis Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
44
|
Lee J, Park TH, Lee KJ, Lahann J. Snail-like Particles from Compartmentalized Microfibers. Macromol Rapid Commun 2015; 37:73-78. [PMID: 26488433 DOI: 10.1002/marc.201500431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Jaemin Lee
- Department of Fine Chemical Engineering and Applied Chemistry; College of Engineering; Chungnam National University; Daejeon 305-764 Korea
| | - Tae-Hong Park
- Department of Chemical Engineering; Macromolecular Science and Engineering and Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
- Nuclear Chemistry Research Division; Korea Atomic Energy Research Institute; Daejeon 305-353 Korea
| | - Kyung Jin Lee
- Department of Fine Chemical Engineering and Applied Chemistry; College of Engineering; Chungnam National University; Daejeon 305-764 Korea
- Department of Chemical Engineering; Macromolecular Science and Engineering and Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| | - Joerg Lahann
- Department of Chemical Engineering; Macromolecular Science and Engineering and Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
45
|
Misra AC, Luker KE, Durmaz H, Luker GD, Lahann J. CXCR4-Targeted Nanocarriers for Triple Negative Breast Cancers. Biomacromolecules 2015; 16:2412-7. [PMID: 26154069 PMCID: PMC5474759 DOI: 10.1021/acs.biomac.5b00653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CXCR4 is a cell membrane receptor that is overexpressed in triple-negative breast cancers and implicated in growth and metastasis of this disease. Using electrohydrodynamic cojetting, we prepared multicompartmental drug delivery carriers for CXCR4 targeting. The particles are comprised of a novel poly(lactide-co-glycolide) derivative that allows for straightforward immobilization of 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (Plerixafor), a small molecule with affinity for CXCR4. Targeted nanocarriers are selectively taken up by CXCR4-expressing cells and effectively block CXCR4 signaling. This study suggests that CXCR4 may be an effective target for nanocarrier-based therapies.
Collapse
Affiliation(s)
- Asish C. Misra
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Hakan Durmaz
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Joerg Lahann
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
46
|
Cho K, Lee HJ, Han SW, Min JH, Park H, Koh W. Multi‐Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew Chem Int Ed Engl 2015; 54:11511-5. [DOI: 10.1002/anie.201504317] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Kanghee Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Hyun Jong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Sang Won Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Ji Hong Min
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| | - Hansoo Park
- School of Integrative Engineering, Chung‐Ang University, 84 Heukseok‐ro, Dongjak‐gu, Seoul 156‐756 (South Korea)
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei‐ro, Seodaemoon‐gu, Seoul 120‐749 (South Korea)
| |
Collapse
|
47
|
Cho K, Lee HJ, Han SW, Min JH, Park H, Koh WG. Multi-Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Lash MH, Fedorchak MV, McCarthy JJ, Little SR. Scaling up self-assembly: bottom-up approaches to macroscopic particle organization. SOFT MATTER 2015; 11:5597-5609. [PMID: 25947543 DOI: 10.1039/c5sm00764j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review presents an overview of recent work in the field of non-Brownian particle self-assembly. Compared to nanoparticles that naturally self-assemble due to Brownian motion, larger, non-Brownian particles (d > 6 μm) are less prone to autonomously organize into crystalline arrays. The tendency for particle systems to experience immobilization and kinetic arrest grows with particle radius. In order to overcome this kinetic limitation, some type of external driver must be applied to act as an artificial "thermalizing force" upon non-Brownian particles, inducing particle motion and subsequent crystallization. Many groups have explored the use of various agitation methods to overcome the natural barriers preventing self-assembly to which non-Brownian particles are susceptible. The ability to create materials from a bottom-up approach with these characteristics would allow for precise control over their pore structure (size and distribution) and surface properties (topography, functionalization and area), resulting in improved regulation of key characteristics such as mechanical strength, diffusive properties, and possibly even photonic properties. This review will highlight these approaches, as well as discuss the potential impact of bottom-up macroscale particle assembly. The applications of such technology range from customizable and autonomously self-assembled niche microenvironments for drug delivery and tissue engineering to new acoustic dampening, battery, and filtration materials, among others. Additionally, crystals made from non-Brownian particles resemble naturally derived materials such as opals, zeolites, and biological tissue (i.e. bone, cartilage and lung), due to their high surface area, pore distribution, and tunable (multilevel) hierarchy.
Collapse
Affiliation(s)
- M H Lash
- Department of Chemical and Petroleum Engineering, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
49
|
Zhao Q, Heyda J, Dzubiella J, Täuber K, Dunlop JWC, Yuan J. Sensing Solvents with Ultrasensitive Porous Poly(ionic liquid) Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2913-2917. [PMID: 25828569 DOI: 10.1002/adma.201500533] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/12/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Qiang Zhao
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, D-14424, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Beck-Broichsitter M, Nicolas J, Couvreur P. Design attributes of long-circulating polymeric drug delivery vehicles. Eur J Pharm Biopharm 2015; 97:304-17. [PMID: 25857838 DOI: 10.1016/j.ejpb.2015.03.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 02/03/2023]
Abstract
Following systemic administration polymeric drug delivery vehicles allow for a controlled and targeted release of the encapsulated medication at the desired site of action. For an elevated and organ specific accumulation of their cargo, nanocarriers need to avoid opsonization, activation of the complement system and uptake by macrophages of the mononuclear phagocyte system. In this respect, camouflaged vehicles revealed a delayed elimination from systemic circulation and an improved target organ deposition. For instance, a steric shielding of the carrier surface by poly(ethylene glycol) substantially decreased interactions with the biological environment. However, recent studies disclosed possible deficits of this approach, where most notably, poly(ethylene glycol)-modified drug delivery vehicles caused significant immune responses. At present, identification of novel potential carrier coating strategies facilitating negligible immune reactions is an emerging field of interest in drug delivery research. Moreover, physical carrier properties including geometry and elasticity seem to be very promising design attributes to surpass numerous biological barriers, in order to improve the efficacy of the delivered medication.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Institut Galien UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France.
| |
Collapse
|