1
|
Yabaji SM, Zhernovkov V, Araveti PB, Lata S, Rukhlenko OS, Al Abdullatif S, Vanvalkenburg A, Alekseev Y, Ma Q, Dayama G, Lau NC, Johnson WE, Bishai WR, Crossland NA, Campbell JD, Kholodenko BN, Gimelbrant AA, Kobzik L, Kramnik I. Lipid Peroxidation and Type I Interferon Coupling Fuels Pathogenic Macrophage Activation Causing Tuberculosis Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583602. [PMID: 38496444 PMCID: PMC10942339 DOI: 10.1101/2024.03.05.583602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop pulmonary TB. We developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: the development of necrotic lung granulomas and determined that the sst1-susceptible phenotype was driven by the aberrant macrophage activation. This study demonstrates that the aberrant response of the sst1-susceptible macrophages to prolonged stimulation with TNF is primarily driven by conflicting Myc and antioxidant response pathways leading to a coordinated failure 1) to properly sequester intracellular iron and 2) to activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled IFNβ superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. The upregulation of Myc pathway in peripheral blood cells of human TB patients was significantly associated with poor outcomes of TB treatment. Thus, Myc dysregulation in activated macrophages results in an aberrant macrophage activation and represents a novel target for host-directed TB therapies.
Collapse
Affiliation(s)
- Shivraj M. Yabaji
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | | | - Suruchi Lata
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Salam Al Abdullatif
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Arthur Vanvalkenburg
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - Yuriy Alekseev
- The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Qicheng Ma
- Department of Biochemistry, and Cell Biology and Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine
| | - Gargi Dayama
- Department of Biochemistry, and Cell Biology and Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine
| | - Nelson C. Lau
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
- Department of Biochemistry, and Cell Biology and Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine
| | - W. Evan Johnson
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - William R. Bishai
- Center for TB Research, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Nicholas A. Crossland
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
- The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Joshua D. Campbell
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven CT, USA
| | | | | | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Avedisian School of Medicine
- Dept. of Microbiology, Boston University Chobanian & Avedisian School of Medicine
- Lead Contact
| |
Collapse
|
2
|
Zhang BK, Gines L. Analysis of Cancer-Resisting Evolutionary Adaptations in Wild Animals and Applications for Human Oncology. J Mol Evol 2024:10.1007/s00239-024-10204-w. [PMID: 39256250 DOI: 10.1007/s00239-024-10204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
This literature review is to present a new direction in developing better treatment or preventive measures. The larger the body of an organism, the more numerous the cells, which theoretically lead to a higher risk of cancer. However, observational studies suggest the lack of correlation between body size and cancer risk, which is known as Peto's paradox. The corollary of Peto's paradox is that large organisms must be cancer-resistant. Further investigation of the anti-cancer mechanisms in each species could be potentially rewarding, and how the anti-cancer mechanisms found in wild animals can help influence and develop more effective cancer treatment in humans is the main focus of this literature review. Due to a lack of research and understanding of the exact molecular mechanisms of the researched species, only a few (Elephants and rodents) that have been extensively researched have made substantive contributions to human oncology. A new research direction is to investigate the positively selective genes that are related to cancer resistance and see if homologous genes are presented in humans. Despite the great obstacle of applying anti-cancer mechanisms to the human body from phylogenetically distant species, this research direction of gaining insights through investigating cancer-resisting evolutionary adaptations in wild animals has great potential in human oncology research.
Collapse
Affiliation(s)
- Bokai K Zhang
- Brigham Young University, Brigham Young University, Provo, UT, 84602, USA.
| | - Leoned Gines
- Shoreline Community College, 16101 Greenwood Avenue North, Shoreline, WA, 98133-5696, USA
| |
Collapse
|
3
|
Thomas F, Ujvari B, Dujon AM. [Evolution of cancer resistance in the animal kingdom]. Med Sci (Paris) 2024; 40:343-350. [PMID: 38651959 DOI: 10.1051/medsci/2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Cancer is an inevitable collateral problem inherent in the evolution of multicellular organisms, which appeared at the end of the Precambrian. Faced to this constraint, a range of diverse anticancer defenses has evolved across the animal kingdom. Today, investigating how animal organisms, especially those of large size and long lifespan, manage cancer-related issues has both fundamental and applied outcomes, as it could inspire strategies for preventing or treating human cancers. In this article, we begin by presenting the conceptual framework for understanding evolutionary theories regarding the development of anti-cancer defenses. We then present a number of examples that have been extensively studied in recent years, including naked mole rats, elephants, whales, placozoa, xenarthras (such as sloths, armadillos and anteaters) and bats. The contributions of comparative genomics to understanding evolutionary convergences are also discussed. Finally, we emphasize that natural selection has also favored anti-cancer adaptations aimed at avoiding mutagenic environments, for example by maximizing immediate reproductive efforts in the event of cancer. Exploring these adaptive solutions holds promise for identifying novel approaches to improve human health.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de recherches écologiques et évolutives sur le cancer (CREEC/CANECEV, CREES), MIVEGEC, IRD 224, CNRS UMR5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australie
| | - Antoine M Dujon
- Centre de recherches écologiques et évolutives sur le cancer (CREEC/CANECEV, CREES), MIVEGEC, IRD 224, CNRS UMR5290, Université de Montpellier, Montpellier, France - Geelong, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australie
| |
Collapse
|
4
|
Masoudi M, Torabi P, Judson-Torres RL, Khodarahmi R, Moradi S. Natural resistance to cancer: A window of hope. Int J Cancer 2024; 154:1131-1142. [PMID: 37860922 DOI: 10.1002/ijc.34766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
As healthcare systems are improving and thereby the life expectancy of human populations is increasing, cancer is representing itself as the second leading cause of death. Although cancer biologists have put enormous effort on cancer research so far, we still have a long way to go before being able to treat cancers efficiently. One interesting approach in cancer biology is to learn from natural resistance and/or predisposition to cancer. Cancer-resistant species and tissues are thought-provoking models whose study shed light on the inherent cancer resistance mechanisms that arose during the course of evolution. On the other hand, there are some syndromes and factors that increase the risk of cancer development, and revealing their underlying mechanisms will increase our knowledge about the process of cancer formation. Here, we review natural resistance and predisposition to cancer and the known mechanisms at play. Further insights from these natural phenomena will help design future cancer research and could ultimately lead to the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Parisa Torabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | | | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
5
|
Bowman J, Lynch VJ. Rapid evolution of genes with anti-cancer functions during the origins of large bodies and cancer resistance in elephants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582135. [PMID: 38463968 PMCID: PMC10925141 DOI: 10.1101/2024.02.27.582135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
6
|
Bugarski-Stanojević V, Đokić M, Stamenković G, Barišić Klisarić N, Stojković O, Jojić V, Savić I. A Cryptic Subterranean Mammal Species, the Lesser Blind Mole Rat ( Nannospalax leucodon syrmiensis)-Retreated but Not Extinct. Animals (Basel) 2024; 14:774. [PMID: 38473158 DOI: 10.3390/ani14050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Blind mole rats (genus Nannospalax) attract a great deal of attention because of their cancer resistance and longevity. Due to the high rate of chromosome rearrangements, 74 Nannospalax chromosomal forms have been discovered. The convergence of their external morphology complicates their taxonomy, and many cryptic species remain unrecognized. Thus, the European N. leucodon supersp. is listed in the IUCN Red List of Threatened Species with "Data Deficient" status. It is crucial for the conservation of biodiversity to clarify its taxonomy, to recognize each cryptic species, and assign to them the correct conservation status. Of the more than 20 chromosomal forms described within N. leucodon, five cryptic species occur in Serbia. The most threatened among them-N. l. syrmiensis, described and named 50 years ago in the regions of Srem, Belgrade and Mačva-has been declared extinct in the literature, which may have negative consequences for the conservation of wildlife genetic diversity. Through five years of fieldwork and comparison of 16SrRNA and MT-CYTB gene segments between old, archived teeth and recently collected material, we show that N. l. syrmiensis is not extinct. However, its habitat has been fragmented and reduced, owing primarily to anthropogenic impact. Therefore, detailed surveillance, population-structure studies, risk assessment, and appropriate conservation measures are needed.
Collapse
Affiliation(s)
- Vanja Bugarski-Stanojević
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Marko Đokić
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Gorana Stamenković
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Nataša Barišić Klisarić
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Oliver Stojković
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, 11060 Belgrade, Serbia
| | - Vida Jojić
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Ivo Savić
- Institute of Zoology, Faculty of Biology, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
7
|
Hua R, Ma YS, Yang L, Hao JJ, Hua QY, Shi LY, Yao XQ, Zhi HY, Liu Z. Experimental evidence for cancer resistance in a bat species. Nat Commun 2024; 15:1401. [PMID: 38360878 PMCID: PMC10869793 DOI: 10.1038/s41467-024-45767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Mammals exhibit different rates of cancer, with long-lived species generally showing greater resistance. Although bats have been suggested to be resistant to cancer due to their longevity, this has yet to be systematically examined. Here, we investigate cancer resistance across seven bat species by activating oncogenic genes in their primary cells. Both in vitro and in vivo experiments suggest that Myotis pilosus (MPI) is particularly resistant to cancer. The transcriptomic and functional analyses reveal that the downregulation of three genes (HIF1A, COPS5, and RPS3) largely contributes to cancer resistance in MPI. Further, we identify the loss of a potential enhancer containing the HIF1A binding site upstream of COPS5 in MPI, resulting in the downregulation of COPS5. These findings not only provide direct experimental evidence for cancer resistance in a bat species but also offer insights into the natural mechanisms of cancer resistance in mammals.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Shuo Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qin-Yang Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Ye Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Qing Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Zhi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| |
Collapse
|
8
|
Zhao Y, Zheng Z, Zhang Z, Xu Y, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Biashad SA, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of high-molecular-mass hyaluronic acid is associated with subterranean lifestyle. Nat Commun 2023; 14:8054. [PMID: 38052795 PMCID: PMC10698142 DOI: 10.1038/s41467-023-43623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yandong Xu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yifei S Lin
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Seyed Ali Biashad
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| |
Collapse
|
9
|
Wlaschek M, Singh K, Maity P, Scharffetter-Kochanek K. The skin of the naked mole-rat and its resilience against aging and cancer. Mech Ageing Dev 2023; 216:111887. [PMID: 37993056 DOI: 10.1016/j.mad.2023.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The naked mole-rat (NMR) Heterocephalus glaber (from the Greek/latin words ἕτερος, heteros = divergent, κεφαλή, kephalē = head and glabra = hairless) was first described by Rüppell (Fig. 1) and belongs to the Hystricognath (from the Greek words ὕστριξ, hystrix = porcupine and γνάθος, gnathos = jaw) as a suborder of rodents. NMR are characterized by the highest longevity among rodents and reveal a profound cancer resistance. Details of its skin-specific protective and resistance mechanisms against aging and carcinogenesis have so far not been adequately characterized. Recently, our knowledge of NMR skin biology was complemented and expanded by published data using state-of-the art histological and molecular techniques. Here we review and integrate novel published data regarding skin morphology and histology of the aging NMR and the underlying mechanisms at the cellular and molecular level. We relate this data to the longevity of the NMR and its resistance to neoplastic transformation and discuss further open questions to understand its extraordinary longevity. In addition, we will address the exposome, defined as "the total of all non-genetic, endogenous and exogenous environmental influences" on the skin, respiratory tract, stomach, and intestine. Finally, we will discuss in perspective further intriguing possibilities arising from the interaction of skin with other organs.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.
| | | |
Collapse
|
10
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Li S, Vazquez JM, Sudmant PH. The evolution of aging and lifespan. Trends Genet 2023; 39:830-843. [PMID: 37714733 PMCID: PMC11147682 DOI: 10.1016/j.tig.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Aging is a nearly inescapable trait among organisms yet lifespan varies tremendously across different species and spans several orders of magnitude in vertebrates alone. This vast phenotypic diversity is driven by distinct evolutionary trajectories and tradeoffs that are reflected in patterns of diversification and constraint in organismal genomes. Age-specific impacts of selection also shape allele frequencies in populations, thus impacting disease susceptibility and environment-specific mortality risk. Further, the mutational processes that spawn this genetic diversity in both germline and somatic cells are strongly influenced by age and life history. We discuss recent advances in our understanding of the evolution of aging and lifespan at organismal, population, and cellular scales, and highlight outstanding questions that remain unanswered.
Collapse
Affiliation(s)
- Stacy Li
- Department of Integrative Biology, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA. USA
| | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA. USA.
| |
Collapse
|
12
|
Harman RM, Das SP, Kanke M, Sethupathy P, Van de Walle GR. miRNA-214-3p stimulates carcinogen-induced mammary epithelial cell apoptosis in mammary cancer-resistant species. Commun Biol 2023; 6:1006. [PMID: 37789172 PMCID: PMC10547694 DOI: 10.1038/s42003-023-05370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Mammary cancer incidence varies greatly across species and underlying mechanisms remain elusive. We previously showed that mammosphere-derived epithelial cells from species with low mammary cancer incidence, such as horses, respond to carcinogen 7, 12-Dimethylbenz(a)anthracene-induced DNA damage by undergoing apoptosis, a postulated anti-cancer mechanism. Additionally, we found that miR-214-3p expression in mammosphere-derived epithelial cells is lower in mammary cancer-resistant as compared to mammary cancer-susceptible species. Here we show that increasing miR-214 expression and decreasing expression of its target gene nuclear factor kappa B subunit 1 in mammosphere-derived epithelial cells from horses abolishes 7,12-Dimethylbenz(a)anthracene-induced apoptosis. A direct interaction of miR-214-3p with another target gene, unc-5 netrin receptor A, is also demonstrated. We propose that relatively low levels of miR-214 in mammosphere-derived epithelial cells from mammals with low mammary cancer incidence, allow for constitutive gene nuclear factor kappa B subunit 1 expression and apoptosis in response to 7, 12-Dimethylbenz(a)anthracene. Better understanding of the mechanisms regulating cellular responses to carcinogens improves our overall understanding of mammary cancer resistance mechanisms.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Kawamura Y, Oka K, Semba T, Takamori M, Sugiura Y, Yamasaki R, Suzuki Y, Chujo T, Nagase M, Oiwa Y, Fujioka S, Homma S, Yamamura Y, Miyawaki S, Narita M, Fukuda T, Sakai Y, Ishimoto T, Tomizawa K, Suematsu M, Yamamoto T, Bono H, Okano H, Miura K. Cellular senescence induction leads to progressive cell death via the INK4a-RB pathway in naked mole-rats. EMBO J 2023; 42:e111133. [PMID: 37431790 PMCID: PMC10425838 DOI: 10.15252/embj.2022111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023] Open
Abstract
Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.
Collapse
Affiliation(s)
- Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Kaori Oka
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takashi Semba
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Mayuko Takamori
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Yuki Sugiura
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Riyo Yamasaki
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Yusuke Suzuki
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Takeshi Chujo
- Department of Molecular PhysiologyKumamoto UniversityKumamotoJapan
| | - Mari Nagase
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Yuki Oiwa
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Chemical BiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Shusuke Fujioka
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Sayuri Homma
- Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
| | - Yuki Yamamura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Shingo Miyawaki
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Minoru Narita
- Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
- Division of Cancer PathophysiologyNational Cancer Center Research Institute (NCCRI)TokyoJapan
| | - Takaichi Fukuda
- Department of Anatomy and NeurobiologyKumamoto UniversityKumamotoJapan
| | - Yusuke Sakai
- Department of PathologyNational Institute of Infectious DiseasesTokyoJapan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazuhito Tomizawa
- Department of Molecular PhysiologyKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| | - Makoto Suematsu
- Department of BiochemistryKeio University School of MedicineTokyoJapan
- WPI‐Bio2Q Research CenterCentral Institute for Experimental AnimalsKawasakiJapan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi), Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells TeamRIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, PtBio Collaborative Research Laboratory, Genome Editing Innovation CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
14
|
Zhao Y, Zheng Z, Zhang Z, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of High-Molecular-Mass Hyaluronic Acid is Associated with Subterranean Lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539764. [PMID: 37215017 PMCID: PMC10197608 DOI: 10.1101/2023.05.08.539764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.
Collapse
|
15
|
Oka K, Yamakawa M, Kawamura Y, Kutsukake N, Miura K. The Naked Mole-Rat as a Model for Healthy Aging. Annu Rev Anim Biosci 2023; 11:207-226. [PMID: 36318672 DOI: 10.1146/annurev-animal-050322-074744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-lived rodents with a maximum life span exceeding 37 years. They exhibit a delayed aging phenotype and resistance to age-related functional decline/diseases. Specifically, they do not display increased mortality with age, maintain several physiological functions until nearly the end of their lifetime, and rarely develop cancer and Alzheimer's disease. NMRs live in a hypoxic environment in underground colonies in East Africa and are highly tolerant of hypoxia. These unique characteristics of NMRs have attracted considerable interest from zoological and biomedical researchers. This review summarizes previous studies of the ecology, hypoxia tolerance, longevity/delayed aging, and cancer resistance of NMRs and discusses possible mechanisms contributing to their healthy aging. In addition, we discuss current issues and future perspectives to fully elucidate the mechanisms underlying delayed aging and resistance to age-related diseases in NMRs.
Collapse
Affiliation(s)
- Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Masanori Yamakawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; ,
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; , .,Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , , .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA. .,Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA. .,Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
17
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
18
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
19
|
Yamamura Y, Kawamura Y, Oka K, Miura K. Carcinogenesis resistance in the longest-lived rodent, the naked mole-rat. Cancer Sci 2022; 113:4030-4036. [PMID: 36083242 DOI: 10.1111/cas.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Certain mammalian species are resistant to cancer, and a better understanding of how this cancer resistance arises could provide valuable insights for basic cancer research. Recent technological innovations in molecular biology have allowed the study of cancer-resistant mammals, despite the fact that they are not the classical model animals, which are easily studied using genetic approaches. Naked mole-rats (NMRs; Heterocephalus glaber) are the longest-lived rodent, with a maximum lifespan of more than 37 years, and almost never show spontaneous carcinogenesis. NMRs are currently attracting much attention from aging and cancer researchers, and published studies on NMR have continued to increase over the past decade. Cancer development occurs via multiple steps and involves many biological processes. Recent research on the NMR as a model for cancer resistance suggests that they possess various unique carcinogenesis-resistance mechanisms, including efficient DNA repair pathways, cell-autonomous resistance to transformation, and dampened inflammatory response. Here, we summarize the molecular mechanisms of carcinogenesis resistance in NMR, which have been uncovered over the past two decades, and discuss future perspectives.
Collapse
Affiliation(s)
- Yuki Yamamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Baines C, Meitern R, Kreitsberg R, Sepp T. Comparative study of the evolution of cancer gene duplications across fish. Evol Appl 2022; 15:1834-1845. [PMID: 36426117 PMCID: PMC9679246 DOI: 10.1111/eva.13481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Comparative studies of cancer-related genes not only provide novel information about their evolution and function but also an understanding of cancer as a driving force in biological systems and species' life histories. So far, these studies have focused on mammals. Here, we provide the first comparative study of cancer-related gene copy number variation in fish. Fishes are a paraphyletic group whose last common ancestor is also an ancestor of the tetrapods, and accordingly, their tumour suppression mechanisms should include most of the mammalian mechanisms and also reveal novel (but potentially phylogenetically older) previously undetected mechanisms. We have matched the sequenced genomes of 65 fish species from the Ensemble database with the cancer gene information from the COSMIC database. By calculating the number of gene copies across species using the Ensembl CAFE data (providing species trees for gene copy number counts), we used a less resource-demanding method for homolog identification. Our analysis demonstrates a masked relationship between cancer-related gene copy number variation (CNV) and maximum lifespan in fish species, suggesting that a higher number of copies of tumour suppressor genes lengthens and the number of copies of oncogenes shortens lifespan. Based on the positive correlation between the number of copies of tumour suppressors and oncogenes, we show which species have more tumour suppressors in relation to oncogenes. It could be suggested that these species have stronger genetic defences against oncogenic processes. Fish studies could be a largely unexplored treasure trove for understanding the evolution and ecology of cancer, providing novel insights into the study of cancer and tumour suppression, in addition to fish evolution, life-history trade-offs, and ecology.
Collapse
Affiliation(s)
- Ciara Baines
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
- Estonian Marine InstituteUniversity of TartuTallinnEstonia
| | - Richard Meitern
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Randel Kreitsberg
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Tuul Sepp
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
21
|
Abosedera DA, Emara S, Tamam OA, Badr OM, Khalifa SA, El-Seedi HR, Refaey MS. Metabolomic profile and in vitro evaluation of the cytotoxic activity of Asphodelus microcarpus against human malignant melanoma cells A375. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
22
|
Inci N, Akyildiz EO, Bulbul AA, Turanli ET, Akgun E, Baykal AT, Colak F, Bozaykut P. Transcriptomics and Proteomics Analyses Reveal JAK Signaling and Inflammatory Phenotypes during Cellular Senescence in Blind Mole Rats: The Reflections of Superior Biology. BIOLOGY 2022; 11:biology11091253. [PMID: 36138732 PMCID: PMC9495822 DOI: 10.3390/biology11091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary Blind mole rats (BMR) (Spalax, Nannospalax sp.) are extraordinary organisms with cancer resistance and a long lifespan for their size. Cellular senescence is a condition in which cells cease dividing irreversibly and secrete proinflammatory cytokines. To understand the mechanisms behind their superior traits, we utilized transcriptomics and proteomics tools in senescent BMR cells to compare them to similarly sized mice. The results revealed the alterations in Janus kinase (JAK) signaling and the cytokine-mediated pathway during the cellular senescence process in BMRs. These findings might reveal the novel mechanisms behind the unique biology of BMRs through cytokine-mediated adaptations. Abstract The blind mole rat (BMR), a long-living subterranean rodent, is an exceptional model for both aging and cancer research since they do not display age-related phenotypes or tumor formation. The Janus kinase–signal transducer and activator of transcription (JAK–STAT) signaling is a cytokine-stimulated pathway that has a crucial role in immune regulation, proliferation, and cytokine production. Therefore, the pathway has recently attracted interest in cellular senescence studies. Here, by using publicly available data, we report that JAK–STAT signaling was suppressed in the BMR in comparison to the mouse. Interestingly, our experimental results showed upregulated Jak1/2 expressions in BMR fibroblasts during the replicative senescence process. The transcriptomic analysis using publicly available data also demonstrated that various cytokines related to JAK–STAT signaling were upregulated in the late passage cells, while some other cytokines such as MMPs and SERPINs were downregulated, representing a possible balance of senescence-associated secretory phenotypes (SASPs) in the BMR. Finally, our proteomics data also confirmed cytokine-mediated signaling activation in senescent BMR fibroblasts. Together, our findings suggest the critical role of JAK–STAT and cytokine-mediated signaling pathways during cellular senescence, pointing to the possible contribution of divergent inflammatory factors to the superior resistance of aging and cancer in BMRs.
Collapse
Affiliation(s)
- Nurcan Inci
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Erdogan Oguzhan Akyildiz
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Abdullah Alper Bulbul
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Eda Tahir Turanli
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Faruk Colak
- Department of Biology, Faculty of Arts and Science, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Perinur Bozaykut
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Correspondence:
| |
Collapse
|
23
|
Nair NU, Cheng K, Naddaf L, Sharon E, Pal LR, Rajagopal PS, Unterman I, Aldape K, Hannenhalli S, Day CP, Tabach Y, Ruppin E. Cross-species identification of cancer resistance-associated genes that may mediate human cancer risk. SCIENCE ADVANCES 2022; 8:eabj7176. [PMID: 35921407 PMCID: PMC9348801 DOI: 10.1126/sciadv.abj7176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer is a predominant disease across animals. We applied a comparative genomics approach to systematically characterize genes whose conservation levels correlate positively (PC) or negatively (NC) with cancer resistance estimates across 193 vertebrates. Pathway analysis reveals that NC genes are enriched for metabolic functions and PC genes in cell cycle regulation, DNA repair, and immune response, pointing to their corresponding roles in mediating cancer risk. We find that PC genes are less tolerant to loss-of-function (LoF) mutations, are enriched in cancer driver genes, and are associated with germline mutations that increase human cancer risk. Their relevance to cancer risk is further supported via the analysis of mouse functional genomics and cancer mortality of zoo mammals' data. In sum, our study describes a cross-species genomic analysis pointing to candidate genes that may mediate human cancer risk.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Lamis Naddaf
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Elad Sharon
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Lipika R. Pal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Padma S. Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| |
Collapse
|
24
|
An Z, Chen X, Li J. Response to Different Oxygen Partial Pressures and Evolution Analysis of Apoptosis-Related Genes in Plateau Zokor ( Myospalax baileyi). Front Genet 2022; 13:865301. [PMID: 35754836 PMCID: PMC9214310 DOI: 10.3389/fgene.2022.865301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) is a native species of the Qinghai–Tibet Plateau that spends its entire life underground in sealed burrows with hypoxic conditions. The present study aimed to assess the sequence characteristics of apoptosis-related genes and the response to different oxygen partial pressures (pO2) in plateau zokor and Sprague-Dawley rats. The sequences of the p53-induced protein with a death domain (Pidd), p53-upregulated modulator of apoptosis (Puma), insulin-like growth factor binding protein 3 (Igfbp3), and apoptosis protease-activating factor 1 (Apaf1) were evaluated concerning homology and convergent evolution sites, and their mRNA levels were evaluated in different tissues under 14.13 (3,300 m) and 16.12 kPa (2,260 m) pO2 conditions. Our results showed that, (1) the sequences of the apoptosis-related genes in plateau zokor were highly similar to those of Nannospalax galili, followed by Rattus norvegicus; (2). Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor were found to have five, one, two, and five convergent sites in functional domains with N. galili, respectively. Lastly (3), under low pO2, the expression of Pidd and Puma was downregulated in the lung of plateau zokors. In turn, Igfbp3 and Apaf1 were upregulated in the liver and lung, and Puma was upregulated in the skeletal muscle of plateau zokor under low pO2. In Sprague-Dawley rats, low pO2 downregulated Puma and Apaf1 expression in the liver and downregulated Igfbp3 and Puma in the lung and skeletal muscle separately. In contrast, low pO2 upregulated Pidd expression in the liver and skeletal muscle of Sprague-Dawley rats. Overall, the expression patterns of Apaf1, Igfbp3, and Puma showed the opposite pattern in the liver, lung, and skeletal muscle, respectively, of plateau zokor as compared with Sprague-Dawley rats. In conclusion, for the long-time adaptation to hypoxic environments, Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor underwent convergent evolution, which we believe may have led to upregulation of their levels under low oxygen partial pressures to induce apoptosis, so as to suppress tumorigenesis under hypoxic environments in plateau zokor.
Collapse
Affiliation(s)
- Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xiaoqi Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Department of Obstetrics and Gynaecology, Affiliated Hospital of Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Jimei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of General Medicine, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
25
|
Vischioni C, Bove F, De Chiara M, Mandreoli F, Martoglia R, Pisi V, Liti G, Taccioli C. miRNAs Copy Number Variations Repertoire as Hallmark Indicator of Cancer Species Predisposition. Genes (Basel) 2022; 13:1046. [PMID: 35741808 PMCID: PMC9223155 DOI: 10.3390/genes13061046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/04/2022] Open
Abstract
Aging is one of the hallmarks of multiple human diseases, including cancer. We hypothesized that variations in the number of copies (CNVs) of specific genes may protect some long-living organisms theoretically more susceptible to tumorigenesis from the onset of cancer. Based on the statistical comparison of gene copy numbers within the genomes of both cancer-prone and -resistant species, we identified novel gene targets linked to tumor predisposition, such as CD52, SAT1 and SUMO. Moreover, considering their genome-wide copy number landscape, we discovered that microRNAs (miRNAs) are among the most significant gene families enriched for cancer progression and predisposition. Through bioinformatics analyses, we identified several alterations in miRNAs copy number patterns, involving miR-221, miR-222, miR-21, miR-372, miR-30b, miR-30d and miR-31, among others. Therefore, our analyses provide the first evidence that an altered miRNAs copy number signature can statistically discriminate species more susceptible to cancer from those that are tumor resistant, paving the way for further investigations.
Collapse
Affiliation(s)
- Chiara Vischioni
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
- IRCAN, CNRS, INSERM, Université Côte d’Azur, 06107 Nice, France; (M.D.C.); (G.L.)
| | - Fabio Bove
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Matteo De Chiara
- IRCAN, CNRS, INSERM, Université Côte d’Azur, 06107 Nice, France; (M.D.C.); (G.L.)
| | - Federica Mandreoli
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Riccardo Martoglia
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Valentino Pisi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.M.); (R.M.); (V.P.)
| | - Gianni Liti
- IRCAN, CNRS, INSERM, Université Côte d’Azur, 06107 Nice, France; (M.D.C.); (G.L.)
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| |
Collapse
|
26
|
Inci N, Kamali D, Akyildiz EO, Tahir Turanli E, Bozaykut P. Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. FRONTIERS IN AGING 2022; 3:828058. [PMID: 35821852 PMCID: PMC9261353 DOI: 10.3389/fragi.2022.828058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Increasing chronological age is the greatest risk factor for human diseases. Cellular senescence (CS), which is characterized by permanent cell-cycle arrest, has recently emerged as a fundamental mechanism in developing aging-related pathologies. During the aging process, senescent cell accumulation results in senescence-associated secretory phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered very recently, senotherapeutic drugs have been already involved in clinical studies. This review gives a summary of the molecular mechanisms of CS and its role particularly in the development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it addresses alternative research tools including the nonhuman and human models as well as computational techniques for the discovery of novel therapies. Finally, senotherapeutic approaches that are mainly classified as senolytics and senomorphics are discussed.
Collapse
Affiliation(s)
- Nurcan Inci
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilanur Kamali
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Erdogan Oguzhan Akyildiz
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Tahir Turanli
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Perinur Bozaykut
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
27
|
Nunney L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: a re‐evaluation. Evol Appl 2022; 15:891-901. [PMID: 35603034 PMCID: PMC9108310 DOI: 10.1111/eva.13383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022] Open
Abstract
Evolving to become bigger and/or longer lived should increase cancer susceptibility, but this predicted increase is not observed, a contradiction named Peto's paradox. A solution is that cancer suppression evolves to minimize cancer susceptibility, and the discovery of 19 retrogene (RTG) copies of the tumor suppressor gene TP53 in the African elephant (Loxodonta africana) is increasingly cited as a classic example of such adaptive suppression. However, classic examples need rigorous evaluation and an alternative hypothesis is that the RTGs spread by genetic drift. This study shows that before its duplication, the ancestral elephant RTG was already truncated from 390 amino acids to 157 by a frameshift mutation, and that 14 of the 19 copies are now truncated to ≤88 amino acids. There was no compelling evidence of either positive or negative selection acting on these 88 codons, and the pattern of RTG accumulation fits a neutral model with a duplication rate of ~10−6 per generation. It is concluded that there is no evidence supporting the hypothesis that the 19 elephant RTGs spread to fixation by selection; instead, the evidence indicates that these RTGs accumulated primarily by segmental duplication and drift. It is shown that the evolutionary multistage model of carcinogenesis (EMMC) predicts the recruitment of 1–2 independently acting tumor suppressor genes to suppress the increased cancer risk in elephants, so it is possible that one or a few RTGs may have been favored by selection resulting in the known enhanced sensitivity of elephant cells to DNA damage. However, the analysis does not provide any support for either a direct (via conserved TP53 activity) or indirect (via supporting canonical TP53 function) role of the RTGs sequences, so that the presence of multiple copies of TP53 retrogenes in elephants needs to be further justified before being used as a classic example of tumor suppression in large‐bodied animals.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
28
|
Arce VM, Costoya JA. New insights into the relevance of mobile DNA to cancer resistance in blind mole rats: new lessons for cancer therapy. Cell Mol Immunol 2022; 19:458-459. [DOI: 10.1038/s41423-021-00830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
|
29
|
Sarver AL, Makielski KM, DePauw TA, Schulte AJ, Modiano JF. Increased risk of cancer in dogs and humans: a consequence of recent extension of lifespan beyond evolutionarily-determined limitations? AGING AND CANCER 2022; 3:3-19. [PMID: 35993010 PMCID: PMC9387675 DOI: 10.1002/aac2.12046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is among the most common causes of death for dogs (and cats) and humans in the developed world, even though it is uncommon in wildlife and other domestic animals. We provide a rationale for this observation based on recent advances in our understanding of the evolutionary basis of cancer. Over the course of evolutionary time, species have acquired and fine-tuned adaptive cancer protective mechanisms that are intrinsically related to their energy demands, reproductive strategies, and expected lifespan. These cancer protective mechanisms are general across species and/or specific to each species and their niche, and they do not seem to be limited in diversity. The evolutionarily acquired cancer-free longevity that defines a species' life history can explain why the relative cancer risk, rate, and incidence are largely similar across most species in the animal kingdom despite differences in body size and life expectancy. The molecular, cellular, and metabolic events that promote malignant transformation and cancerous growth can overcome these adaptive, species-specific protective mechanisms in a small proportion of individuals, while independently, some individuals in the population might achieve exceptional longevity. In dogs and humans, recent dramatic alterations in healthcare and social structures have allowed increasing numbers of individuals in both species to far exceed their species-adapted longevities (by 2-4 times) without allowing the time necessary for compensatory natural selection. In other words, the cancer protective mechanisms that restrain risk at comparable levels to other species for their adapted lifespan are incapable of providing cancer protection over this recent, drastic and widespread increase in longevity.
Collapse
Affiliation(s)
- Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Institute for Health Informatics, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN
| | - Kelly M. Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Taylor A DePauw
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Ashley J. Schulte
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN,Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN,Center for Immunology, University of Minnesota, Minneapolis, MN,Stem Cell Institute, University of Minnesota, Minneapolis, MN,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
30
|
Zheng Z, Hua R, Xu G, Yang H, Shi P. Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 2022; 20:44. [PMID: 35172813 PMCID: PMC8851862 DOI: 10.1186/s12915-022-01243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. Results We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. Conclusions Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01243-0.
Collapse
Affiliation(s)
- Zhizhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
31
|
Abstract
The classical evolutionary theories of aging suggest that aging evolves due to insufficient selective pressure against it. In these theories, declining selection pressure with age leads to aging through genes or resource allocations, implying that aging could potentially be stalled were genes, resource allocation, or selection pressure somewhat different. While these classical evolutionary theories are undeniably part of a description of the evolution of aging, they do not explain the diversity of aging patterns, and they do not constitute the only possible evolutionary explanation. Without denying selection pressure a role in the evolution of aging, we argue that the origin and diversity of aging should also be sought in the nature and evolution of organisms that are, from their very physiological make up, unmaintainable. Drawing on advances in developmental biology, genetics, biochemistry, and complex systems theory since the classical theories emerged, we propose a fresh evolutionary-mechanistic theory of aging, the Danaid theory. We argue that, in complex forms of life like humans, various restrictions on maintenance and repair may be inherent, and we show how such restrictions are laid out during development. We further argue that there is systematic variation in these constraints across taxa, and that this is a crucial factor determining variation in aging and lifespan across the tree of life. Accordingly, the core challenge for the field going forward is to map and understand the mosaic of constraints, trade-offs, chance events, and selective pressures that shape aging in diverse ways across diverse taxa.
Collapse
Affiliation(s)
- Maarten J Wensink
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Alan A Cohen
- Department of Family Medicine, Research Centre on Aging, CHUS Research Centre, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
32
|
Vazquez JM, Pena MT, Muhammad B, Kraft M, Adams LB, Lynch VJ. Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. eLife 2022; 11:82558. [PMID: 36480266 PMCID: PMC9810328 DOI: 10.7554/elife.82558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch, 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: (1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; (2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; (3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and (4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer-resistant group of mammals.
Collapse
Affiliation(s)
- Juan Manuel Vazquez
- Department of Integrative Biology, Valley Life Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Baaqeyah Muhammad
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Morgan Kraft
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| |
Collapse
|
33
|
Okamura DM, Nguyen ED, Beier DR, Majesky MW. Wound healing and regeneration in spiny mice (Acomys cahirinus). Curr Top Dev Biol 2022; 148:139-164. [DOI: 10.1016/bs.ctdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
35
|
Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 2021; 22:1219-1230. [PMID: 34556881 PMCID: PMC8488014 DOI: 10.1038/s41590-021-01027-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Blind mole rats (BMRs) are small rodents, characterized by exceptionally long lifespan (> 21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). BMR cells and tissues express very low levels of DNA methyltransferase 1 (DNMT1). Upon cell hyperplasia, the BMR genome DNA loses methylation, resulting in activation of RTEs. Up-regulated RTEs form cytoplasmic RNA/DNA hybrids, which activate cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and human. We propose that RTEs were coopted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of innate immune response. RTEs activation is a double-edged sword, serving as a tumor suppressor but in late life contributing to aging via induction of sterile inflammation.
Collapse
|
36
|
Yu Z, Seim I, Yin M, Tian R, Sun D, Ren W, Yang G, Xu S. Comparative analyses of aging-related genes in long-lived mammals provide insights into natural longevity. Innovation (N Y) 2021; 2:100108. [PMID: 34557758 PMCID: PMC8454735 DOI: 10.1016/j.xinn.2021.100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Extreme longevity has evolved multiple times during the evolution of mammals, yet its underlying molecular mechanisms remain largely underexplored. Here, we compared the evolution of 115 aging-related genes in 11 long-lived species and 25 mammals with non-increased lifespan (control group) in the hopes of better understanding the common molecular mechanisms behind longevity. We identified 16 unique positively selected genes and 23 rapidly evolving genes in long-lived species, which included nine genes involved in regulating lifespan through the insulin/IGF-1 signaling (IIS) pathway and 11 genes highly enriched in immune-response-related pathways, suggesting that the IIS pathway and immune response play a particularly important role in exceptional mammalian longevity. Interestingly, 11 genes related to cancer progression, including four positively selected genes and seven genes with convergent amino acid changes, were shared by two or more long-lived lineages, indicating that long-lived mammals might have evolved convergent or similar mechanisms of cancer resistance that extended their lifespan. This suggestion was further corroborated by our identification of 12 robust candidates for longevity-related genes closely related to cancer. Evolution analyses of 115 aging-related genes exploring natural longevity in mammals Positively selected genes & rapidly evolved genes enriched in IIS and immune pathways Convergent mutations in genes associated with cancer in long-lived species Evolution of longevity through cancer resistance in long-lived mammals
Collapse
Affiliation(s)
- Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Inge Seim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,School of Biology and Environmental Science, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mengxin Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
37
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
38
|
Hao Z, Xu L, Zhao L, He J, Li G, Li J. Transcriptome analysis of the liver of Eospalax fontanierii under hypoxia. PeerJ 2021; 9:e11166. [PMID: 33981491 PMCID: PMC8071069 DOI: 10.7717/peerj.11166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hypoxia can induce cell damage, inflammation, carcinogenesis, and inhibit liver regeneration in non-adapted species. Because of their excellent hypoxia adaptation features, subterranean rodents have been widely studied to clarify the mechanism of hypoxia adaptation. Eospalax fontanierii, which is a subterranean rodent found in China, can survive for more than 10 h under 4% O2 without observable injury, while Sprague-Dawley rats can survive for less than 6 h under the same conditions. To explore the potential mechanism of hypoxia responses in E. fontanierii, we performed RNA-seq analysis of the liver in E. fontanierii exposed to different oxygen levels (6.5% 6h, 10.5% 44h, and 21%). Based on the bioinformatics analysis, 39,439 unigenes were assembled, and 56.78% unigenes were annotated using public databases (Nr, GO, Swiss-Prot, KEGG, and Pfam). In total, 725 differentially expressed genes (DEGs) were identified in the response to hypoxia; six with important functions were validated by qPCR. Those DEGs were mainly involved in processes related to lipid metabolism, steroid catabolism, glycolysis/gluconeogenesis, and the AMPK and PPAR signaling pathway. By analyzing the expression patterns of important genes related to energy associated metabolism under hypoxia, we found that fatty acid oxidation and gluconeogenesis were increased, while protein synthesis and fatty acid synthesis were decreased. Furthermore, the upregulated expression of specific genes with anti-apoptosis or anti-oxidation functions under hypoxia may contribute to the mechanism by which E. fontanierii tolerates hypoxia. Our results provide an understanding of the response to hypoxia in E. fontanierii, and have potential value for biomedical studies.
Collapse
Affiliation(s)
- Zhiqiang Hao
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Lulu Xu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Li Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Guanglin Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jingang Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
39
|
Izraelson M, Metsger M, Davydov AN, Shagina IA, Dronina MA, Obraztsova AS, Miskevich DA, Mamedov IZ, Volchkova LN, Nakonechnaya TO, Shugay M, Bolotin DA, Staroverov DB, Sharonov GV, Kondratyuk EY, Zagaynova EV, Lukyanov S, Shams I, Britanova OV, Chudakov DM. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. NATURE AGING 2021; 1:179-189. [PMID: 37118630 DOI: 10.1038/s43587-021-00029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 04/30/2023]
Abstract
A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones-a unique organizational strategy that potentially underlies this animal's extraordinary longevity and healthy aging.
Collapse
Affiliation(s)
- M Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Metsger
- Central European Institute of Technology, Brno, Czech Republic
| | - A N Davydov
- Central European Institute of Technology, Brno, Czech Republic
| | - I A Shagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Dronina
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D A Miskevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - I Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Brno, Czech Republic
| | - L N Volchkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - T O Nakonechnaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D A Bolotin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D B Staroverov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G V Sharonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Y Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - S Lukyanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - O V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - D M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Central European Institute of Technology, Brno, Czech Republic.
| |
Collapse
|
40
|
Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. eLife 2021; 10:e65041. [PMID: 33513090 PMCID: PMC7952090 DOI: 10.7554/elife.65041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Human Genetics, The University of ChicagoChicagoUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
41
|
Cancer, Retrogenes, and Evolution. Life (Basel) 2021; 11:life11010072. [PMID: 33478113 PMCID: PMC7835786 DOI: 10.3390/life11010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.
Collapse
|
42
|
Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation. Proc Natl Acad Sci U S A 2020; 117:32499-32508. [PMID: 33277437 DOI: 10.1073/pnas.2018123117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, N e , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.
Collapse
|
43
|
Vedelek B, Maddali AK, Davenova N, Vedelek V, Boros IM. TERT promoter alterations could provide a solution for Peto's paradox in rodents. Sci Rep 2020; 10:20815. [PMID: 33257697 PMCID: PMC7704627 DOI: 10.1038/s41598-020-77648-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is a genetic disease caused by changes in gene expression resulting from somatic mutations and epigenetic changes. Although the probability of mutations is proportional with cell number and replication cycles, large bodied species do not develop cancer more frequently than smaller ones. This notion is known as Peto's paradox, and assumes stronger tumor suppression in larger animals. One of the possible tumor suppressor mechanisms involved could be replicative senescence caused by telomere shortening in the absence of telomerase activity. We analysed telomerase promoter activity and transcription factor binding in mammals to identify the key element of telomerase gene inactivation. We found that the GABPA transcription factor plays a key role in TERT regulation in somatic cells of small rodents, but its binding site is absent in larger beavers. Protein binding and reporter gene assays verify different use of this site in different species. The presence or absence of the GABPA TF site in TERT promoters of rodents correlates with TERT promoter activity; thus it could determine whether replicative senescence plays a tumor suppressor role in these species, which could be in direct relation with body mass. The GABPA TF binding sites that contribute to TERT activity in somatic cells of rodents are analogous to those mutated in human tumors, which activate telomerase by a non-ALT mechanism.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Asha Kiran Maddali
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Nurgul Davenova
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
44
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
45
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
46
|
Carmi G, Tagore S, Gorohovski A, Sivan A, Raviv-Shay D, Frenkel-Morgenstern M. Design principles of gene evolution for niche adaptation through changes in protein-protein interaction networks. Sci Rep 2020; 10:15628. [PMID: 32973219 PMCID: PMC7519090 DOI: 10.1038/s41598-020-71976-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In contrast to fossorial and above-ground organisms, subterranean species have adapted to the extreme stresses of living underground. We analyzed the predicted protein–protein interactions (PPIs) of all gene products, including those of stress-response genes, among nine subterranean, ten fossorial, and 13 aboveground species. We considered 10,314 unique orthologous protein families and constructed 5,879,879 PPIs in all organisms using ChiPPI. We found strong association between PPI network modulation and adaptation to specific habitats, noting that mutations in genes and changes in protein sequences were not linked directly with niche adaptation in the organisms sampled. Thus, orthologous hypoxia, heat-shock, and circadian clock proteins were found to cluster according to habitat, based on PPIs rather than on sequence similarities. Curiously, "ordered" domains were preserved in aboveground species, while "disordered" domains were conserved in subterranean organisms, and confirmed for proteins in DistProt database. Furthermore, proteins with disordered regions were found to adopt significantly less optimal codon usage in subterranean species than in fossorial and above-ground species. These findings reveal design principles of protein networks by means of alterations in protein domains, thus providing insight into deep mechanisms of evolutionary adaptation, generally, and particularly of species to underground living and other confined habitats.
Collapse
Affiliation(s)
- Gon Carmi
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | - Somnath Tagore
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel.,Department of Systems Biology, Columbia University Medical Center, Herbert Irving Cancer Research Center, New York, USA
| | - Alessandro Gorohovski
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | - Aviad Sivan
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | - Dorith Raviv-Shay
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, 13195, Safed, Israel
| | | |
Collapse
|
47
|
Nunney L. Resolving Peto's paradox: Modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl 2020; 13:1581-1592. [PMID: 32821274 PMCID: PMC7428811 DOI: 10.1111/eva.12993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
The intrinsic risk of cancer increases with body size and longevity; however, big long-lived species do not exhibit this increase, a contradiction named Peto's paradox. Five hypotheses potentially resolving this paradox were modeled using the multistage model of carcinogenesis. The five hypotheses were based on (1) intrinsic changes in metabolic rate with body size; adaptive increase in immune policing of (2) cancer cells or (3) cells with driver mutations; or adaptive increase in cancer suppression via (4) decreased somatic mutation rate, or (5) increased genetic control. Parameter changes needed to stabilize cancer risk in three types of cancer were estimated for tissues scaled from mouse size and longevity to human and blue whale levels. The metabolic rate hypothesis alone was rejected due to a conflict between the required interspecific effect with the observed intraspecific effect of size on cancer risk, but some metabolic change was optionally incorporated in the other models. Necessary parameter changes in immune policing and somatic mutation rate far exceeded values observed; however, natural selection increasing the genetic suppression of cancer was generally consistent with data. Such adaptive increases in genetic control of cancers in large and/or long-lived animals raise the possibility that nonmodel animals will reveal novel anticancer mechanisms.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
48
|
Rozhok AI, DeGregori J. The three dimensions of somatic evolution: Integrating the role of genetic damage, life-history traits, and aging in carcinogenesis. Evol Appl 2020; 13:1569-1580. [PMID: 32821273 PMCID: PMC7428813 DOI: 10.1111/eva.12947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors result from genetic and epigenetic alterations that change cellular survival and differentiation probabilities, promoting clonal dominance. Subsequent genetic and selection processes in tumors allow cells to lose their tissue fidelity and migrate to other parts of the body, turning tumors into cancer. However, the relationship between genetic damage and cancer is not linear, showing remarkable and sometimes seemingly counterintuitive patterns for different tissues and across animal taxa. In the present paper, we attempt to integrate our understanding of somatic evolution and cancer as a product of three major orthogonal processes: occurrence of somatic mutations, evolution of species-specific life-history traits, and physiological aging. Patterns of cancer risk have been shaped by selective pressures experienced by animal populations over millions of years, influencing and influenced by selection acting on traits ranging from mutation rate to reproductive strategies to longevity. We discuss how evolution of species shapes their cancer profiles alongside and in connection with other evolving life-history traits and how this process explains the patterns of cancer incidence we observe in humans and other animals.
Collapse
Affiliation(s)
- Andrii I. Rozhok
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColorado
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColorado
- Integrated Department of ImmunologyUniversity of Colorado Anschutz Medical CampusAuroraColorado
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColorado
- Department of Medicine/Section of HematologyUniversity of Colorado Anschutz Medical CampusAuroraColorado
| |
Collapse
|
49
|
Meitern R, Fort J, Giraudeau M, Rattiste K, Sild E, Sepp T. Age-dependent expression of cancer-related genes in a long-lived seabird. Evol Appl 2020; 13:1708-1718. [PMID: 32821278 PMCID: PMC7428815 DOI: 10.1111/eva.13024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/21/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Studies of model animals like mice and rats have led to great advances in our understanding of the process of tumorigenesis, but this line of study has less to offer for understanding the mechanisms of cancer resistance. Increasing the diversity of nonmodel species from the perspective of molecular mechanisms of natural cancer resistance can lead to new insights into the evolution of protective mechanisms against neoplastic processes and to a wider understanding of natural cancer defense mechanisms. Such knowledge could then eventually be harnessed for the development of human cancer therapies. We suggest here that seabirds are promising, albeit currently completely ignored candidates for studying cancer defense mechanisms, as they have a longer maximum life span than expected from their body size and rates of energy metabolism and may have thus evolved mechanisms to limit neoplasia progression, especially at older ages. We here apply a novel, intraspecific approach of comparing old and young seabirds for improving our understanding of aging and neoplastic processes in natural settings. We used the long-lived common gulls (Larus canus) for studying the age-related pattern of expression of cancer-related genes, based on transcriptome analysis and databases of orthologues of human cancer genes. The analysis of differently expressed cancer-related genes between young and old gulls indicated that similarly to humans, age is potentially affecting cancer risk in this species. Out of eleven differentially expressed cancer-related genes between the groups, three were likely artifactually linked to cancer. The remaining eight were downregulated in old gulls compared to young ones. The downregulation of five of them could be interpreted as a mechanism suppressing neoplasia risk and three as increasing the risk. Based on these results, we suggest that old gulls differ from young ones both from the aspect of cancer susceptibility and tumor suppression at the genetic level.
Collapse
Affiliation(s)
- Richard Meitern
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs)UMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | | | - Kalev Rattiste
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Elin Sild
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Tuul Sepp
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
50
|
Jiang M, Shi L, Li X, Dong Q, Sun H, Du Y, Zhang Y, Shao T, Cheng H, Chen W, Wang Z. Genome-wide adaptive evolution to underground stresses in subterranean mammals: Hypoxia adaption, immunity promotion, and sensory specialization. Ecol Evol 2020; 10:7377-7388. [PMID: 32760535 PMCID: PMC7391338 DOI: 10.1002/ece3.6462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome-wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single-copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high-quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome-wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.
Collapse
Affiliation(s)
- Mengwan Jiang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Luye Shi
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Xiujuan Li
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qianqian Dong
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yimeng Du
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yifeng Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Weihua Chen
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|