1
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
3
|
Yi R, Li Y, Shan X. OPDA/dn-OPDA actions: biosynthesis, metabolism, and signaling. PLANT CELL REPORTS 2024; 43:206. [PMID: 39093416 DOI: 10.1007/s00299-024-03286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Plants cannot move, so they have evolved sophisticated strategies that integrate the external environmental cues and internal signaling networks for adaptation to dynamic circumstances. Cis-(+)-12-oxo-phytodienoic acid (OPDA) and 2,3-dinor-OPDA (dn-OPDA), the cyclopentenone-containing oxylipins, ubiquitously occur in the green lineage to orchestrate a series of growth and developmental processes as well as various stress and defense responses. OPDA/dn-OPDA are precursors of jasmonate (JA) biosynthesis in vascular plants. Dn-OPDA and its isomer also serve as bioactive JAs perceived by the coronatine insensitive 1/jasmonate ZIM-domain (COI1/JAZ) co-receptor complex in bryophytes and lycophytes. In addition, OPDA/dn-OPDA display signaling activities independent of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) and COI1 in both vascular and non-vascular plants. In this review, we discuss recent advances in the biosynthesis, metabolism, and signaling of OPDA/dn-OPDA, and provide an overview of the evolution of OPDA/dn-OPDA actions to obtain a deeper understanding of the pervasive role of OPDA/dn-OPDA in the plant life cycle.
Collapse
Affiliation(s)
- Rong Yi
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yirou Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Wang WY, Bi JF, Hu JX, Li X. Metabolomics comparison of four varieties apple with different browning characters in response to pretreatment during pulp processing. Food Res Int 2024; 190:114600. [PMID: 38945570 DOI: 10.1016/j.foodres.2024.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Browning commonly appeared in apple processing, which varied in different apple varieties. Present work investigated the metabolomics of four varieties apple of Yataka, Gala, Sansa, and Fuji, which possessed different browning characteristics and related enzymes. Sansa as browning insensitive apple variety, exhibited the least chroma change with the lowest PPO activity and the highest SOD activity among the four apple varieties. Browning inhibition pretreatment increased the activity of SOD and PAL and decreased PPO and POD activity. In addition, metabolomic variances among the four apple varieties (FC), their browning pulp (BR) and browning inhibition pulp (CM) were compared. And the key metabolites were in-depth analyzed to match the relevant KEGG pathways and speculated metabolic networks. There were 487, 644, and 494 significant differential metabolites detected in FC, BR and CM, which were consisted of lipids, benzenoids, phenylpropanoids, organheterocyclic compounds, organic acids, nucleosides, accounting for 23 %, 11 %, 15 %, 16 %, 11 % of the total metabolites. The differential metabolites were matched with 39, 49, and 36 KEGG pathways in FC, BR, and CM, respectively, in which other secondary metabolites biosynthesis metabolism was the most significant in FC, lipid metabolism was the most significant in BR and CM, and energy metabolism was markedly annotated in CM. Notably, Sansa displayed the highest number of differential metabolites in both its BR (484) and CM (342). The BR of Sansa was characterized by flavonoid biosynthesis, while the other three apple varieties were associated with α-linolenic acid metabolism. Furthermore, in browning sensitive apple varieties, the flavonoid and phenylpropanoid biosynthesis pathway was significantly activated by browning inhibition pretreatment. Phenolic compounds, lipids, sugars, organic acids, nucleotides, and adenosine were regulated differently in the four apple varieties, potentially serving as key regulatory sites. Overall, this work provides novel insight for browning prevention in different apple varieties.
Collapse
Affiliation(s)
- Wen-Yue Wang
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Jin-Feng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Jia-Xing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| |
Collapse
|
5
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
6
|
Wawrzyńska A, Sirko A. Sulfate Availability and Hormonal Signaling in the Coordination of Plant Growth and Development. Int J Mol Sci 2024; 25:3978. [PMID: 38612787 PMCID: PMC11012643 DOI: 10.3390/ijms25073978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | | |
Collapse
|
7
|
Monte I. Jasmonates and salicylic acid: Evolution of defense hormones in land plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102470. [PMID: 37801737 DOI: 10.1016/j.pbi.2023.102470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The emergence of plant hormone signaling pathways is deeply intertwined with land plant evolution. In angiosperms, two plant hormones, salicylic Acid (SA) and Jasmonates (JAs), play a key role in plant defense, where JAs-mediated defenses are typically activated in response to herbivores and necrotrophic pathogens, whereas SA is prioritized against hemi/biotrophic pathogens. Thus, studying the evolution of SA and JAs and their crosstalk is essential to understand the evolution of molecular plant-microbe interactions (EvoMPMI) in land plants. Recent advances in the evolution of SA and JAs biosynthesis, signaling, and crosstalk in land plants illustrated that the insight gained in angiosperms does not necessarily apply to non-seed plant lineages, where the receptors perceive different ligands and the hormones activate pathways independently on the canonical receptors. In this review, recent findings on the two main defense hormones (JAs and SA) in non-seed plants, including functional studies in the bryophyte model Marchantia polymorpha, will be discussed.
Collapse
Affiliation(s)
- Isabel Monte
- ZMBP, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen Germany.
| |
Collapse
|
8
|
Archer L, Mondal HA, Behera S, Twayana M, Patel M, Louis J, Nalam VJ, Keereetaweep J, Chowdhury Z, Shah J. Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6860-6873. [PMID: 37696760 DOI: 10.1093/jxb/erad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.
Collapse
Affiliation(s)
- Lani Archer
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Hossain A Mondal
- College of Post Graduate Studies in Agricultural Sciences (CPGS-AS, under Central Agricultural University, Imphal, Manipur), Meghalaya 793103, India
| | - Sumita Behera
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Moon Twayana
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Monika Patel
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska, Lincoln, NE 68583, USA
| | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
9
|
Mik V, Pospíšil T, Brunoni F, Grúz J, Nožková V, Wasternack C, Miersch O, Strnad M, Floková K, Novák O, Široká J. Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants. PHYTOCHEMISTRY 2023; 215:113855. [PMID: 37690699 DOI: 10.1016/j.phytochem.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic-lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Collapse
Affiliation(s)
- Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Federica Brunoni
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Jiří Grúz
- Department of Experimental Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Claus Wasternack
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Otto Miersch
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Kristýna Floková
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Jitka Široká
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
10
|
Adhikari A, Park SW. Reduced GSH Acts as a Metabolic Cue of OPDA Signaling in Coregulating Photosynthesis and Defense Activation under Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3745. [PMID: 37960101 PMCID: PMC10648297 DOI: 10.3390/plants12213745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
12-oxo-phytodienoic acid (OPDA) is a primary precursor of jasmonates, able to trigger autonomous signaling cascades that activate and fine-tune plant defense responses, as well as growth and development. However, its mechanism of actions remains largely elusive. Here we describe a dual-function messenger of OPDA signaling, reduced glutathione (GSH), that cross-regulates photosynthesis machinery and stress protection/adaptation in concert, optimizing plant plasticity and survival potential. Under stress conditions, the rapid induction of OPDA production stimulates GSH accumulation in the chloroplasts, and in turn leads to protein S-glutathionylation in modulating the structure and function of redox-sensitive enzymes such as 2-cysteine (Cys) peroxiredoxin A (2CPA), a recycler in the water-water cycle. GSH exchanges thiol-disulfides with the resolving CysR175, while donating an electron (e-, H+) to the peroxidatic CysP53, of 2CPA, which revives its reductase activity and fosters peroxide detoxification in photosynthesis. The electron flow protects photosynthetic processes (decreased total non-photochemical quenching, NPQ(T)) and maintains its efficiency (increased photosystem II quantum yield, ΦII). On the other hand, GSH also prompts retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as Glutathione S-Transferase 6 (GST6) and GST8, and actuating defense responses against various ecological constraints such as salinity, excess oxidants and light, as well as mechanical wounding. We thus propose that OPDA regulates a unique metabolic switch that interfaces light and defense signaling, where it links cellular and environmental cues to a multitude of plant physiological, e.g., growth, development, recovery, and acclimation, processes.
Collapse
Affiliation(s)
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
11
|
Kılıç M, Käpylä V, Gollan PJ, Aro EM, Rintamäki E. PSI Photoinhibition and Changing CO 2 Levels Initiate Retrograde Signals to Modify Nuclear Gene Expression. Antioxidants (Basel) 2023; 12:1902. [PMID: 38001755 PMCID: PMC10669900 DOI: 10.3390/antiox12111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Photosystem I (PSI) is a critical component of the photosynthetic machinery in plants. Under conditions of environmental stress, PSI becomes photoinhibited, leading to a redox imbalance in the chloroplast. PSI photoinhibition is caused by an increase in electron pressure within PSI, which damages the iron-sulfur clusters. In this study, we investigated the susceptibility of PSI to photoinhibition in plants at different concentrations of CO2, followed by global gene expression analyses of the differentially treated plants. PSI photoinhibition was induced using a specific illumination protocol that inhibited PSI with minimal effects on PSII. Unexpectedly, the varying CO2 levels combined with the PSI-PI treatment neither increased nor decreased the likelihood of PSI photodamage. All PSI photoinhibition treatments, independent of CO2 levels, upregulated genes generally involved in plant responses to excess iron and downregulated genes involved in iron deficiency. PSI photoinhibition also induced genes encoding photosynthetic proteins that act as electron acceptors from PSI. We propose that PSI photoinhibition causes a release of iron from damaged iron-sulfur clusters, which initiates a retrograde signal from the chloroplast to the nucleus to modify gene expression. In addition, the deprivation of CO2 from the air initiated a signal that induced flavonoid biosynthesis genes, probably via jasmonate production.
Collapse
Affiliation(s)
| | | | | | | | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland; (M.K.); (V.K.); (P.J.G.); (E.-M.A.)
| |
Collapse
|
12
|
Yi R, Du R, Wang J, Yan J, Chu J, Yan J, Shan X, Xie D. Dioxygenase JID1 mediates the modification of OPDA to regulate jasmonate homeostasis. Cell Discov 2023; 9:39. [PMID: 37041145 PMCID: PMC10090039 DOI: 10.1038/s41421-023-00530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/12/2023] [Indexed: 04/13/2023] Open
Affiliation(s)
- Rong Yi
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jijun Yan
- National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Xiaoyi Shan
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Arnaud D, Deeks MJ, Smirnoff N. Organelle-targeted biosensors reveal distinct oxidative events during pattern-triggered immune responses. PLANT PHYSIOLOGY 2023; 191:2551-2569. [PMID: 36582183 PMCID: PMC10069903 DOI: 10.1093/plphys/kiac603] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species are produced in response to pathogens and pathogen-associated molecular patterns, as exemplified by the rapid extracellular oxidative burst dependent on the NADPH oxidase isoform RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). We used the H2O2 biosensor roGFP2-Orp1 and the glutathione redox state biosensor GRX1-roGFP2 targeted to various organelles to reveal unsuspected oxidative events during the pattern-triggered immune response to flagellin (flg22) and after inoculation with Pseudomonas syringae. roGFP2-Orp1 was oxidized in a biphasic manner 1 and 6 h after treatment, with a more intense and faster response in the cytosol compared to chloroplasts, mitochondria, and peroxisomes. Peroxisomal and cytosolic GRX1-roGFP2 were also oxidized in a biphasic manner. Interestingly, our results suggested that bacterial effectors partially suppress the second phase of roGFP2-Orp1 oxidation in the cytosol. Pharmacological and genetic analyses indicated that the pathogen-associated molecular pattern-induced cytosolic oxidation required the BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) and BOTRYTIS-INDUCED KINASE 1 (BIK1) signaling components involved in the immune response but was largely independent of NADPH oxidases RBOHD and RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF) and apoplastic peroxidases peroxidase 33 (PRX33) and peroxidase 34 (PRX34). The initial apoplastic oxidative burst measured with luminol was followed by a second oxidation burst, both of which preceded the two waves of cytosolic oxidation. In contrast to the cytosolic oxidation, these bursts were RBOHD-dependent. Our results reveal complex oxidative sources and dynamics during the pattern-triggered immune response, including that cytosolic oxidation is largely independent of the preceding extracellular oxidation events.
Collapse
Affiliation(s)
- Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | | |
Collapse
|
14
|
Knieper M, Viehhauser A, Dietz KJ. Oxylipins and Reactive Carbonyls as Regulators of the Plant Redox and Reactive Oxygen Species Network under Stress. Antioxidants (Basel) 2023; 12:antiox12040814. [PMID: 37107189 PMCID: PMC10135161 DOI: 10.3390/antiox12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Reactive oxygen species (ROS), and in particular H2O2, serve as essential second messengers at low concentrations. However, excessive ROS accumulation leads to severe and irreversible cell damage. Hence, control of ROS levels is needed, especially under non-optimal growth conditions caused by abiotic or biotic stresses, which at least initially stimulate ROS synthesis. A complex network of thiol-sensitive proteins is instrumental in realizing tight ROS control; this is called the redox regulatory network. It consists of sensors, input elements, transmitters, and targets. Recent evidence revealed that the interplay of the redox network and oxylipins–molecules derived from oxygenation of polyunsaturated fatty acids, especially under high ROS levels–plays a decisive role in coupling ROS generation and subsequent stress defense signaling pathways in plants. This review aims to provide a broad overview of the current knowledge on the interaction of distinct oxylipins generated enzymatically (12-OPDA, 4-HNE, phytoprostanes) or non-enzymatically (MDA, acrolein) and components of the redox network. Further, recent findings on the contribution of oxylipins to environmental acclimatization will be discussed using flooding, herbivory, and establishment of thermotolerance as prime examples of relevant biotic and abiotic stresses.
Collapse
|
15
|
Adobor S, Banniza S, Vandenberg A, Purves RW. Untargeted profiling of secondary metabolites and phytotoxins associated with stemphylium blight of lentil. PLANTA 2023; 257:73. [PMID: 36864322 DOI: 10.1007/s00425-023-04105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Stemphylium botryosum alters lentil secondary metabolism and differentially affects resistant and susceptible genotypes. Untargeted metabolomics identifies metabolites and their potential biosynthetic pathways that play a crucial role in resistance to S. botryosum. The molecular and metabolic processes that mediate resistance to stemphylium blight caused by Stemphylium botryosum Wallr. in lentil are largely unknown. Identifying metabolites and pathways associated with Stemphylium infection may provide valuable insights and novel targets to breed for enhanced resistance. The metabolic changes following infection of four lentil genotypes by S. botryosum were investigated by comprehensive untargeted metabolic profiling employing reversed-phase or hydrophilic interaction liquid chromatography (HILIC) coupled to a Q-Exactive mass spectrometer. At the pre-flowering stage, plants were inoculated with S. botryosum isolate SB19 spore suspension and leaf samples were collected at 24, 96 and 144 h post-inoculation (hpi). Mock-inoculated plants were used as negative controls. After analyte separation, high-resolution mass spectrometry data was acquired in positive and negative ionization modes. Multivariate modeling revealed significant treatment, genotype and hpi effects on metabolic profile changes that reflect lentil response to Stemphylium infection. In addition, univariate analyses highlighted numerous differentially accumulated metabolites. By contrasting the metabolic profiles of SB19-inoculated and mock-inoculated plants and among lentil genotypes, 840 pathogenesis-related metabolites were detected including seven S. botryosum phytotoxins. These metabolites included amino acids, sugars, fatty acids and flavonoids in primary and secondary metabolism. Metabolic pathway analysis revealed 11 significant pathways including flavonoid and phenylpropanoid biosynthesis, which were affected upon S. botryosum infection. This research contributes to ongoing efforts toward a comprehensive understanding of the regulation and reprogramming of lentil metabolism under biotic stress, which will provide targets for potential applications in breeding for enhanced disease resistance.
Collapse
Affiliation(s)
- Stanley Adobor
- Pulse Crop Breeding and Genetics, Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Sabine Banniza
- Pulse Crop Breeding and Genetics, Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Pulse Crop Breeding and Genetics, Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
Verhoeven A, Finkers-Tomczak A, Prins P, Valkenburg-van Raaij DR, van Schaik CC, Overmars H, van Steenbrugge JJM, Tacken W, Varossieau K, Slootweg EJ, Kappers IF, Quentin M, Goverse A, Sterken MG, Smant G. The root-knot nematode effector MiMSP32 targets host 12-oxophytodienoate reductase 2 to regulate plant susceptibility. THE NEW PHYTOLOGIST 2023; 237:2360-2374. [PMID: 36457296 DOI: 10.1111/nph.18653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
To establish persistent infections in host plants, herbivorous invaders, such as root-knot nematodes, must rely on effectors for suppressing damage-induced jasmonate-dependent host defenses. However, at present, the effector mechanisms targeting the biosynthesis of biologically active jasmonates to avoid adverse host responses are unknown. Using yeast two-hybrid, in planta co-immunoprecipitation, and mutant analyses, we identified 12-oxophytodienoate reductase 2 (OPR2) as an important host target of the stylet-secreted effector MiMSP32 of the root-knot nematode Meloidogyne incognita. MiMSP32 has no informative sequence similarities with other functionally annotated genes but was selected for the discovery of novel effector mechanisms based on evidence of positive, diversifying selection. OPR2 catalyzes the conversion of a derivative of 12-oxophytodienoate to jasmonic acid (JA) and operates parallel to 12-oxophytodienoate reductase 3 (OPR3), which controls the main pathway in the biosynthesis of jasmonates. We show that MiMSP32 targets OPR2 to promote parasitism of M. incognita in host plants independent of OPR3-mediated JA biosynthesis. Artificially manipulating the conversion of the 12-oxophytodienoate by OPRs increases susceptibility to multiple unrelated plant invaders. Our study is the first to shed light on a novel effector mechanism targeting this process to regulate the susceptibility of host plants.
Collapse
Affiliation(s)
- Ava Verhoeven
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Plant-Environment Signaling, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Anna Finkers-Tomczak
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Pjotr Prins
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Debbie R Valkenburg-van Raaij
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Casper C van Schaik
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Joris J M van Steenbrugge
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Wannes Tacken
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Koen Varossieau
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Erik J Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
17
|
Liu H. Plant biology: Putting a break on stomatal opening. Curr Biol 2023; 33:R236-R237. [PMID: 36977388 DOI: 10.1016/j.cub.2023.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Blue light triggers stomatal opening through the phototropin-mediated pathway. A new study shows that light-induced stomatal opening is negatively regulated by three closely related plastidial phospholipases and their downstream oxylipin product.
Collapse
|
18
|
Chang Y, Shi M, Sun Y, Cheng H, Ou X, Zhao Y, Zhang X, Day B, Miao C, Jiang K. Light-induced stomatal opening in Arabidopsis is negatively regulated by chloroplast-originated OPDA signaling. Curr Biol 2023; 33:1071-1081.e5. [PMID: 36841238 DOI: 10.1016/j.cub.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
19
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Vogelsang L, Dietz KJ. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radic Biol Med 2022; 193:764-778. [PMID: 36403735 DOI: 10.1016/j.freeradbiomed.2022.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The temporal and spatial patterns of reactive oxygen species (ROS) in cells and tissues decisively determine the plant acclimation response to diverse abiotic and biotic stresses. Recent progress in developing dynamic cell imaging probes provides kinetic information on changes in parameters like H2O2, glutathione (GSH/GSSG) and NAD(P)H/NAD(P)+, that play a crucial role in tuning the cellular redox state. Central to redox-based regulation is the thiol-redox regulatory network of the cell that integrates reductive information from metabolism and oxidative ROS signals. Sensitive proteomics allow for monitoring changes in redox-related posttranslational modifications. Thiol peroxidases act as sensitive peroxide and redox sensors and play a central role in this signal transduction process. Peroxiredoxins (PRX) and glutathione peroxidases (GPX) are the two main thiol peroxidases and their function in ROS sensing and redox signaling in plants is emerging at present and summarized in this review. Depending on their redox state, PRXs and GPXs act as redox-dependent binding partners, direct oxidants of target proteins and oxidants of thiol redox transmitters that in turn oxidize target proteins. With their versatile functions, the multiple isoforms of plant thiol peroxidases play a central role in plant stress acclimation, e.g. to high light or osmotic stress, but also in ROS-mediated immunity and development.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
21
|
Fu D, Li J, Yang X, Li W, Zhou Z, Xiao S, Xue C. Iron redistribution induces oxidative burst and resistance in maize against Curvularia lunata. PLANTA 2022; 256:46. [PMID: 35867182 DOI: 10.1007/s00425-022-03963-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
ΔClnps6 induced iron redistribution in maize B73 leaf cells and resulted in reactive oxygen species (ROS) burst to enhance plant resistance against Curvularia lunata. Iron is an indispensable co-factor of various crucial enzymes that are involved in cellular metabolic processes and energy metabolism in eukaryotes. For this reason, plants and pathogens compete for iron to maintain their iron homeostasis, respectively. In our previous study, ΔClnps6, the extracellular siderophore biosynthesis deletion mutant of Curvularia lunata, was sensitive to exogenous hydrogen peroxide and virulence reduction. However, the mechanism was not studied. Here, we report that maize B73 displayed highly resistance to ΔClnps6. The plants recruited more iron at cell wall appositions (CWAs) to cause ROS bursts. Intracellular iron deficiency induced by iron redistribution originated form up-regulated expression of genes involved in intracellular iron consumption in leaves and absorption in roots. The RNA-sequencing data also showed that the expression of respiratory burst oxidase homologue (ZmRBOH4) and NADP-dependent malic enzyme 4 (ZmNADP-ME4) involved in ROS production was up-regulated in maize B73 after ΔClnps6 infection. Simultaneously, jasmonic acid (JA) biosynthesis genes lipoxygenase (ZmLOX), allene oxide synthase (ZmAOS), GA degradation gene gibberellin 2-beta-dioxygenase (ZmGA2OX6) and ABA degradation genes abscisic acid hydroxylase (ZmABH1, ZmABH2) involved in iron homeostasis were up-regulated expression. Ferritin1 (ZmFER1) positive regulated maize resistance against C. lunata via ROS burst under Fe-limiting conditions. Overall, our results showed that iron played vital roles in activating maize resistance in B73-C. lunata interaction.
Collapse
Affiliation(s)
- Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayang Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenling Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zengran Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
22
|
Shinya T, Miyamoto K, Uchida K, Hojo Y, Yumoto E, Okada K, Yamane H, Galis I. Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. PLANT MOLECULAR BIOLOGY 2022; 109:595-609. [PMID: 34822009 DOI: 10.1007/s11103-021-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
We show that in rice, the amino acid-conjugates of JA precursor, OPDA, may function as a non-canonical signal for the production of phytoalexins in coordination with the innate chitin signaling. The core oxylipins, jasmonic acid (JA) and JA-Ile, are well-known as potent regulators of plant defense against necrotrophic pathogens and/or herbivores. However, recent studies also suggest that other oxylipins, including 12-oxo-phytodienoic acid (OPDA), may contribute to plant defense. Here, we used a previously characterized metabolic defense marker, p-coumaroylputrescine (CoP), and fungal elicitor, chitooligosaccharide, to specifically test defense role of various oxylipins in rice (Oryza sativa). While fungal elicitor triggered a rapid production of JA, JA-Ile, and their precursor OPDA, rice cells exogenously treated with the compounds revealed that OPDA, rather than JA-Ile, can stimulate the CoP production. Next, reverse genetic approach and oxylipin-deficient rice mutant (hebiba) were used to uncouple oxylipins from other elicitor-triggered signals. It appeared that, without oxylipins, residual elicitor signaling had only a minimal effect but, in synergy with OPDA, exerted a strong stimulatory activity towards CoP production. Furthermore, as CoP levels were compromised in the OPDA-treated Osjar1 mutant cells impaired in the oxylipin-amino acid conjugation, putative OPDA-amino acid conjugates emerged as hypothetical regulators of CoP biosynthesis. Accordingly, we found several OPDA-amino acid conjugates in rice cells treated with exogenous OPDA, and OPDA-Asp was detected, although in small amounts, in the chitooligosaccharide-treated rice. However, as synthetic OPDA-Asp and OPDA-Ile, so far, failed to induce CoP in cells, it suggests that yet another presumed OPDA-amino acid form(s) could be acting as novel regulator(s) of phytoalexins in rice.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Kenichi Uchida
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
23
|
Lhotská M, Zemanová V, Pavlík M, Pavlíková D, Hnilička F, Popov M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci Rep 2022; 12:10046. [PMID: 35710561 PMCID: PMC9203739 DOI: 10.1038/s41598-022-13931-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we observed the effect of the application of soil dust enriched with risk elements (Cd, Pb, As and Zn) to leaf surfaces of lettuce (Lactuca sativa var. capitata) while it was grown under hydroponic conditions. This study aimed to determine how low soil dust particulate matter (PM) doses affected the activity of or damaged the photosynthetic apparatus and how the uptake of risk elements was associated with both epigenetic changes (5-methylcytosine content, i.e., 5mC) and stress metabolism. During the study, we obtained many results pertaining to risk element contents and biochemical (total phenolic content (TPC), malondialdehyde (MDA) content and the amount of free amino acids (AAs)) and physiological (photosynthesis parameters: net photosynthetic rate, transpiration rate, intercellular CO2 concentration, stomatal conductance, instantaneous water-use efficiency, maximum quantum yield of PSII, chlorophyll and carotenoid contents, and leaf water potential (WP)) plant features. The results showed an increase in MDA and 5mC. However, the transpiration rate, WP and free AAs decreased. In conclusion, contamination by very low doses of soil dust PM had no direct or significant effect on plant fitness, as shown by the TPC and 5mC content, which indicates that plants can overcome the oxidative stress caused by the accumulation of risk elements. From the above, we propose the use of epigenetic changes as biomarkers of potential changes in the activation of plant metabolism under stress caused by environmental pollution.
Collapse
Affiliation(s)
- Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic.
| | - Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Milan Pavlík
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| |
Collapse
|
24
|
OPDAylation of Thiols of the Redox Regulatory Network In Vitro. Antioxidants (Basel) 2022; 11:antiox11050855. [PMID: 35624719 PMCID: PMC9137622 DOI: 10.3390/antiox11050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
cis-(+)-12-Oxophytodienoic acid (OPDA) is a reactive oxylipin produced by catalytic oxygenation of polyunsaturated α-linolenic acid (18:3 (ω − 3)) in the chloroplast. Apart from its function as precursor for jasmonic acid synthesis, OPDA serves as a signaling molecule and regulator on its own, namely by tuning enzyme activities and altering expression of OPDA-responsive genes. A possible reaction mechanism is the covalent binding of OPDA to thiols via the addition to the C=C double bond of its α,β-unsaturated carbonyl group in the cyclopentenone ring. The reactivity allows for covalent modification of accessible cysteinyl thiols in proteins. This work investigated the reaction of OPDA with selected chloroplast and cytosolic thioredoxins (TRX) and glutaredoxins (GRX) of Arabidopsis thaliana. OPDA reacted with TRX and GRX as detected by decreased m-PEG maleimide binding, consumption of OPDA, reduced ability for insulin reduction and inability to activate glyceraldehyde-3-phosphate dehydrogenase and regenerate glutathione peroxidase (GPXL8), and with lower efficiency, peroxiredoxin IIB (PRXIIB). OPDAylation of certain protein thiols occurs quickly and efficiently in vitro and is a potent post-translational modification in a stressful environment.
Collapse
|
25
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
26
|
Asfaw KG, Liu Q, Eghbalian R, Purper S, Akaberi S, Dhakarey R, Münch SW, Wehl I, Bräse S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P. The jasmonate biosynthesis Gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111156. [PMID: 35151439 DOI: 10.1016/j.plantsci.2021.111156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Salinity poses a serious threat to global agriculture and human food security. A better understanding of plant adaptation to salt stress is, therefore, mandatory. In the non-photosynthetic cells of the root, salinity perturbs oxidative balance in mitochondria, leading to cell death. In parallel, plastids accumulate the jasmonate precursor cis (+)12-Oxo-Phyto-Dienoic Acid (OPDA) that is then translocated to peroxisomes and has been identified as promoting factor for salt-induced cell death as well. In the current study, we probed for a potential interaction between these three organelles that are primarily dealing with oxidative metabolism. We made use of two tools: (i) Rice OPDA Reductase 7 (OsOPR7), an enzyme localised in peroxisomes converting OPDA into the precursors of the stress hormone JA-Ile. (ii) A Trojan Peptoid, Plant PeptoQ, which can specifically target to mitochondria and scavenge excessive superoxide accumulating in response to salt stress. We show that overexpression of OsOPR7 as GFP fusion in tobacco (Nicotiana tabacum L. cv. Bright Yellow 2, BY-2) cells, as well as a pretreatment with Plant PeptoQ can mitigate salt stress with respect to numerous aspects including proliferation, expansion, ionic balance, redox homeostasis, and mortality. This mitigation correlates with a more robust oxidative balance, evident from a higher activity of superoxide dismutase (SOD), lower levels of superoxide and lipid peroxidation damage, and a conspicuous and specific upregulation of mitochondrial SOD transcripts. Although both, Plant PeptoQ and ectopic OsOPR7, were acting in parallel and mostly additive, there are two specific differences: (i) OsOPR7 is strictly localised to the peroxisomes, while Plant PeptoQ found in mitochondria. (ii) Plant PeptoQ activates transcripts of NAC, a factor involved in retrograde signalling from mitochondria to the nucleus, while these transcripts are suppressed significantly in the cells overexpressing OsOPR7. The fact that overexpression of a peroxisomal enzyme shifting the jasmonate pathway from the cell-death signal OPDA towards JA-Ile, a hormone linked with salt adaptation, is accompanied by more robust redox homeostasis in a different organelle, the mitochondrion, indicates that cross-talk between peroxisome and mitochondrion is a crucial factor for efficient adaptation to salt stress.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rose Eghbalian
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sabine Purper
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sahar Akaberi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rohit Dhakarey
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Elisabeth Eiche
- Institute of Applied Geochemistry (AGW), Geochemistry and Economic Geology Group, Karlsruhe Institute of Technology (KIT), Adenauerring 20b, D-76131, Karlsruhe, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 D, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
27
|
Lu D, Liu B, Ren M, Wu C, Ma J, Shen Y. Light Deficiency Inhibits Growth by Affecting Photosynthesis Efficiency as well as JA and Ethylene Signaling in Endangered Plant Magnolia sinostellata. PLANTS (BASEL, SWITZERLAND) 2021; 10:2261. [PMID: 34834626 PMCID: PMC8618083 DOI: 10.3390/plants10112261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022]
Abstract
The endangered plant Magnolia sinostellata largely grows in the understory of forest and suffers light deficiency stress. It is generally recognized that the interaction between plant development and growth environment is intricate; however, the underlying molecular regulatory pathways by which light deficiency induced growth inhibition remain obscure. To understand the physiological and molecular mechanisms of plant response to shading caused light deficiency, we performed photosynthesis efficiency analysis and comparative transcriptome analysis in M. sinostellata leaves, which were subjected to shading treatments of different durations. Most of the parameters relevant to the photosynthesis systems were altered as the result of light deficiency treatment, which was also confirmed by the transcriptome analysis. Gene Ontology and KEGG pathway enrichment analyses illustrated that most of differential expression genes (DEGs) were enriched in photosynthesis-related pathways. Light deficiency may have accelerated leaf abscission by impacting the photosynthesis efficiency and hormone signaling. Further, shading could repress the expression of stress responsive transcription factors and R-genes, which confer disease resistance. This study provides valuable insight into light deficiency-induced molecular regulatory pathways in M. sinostellata and offers a theoretical basis for conservation and cultivation improvements of Magnolia and other endangered woody plants.
Collapse
Affiliation(s)
- Danying Lu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain;
| | - Mingjie Ren
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chao Wu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yamei Shen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
28
|
Anderson AJ, Kim YC. The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion. THE PLANT PATHOLOGY JOURNAL 2021; 37:415-427. [PMID: 34847628 PMCID: PMC8632612 DOI: 10.5423/ppj.rw.01.2021.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
29
|
Cyclophilins and Their Functions in Abiotic Stress and Plant-Microbe Interactions. Biomolecules 2021; 11:biom11091390. [PMID: 34572603 PMCID: PMC8464771 DOI: 10.3390/biom11091390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/12/2023] Open
Abstract
Plants have developed a variety of mechanisms and regulatory pathways to change their gene expression profiles in response to abiotic stress conditions and plant–microbe interactions. The plant–microbe interaction can be pathogenic or beneficial. Stress conditions, both abiotic and pathogenic, negatively affect the growth, development, yield and quality of plants, which is very important for crops. In contrast, the plant–microbe interaction could be growth-promoting. One of the proteins involved in plant response to stress conditions and plant–microbe interactions is cyclophilin. Cyclophilins (CyPs), together with FK506-binding proteins (FKBPs) and parvulins, belong to a big family of proteins with peptidyl-prolyl cis-trans isomerase activity (Enzyme Commission (EC) number 5.2.1.8). Genes coding for proteins with the CyP domain are widely expressed in all organisms examined, including bacteria, fungi, animals, and plants. Their different forms can be found in the cytoplasm, endoplasmic reticulum, nucleus, chloroplast, mitochondrion and in the phloem space. They are involved in numerous processes, such as protein folding, cellular signaling, mRNA processing, protein degradation and apoptosis. In the past few years, many new functions, and molecular mechanisms for cyclophilins have been discovered. In this review, we aim to summarize recent advances in cyclophilin research to improve our understanding of their biological functions in plant defense and symbiotic plant–microbe interactions.
Collapse
|
30
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
31
|
Fontes-Puebla AA, Borrego EJ, Kolomiets MV, Bernal JS. Maize biochemistry in response to root herbivory was mediated by domestication, spread, and breeding. PLANTA 2021; 254:70. [PMID: 34499214 DOI: 10.1007/s00425-021-03720-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
With domestication, northward spread, and breeding, maize defence against root-herbivores relied on induced defences, decreasing levels of phytohormones involved in resistance, and increasing levels of a phytohormone involved in tolerance. We addressed whether a suite of maize (Zea mays mays) phytohormones and metabolites involved in herbivore defence were mediated by three successive processes: domestication, spread to North America, and modern breeding. With those processes, and following theoretical predictions, we expected to find: a change in defence strategy from reliance on induced defences to reliance on constitutive defences; decreasing levels of phytohormones involved in herbivore resistance, and; increasing levels of a phytohormone involved in herbivore tolerance. We tested those predictions by comparing phytohormone levels in seedlings exposed to root herbivory by Diabrotica virgifera virgifera among four plant types encompassing those processes: the maize ancestor Balsas teosinte (Zea mays parviglumis), Mexican maize landraces, USA maize landraces, and USA inbred maize cultivars. With domestication, maize transitioned from reliance on induced defences in teosinte to reliance on constitutive defences in maize, as predicted. One subset of metabolites putatively involved in herbivory defence (13-oxylipins) was suppressed with domestication, as predicted, though another was enhanced (9-oxylipins), and both were variably affected by spread and breeding. A phytohormone (indole-3-acetic acid) involved in tolerance was enhanced with domestication, and with spread and breeding, as predicted. These changes are consistent with documented changes in herbivory resistance and tolerance, and occurred coincidentally with cultivation in increasingly resource-rich environments, i.e., from wild to highly enriched agricultural environments. We concluded that herbivore defence evolution in crops may be mediated by processes spanning thousands of generations, e.g., domestication and spread, as well as by processes spanning tens of generations, e.g., breeding and agricultural intensification.
Collapse
Affiliation(s)
- Ana A Fontes-Puebla
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Campo Experimental Costa de Hermosillo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Hermosillo, Sonora, México
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Haber Z, Lampl N, Meyer AJ, Zelinger E, Hipsch M, Rosenwasser S. Resolving diurnal dynamics of the chloroplastic glutathione redox state in Arabidopsis reveals its photosynthetically derived oxidation. THE PLANT CELL 2021; 33:1828-1844. [PMID: 33624811 PMCID: PMC8254480 DOI: 10.1093/plcell/koab068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische
Friedrich–Wilhelms Universität Bonn, Friedrich-Ebert-Allee 144, D-53113
Bonn, Germany
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of
Agriculture, Food and Environment, The Hebrew University of Jerusalem,
Rehovot 7610001, Israel
| | - Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture,
The Hebrew University of Jerusalem, Rehovot 7610000, Israel
- Author for correspondence:
| |
Collapse
|
33
|
Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC, Holuigue L, Schwarzländer M, Müller-Schüssele SJ, Meyer AJ. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. PLANT PHYSIOLOGY 2021; 186:125-141. [PMID: 33793922 PMCID: PMC8154069 DOI: 10.1093/plphys/kiaa095] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/03/2020] [Indexed: 05/19/2023]
Abstract
Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.
Collapse
Affiliation(s)
- José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Edoardo A Cutolo
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Maria Homagk
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ute C Vothknecht
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, D-53115 Bonn, Germany
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
34
|
Venegas-Molina J, Molina-Hidalgo FJ, Clicque E, Goossens A. Why and How to Dig into Plant Metabolite-Protein Interactions. TRENDS IN PLANT SCIENCE 2021; 26:472-483. [PMID: 33478816 DOI: 10.1016/j.tplants.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Interaction between metabolites and proteins drives cellular regulatory processes within and between organisms. Recent reports highlight that numerous plant metabolites embrace multiple biological activities, beyond a sole role as substrates, products, or cofactors of enzymes, or as defense or growth-regulatory compounds. Though several technologies have been developed to identify and characterize metabolite-protein interactions, the systematic implementation of such methods in the plant field remains limited. Here, we discuss the plant metabolic space, with a specific focus on specialized metabolites and their roles, and review the technologies to study their interaction with proteins. We approach it both from a plant's perspective, to increase our understanding of plant metabolite-dependent regulatory networks, and from a human perspective, to empower agrochemical and drug discoveries.
Collapse
Affiliation(s)
- Jhon Venegas-Molina
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francisco J Molina-Hidalgo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elke Clicque
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
35
|
Maynard D, Viehhauser A, Knieper M, Dreyer A, Manea G, Telman W, Butter F, Chibani K, Scheibe R, Dietz KJ. The In Vitro Interaction of 12-Oxophytodienoic Acid and Related Conjugated Carbonyl Compounds with Thiol Antioxidants. Biomolecules 2021; 11:biom11030457. [PMID: 33803875 PMCID: PMC8003295 DOI: 10.3390/biom11030457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
α,β-unsaturated carbonyls interfere with numerous plant physiological processes. One mechanism of action is their reactivity toward thiols of metabolites like cysteine and glutathione (GSH). This work aimed at better understanding these interactions. Both 12-oxophytodienoic acid (12-OPDA) and abscisic acid (ABA) conjugated with cysteine. It was found that the reactivity of α,β-unsaturated carbonyls with GSH followed the sequence trans-2-hexenal < 12-OPDA ≈ 12-OPDA-ethylester < 2-cyclopentenone << methyl vinylketone (MVK). Interestingly, GSH, but not ascorbate (vitamin C), supplementation ameliorated the phytotoxic potential of MVK. In addition, 12-OPDA and 12-OPDA-related conjugated carbonyl compounds interacted with proteins, e.g., with members of the thioredoxin (TRX)-fold family. 12-OPDA modified two cysteinyl residues of chloroplast TRX-f1. The OPDAylated TRX-f1 lost its activity to activate the Calvin-Benson-cycle enzyme fructose-1,6-bisphosphatase (FBPase). Finally, we show that 12-OPDA interacts with cyclophilin 20-3 (Cyp20-3) non-covalently and affects its peptidyl-prolyl-cis/trans isomerase activity. The results demonstrate the high potential of 12-OPDA as a diverse interactor and cellular regulator and suggest that OPDAylation may occur in plant cells and should be investigated as novel regulatory mechanism.
Collapse
Affiliation(s)
- Daniel Maynard
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Andrea Viehhauser
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Madita Knieper
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Ghamdan Manea
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Falk Butter
- Institute for Molecular Biology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrück University, 49069 Osnabrück, Germany;
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (D.M.); (A.V.); (M.K.); (A.D.); (G.M.); (W.T.); (K.C.)
- Correspondence: ; Tel.: +49-521-106-5589
| |
Collapse
|
36
|
Duan L, Pérez-Ruiz JM, Cejudo FJ, Dinneny JR. Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence. PLANT PHYSIOLOGY 2021; 185:503-518. [PMID: 33721893 PMCID: PMC8133581 DOI: 10.1093/plphys/kiaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 05/10/2023]
Abstract
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.
Collapse
Affiliation(s)
- Lina Duan
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - José R Dinneny
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Author for communication:
| |
Collapse
|
37
|
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat Commun 2021; 12:1392. [PMID: 33654102 PMCID: PMC7925690 DOI: 10.1038/s41467-021-21282-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Contamination of paddy soils can lead to toxic arsenic accumulation in rice grains and low levels of the micronutrient selenium. Here the authors show that a gain of function mutant affecting an O-acetylserine (thiol) lyase enhances sulfur and selenium assimilation while reducing arsenic accumulation in grains.
Collapse
|
38
|
Shi L, Du L, Wen J, Zong X, Zhao W, Wang J, Xu M, Wang Y, Fu A. Conserved Residues in the C-Terminal Domain Affect the Structure and Function of CYP38 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:630644. [PMID: 33732275 PMCID: PMC7959726 DOI: 10.3389/fpls.2021.630644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis cyclophilin38 (CYP38) is a thylakoid lumen protein critial for PSII assembly and maintenance, and its C-terminal region serves as the target binding domain. We hypothesized that four conserved residues (R290, F294, Q372, and F374) in the C-terminal domain are critical for the structure and function of CYP38. In yeast two-hybrid and protein pull-down assays, CYP38s with single-sited mutations (R290A, F294A, Q372A, or F374A) did not interact with the CP47 E-loop as the wild-type CYP38. In contrast, CYP38 with the R290A/F294A/Q372A/F374A quadruple mutation could bind the CP47 E-loop. Gene transformation analysis showed that the quadruple mutation prevented CYP38 to efficiently complement the mutant phenotype of cyp38. The C-terminal domain half protein with the quadruple mutation, like the wild-type one, could interact with the N-terminal domain or the CP47 E-loop in vitro. The cyp38 plants expressing CYP38 with the quadruple mutation showed a similar BN-PAGE profile as cyp38, but distinct from the wild type. The CYP38 protein with the quadruple mutation associated with the thylakoid membrane less efficiently than the wild-type CYP38. We concluded that these four conserved residues are indispensable as changes of all these residues together resulted in a subtle conformational change of CYP38 and reduced its intramolecular N-C interaction and the ability to associate with the thylakoid membrane, thus impairing its function in chloroplast.
Collapse
|
39
|
Dreyer A, Treffon P, Basiry D, Jozefowicz AM, Matros A, Mock HP, Dietz KJ. Function and Regulation of Chloroplast Peroxiredoxin IIE. Antioxidants (Basel) 2021; 10:antiox10020152. [PMID: 33494157 PMCID: PMC7909837 DOI: 10.3390/antiox10020152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Peroxiredoxins (PRX) are thiol peroxidases that are highly conserved throughout all biological kingdoms. Increasing evidence suggests that their high reactivity toward peroxides has a function not only in antioxidant defense but in particular in redox regulation of the cell. Peroxiredoxin IIE (PRX-IIE) is one of three PRX types found in plastids and has previously been linked to pathogen defense and protection from protein nitration. However, its posttranslational regulation and its function in the chloroplast protein network remained to be explored. Using recombinant protein, it was shown that the peroxidatic Cys121 is subjected to multiple posttranslational modifications, namely disulfide formation, S-nitrosation, S-glutathionylation, and hyperoxidation. Slightly oxidized glutathione fostered S-glutathionylation and inhibited activity in vitro. Immobilized recombinant PRX-IIE allowed trapping and subsequent identification of interaction partners by mass spectrometry. Interaction with the 14-3-3 υ protein was confirmed in vitro and was shown to be stimulated under oxidizing conditions. Interactions did not depend on phosphorylation as revealed by testing phospho-mimicry variants of PRX-IIE. Based on these data it is proposed that 14-3-3υ guides PRX‑IIE to certain target proteins, possibly for redox regulation. These findings together with the other identified potential interaction partners of type II PRXs localized to plastids, mitochondria, and cytosol provide a new perspective on the redox regulatory network of the cell.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Patrick Treffon
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Daniel Basiry
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Anna Maria Jozefowicz
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
- Correspondence: ; Tel.: +49-521-106-5589
| |
Collapse
|
40
|
Mukherjee S. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? PLANT SIGNALING & BEHAVIOR 2021; 16:1831792. [PMID: 33300450 PMCID: PMC7781837 DOI: 10.1080/15592324.2020.1831792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant resilience to oxidative stress possibly operates through the restoration of intracellular redox milieu and the activity of various posttranslationally modified proteins. Among various modes of redox regulation operative in plants cys oxPTMs are brought about by the activity of reactive oxygen species (ROS), reactive nitrogen species (RNS), and hydrogen peroxide. Cysteine oxPTMs are capable of transducing ROS-mediated long-distance hormone signaling (ABA, JA, SA) in plants. S-sulphenylation is an intermediary modification en route to other oxidative states of cysteine. In silico analysis have revealed evolutionary conservation of certain S-sulphenylated proteins across human and plants. Further analysis of protein sulphenylation in plants should be extended to the functional follow-up studies followed by site-specific characterization and case-by-case validation of protein activity. The repertoire of physiological methods (fluorescent conjugates (dimedone) and yeast AP-1 (YAP1)-based genetic probes) in the recent past has been successful in the detection of sulphenylated proteins and other cysteine-based modifications in plants. In view of a better understanding of the sulfur-based redoxome it is necessary to update our timely progress on the methodological advancements for the detection of cysteine-based oxPTM. This substantiative information can extend our investigations on plant-environment interaction thus improving crop manipulation strategies. The simulation-based computational approach has emerged as a new method to determine the directive mechanism of cysteine oxidation in plants. Thus, sulfenome analysis in various plant systems might reflect as a pinnacle of plant redox biology in the future.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West, Bengal, India
- CONTACT Soumya Mukherjee Department of Botany, Jangipur College, University of Kalyani, West, Bengal742213, India
| |
Collapse
|
41
|
Biswas MS, Mano J. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:720867. [PMID: 34777410 PMCID: PMC8581730 DOI: 10.3389/fpls.2021.720867] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Oxidation of membrane lipids by reactive oxygen species (ROS) or O2/lipoxygenase leads to the formation of various bioactive compounds collectively called oxylipins. Reactive carbonyl species (RCS) are a group of oxylipins that have the α,β-unsaturated carbonyl structure, including acrolein and 4-hydroxy-(E)-2-nonenal. RCS provides a missing link between ROS stimuli and cellular responses in plants via their electrophilic modification of proteins. The physiological significance of RCS in plants has been established based on the observations that the RCS-scavenging enzymes that are overexpressed in plants or the RCS-scavenging chemicals added to plants suppress the plants' responses to ROS, i.e., photoinhibition, aluminum-induced root damage, programmed cell death (PCD), senescence, abscisic acid-induced stomata closure, and auxin-induced lateral root formation. The functions of RCS are thus a key to ROS- and redox-signaling in plants. The chemical species involved in distinct RCS signaling/damaging phenomena were recently revealed, based on comprehensive carbonyl determinations. This review presents an overview of the current status of research regarding RCS signaling functions in plants and discusses present challenges for gaining a more complete understanding of the signaling mechanisms.
Collapse
Affiliation(s)
- Md. Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jun’ichi Mano
- Science Research Center, Yamaguchi University, Yamaguchi, Japan
- *Correspondence: Jun’ichi Mano,
| |
Collapse
|
42
|
Liu W, Park SW. 12- oxo-Phytodienoic Acid: A Fuse and/or Switch of Plant Growth and Defense Responses? FRONTIERS IN PLANT SCIENCE 2021; 12:724079. [PMID: 34490022 PMCID: PMC8418078 DOI: 10.3389/fpls.2021.724079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 05/13/2023]
Abstract
12-oxo-Phytodienoic acid (OPDA) is a primary precursor of (-)-jasmonic acid (JA), able to trigger autonomous signaling pathways that regulate a unique subset of jasmonate-responsive genes, activating and fine-tuning defense responses, as well as growth processes in plants. Recently, a number of studies have illuminated the physiol-molecular activities of OPDA signaling in plants, which interconnect the regulatory loop of photosynthesis, cellular redox homeostasis, and transcriptional regulatory networks, together shedding new light on (i) the underlying modes of cellular interfaces between growth and defense responses (e.g., fitness trade-offs or balances) and (ii) vital information in genetic engineering or molecular breeding approaches to upgrade own survival capacities of plants. However, our current knowledge regarding its mode of actions is still far from complete. This review will briefly revisit recent progresses on the roles and mechanisms of OPDA and information gaps within, which help in understanding the phenotypic and environmental plasticity of plants.
Collapse
|
43
|
Grapevine-Downy Mildew Rendezvous: Proteome Analysis of the First Hours of an Incompatible Interaction. PLANTS 2020; 9:plants9111498. [PMID: 33167573 PMCID: PMC7694532 DOI: 10.3390/plants9111498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022]
Abstract
Grapevine is one of the most relevant crops in the world being used for economically important products such as wine. However, relevant grapevine cultivars are heavily affected by diseases such as the downy mildew disease caused by Plasmopara viticola. Improvements on grapevine resistance are made mainly by breeding techniques where resistance traits are introgressed into cultivars with desired grape characteristics. However, there is still a lack of knowledge on how resistant or tolerant cultivars tackle the P. viticola pathogen. In this study, using a shotgun proteomics LC-MS/MS approach, we unravel the protein modulation of a highly tolerant grapevine cultivar, Vitis vinifera “Regent”, in the first hours post inoculation (hpi) with P. viticola. At 6 hpi, proteins related to defense and to response to stimuli are negatively modulated while at 12 hpi there is an accumulation of proteins belonging to both categories. The co-occurrence of indicators of effector-triggered susceptibility (ETS) and effector-triggered immunity (ETI) is detected at both time-points, showing that these defense processes present high plasticity. The results obtained in this study unravel the tolerant grapevine defense strategy towards P. viticola and may provide valuable insights on resistance associated candidates and mechanisms, which may play an important role in the definition of new strategies for breeding approaches.
Collapse
|
44
|
Martins L, Knuesting J, Bariat L, Dard A, Freibert SA, Marchand CH, Young D, Dung NHT, Voth W, Debures A, Saez-Vasquez J, Lemaire SD, Lill R, Messens J, Scheibe R, Reichheld JP, Riondet C. Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. PLANT PHYSIOLOGY 2020; 184:676-692. [PMID: 32826321 PMCID: PMC7536686 DOI: 10.1104/pp.20.00906] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 05/02/2023]
Abstract
Heat stress induces misfolding and aggregation of proteins unless they are guarded by chaperone systems. Here, we examined the function of the glutaredoxin GRXS17, a member of thiol reductase families in the model plant Arabidopsis (Arabidopsis thaliana). GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin domain and three CGFS active-site motif-containing GRX domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione-dependent manner. As an Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, GRXS17 presented both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induced loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active-site cysteines in the corresponding thioredoxin domains. This oxidation led to a shift of GRXS17 to a high-molecular-weight complex and thus activated its holdase activity in vitro. Moreover, GRXS17 was specifically involved in plant tolerance to moderate high temperature and protected root meristematic cells from heat-induced cell death. Finally, GRXS17 interacted with a different set of proteins upon heat stress, possibly protecting them from heat injuries. Therefore, we propose that the Fe-S cluster enzyme GRXS17 is an essential guard that protects proteins against moderate heat stress, likely through a redox-dependent chaperone activity. We reveal the mechanism of an Fe-S cluster-dependent activity shift that converts the holoenzyme GRXS17 into a holdase, thereby preventing damage caused by heat stress.
Collapse
Affiliation(s)
- Laura Martins
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Johannes Knuesting
- Department of Plant Physiology, FB5, University of Osnabrück, D-49069 Osnabrueck, Germany
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Sven A Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg 35032, Germany
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, F-75005 Paris, France
| | - David Young
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Nguyen Ho Thuy Dung
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Wilhelm Voth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anne Debures
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Julio Saez-Vasquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, F-75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Unité Mixte de Recherche 7238, Centre National de la Recherche Scientifique, Sorbonne Université, F-75005 Paris, France
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg 35032, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Renate Scheibe
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg 35032, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, F-66860 Perpignan, France
| |
Collapse
|
45
|
Ge Q, Tang Y, Luo W, Zhang J, Chong K, Xu Y. A Cyclophilin OsCYP20-2 Interacts with OsSYF2 to Regulate Grain Length by Pre-mRNA Splicing. RICE (NEW YORK, N.Y.) 2020; 13:64. [PMID: 32910367 PMCID: PMC7483694 DOI: 10.1186/s12284-020-00425-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Grain size is one of the key agronomic traits that impact grain yield. Several regulatory pathways had been reported to participate in grain size determination via cell expansion or proliferation in rice. However, little is known about cyclophilin and spliceosome participation in grain shape regulation. RESULTS Here, we identified OsCYP20-2, a cyclophilin that influences spliceosome assembly to determine grain length. oscyp20-2 t1, a knock out mutant of OsCYP20-2 caused by T-DNA insertion, produced shorter grains with deficient cell elongation. Through yeast two-hybrid screening and pull-down assays, OsSYF2, a pre-mRNA splicing factor, was identified as an interacting protein of OsCYP20-2. The phenotypes of transgenic lines indicated that OsSYF2 positively regulates grain length via its influence on cell expansion. Transcriptomic analysis showed that OsSYF2 controls the expression and pre-mRNA alternative splicing of genes involved in sugar metabolism. In addition, these two genes have similar effects on panicle architecture. CONCLUSIONS Taken together, OsSYF2, an interacting protein of OsCYP20-2, controls grain length and panicle architecture by regulating the alternative splicing of pre-mRNA involved in cell elongation and sugar metabolism.
Collapse
Affiliation(s)
- Qiang Ge
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Present Address: College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongyan Tang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Innovation Academy for Seed Design, CAS, Beijing, 100101, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Innovation Academy for Seed Design, CAS, Beijing, 100101, China.
| |
Collapse
|
46
|
Chemical Genetics Approach Identifies Abnormal Inflorescence Meristem 1 as a Putative Target of a Novel Sulfonamide That Protects Catalase2-Deficient Arabidopsis against Photorespiratory Stress. Cells 2020; 9:cells9092026. [PMID: 32887516 PMCID: PMC7563276 DOI: 10.3390/cells9092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Alterations of hydrogen peroxide (H2O2) levels have a profound impact on numerous signaling cascades orchestrating plant growth, development, and stress signaling, including programmed cell death. To expand the repertoire of known molecular mechanisms implicated in H2O2 signaling, we performed a forward chemical screen to identify small molecules that could alleviate the photorespiratory-induced cell death phenotype of Arabidopsisthaliana mutants lacking H2O2-scavenging capacity by peroxisomal catalase2. Here, we report the characterization of pakerine, an m-sulfamoyl benzamide from the sulfonamide family. Pakerine alleviates the cell death phenotype of cat2 mutants exposed to photorespiration-promoting conditions and delays dark-induced senescence in wild-type Arabidopsis leaves. By using a combination of transcriptomics, metabolomics, and affinity purification, we identified abnormal inflorescence meristem 1 (AIM1) as a putative protein target of pakerine. AIM1 is a 3-hydroxyacyl-CoA dehydrogenase involved in fatty acid β-oxidation that contributes to jasmonic acid (JA) and salicylic acid (SA) biosynthesis. Whereas intact JA biosynthesis was not required for pakerine bioactivity, our results point toward a role for β-oxidation-dependent SA production in the execution of H2O2-mediated cell death.
Collapse
|
47
|
Liu W, Barbosa Dos Santos I, Moye A, Park SW. CYP20-3 deglutathionylates 2-CysPRX A and suppresses peroxide detoxification during heat stress. Life Sci Alliance 2020; 3:e202000775. [PMID: 32732254 PMCID: PMC7409537 DOI: 10.26508/lsa.202000775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
In plants, growth-defense trade-offs occur because of limited resources, which demand prioritization towards either of them depending on various external and internal factors. However, very little is known about molecular mechanisms underlying their occurrence. Here, we describe that cyclophilin 20-3 (CYP20-3), a 12-oxo-phytodienoic acid (OPDA)-binding protein, crisscrosses stress responses with light-dependent electron reactions, which fine-tunes activities of key enzymes in plastid sulfur assimilations and photosynthesis. Under stressed states, OPDA, accumulates in the chloroplasts, binds and stimulates CYP20-3 to convey electrons towards serine acetyltransferase 1 (SAT1) and 2-Cys peroxiredoxin A (2CPA). The latter is a thiol-based peroxidase, protecting and optimizing photosynthesis by reducing its toxic byproducts (e.g., H2O2). Reduction of 2CPA then inactivates its peroxidase activity, suppressing the peroxide detoxification machinery, whereas the activation of SAT1 promotes thiol synthesis and builds up reduction capacity, which in turn triggers the retrograde regulation of defense gene expressions against abiotic stress. Thus, we conclude that CYP20-3 is a unique metabolic hub conveying resource allocations between plant growth and defense responses (trade-offs), ultimately balancing optimal growth phonotype.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Anna Moye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
48
|
Pontelli MC, Castro IA, Martins RB, Veras FP, Serra LL, Nascimento DC, Cardoso RS, Rosales R, Lima TM, Souza JP, Caetité DB, de Lima MHF, Kawahisa JT, Giannini MC, Bonjorno LP, Lopes MIF, Batah SS, Siyuan L, Assad RL, Almeida SCL, Oliveira FR, Benatti MN, Pontes LLF, Santana RC, Vilar FC, Martins MA, Cunha TM, Calado RT, Alves-Filho JC, Zamboni DS, Fabro A, Louzada-Junior P, Oliveira RDR, Cunha FQ, Arruda E. Infection of human lymphomononuclear cells by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 34013264 DOI: 10.1101/2020.01.07.896506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo . We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4 + T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.
Collapse
|
49
|
Asfaw KG, Liu Q, Xu X, Manz C, Purper S, Eghbalian R, Münch SW, Wehl I, Bräse S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P. A mitochondria-targeted coenzyme Q peptoid induces superoxide dismutase and alleviates salinity stress in plant cells. Sci Rep 2020; 10:11563. [PMID: 32665569 PMCID: PMC7360622 DOI: 10.1038/s41598-020-68491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/10/2020] [Indexed: 11/08/2022] Open
Abstract
Salinity is a serious challenge to global agriculture and threatens human food security. Plant cells can respond to salt stress either by activation of adaptive responses, or by programmed cell death. The mechanisms deciding the respective response are far from understood, but seem to depend on the degree, to which mitochondria can maintain oxidative homeostasis. Using plant PeptoQ, a Trojan Peptoid, as vehicle, it is possible to transport a coenzyme Q10 (CoQ10) derivative into plant mitochondria. We show that salinity stress in tobacco BY-2 cells (Nicotiana tabacum L. cv Bright Yellow-2) can be mitigated by pretreatment with plant PeptoQ with respect to numerous aspects including proliferation, expansion, redox homeostasis, and programmed cell death. We tested the salinity response for transcripts from nine salt-stress related-genes representing different adaptive responses. While most did not show any significant response, the salt response of the transcription factor NtNAC, probably involved in mitochondrial retrograde signaling, was significantly modulated by the plant PeptoQ. Most strikingly, transcripts for the mitochondrial, Mn-dependent Superoxide Dismutase were rapidly and drastically upregulated in presence of the peptoid, and this response was disappearing in presence of salt. The same pattern, albeit at lower amplitude, was seen for the sodium exporter SOS1. The findings are discussed by a model, where plant PeptoQ modulates retrograde signalling to the nucleus leading to a strong expression of mitochondrial SOD, what renders mitochondria more resilient to perturbations of oxidative balance, such that cells escape salt induced cell death and remain viable.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Xiaolu Xu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Christina Manz
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sabine Purper
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rose Eghbalian
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Elisabeth Eiche
- Institute of Applied Geochemistry (AGW), Geochemistry and Economic Geology Group, Karlsruhe Institute of Technology (KIT), Adenauerring 20b, D-76131, Karlsruhe, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
50
|
Yu J, Li Y, Qin Z, Guo S, Li Y, Miao Y, Song C, Chen S, Dai S. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxid Redox Signal 2020; 33:35-57. [PMID: 31989831 DOI: 10.1089/ars.2019.7823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Plant chloroplasts generate reactive oxygen species (ROS) during photosynthesis, especially under stresses. The sulfhydryl groups of protein cysteine residues are susceptible to redox modifications, which regulate protein structure and function, and thus different signaling and metabolic processes. The ROS-governed protein thiol redox switches play important roles in chloroplasts. Recent Advances: Various high-throughput thiol redox proteomic approaches have been developed, and they have enabled the improved understanding of redox regulatory mechanisms in chloroplasts. For example, the thioredoxin-modulated antioxidant enzymes help to maintain cellular ROS homeostasis. The light- and dark-dependent redox regulation of photosynthetic electron transport, the Calvin/Benson cycle, and starch biosynthesis ensures metabolic coordination and efficient energy utilization. In addition, redox cascades link the light with the dynamic changes of metabolites in nitrate and sulfur assimilation, shikimate pathway, and biosynthesis of fatty acid hormone as well as purine, pyrimidine, and thiamine. Importantly, redox regulation of tetrapyrrole and chlorophyll biosynthesis is critical to balance the photodynamic tetrapyrrole intermediates and prevent oxidative damage. Moreover, redox regulation of diverse elongation factors, chaperones, and kinases plays an important role in the modulation of gene expression, protein conformation, and posttranslational modification that contribute to photosystem II (PSII) repair, state transition, and signaling in chloroplasts. Critical Issues: This review focuses on recent advances in plant thiol redox proteomics and redox protein networks toward understanding plant chloroplast signaling, metabolism, and stress responses. Future Directions: Using redox proteomics integrated with biochemical and molecular genetic approaches, detailed studies of cysteine residues, their redox states, cross talk with other modifications, and the functional implications will yield a holistic understanding of chloroplast stress responses.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Yongfang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| |
Collapse
|