1
|
Komatsu S, Suzuki T, Kosukegawa Y, Kawase M, Matsuyama T, Asoh TA, Kikuchi A. Preparation of thermoresponsive core-corona particles for controlled phagocytosis via surface properties and particle shape transformation. J Control Release 2025; 381:113652. [PMID: 40120692 DOI: 10.1016/j.jconrel.2025.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Cell-particle interactions, such as phagocytosis, exhibit variability based on particle shape, surface physical properties, and diameter. These interactions can be intentionally modified through in situ change in the physical characteristics of the particulate materials. By manipulating both the surface properties and shape of the particles, it may be feasible to regulate their interactions with cells. Objective of this research is to prepare thermoresponsive core-corona particles those undergo transformation and alteration in surface solubility near physiological temperature and to investigate particle shape- and surface physical property-dependent phagocytosis. The glass transition temperature of the prepared particles was controlled via the composition of the polymer core. Rod-type particles, prepared by uniaxially stretching particle-containing films at above the glass transition temperature of the core-forming materials, demonstrated reduced phagocytosis by macrophages compared to that of spherical particles. Furthermore, the physical properties of the particle surface exerted a significant influence on phagocytosis, with hydrophobic particles being more readily engulfed. Consequently, precise control of phagocytosis can be controlled by manipulating the particle's shape and surface properties. The prepared particles have potential applications as drug delivery system carriers, enabling the regulation of cell interactions via particle shape and surface physical properties induced by temperature changes.
Collapse
Affiliation(s)
- Syuuhei Komatsu
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Takuma Suzuki
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yota Kosukegawa
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Masatoshi Kawase
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Takuya Matsuyama
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Taka-Aki Asoh
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
2
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025:d4sc08283d. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
3
|
Wang Y, Taek Kim K, Manners I, Winnik MA. Organometallic-polypeptide Block Copolymers: Synthesis and Crystallization-driven Self-assembly in Aqueous Solutions to Rod-like and Plate-like Micelles with Polypeptide Coronas. Chemistry 2025; 31:e202404386. [PMID: 39846795 DOI: 10.1002/chem.202404386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
The synthesis of polyferrocenyldimethylsilane-b-poly(L-glutamic acid) block copolymers was systematically explored. Rod-like and plate-like micelles were prepared from self-assembly of the block copolymers in aqueous solution with two different approaches. In a dissolution-dialysis approach, micelles were prepared by dissolving a block copolymer sample in excess aqueous base followed by the dialysis of the solution against water. The morphology of the resultant micelles showed composition dependence. The block copolymer sample with the lowest soluble block content formed rod-like micelles, while the other samples with higher soluble block content formed spherical micelles. In a THF-mediated approach, THF was added into a block copolymer solution, which was first prepared by the dissolution-dialysis approach, and then the THF was evaporated slowly. Plate-like micelles were obtained from all the block copolymer samples examined, and these had a broad range of soluble block content. The formation of these plate-like micelles was attributed to the crystallization of the PFDMS blocks in the presence of THF. A tendency of large platelet micelles evolving to thin filaments over time was observed. This change may have been driven by the increase in the corona-chain stretching energy as THF evaporated.
Collapse
Affiliation(s)
- Yishan Wang
- Key Laboratory of Advanced Rubber Materials, Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, China
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Kyoung Taek Kim
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Current address: Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria BC, V8P 5 C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
4
|
Kurniawan A, Mahendra I, Rizaludin A, Utama MS, Lesmana R, Ayuningtyas FD, Dewanti MR, Syarif DG, Febrian MB. Dual Potential of Cetuximab Conjugated Hydroxyapatite Zirconium Nanoparticle as Nanocarrier for Radioenhancer in X-Ray Dynamic Therapy and 177Lu-based Radioimmunotherapy of Lung Cancer. Nanotheranostics 2025; 9:82-94. [PMID: 40078313 PMCID: PMC11898717 DOI: 10.7150/ntno.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/08/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to synthesize cetuximab (CTX) conjugated hydroxyapatite zirconium (HApZr-CTX) as a nanocarrier for active delivery of photosensitizer and therapeutic radionuclide. The system enabled targeted radioenhancer in X-ray dynamic therapy and radioimmunotherapy for lung cancer. The results showed that HApZr-CTX had the main characteristics of hydroxyapatite crystal in X-ray powder diffraction (XRD), with particle size twice bigger, according to DLS-PSA and TEM measurements. Cellular ROS generation was elevated almost three times in A549 cells after being treated using 125 µg/mL HApZr-CTX and irradiated with 5 Gy of X-ray photon compared to untreated cells. The viability of the treated lung cancer cell line decreased after exposure to external radiation. Moreover, as a radioimmunotherapy candidate, 177Lu was successfully loaded into HApZr-CTX nanocarrier and internalized in A549 more than half of the given dose after 0.5 h incubation. [177Lu]Lu-HApZr-CTX was primarily accumulated in the lung organs of healthy mice one-hour post-injection. In conclusion, HApZr-CTX nanoparticles have the potential to be used as a radioenhancer in X-ray dynamic therapy and radioimmunotherapy for lung cancer therapy.
Collapse
Affiliation(s)
- Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Asep Rizaludin
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Marhendra Satria Utama
- Department of Radiology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | | | - Dani Gustaman Syarif
- Research Center for Radiation Process Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Muhamad Basit Febrian
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| |
Collapse
|
5
|
Bae J, Ryu Y, Choi J, Jeong MS, Lee CK, Hong CA, Ji S, Heo S, Kim S, Jo SM, Lee JJ. Exploring multivalency-driven sensitivity modulation for optimization and fine-tuning of avidity-based biosensors. Biosens Bioelectron 2025; 271:116989. [PMID: 39615224 DOI: 10.1016/j.bios.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025]
Abstract
The development of multivalent nanoprobes has garnered considerable interest due to their enhanced sensitivity and precision in diagnosing and monitoring diverse diseases. Despite significant advances in nanobiotechnology, the optimal density of binding motifs to maximize the diagnostic efficacy of biosensors remains incompletely understood. Herein, we investigate the influence of multivalency in the functional performance of avidity-based biosensors. By post-translationally modifying the surface of M13 bacteriophages, we achieved multivalent displays of epidermal growth factor receptor-specific repebodies and enhanced green fluorescent proteins in a controlled configuration. Through an array of phage-based nanoprobes, our findings reveal an inverted U-shaped correlation between the degree of multivalency and biosensor sensitivity. Briefly, excessive multivalency negatively impacts analytical performance, likely due to irreversible target depletion, while fine-tuned multivalency significantly enhances antigen recognition and signal amplification. Additionally, the advantages of avidity-demonstrated as improved targeting specificity and sensing capability-are especially prominent in nanoprobes incorporating low-affinity repebodies. This work underscores the critical role of multivalency optimization in biosensor design, providing valuable insights for the development of highly sensitive and reliable diagnostic tools in clinical settings.
Collapse
Affiliation(s)
- Juhyeon Bae
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Yiseul Ryu
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea
| | - Junho Choi
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Myeong Seon Jeong
- Center for Bio-imaging & Translational Research, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Cheol-Ki Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Cheol Am Hong
- Department of Chemistry, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Seoha Ji
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seungnyeong Heo
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seongjoon Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seong-Min Jo
- Department of Biomaterial Science, Pusan National University, Miryang, 50463, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea; Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
6
|
Pegoraro C, Guinart A, Masiá Sanchis E, Doellerer D, Stuart MCA, Conejos-Sánchez I, Feringa BL, Vicent MJ. A light-driven molecular motor-polypeptide conjugate supports controlled cell uptake. J Mater Chem B 2025; 13:2658-2665. [PMID: 39932285 DOI: 10.1039/d4tb02434f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
While light-driven molecular motors (MMs) hold immense potential to control cell function, low biocompatibility and solubility have hampered their implementation. We developed a novel polypeptide-conjugated MM by linking a propargyl-derivatized light-driven MM to a poly-L-glutamic acid-based carrier (P) with inherent mitochondria tropism through click chemistry, denoted P-MM. P-MM effectively maintained the parental stability and unidirectional rotational capabilities of MM upon irradiation at 405 nm. Light-induced supramolecular conformational changes significantly increased cell uptake compared to non-irradiated controls while retaining the subcellular targeting capacity of P. P-MM exhibited minimal cytotoxicity and reactive oxygen species production, suggesting a non-disruptive interaction with cell membranes. Overall, we establish a connection between irradiation and enhanced biological responses, demonstrating the potential of integrating MMs with targeted polymeric nanocarriers for controlled, light-responsive behavior in biological systems and innovative applications in advanced therapeutic/diagnostic strategies.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Príncipe Felipe Research Center, Polymer Therapeutics Lab., 46012 Valencia, Spain.
| | - Ainoa Guinart
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.
| | - Esther Masiá Sanchis
- Príncipe Felipe Research Center, Polymer Therapeutics Lab., 46012 Valencia, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain
- Príncipe Felipe Research Center, Screening Platform, 46012 Valencia, Spain
| | - Daniel Doellerer
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.
| | - Inmaculada Conejos-Sánchez
- Príncipe Felipe Research Center, Polymer Therapeutics Lab., 46012 Valencia, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.
| | - María J Vicent
- Príncipe Felipe Research Center, Polymer Therapeutics Lab., 46012 Valencia, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain
- Príncipe Felipe Research Center, Screening Platform, 46012 Valencia, Spain
| |
Collapse
|
7
|
Kim EH, Wahl K, Guelfi E, Lee D. Engineering the physical characteristics of biomaterials for innate immune-mediated cancer immunotherapy. J Control Release 2025; 378:814-830. [PMID: 39719214 DOI: 10.1016/j.jconrel.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
It has recently been recognized that the physical characteristics of biomaterials - such as size, structure, shape, charge, mechanical strength, hydrophobicity, and multivalency - regulate immunological functions in innate immune cells. In immuno-oncology applications, biomaterials are engineered with distinct physical properties to achieve desired innate immune responses. In this review, we discuss how physical characteristics influence effector functions and innate immune signaling pathways in distinct innate immune cell subtypes. We highlight how physical properties of biomaterials impact phagocytosis regulation, biodistribution, and innate immune cell targeting. We outline the recent advances in physical engineering of biomaterials that directly or indirectly induce desired innate immune responses for cancer immunotherapy. Lastly, we discuss the challenges in current biomaterial approaches that need to be addressed to improve clinical applicability.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Katelyn Wahl
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Erica Guelfi
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - DaeYong Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Syed Altaf RR, Mohan A, Palani N, Mendonce KC, Monisha P, Rajadesingu S. A review of innovative design strategies: Artificial antigen presenting cells in cancer immunotherapy. Int J Pharm 2025; 669:125053. [PMID: 39667594 DOI: 10.1016/j.ijpharm.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Developing nanocarriers that can carry medications directly to tumors is an exciting development in cancer nanomedicine. The efficacy of this intriguing therapeutic approach is, however, compromised by intricate and immunosuppressive circumstances that arise concurrently with the onset of cancer. The artificial antigen presenting cell (aAPC), a micro or nanoparticle based device that mimics an antigen presenting cell by providing crucial signal proteins to T lymphocytes to activate them against cancer, is one cutting-edge method for cancer immunotherapy. This review delves into the critical design considerations for aAPCs, particularly focusing on particle size, shape, and the non-uniform distribution of T cell activating proteins on their surfaces. Adequate surface contact between T cells and aAPCs is essential for activation, prompting engineers to develop nano-aAPCs with microscale contact areas through techniques such as shape modification and nanoparticle clustering. Additionally, we explore recommendations for future advancements in this field.
Collapse
Affiliation(s)
- Rabiya Riffath Syed Altaf
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Agilandeswari Mohan
- Department of BioChemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Keren Celestina Mendonce
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem - 636016, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Lan Z, Chen R, Zou D, Zhao C. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411278. [PMID: 39632600 PMCID: PMC11775552 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Chun‐Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
11
|
Thamizhchelvan AM, Ma H, Wu T, Nguyen D, Padelford J, Whitworth TJ, Li Y, Yang L, Mao H. Shape-dependent cellular uptake of iron oxide nanorods: mechanisms of endocytosis and implications on cell labeling and cellular delivery. NANOSCALE 2024; 16:21398-21415. [PMID: 39329423 PMCID: PMC11429166 DOI: 10.1039/d4nr02408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The effects of nanoparticle morphology, especially size and shape, on their interactions with cells are of great interest in understanding the fate of nanoparticles in biological systems and designing them for biomedical applications. While size and shape-dependent cell behavior, endocytosis mechanism, and subcellular distribution of nanoparticles have been investigated extensively with gold and other nanoparticles, studies on iron oxide nanoparticles (IONP), one of the most promising and well-thought-of nanomaterials in biomedical applications, were limited. In this study, we synthesized oligosaccharide-coated water-soluble iron oxide nanorods (IONR) with different core sizes (nm) and different aspect ratios (i.e., length/width), such as IONR(L) at 140/6 nm and IONR(S) at 50/7 nm as well as spherical IONP (20 nm). We investigated how their sizes and shapes affect uptake mechanisms, localization, and cell viability in different cell lines. The results of transmission electron microscopy (TEM) and confocal fluorescence microscopic imaging confirmed the internalization of these nanoparticles in different types of cells and subsequent accumulation in the subcellular compartments, such as the endosomes, and into the cytosol. Specifically, IONR(L) exhibited the highest cellular uptake compared to IONR(S) and spherical IONP, 1.36-fold and 1.17-fold higher than that of spherical IONP in macrophages and pediatric brain tumor medulloblastoma cells, respectively. To examine the cellular uptake mechanisms preferred by the different IONR and IONP, we used different endocytosis inhibitors to block specific cellular internalization pathways when cells were treated with different nanoparticles. The results from these blocking experiments showed that IONR(L) enter macrophages and normal kidney cells through clathrin-mediated, dynamin-dependent, and macropinocytosis/phagocytosis pathways, while they are internalized in cancer cells primarily via clathrin/caveolae-mediated and phagocytosis mechanisms. Overall, our findings provide new insights into further development of magnetic IONR-based imaging probes and drug delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Anbu Mozhi Thamizhchelvan
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Hedi Ma
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Darlene Nguyen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Lily Yang
- Department of Surgery Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Fytory M, Khalid SA, Zaki AH, Fritzsche W, Azzazy HME. Photocatalytic Nanocomposite Based on Titanate Nanotubes Decorated with Plasmonic Nanoparticles for Enhanced Broad-Spectrum Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:6720-6729. [PMID: 39352856 DOI: 10.1021/acsabm.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Infections resulting from microorganisms pose an ongoing global public health challenge, necessitating the constant development of novel antimicrobial approaches. Utilizing photocatalytic materials to generate reactive oxygen species (ROS) presents an appealing strategy for combating microbial threats. In alignment with this perspective, sodium titanate nanotubes were prepared by scalable hydrothermal method using TiO2 and NaOH. Ag, Au, and Ag/Au-modified titanate nanotubes (TNTs) were prepared by a cost-effective and simple ion-exchange method. All samples were characterized by XRD, FT-IR, HRTEM, and DLS techniques. HRTEM images indicated that the tubular structure was preserved in all TNTs even after the replacement of Na+ with Ag+ and/or Au3+ ions. The antibacterial activity in dark and sunlight conditions was evaluated using different bacterial strains, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results showed that while a low bacterial count (∼log 5 cells per well) was used for inoculation, the TNTs exhibited no antibacterial activity against the three bacterial strains, regardless of whether they were tested under light or dark conditions. However, the plasmonic nanoparticle-decorated TNTs showed remarkable activity in the dark. Additionally, Ag/Au-TNTs demonstrated significantly higher activity in the dark compared with either Ag-TNTs or Au-TNTs alone. Notably, under dark conditions, the Au/Ag-TNTs achieved log reductions of up to 4.5 for P. aeruginosa, 5 for S. aureus, and 3.7 for E. coli. However, when exposed to sunlight, Au/Ag-TNTs resulted in a complete reduction (log reduction ∼9) for P. aeruginosa and E. coli. The combination of two plasmonic nanoparticles (Ag/Au) decorated on the surface of TNTs showed synergetic bactericidal activity under both dark and light conditions. Ag/Au-TNTs could be explored to design surfaces that are responsive to visible light and exhibit antimicrobial properties.
Collapse
Affiliation(s)
- Mostafa Fytory
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shaimaa A Khalid
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Food Hygiene Department Agricultural Research Center, Animal Health Research Institute (AHRI), Giza, Dokki 12311, Egypt
| | - Ayman H Zaki
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| | - Hassan M E Azzazy
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
13
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
14
|
Li Y, Li S, Scheerstra JF, Patiño T, van Hest JCM, Abdelmohsen LKEA. Engineering Functional Particles to Modulate T Cell Responses. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1048-1058. [PMID: 39359649 PMCID: PMC11443481 DOI: 10.1021/accountsmr.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/04/2024]
Abstract
T cells play a critical role in adaptive immune responses. They work with other immune cells such as B cells to protect our bodies when the first line of defense, the innate immune system, is overcome by certain infectious diseases or cancers. Studying and regulating the responses of T cells, such as activation, proliferation, and differentiation, helps us understand not only their behavior in vivo but also their translation and application in the field of immunotherapy, such as adoptive T cell therapy and immune checkpoint therapy, the situations in which T cells cannot fight cancer alone and require external engineering regulation to help them. Nano- to micrometer-sized particulate biomaterials have achieved great progress in the assistance of T cell-based immunomodulation. For example, various types of microparticles decorated with T cell recognition and activation signals to mimic native antigen-presenting cells have shown successful ex vivo expansion of primary T cells and have been approved for clinical use in adoptive T cell therapy. Functional particles can also serve as vehicles for transporting cargos including small molecule drugs, cytokines, and antibodies. Especially for cargos with limited bioavailability and high repeat-dose toxicity, systemic administration in their free form is difficult. By using particle-assisted systems, the delivery can be tailored on demand, of which targeting and controlled release are two typical examples, ultimately aiding in the regulation of T cell responses. Furthermore, when T cells become overactive and behave in ways that contradict our expectations, such as attacking our own cells or innocuous foreign molecules, this can lead to a breakdown of immune tolerance. In such cases, particles to help reprogram those overactive T cells or suppress their activity are appreciated in vivo. The urgent need to introduce immune stimulation into the treatment of cancers, infectious diseases, and autoimmune diseases has driven recent advances in the engineering of functional particulate biomaterials that regulate T cell responses. In this Account, we will first cover a brief overview of the process of T cell-based immunomodulation from principle to development. It then outlines critical points in the design of functional particle platforms, including materials, size, morphology, surface engineering, and delivery of cargos, to modulate the features of T cells, and introduces selected work from our and other research groups with a focus on three major therapeutic applications: adoptive T cell therapy, immune checkpoint therapy, and immune tolerance restoration. Current challenges and future opportunities are also discussed.
Collapse
Affiliation(s)
- Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shukun Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tania Patiño
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Jain M, Yu X, Schneck JP, Green JJ. Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo. SMALL SCIENCE 2024; 4:2400248. [PMID: 40212067 PMCID: PMC11935263 DOI: 10.1002/smsc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Indexed: 04/13/2025] Open
Abstract
Lipid nanoparticles and polymeric nanoparticles are promising biomaterial platforms for robust intracellular DNA and mRNA delivery, highlighted by the widespread use of nanoparticle- (NP) based mRNA vaccines to help end the COVID-19 pandemic. Recent research has sought to adapt this nanotechnology to transfect and engineer immune cells in vivo. The immune system is an especially appealing target due to its involvement in many different diseases, and ex vivo-engineered immune cell therapies like chimeric antigen receptor (CAR) T therapy have already demonstrated remarkable clinical success in certain blood cancers. Although gene delivery can potentially address some of the cost and manufacturing concerns associated with current autologous immune cell therapies, transfecting immune cells in vivo is challenging. Not only is extrahepatic NP delivery to lymphoid organs difficult, but immune cells like T cells have demonstrated particular resistance to transfection. Despite these challenges, the modular nature of NPs allows researchers to examine critical structure-function relationships between a particle's properties and its ability to specifically engineer immune cells in vivo. Herein, several nanomaterial components are outlined, including targeting ligands, nucleic acid cargo, chemical properties, physical properties, and the route of administration to specifically target NPs to immune cells for optimal in vivo transfection.
Collapse
Affiliation(s)
- Manav Jain
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Xinjie Yu
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jonathan P. Schneck
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Pathology and MedicineJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Bloomberg∼Kimmel Institute for Cancer ImmunotherapyJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Ophthalmology, Neurosurgery, and Materials Science & EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
16
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
17
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
18
|
Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z, Chen Y, Li H, Li X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm Sin B 2024; 14:3432-3456. [PMID: 39220871 PMCID: PMC11365410 DOI: 10.1016/j.apsb.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Chuyuan Lou
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10050, China
| | - Zixian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yutong Chen
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
19
|
Lin Z, Nie F, Hou J, Guo X, Gong X, Zhang L, Xu J, Guo Y. Development of pH-responsive porphyran-coated gold nanorods for tumor photothermal and immunotherapy. Int J Biol Macromol 2024; 275:133460. [PMID: 38945321 DOI: 10.1016/j.ijbiomac.2024.133460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Cancer poses a significant threat to human health, and monotherapy frequently fails to achieve optimal therapeutic outcomes. Based on this premise, porphyran (PHP), a marine polysaccharide with immunomodulatory function, was used as a framework to coat gold nanorods and construct a novel nanomedicine (PHP-MPBA-GNRs) combining photothermal therapy and immunotherapy. In this design, PHP not only maintained the dispersion stability and photothermal stability of gold nanorods but also could be released under weakly acidic conditions to activate anti-tumor immunity. In vivo studies have shown that PHP-MPBA-GNRs can effectively inhibit tumor cell proliferation and reduce metastasis under near-infrared (NIR) light irradiation. Preliminary mechanistic investigations revealed that PHP-MPBA-GNRs could increase reactive oxygen species (ROS) and induce apoptosis in cancer cells. The PHP in PHP-MPBA-GNRs can also activate dendritic cells and up-regulate the expression of co-stimulatory molecules and antigen-presenting complexes. All biological experiments, including in vivo tests, demonstrated that PHP-MPBA-GNRs achieved a combination of photothermal therapy and immunotherapy for tumors.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaoyang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linsu Zhang
- Qiannan Medical College for Nationalities, Duyun 558000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
20
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
21
|
Wang Y, Zhang Y, Su R, Wang Y, Qi W. Antimicrobial therapy based on self-assembling peptides. J Mater Chem B 2024; 12:5061-5075. [PMID: 38726712 DOI: 10.1039/d4tb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of drug-resistant microorganisms has threatened global health, and microbial infections have severely limited the use of medical materials. For example, the attachment and colonization of pathogenic bacteria to medical implant materials can lead to wound infections, inflammation and complications, as well as implant failure, shortening their lifespan and even resulting in patient death. In the era of antibiotic resistance, antimicrobial drug discovery needs to prioritize unconventional therapies that act on new targets or adopt new mechanisms. In this regard, supramolecular antimicrobial peptides have emerged as attractive therapeutic platforms, both as bactericides for combination antibiotics and as delivery vehicles. By taking advantage of their programmable intermolecular and intramolecular interactions, peptides can be modified to form higher-order structures (including nanofibers and nanoparticles) with unique functionality. This paper begins with an analysis of the relationship between peptide self-assembly and antimicrobial activity, describes in detail the research and development of various self-assembled antimicrobial peptides in recent years, and finally explores different combinatorial strategies for self-assembling antimicrobial peptides.
Collapse
Affiliation(s)
- Yuqi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yexi Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
22
|
Diloknawarit B, Lee K, Choo P, Odom TW. Nanoparticle Anisotropy Increases Targeting Interactions on Live-Cell Membranes. ACS NANO 2024; 18:12537-12546. [PMID: 38684051 PMCID: PMC11252448 DOI: 10.1021/acsnano.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This paper describes how branch lengths of anisotropic nanoparticles can affect interactions between grafted ligands and cell-membrane receptors. Using live-cell, single-particle tracking, we found that DNA aptamer-gold nanostar nanoconstructs with longer branches showed improved binding efficacy to human epidermal growth factor receptor 2 (HER2) on cancer cell membranes. Inhibiting nanoconstruct-HER2 binding promoted nonspecific interactions, which increased the rotational speed of long-branched nanoconstructs but did not affect that of short-branched constructs. Bivariate analysis of the rotational and translational dynamics showed that longer branch lengths increased the ratio of targeting to nontargeting interactions. We also found that longer branches increased the nanoconstruct-cell interaction times before internalization and decreased intracellular trafficking velocities. Differences in binding efficacy revealed by single-particle dynamics can be attributed to the distinct protein corona distributions on short- and long-branched nanoconstructs, as validated by transmission electron microscopy. Minimal protein adsorption at the high positive curvature tips of long-branched nanoconstructs facilitated binding of DNA aptamer ligands to HER2. Our study reveals the significance of nanoparticle branch length in regulating local chemical environment and interactions with live cells at the single-particle level.
Collapse
Affiliation(s)
- Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single Extracellular Vesicle Imaging and Computational Analysis Identifies Inherent Architectural Heterogeneity. ACS NANO 2024; 18:11717-11731. [PMID: 38651873 PMCID: PMC12002403 DOI: 10.1021/acsnano.3c12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.
Collapse
Affiliation(s)
- Kshipra S. Kapoor
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX - 77005, USA
| | - Seoyun Kong
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
| | - Wenhua Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX - 77005, USA
| | - Vivek Boominathan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX - 77005, USA
| | - Yi-Lin Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX - 77005, USA
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX - 77005, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX - 77005, USA
| | - Kathleen M. McAndrews
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology and Metastasis Research Center, the University of Texas MD Anderson Cancer Center, Houston, TX - 77054, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX - 77030, USA
- Department of Bioengineering, Rice University, Houston, TX - 77005, USA
| |
Collapse
|
24
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
25
|
Riemann B, Antoine T, Béduneau A, Pellequer Y, Lamprecht A, Moulari B. Active nanoparticle targeting of MUC5AC ameliorates therapeutic outcome in experimental colitis. NANOSCALE 2024; 16:5715-5728. [PMID: 38407269 DOI: 10.1039/d3nr05681c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the gastrointestinal tract and are characterized by chronic recurrent ulceration of the bowels. Colon-targeted drug delivery systems (DDS) have received significant attention for their potential to treat IBD by improving the inflamed tissue selectivity. Herein, antiMUC5AC-decorated drug loaded nanoparticles (NP) are suggested for active epithelial targeting and selective adhesion to the inflamed tissue in experimental colitis. NPs conjugated with antiMUC5AC (anti-MUC5) were tested for their degree of bioadhesion with HT29-MTX cells by comparison with non-targeted BSA-NP conjugates. In vivo, the selectivity of bioadhesion and the influence of ligand density in bioadhesion efficiency as well as the therapeutic benefit for glucocorticoid loaded anti-MUC5-NP were studied in a murine colitis model. Quantitative adhesion analyses showed that anti-MUC5-conjugated NP exhibited a much higher binding and selectivity to inflamed tissue compared to PNA-, IgG1- and BSA-NP conjugates used as controls. This bioadhesion efficiency was found to be dependent on the ligand density, present at the NP surface. The binding specificity between anti-MUC5 ligand and inflamed tissues was confirmed by fluorescence imaging. Both anti-MUC5-NP and all other glucocorticoid containing formulations led to a significant mitigation of the experimental colitis, as became evident from the substantial reduction of myeloperoxidase activity and pro-inflammatory cytokine concentrations (TNF-α, IL-1β). Targeted NP by using anti-MUC5 appears to be a very promising tool in future treatment of various types of local disorders affecting the gastro-intestinal tract but not limited to colitis.
Collapse
Affiliation(s)
- Bernadette Riemann
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Thomas Antoine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Alf Lamprecht
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| |
Collapse
|
26
|
Komatsu S, Yamada S, Kikuchi A. Preparation of Degradable and Transformable Core-Corona-Type Particles that Control Cellular Uptake by Thermal Shape Change. ACS Biomater Sci Eng 2024; 10:897-904. [PMID: 38243792 PMCID: PMC10865287 DOI: 10.1021/acsbiomaterials.3c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Particle-cell interactions, such as cellular uptake, vary depending on the particle size, shape, and surface properties. By dynamic control of the physical properties of particles, microparticle-cell interactions can intentionally be altered. Particle degradability is also necessary for their application in the body. In this study, we aimed to prepare degradable core-corona-type particles that are deformed near the body temperature and investigated particle shape-dependent cellular uptake. Degradable and transformable particles consisting of poly(2-methylene-1,3-dioxepane)-co-poly(ethylene glycol) with three-armed poly(ε-caprolactone) (PCL) were prepared. The particle melting point was controlled by the chain length of the three-armed PCL. Particle degradation occurred under both acidic and alkaline conditions via ester group hydrolysis in the polymer backbones. The rod-shaped microparticles prepared by uniaxial stretching at a temperature above the melting point of the core showed less uptake into macrophages than did the spherical microparticles. Therefore, the degradable transformable particles enable macrophage interaction control via stimuli-regulated particle shapes and are expected to be applied as drug delivery carriers that can be decomposed and excreted from the body.
Collapse
Affiliation(s)
- Syuuhei Komatsu
- Department of Materials Science
and Technology, Tokyo University of Science, 6-3-1 Niijuku,
Katsushika, Tokyo 125-8585, Japan
| | - Satoshi Yamada
- Department of Materials Science
and Technology, Tokyo University of Science, 6-3-1 Niijuku,
Katsushika, Tokyo 125-8585, Japan
| | - Akihiko Kikuchi
- Department of Materials Science
and Technology, Tokyo University of Science, 6-3-1 Niijuku,
Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
27
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Liu R, Zhang Z, Liu L, Li X, Duan R, Ren Y, Du B, Zhang Q, Zhou Z. The effects of stiffness on the specificity and avidity of antibody-coated microcapsules with target cells are strongly shape dependent. Colloids Surf B Biointerfaces 2024; 234:113752. [PMID: 38219638 DOI: 10.1016/j.colsurfb.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Antibody modification is a common method for endowing drug carriers with the ability to target specific cells. Recent studies suggest that the efficacy of these antibody-modified drug carriers is closely related to their physicochemical properties, such as size, shape, stiffness, charge, and surface chemistry. In this study, we functionalized microcapsules with antibodies to investigate the combined effect of shape and stiffness on their targeting ability. We synthesized hollow microcapsules, both spherical and rod-shaped, with adjustable stiffness using calcium carbonate particles as templates and silk fibroin (SF) as the shell material. These microcapsules were then functionalized with trastuzumab (TTZ) to enhance targeting capabilities. Our analysis revealed that increasing stiffness significantly improved the specificity and avidity of TTZ-coated rod-shaped microcapsules, but not spherical ones, indicating a strong shape-dependent influence of stiffness on these properties. Additionally, we explored the mechanisms of endocytosis using various inhibitors and found that both macropinocytosis and clathrin played critical roles in the cellular uptake of microcapsules. Furthermore, we loaded microcapsules with doxorubicin (DOX) to evaluate their anti-tumor efficacy. The stiffest TTZ-coated, DOX-loaded rod-shaped microcapsules demonstrated the most potent anti-tumor effects on BT-474 cells and the highest uptake in BT-474 3D spheroids. This research contributes to the development of more effective microcapsule-based target delivery systems and the realization of the full potential of microcapsule drug delivery systems.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xuemin Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ruiping Duan
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ying Ren
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; Fujian Bote Biotechnology Co. Ltd, Fuzhou, Fujian 350013, China; Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
29
|
Khan MS, Ali M, Lee SH, Jang KY, Lee SJ, Park J. Acoustofluidic separation of prolate and spherical micro-objects. MICROSYSTEMS & NANOENGINEERING 2024; 10:6. [PMID: 38222472 PMCID: PMC10784511 DOI: 10.1038/s41378-023-00636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024]
Abstract
Most microfluidic separation techniques rely largely on object size as a separation marker. The ability to separate micro-objects based on their shape is crucial in various biomedical and chemical assays. Here, we develop an on-demand, label-free acoustofluidic method to separate prolate ellipsoids from spherical microparticles based on traveling surface acoustic wave-induced acoustic radiation force and torque. The freely rotating non-spherical micro-objects were aligned under the progressive acoustic field by the counterrotating radiation torque, and the major axis of the prolate ellipsoids was parallel to the progressive wave propagation. The specific alignment of the ellipsoidal particles resulted in a reduction in the cross-sectional area perpendicular to the wave propagation. As a consequence, the acoustic backscattering decreased, resulting in a decreased magnitude of the radiation force. Through the variation in radiation force, which depended on the micro-object morphology enabled the acoustofluidic shape-based separation. We conducted numerical simulations for the wave scattering of spherical and prolate objects to elucidate the working mechanism underlying the proposed method. A series of experiments with polystyrene microspheres, prolate ellipsoids, and peanut-shaped microparticles were performed for validation. Through quantitative analysis of the separation efficiency, we confirmed the high purity and high recovery rate of the proposed acoustofluidic shape-based separation of micro-objects. As a bioparticle, we utilize Thalassiosira eccentrica to perform shape-based separation, as the species has a variety of potential applications in drug delivery, biosensing, nanofabrication, bioencapsulation and immunoisolation.
Collapse
Affiliation(s)
- Muhammad Soban Khan
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Mushtaq Ali
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Song Ha Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| | - Keun Young Jang
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323 Republic of Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323 Republic of Korea
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Republic of Korea
| |
Collapse
|
30
|
Verma S, Malviya R, Srivastava S, Ahmad I, Singh B, Almontasheri R, Uniyal P. Shape Dependent Therapeutic Potential of Nanoparticulate System: Advance Approach for Drug Delivery. Curr Pharm Des 2024; 30:2606-2618. [PMID: 39034725 DOI: 10.2174/0113816128314618240628110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Drug delivery systems rely heavily on nanoparticles because they provide a targeted and monitored release of pharmaceuticals that maximize therapeutic efficacy and minimize side effects. To maximize drug internalization, this review focuses on comprehending the interactions between biological systems and nanoparticles. The way that nanoparticles behave during cellular uptake, distribution, and retention in the body is determined by their shape. Different forms, such as mesoporous silica nanoparticles, micelles, and nanorods, each have special properties that influence how well drugs are delivered to cells and internalized. To achieve the desired particle morphology, shape-controlled nanoparticle synthesis strategies take into account variables like pH, temperatures, and reaction time. Top-down techniques entail dissolving bulk materials to produce nanoparticles, whereas bottom-up techniques enable nanostructures to self-assemble. Comprehending the interactions at the bio-nano interface is essential to surmounting biological barriers and enhancing the therapeutic efficacy of nanotechnology in drug delivery systems. In general, drug internalization and distribution are greatly influenced by the shape of nanoparticles, which presents an opportunity for tailored and efficient treatment plans in a range of medical applications.
Collapse
Affiliation(s)
- Shristy Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai 71800, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Rasha Almontasheri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
31
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single extracellular vesicle imaging and computational analysis identifies inherent architectural heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571132. [PMID: 38168235 PMCID: PMC10760062 DOI: 10.1101/2023.12.11.571132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM) which has an inherent ability to image biological samples without harsh labeling methods and while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources such as cancer cells, normal cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366, and the average equivalent diameter was 132.43 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical (S. Spherical), rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution EV images and offer insights into their potential biological impact.
Collapse
|
32
|
Batool S, Sohail S, Ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, Alshehri MA, Choi HG. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv 2023; 30:2183815. [PMID: 36866455 DOI: 10.1080/10717544.2023.2183815] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Human struggle against the deadly disease conditions is continued since ages. The contribution of science and technology in fighting against these diseases cannot be ignored exclusively due to the invention of novel procedure and products, extending their size ranges from micro to nano. Recently nanotechnology has been gaining more consideration for its ability to diagnose and treat different cancers. Different nanoparticles have been used to evade the issues related with conservative anticancer delivery systems, including their nonspecificity, adverse effects and burst release. These nanocarriers including, solid lipid nanoparticles (SLNs), liposomes, nano lipid carriers (NLCs), nano micelles, nanocomposites, polymeric and magnetic nanocarriers, have brought revolutions in antitumor drug delivery. Nanocarriers improved the therapeutic efficacy of anticancer drugs with better accumulation at the specific site with sustained release, improved bioavailability and apoptosis of the cancer cells while bypassing the normal cells. In this review, the cancer targeting techniques and surface modification on nanoparticles are discussed briefly with possible challenges and opportunities. It can be concluded that understanding the role of nanomedicine in tumor treatment is significant, and therefore, the modern progressions in this arena is essential to be considered for a prosperous today and an affluent future of tumor patients.
Collapse
Affiliation(s)
- Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Sohail
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmad S Alqahtani
- Department of Pharmacy, Mental Health Hospital, Ministry of Health, Abha, Saudi Arabia
| | - Mohammad A Alshahrani
- Department of Medical Supply in Khamis Mushet General Hospital, Ministry of Health, Khamis Mushet, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Pharmacy, Abha Maternity and Children Hospital, Ministry of Health, Abha, Saudi Arabia
| | - Han Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| |
Collapse
|
33
|
AlFaleh FA, Ismael SS, Aguilar-Marcelino L, Silva FEM, Ashraf T, Abbas RZ, Qamar W. Use of nanoparticles, a modern means of drug delivery, against cryptosporidiosis. J Adv Vet Anim Res 2023; 10:704-719. [PMID: 38370897 PMCID: PMC10868694 DOI: 10.5455/javar.2023.j726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Cryptosporidium is a primary cause of waterborne epidemics, despite being previously considered only an opportunistic pathogen. The disease is associated with significant economic losses in humans and animals that are brought on by diarrhea, which frequently causes dehydration. Contact with diseased people or animals, as well as polluted water, is the major cause of infection. Different drugs are used to control the parasites. Nitazoxanide (NTZ), which is an anti-protozoan and anti-viral drug, can be used to control helminths, viruses, and protozoan parasites as a broad-spectrum antibiotic and has been approved by the food and drug authority (FDA). However, the problem is the development of resistance over a period of time in these parasites. Nanoparticles have received significant attention as possible anti-parasitic agents in recent years. By directing medications to specific cellular locations, targeted drug delivery minimizes the side effects of medications. Nanoparticles have demonstrated effectiveness against different Cryptosporidium species. Nanoparticles loaded with NTZ are found to be an effective remedy for C. parvum in young ones and decrease the oocyst count shed in the stools. Additionally, silver nanoparticles have proven to be effective against C. parvum by releasing silver ions that breach the cell wall of the oocyst, causing the escape of intracellular contents and the destruction of sporozoites within the oocyst. Implementing tiny particles for the purification of consuming water from Cryptosporidium is an economical and environmentally sustainable process. However, the use of nanoparticles in medicine requires more research.
Collapse
Affiliation(s)
- Faleh A. AlFaleh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Shameeran Salman Ismael
- Medical Laboratory Sciences Department, College of Health Sciences, University of Duhok, Duhok, Iraq
| | | | | | - Tayyaba Ashraf
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
34
|
Mohammad-Rafiei F, Khojini JY, Ghazvinian F, Alimardan S, Norioun H, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Cell membrane biomimetic nanoparticles in drug delivery. Biotechnol Appl Biochem 2023; 70:1843-1859. [PMID: 37387120 DOI: 10.1002/bab.2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Despite the efficiency of nanoparticle (NP) therapy, in vivo investigations have shown that it does not perform as well as in vitro. In this case, NP confronts many defensive hurdles once they enter the body. The delivery of NP to sick tissue is inhibited by these immune-mediated clearance mechanisms. Hence, using a cell membrane to hide NP for active distribution offers up a new path for focused treatment. These NPs are better able to reach the disease's target location, leading to enhanced therapeutic efficacy. In this emerging class of drug delivery vehicles, the inherent relation between the NPs and the biological components obtained from the human body was utilized, which mimic the properties and activities of native cells. This new technology has shown the viability of using biomimicry to evade immune system-provided biological barriers, with an emphasis on restricting clearance from the body before reaching its intended target. Furthermore, by providing signaling cues and transplanted biological components that favorably change the intrinsic immune response at the disease site, the NPs would be capable interacting with immune cells regarding the biomimetic method. Thus, we aimed to provide a current landscape and future trends of biomimetic NPs in drug delivery.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Ghazvinian
- Department of Life science and biotechnology, Faculty of Natural Sciences, University of Shahid Beheshti, Tehran, Iran
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
35
|
Syed A, Baker A, Mohany M, Elgorban AM, Khan MS, Al-Rejaie SS. IgG antibodies mediated gold nanoparticles conjugated to methotrexate as targeted chemotherapy for lung cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:384-396. [PMID: 37548440 DOI: 10.1080/21691401.2023.2242419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Vincamine, a natural chemical, was used as a reducing agent in the synthesis of IgG antibodies mediated biogenic gold nanoparticles (IgGAuNPs). Eventually, the synthesised IgGAuNPs were bioconjugated with the chemotherapeutic drug methotrexate (MTX-IgGAuNPs). The IgG isotype can target cancer cells through polymorphic Fc gamma receptors (FcγRs) and have therapeutic effects. They can restrict cell division by inhibiting different intracellular signal transduction pathways and activating NK cells and macrophages through antibody-dependent cellular cytotoxicity and macrophage-mediated antibody-dependent phagocytosis, respectively. Further, IgGAuNPs and MTX-IgGAuNPs were characterised by physical techniques. Moreover, 3D conformational changes in the structure of IgG were analysed by fluorescence spectroscopy during and after the synthesis of IgGAuNPs. Furthermore, the IgGAuNPs and MTX-IgGAuNPs were effective against lung cancer (A549 cells), while they were found to be non-toxic against normal cells (NRK cells). The effectiveness of IgGAuNPs and MTX-IgGAuNPs was examined by MTT cytotoxicity assay, DCFDA method for the production of ROS, and release of Cyt-c from the mitochondria for caspase-3-mediated apoptosis. Moreover, the confirmation of internalisation of particles into the nucleus was examined under the DAPI assay, and it was found that particles caused nuclear fragmentation, which was also an indication of apoptosis.
Collapse
Affiliation(s)
- Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026 India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. 55760, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026 India
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. 55760, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Dasgupta A, Sun T, Rama E, Motta A, Zhang Y, Power C, Moeckel D, Fletcher SM, Moosavifar M, Barmin R, Porte C, Buhl EM, Bastard C, Pallares RM, Kiessling F, McDannold N, Mitragotri S, Lammers T. Transferrin Receptor-Targeted Nonspherical Microbubbles for Blood-Brain Barrier Sonopermeation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308150. [PMID: 37949438 PMCID: PMC11238272 DOI: 10.1002/adma.202308150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Microbubbles (MB) are widely used for ultrasound (US) imaging and drug delivery. MB are typically spherically shaped, due to surface tension. When heated above their glass transition temperature, polymer-based MB can be mechanically stretched to obtain an anisotropic shape, endowing them with unique features for US-mediated blood-brain barrier (BBB) permeation. It is here shown that nonspherical MB can be surface-modified with BBB-specific targeting ligands, thereby promoting binding to and sonopermeation of blood vessels in the brain. Actively targeted rod-shaped MB are generated via 1D stretching of spherical poly(butyl cyanoacrylate) MB and via subsequently functionalizing their shell with antitransferrin receptor (TfR) antibodies. Using US and optical imaging, it is demonstrated that nonspherical anti-TfR-MB bind more efficiently to BBB endothelium than spherical anti-TfR-MB, both in vitro and in vivo. BBB-associated anisotropic MB produce stronger cavitation signals and markedly enhance BBB permeation and delivery of a model drug as compared to spherical BBB-targeted MB. These findings exemplify the potential of antibody-modified nonspherical MB for targeted and triggered drug delivery to the brain.
Collapse
Affiliation(s)
- Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Alessandro Motta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chanikarn Power
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Stecia-Marie Fletcher
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirjavad Moosavifar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University, 52074, Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| |
Collapse
|
37
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
38
|
Di L, Thomas A, Switala L, Kalikasingh K, Lapping S, Nayak L, Maiseyeu A. Surface Geometry of Cargo-less Gold Nanoparticles Is a Driving Force for Selective Targeting of Activated Neutrophils to Reduce Thrombosis in Antiphospholipid Syndrome. NANO LETTERS 2023; 23:9690-9696. [PMID: 37884274 PMCID: PMC10636870 DOI: 10.1021/acs.nanolett.3c02075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by recurrent arterial, venous, and microvascular thrombosis where activated neutrophils play a determinant role. However, neutrophils are challenging to target given their short lifespan in circulation and spontaneous activation. Screening of a small library of gold nanoparticles (AuNPs) led to the discovery of a formulation capable of targeting activated neutrophil attachment and has demonstrated that star-shaped, anti-PSGL-1-antibody-coated AuNPs (aPSGL-1-AuNPs) were more efficacious compared with other shapes of AuNPs. Our findings further revealed an exciting and safe targeting mode toward activated neutrophils in the APS mouse model induced by human-patient-derived antiphospholipid IgGs. Our studies demonstrate that targeting is dependent on the specific topographical features of the highly segregated PSGL-1 on the activated neutrophil surface for which a high affinity shape-driven nanomedicine can be designed and implemented. As such, star-shaped aPSGL-1-AuNPs serve as a promising nanoimmunotherapy for immunothrombosis associated with neutrophil adhesion in APS.
Collapse
Affiliation(s)
- Lin Di
- Department
of Biomedical Engineering, Case Western
Reserve University School of Engineering, Cleveland, Ohio 44106, United States
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
| | - Asha Thomas
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Lauren Switala
- Department
of Biomedical Engineering, Case Western
Reserve University School of Engineering, Cleveland, Ohio 44106, United States
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
| | - Kenneth Kalikasingh
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Stephanie Lapping
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Lalitha Nayak
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Andrei Maiseyeu
- Department
of Biomedical Engineering, Case Western
Reserve University School of Engineering, Cleveland, Ohio 44106, United States
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
39
|
Resendiz-Lara DA, Azhdari S, Gojzewski H, Gröschel AH, Wurm FR. Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization. Chem Sci 2023; 14:11273-11282. [PMID: 37860667 PMCID: PMC10583743 DOI: 10.1039/d3sc02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (Đ ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Suna Azhdari
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Andre H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
40
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Marrella A, Suarato G, Fiocchi S, Chiaramello E, Bonato M, Parazzini M, Ravazzani P. Magnetoelectric nanoparticles shape modulates their electrical output. Front Bioeng Biotechnol 2023; 11:1219777. [PMID: 37691903 PMCID: PMC10485842 DOI: 10.3389/fbioe.2023.1219777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Core-shell magnetoelectric nanoparticles (MENPs) have recently gained popularity thanks to their capability in inducing a local electric polarization upon an applied magnetic field and vice versa. This work estimates the magnetoelectrical behavior, in terms of magnetoelectric coupling coefficient (αME), via finite element analysis of MENPs with different shapes under either static (DC bias) and time-variant (AC bias) external magnetic fields. With this approach, the dependence of the magnetoelectrical performance on the MENPs geometrical features can be directly derived. Results show that MENPs with a more elongated morphology exhibits a superior αME if compared with spherical nanoparticles of similar volume, under both stimulation conditions analyzed. This response is due to the presence of a larger surface area at the interface between the magnetostrictive core and piezoelectric shell, and to the MENP geometrical orientation along the direction of the magnetic field. These findings pave a new way for the design of novel high-aspect ratio magnetic nanostructures with an improved magnetoelectric behaviour.
Collapse
Affiliation(s)
| | - G. Suarato
- *Correspondence: A. Marrella, ; G. Suarato,
| | | | | | | | | | | |
Collapse
|
42
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
44
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
45
|
Shah SM, Joshi D, Chbib C, Roni MA, Uddin MN. The Autoinducer N-Octanoyl-L-Homoserine Lactone (C8-HSL) as a Potential Adjuvant in Vaccine Formulations. Pharmaceuticals (Basel) 2023; 16:ph16050713. [PMID: 37242496 DOI: 10.3390/ph16050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Autoinducers AI-1 and AI-2 play an important role in bacterial quorum sensing (QS), a form of chemical communication between bacteria. The autoinducer N-octanoyl-L-Homoserinehomoserine lactone (C8-HSL) serves as a major inter- and intraspecies communicator or 'signal', mainly for Gram-negative bacteria. C8-HSL is proposed to have immunogenic properties. The aim of this project is to evaluate C8-HSL as a potential vaccine adjuvant. For this purpose, a microparticulate formulation was developed. The C8-HSL microparticles (MPs) were formulated by a water/oil/water (W/O/W) double-emulsion solvent evaporation method using PLGA (poly (lactic-co-glycolic acid)) polymer. We tested C8-HSL MPs with two spray-dried bovine serum albumin (BSA)-encapsulated bacterial antigens: colonization factor antigen I (CFA/I) from Escherichia coli (E. coli.) and the inactive protective antigen (PA) from Bacillus anthracis (B. anthracis). We formulated and tested C8-HSL MP to determine its immunogenicity potential and its ability to serve as an adjuvant with particulate vaccine formulations. An in vitro immunogenicity assessment was performed using Griess's assay, which indirectly measures the nitric oxide radical (NOˑ) released by dendritic cells (DCs). The C8-HSL MP adjuvant was compared with FDA-approved adjuvants to determine its immunogenicity potential. C8-HSL MP was combined with particulate vaccines for measles, Zika and the marketed influenza vaccine. The cytotoxicity study showed that MPs were non-cytotoxic toward DCs. Griess's assay showed a comparable release of NOˑ from DCs when exposed to CFA and PA bacterial antigens. Nitric oxide radical (NOˑ) release was significantly higher when C8-HSL MPs were combined with particulate vaccines for measles and Zika. C8-HSL MPs showed immunostimulatory potential when combined with the influenza vaccine. The results showed that C8-HSL MPs were as immunogenic as FDA-approved adjuvants such as alum, MF59, and CpG. This proof-of-concept study showed that C8-HSL MP displayed adjuvant potential when combined with several particulate vaccines, indicating that C8-HSL MPs can increase the immunogenicity of both bacterial and viral vaccines.
Collapse
Affiliation(s)
- Sarthak M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Devyani Joshi
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Christiane Chbib
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - Monzurul A Roni
- Department of Health Sciences Education and Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Mohammad N Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
46
|
Sokolova V, Loza K, Ebel JF, Buer J, Westendorf AM, Epple M. Barium sulphate microparticles are taken up by three different cell types: HeLa, THP-1, and hMSC. Acta Biomater 2023; 164:577-587. [PMID: 37019167 DOI: 10.1016/j.actbio.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Cytotoxicity and cellular uptake of spherical barium sulphate microparticles (diameter 1 µm) were studied with three different cell lines, i.e. THP-1 cells (monocytes; model for a phagocytosing cell line), HeLa cells (epithelial cells; model for a non-phagocytosing cell line), and human mesenchymal stem cells (hMSCs; model for non-phagocytosing primary cells). Barium sulphate is a chemically and biologically inert solid which allows to distinguish two different processes, e.g. the particle uptake and potential adverse biological reactions. Barium sulphate microparticles were surface-coated by carboxymethylcellulose (CMC) which gave the particles a negative charge. Fluorescence was added by conjugating 6-aminofluorescein to CMC. The cytotoxicity of these microparticles was studied by the MTT test and a live/dead assay. The uptake was visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The particle uptake mechanism was quantified by flow cytometry with different endocytosis inhibitors in THP-1 and HeLa cells. The microparticles were easily taken up by all cell types, mostly by phagocytosis and micropinocytosis, within a few hours. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is of primary importance in nanomedicine, drug delivery, and nanotoxicology. It is commonly assumed that cells take up only nanoparticles unless they are able to phagocytosis. Here, we demonstrate with chemically and biologically inert microparticles of barium sulphate that even non-phagocytosing cells like HeLa and hMSCs take up microparticles to a considerable degree. This has considerable implication in biomaterials science, e.g. in case of abrasive debris and particulate degradation products from implants like endoprostheses.
Collapse
Affiliation(s)
- V Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany.
| | - K Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany.
| | - J F Ebel
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - J Buer
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - A M Westendorf
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany.
| |
Collapse
|
47
|
Fan YN, Zhao G, Zhang Y, Ye QN, Sun YQ, Shen S, Liu Y, Xu CF, Wang J. Progress in nanoparticle-based regulation of immune cells. MEDICAL REVIEW (2021) 2023; 3:152-179. [PMID: 37724086 PMCID: PMC10471115 DOI: 10.1515/mr-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Immune cells are indispensable defenders of the human body, clearing exogenous pathogens and toxicities or endogenous malignant and aging cells. Immune cell dysfunction can cause an inability to recognize, react, and remove these hazards, resulting in cancers, inflammatory diseases, autoimmune diseases, and infections. Immune cells regulation has shown great promise in treating disease, and immune agonists are usually used to treat cancers and infections caused by immune suppression. In contrast, immunosuppressants are used to treat inflammatory and autoimmune diseases. However, the key to maintaining health is to restore balance to the immune system, as excessive activation or inhibition of immune cells is a common complication of immunotherapy. Nanoparticles are efficient drug delivery systems widely used to deliver small molecule inhibitors, nucleic acid, and proteins. Using nanoparticles for the targeted delivery of drugs to immune cells provides opportunities to regulate immune cell function. In this review, we summarize the current progress of nanoparticle-based strategies for regulating immune function and discuss the prospects of future nanoparticle design to improve immunotherapy.
Collapse
Affiliation(s)
- Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Gui Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yi-Qun Sun
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yang Liu
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
48
|
Ben-Akiva E, Hickey JW, Meyer RA, Isser A, Shannon SR, Livingston NK, Rhodes KR, Kosmides AK, Warren TR, Tzeng SY, Schneck JP, Green JJ. Shape matters: Biodegradable anisotropic nanoparticle artificial antigen presenting cells for cancer immunotherapy. Acta Biomater 2023; 160:187-197. [PMID: 36812956 PMCID: PMC10335041 DOI: 10.1016/j.actbio.2023.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Artificial antigen presenting cells are biomimetic particles that recapitulate the signals presented by natural antigen presenting cells in order to stimulate T cells in an antigen-specific manner using an acellular platform. We have engineered an enhanced nanoscale biodegradable artificial antigen presenting cell by modulating particle shape to achieve a nanoparticle geometry that allows for increased radius of curvature and surface area for T cell contact. The non-spherical nanoparticle artificial antigen presenting cells developed here have reduced nonspecific uptake and improved circulation time compared both to spherical nanoparticles and to traditional microparticle technologies. Additionally, the anisotropic nanoparticle artificial antigen presenting cells efficiently engage with and activate T cells, ultimately leading to a marked anti-tumor effect in a mouse melanoma model that their spherical counterparts were unable to achieve. STATEMENT OF SIGNIFICANCE: Artificial antigen presenting cells (aAPC) can activate antigen-specific CD8+ T cells but have largely been limited to microparticle-based platforms and ex vivo T cell expansion. Although more amenable to in vivo use, nanoscale aAPC have traditionally been ineffective due to limited surface area available for T cell interaction. In this work, we engineered non-spherical biodegradable nanoscale aAPC to investigate the role of particle geometry and develop a translatable platform for T cell activation. The non-spherical aAPC developed here have increased surface area and a flatter surface for T cell engagement and, therefore, can more effectively stimulate antigen-specific T cells, resulting in anti-tumor efficacy in a mouse melanoma model.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Randall A Meyer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ariel Isser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kelly R Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tiarra R Warren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jonathan P Schneck
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
49
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
50
|
Kumar Y, Sinha ASK, Nigam KDP, Dwivedi D, Sangwai JS. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. NANOSCALE 2023; 15:6075-6104. [PMID: 36928281 DOI: 10.1039/d2nr07163k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - A S K Sinha
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - K D P Nigam
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
- School of Chemical Engineering, University of Adelaide, North Terrace Campus, Adelaide (SA) 5005, Australia
| | - Deepak Dwivedi
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - Jitendra S Sangwai
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|