1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Wang S, Xu Q, Liu W, Zhang N, Qi Y, Tang F, Ge R. Regulation of PHD2 by HIF-1α in Erythroid Cells: Insights into Erythropoiesis Under Hypoxia. Int J Mol Sci 2025; 26:762. [PMID: 39859474 PMCID: PMC11765976 DOI: 10.3390/ijms26020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated. A hemin-induced K562 erythroid differentiation model was used to explore the effects of PHD2 knockdown under hypoxia. Erythroid differentiation was assessed by flow cytometry and immunofluorescence. HIF-1α's regulation of PHD2 was examined using luciferase assays and ChIP-seq. CRISPR/Cas9 was applied to knock out EGLN1 and HIF1A, and a fluorescent reporter system was developed to track PHD2 expression. PHD2 knockdown enhanced erythroid differentiation, evident by increased CD71 and CD235a expression. Reporter assays and ChIP-seq identified an HIF-1α binding site in the EGLN1 5' UTR, confirming HIF-1α as a regulator of PHD2 expression. The fluorescent reporter system provided real-time monitoring of endogenous PHD2 expression, showing that HIF-1α significantly modulates PHD2 levels under hypoxic conditions. PHD2 influences erythropoiesis under hypoxia, with HIF-1α regulating its expression. This feedback loop between HIF-1α and PHD2 sheds light on mechanisms driving erythroid differentiation under low-oxygen conditions.
Collapse
Affiliation(s)
- Shunjuan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Wenjing Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Na Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Yuelin Qi
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
4
|
Bano A, Stevens JH, Modi PS, Gustafsson JÅ, Strom AM. Estrogen Receptor β4 Regulates Chemotherapy Resistance and Induces Cancer Stem Cells in Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24065867. [PMID: 36982940 PMCID: PMC10058198 DOI: 10.3390/ijms24065867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) has the worst prognosis among all breast cancers, and survival in patients with recurrence is rarely beyond 12 months due to acquired resistance to chemotherapy, which is the standard of care for these patients. Our hypothesis is that Estrogen Receptor β1 (ERβ1) increases response to chemotherapy but is opposed by ERβ4, which it preferentially dimerizes with. The role of ERβ1 and ERβ4 in influencing chemotherapy sensitivity has never been studied before. CRISPR/CAS9 was used to truncate ERβ1 Ligand Binding Domain (LBD) and knock down the exon unique to ERβ4. We show that the truncated ERβ1 LBD in a variety of mutant p53 TNBC cell lines, where ERβ1 ligand dependent function was inactivated, had increased resistance to Paclitaxel, whereas the ERβ4 knockdown cell line was sensitized to Paclitaxel. We further show that ERβ1 LBD truncation, as well as treatment with ERβ1 antagonist 2-phenyl-3-(4-hydroxyphenyl)-5,7-bis(trifluoromethyl)-pyrazolo[1,5-a] pyrimidine (PHTPP), leads to increase in the drug efflux transporters. Hypoxia Inducible Factors (HIFs) activate factors involved in pluripotency and regulate the stem cell phenotype, both in normal and cancer cells. Here we show that the ERβ1 and ERβ4 regulate these stem cell markers like SOX2, OCT4, and Nanog in an opposing manner; and we further show that this regulation is mediated by HIFs. We show the increase of cancer cell stemness due to ERβ1 LBD truncation is attenuated when HIF1/2α is knocked down by siRNA. Finally, we show an increase in the breast cancer stem cell population due to ERβ1 antagonist using both ALDEFLUORTM and SOX2/OCT4 response element (SORE6) reporters in SUM159 and MDA-MB-231 cell lines. Since most TNBC cancers are ERβ4 positive, while only a small proportion of TNBC patients are ERβ1 positive, we believe that simultaneous activation of ERβ1 with agonists and inactivation of ERβ4, in combination with paclitaxel, can be more efficacious and yield better outcome for chemotherapy resistant TNBC patients.
Collapse
Affiliation(s)
- Ayesha Bano
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | - Jessica H Stevens
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | | | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
- Department of BioSciences and Nutrition, Karolinska Institutet, 171 77 Huddinge, Sweden
| | - Anders M Strom
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
6
|
HIF-1α modulates sex-specific Th17/Treg responses during hepatic amoebiasis. J Hepatol 2022; 76:160-173. [PMID: 34599999 DOI: 10.1016/j.jhep.2021.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS An invasive form of intestinal Entamoeba (E.) histolytica infection, which causes amoebic liver abscess, is more common in men than in women. Immunopathological mechanisms are responsible for the more severe outcome in males. Here, we used a mouse model of hepatic amoebiasis to investigate the contribution of hepatic hypoxia-inducible factor (HIF)-1α to T helper 17 (Th17)/regulatory T cell (Treg) responses in the context of the sex-specific outcome of liver damage. METHODS C57BL/6J mice were infected intrahepatically with E. histolytica trophozoites. HIF-1α expression was determined by qPCR, flow cytometry and immunohistochemistry. Tregs and Th17 cells were analysed by immunohistochemistry and flow cytometry. Finally, male and female hepatocyte-specific Hif1α knockout mice were generated, and the effect of HIF-1α on abscess development, the cytokine milieu, and Th17/Treg differentiation was examined. RESULTS E. histolytica infection increased hepatic HIF-1α levels, along with the elevated frequencies of hepatic Th17 and Treg cells. While the Th17 cell population was larger in male mice, Tregs characterised by increased expression of Foxp3 in female mice. Male mice displayed increased IL-6 expression, contributing to immunopathology; this increase in IL-6 expression declined upon deletion of hepatic HIF-1α. In both sexes, hepatic deletion of HIF-1α reduced the Th17 cell frequency; however, the percentage of Tregs was reduced in female mice only. CONCLUSIONS Hepatic HIF-1α modulates the sex-specific outcome of murine E. histolytica infection. Our results suggest that in male mice, Th17 cells can be modulated by hepatic HIF-1α via IL-6, indicating marked involvement in the immunopathology underlying abscess development. Strong expression of Foxp3 by hepatic Tregs from female mice suggests a potent immunosuppressive function, leading to initiation of liver regeneration. LAY SUMMARY Infection with the parasite Entamoeba histolytica activates immunopathological mechanisms in male mice, which lead to liver abscesses that are larger than those in female mice. In the absence of the protein HIF-1α in hepatocytes, abscess formation is reduced; moreover, the sex difference in abscess size is abolished. These results suggest that HIF-1α modulates the immune response involved in the induction of immunopathology, resulting in differential disease susceptibility in males and females.
Collapse
|
7
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front Oncol 2020; 10:587386. [PMID: 33194742 PMCID: PMC7645238 DOI: 10.3389/fonc.2020.587386] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERβ has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERβ1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERβ1 expression is associated with improved overall survival in women with breast cancer. The promise of ERβ activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERβ is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERβ.
Collapse
Affiliation(s)
- Rahul Mal
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexa Magner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joel David
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Meghna Vallabhaneni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mahmoud Kassem
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jasmine Manouchehri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Willingham
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jeffery Vandeusen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Sagar Sardesai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Nicole Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Maryam Lustberg
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Mathew A Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Wang X, Lin Y, Zheng Y. Antitumor effects of aconitine in A2780 cells via estrogen receptor β‑mediated apoptosis, DNA damage and migration. Mol Med Rep 2020; 22:2318-2328. [PMID: 32705198 PMCID: PMC7411431 DOI: 10.3892/mmr.2020.11322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/31/2020] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer (OVCA) is the deadliest type of malignant gynecological disease, and previous studies have demonstrated that estrogen receptor β (ERβ) serves important roles in this disease. Aconitine, a toxin produced by the Aconitum plant, displays potent effects against cancers. The aim of the study was to investigate the pharmacological activities and mechanisms of aconitum on OVCA. In the present study, the activity of aconitine in the human OVCA A2780 cell line was investigated. The results revealed that aconitine suppressed cell viability, colony formation and motility. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling, mitochondria membrane potential and comet assays showed that aconitine induced mitochondria apoptosis and DNA damage in A2780 cells. Investigation of the mechanism revealed that a high expression of ERβ and prolyl hydroxylase 2 was detected after aconitine treatment, and aconitine significantly suppressed the expression of vascular endothelial growth factor and hypoxia-inducible factor 1α to activate ERβ signaling. Moreover, the expression levels of p53, Bax, apoptotic peptidase activating factor 1, cytochrome C, cleaved caspase-3/9 and cleaved poly (ADP-ribose) polymerase were upregulated, and the expression levels of Bcl-2, Bcl-xl and phosphorylated ATM serine/threonine kinase were downregulated by aconitine. Interestingly, aconitine also markedly downregulated the expression of matrix metalloproteinase 2 (MMP2) and MMP9, which are associated with tumor invasion. In addition, a molecular docking assay revealed that aconitine exerted strong affinity towards ERβ mainly through hydrogen bonding and hydrophobic effects. Collectively, these results suggested that aconitine suppressed OVCA cell growth by adjusting ERβ-mediated apoptosis, DNA damage and migration, which should be considered a potential option for the future treatment of OVCA.
Collapse
Affiliation(s)
- Xiuying Wang
- Pharmaceutical Preparation Section, People's Hospital of Weifang High‑tech Zone, Weifang, Shangdong 261205, P.R. China
| | - Yuanyuan Lin
- Department of Nursing, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261031, P.R. China
| | - Yi Zheng
- Department of Medical Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
9
|
Chaurasiya S, Widmann S, Botero C, Lin CY, Gustafsson JÅ, Strom AM. Estrogen receptor β exerts tumor suppressive effects in prostate cancer through repression of androgen receptor activity. PLoS One 2020; 15:e0226057. [PMID: 32413024 PMCID: PMC7228066 DOI: 10.1371/journal.pone.0226057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor β (ERβ) was first identified in the rodent prostate and is abundantly expressed in human and rodent prostate epithelium, stroma, immune cells and endothelium of the blood vessels. In the prostates of mice with inactivated ERβ, mutant phenotypes include epithelial hyperplasia and increased expression of androgen receptor (AR)-regulated genes, most of which are also upregulated in prostate cancer (PCa). ERβ is expressed in both basal and luminal cells in the prostate while AR is expressed in luminal but not in the basal cell layer which harbors the prostate stem cells. To investigate the mechanisms of action of ERβ and its potential cross-talk with AR, we used RNA-seq to study the effects of estradiol or the synthetic ligand, LY3201, in AR-positive LNCaP PCa cells which had been engineered to express ERβ. Transcriptomic analysis indicated relatively few changes in gene expression with ERβ overexpression, but robust responses following ligand treatments. There is significant overlap of responsive genes between the two ligands, estradiol and LY3201 as well as ligand-specific alterations. Gene set analysis of down-regulated genes identified an enrichment of androgen-responsive genes, such as FKBP5, CAMKK2, and TBC1D4. Consistently, AR transcript, protein levels, and transcriptional activity were down-regulated following ERβ activation. In agreement with this, we find that the phosphorylation of the CAMKK2 target, AMPK, was repressed by ligand-activated ERβ. These findings suggest that ERβ-mediated signaling pathways are involved in the negative regulation of AR expression and activity, thus supporting a tumor suppressive role for ERβ in PCa.
Collapse
Affiliation(s)
- Surendra Chaurasiya
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Scott Widmann
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Cindy Botero
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Chin-Yo Lin
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
- Department of BioSciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Anders M. Strom
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kowalska K, Habrowska-Górczyńska DE, Domińska K, Urbanek KA, Piastowska-Ciesielska AW. ERβ and NFκB-Modulators of Zearalenone-Induced Oxidative Stress in Human Prostate Cancer Cells. Toxins (Basel) 2020; 12:toxins12030199. [PMID: 32235729 PMCID: PMC7150752 DOI: 10.3390/toxins12030199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) is commonly expressed in prostate cancer (PCa) cells and is associated with increased proliferation, metastases and androgen independence. Zearalenone (ZEA) is one of the most common mycotoxins contaminating food, which might mimic estrogens and bind to estrogen receptors (ERs). The ratio of androgens to estrogens in men decreases physiologically with age, and is believed to participate in prostate carcinogenesis. In this study, we evaluated the role of NFκB and ERβ in the induction of oxidative stress in human PCa cells by ZEA. As observed, ZEA at a dose of 30 µM induces oxidative stress in PCa cells associated with DNA damage and G2/M cell cycle arrest. We also observed that the inhibition of ERβ and NFΚB via specific inhibitors (PHTPP and BAY 117082) significantly increased ZEA-induced oxidative stress, although the mechanism seems to be different for androgen-dependent and androgen-independent cells. Based on our findings, it is possible that the activation of ERβ and NFΚB in PCa might protect cancer cells from ZEA-induced oxidative stress. We therefore shed new light on the mechanism of ZEA toxicity in human cells.
Collapse
Affiliation(s)
- Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
- Correspondence: ; +48-426393180
| | - Dominika Ewa Habrowska-Górczyńska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Kinga Anna Urbanek
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.E.H.-G.); (K.A.U.); (A.W.P.-C.)
| |
Collapse
|
11
|
Estrogen Receptors in Epithelial-Mesenchymal Transition of Prostate Cancer. Cancers (Basel) 2019; 11:cancers11101418. [PMID: 31548498 PMCID: PMC6826537 DOI: 10.3390/cancers11101418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) remains a widespread malignancy in men. Since the androgen/androgen receptor (AR) axis is associated with the pathogenesis of prostate cancer, suppression of AR-dependent signaling by androgen deprivation therapy (ADT) still represents the primary intervention for this disease. Despite the initial response, prostate cancer frequently develops resistance to ADT and progresses. As such, the disease becomes metastatic and few therapeutic options are available at this stage. Although the majority of studies are focused on the role of AR signaling, compelling evidence has shown that estrogens and their receptors control prostate cancer initiation and progression through a still debated mechanism. Epithelial versus mesenchymal transition (EMT) is involved in metastatic spread as well as drug-resistance of human cancers, and many studies on the role of this process in prostate cancer progression have been reported. We discuss here the findings on the role of estrogen/estrogen receptor (ER) axis in epithelial versus mesenchymal transition of prostate cancer cells. The pending questions concerning this issue are presented, together with the impact of the available data in clinical management of prostate cancer patients.
Collapse
|
12
|
Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Domińska K, Sakowicz A, Piastowska-Ciesielska AW. Estrogen receptor β plays a protective role in zearalenone-induced oxidative stress in normal prostate epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:504-513. [PMID: 30738973 DOI: 10.1016/j.ecoenv.2019.01.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Zearalenone (ZEA) - a fungal mycotoxin is reported to both cause the oxidative stress associated with death of cells as well as induction of the proliferation of cells, depending on its concentration and the type of cells. ZEA due to its structural similarity to naturally occurring estrogens is able to bind to estrogen receptors and triggers estrogen-associated signaling pathways. The aim of this study is to evaluate whether the induction of oxidative stress in normal epithelial prostate PNT1A cells is associated with estrogenic activity of ZEA. We observed that ZEA-induced oxidative stress in PNT1A cells is associated with a decrease in the oxidative stress defense enzymes expression, cell cycle arrest in G2/M cell cycle phase as well as the decreased migration of cells. The results also suggest that the observed effect might be associated with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)- hypoxia inducible factor 1 alpha (HIF-1α) signaling pathway. The usage of estrogen receptor β (ERβ) selective antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]-phenol PHTPP showed that ERβ activity is able to decrease the ZEA-induced oxidative stress, but is not enough to counteract it, indicating that ZEA-induced oxidative stress is only partially associated with estrogenic activity of ZEA.
Collapse
Affiliation(s)
- Karolina Kowalska
- Medical University of Lodz, Laboratory of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | | | - Kinga Anna Urbanek
- Medical University of Lodz, Laboratory of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agata Sakowicz
- Medical University of Lodz, Department of Medical Biotechnology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Laboratory of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752 Lodz, Poland; Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| |
Collapse
|
13
|
Frump AL, Selej M, Wood JA, Albrecht M, Yakubov B, Petrache I, Lahm T. Hypoxia Upregulates Estrogen Receptor β in Pulmonary Artery Endothelial Cells in a HIF-1α-Dependent Manner. Am J Respir Cell Mol Biol 2019; 59:114-126. [PMID: 29394091 DOI: 10.1165/rcmb.2017-0167oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
17β-Estradiol (E2) attenuates hypoxia-induced pulmonary hypertension (HPH) through estrogen receptor (ER)-dependent effects, including inhibition of hypoxia-induced endothelial cell proliferation; however, the mechanisms responsible for this remain unknown. We hypothesized that the protective effects of E2 in HPH are mediated through hypoxia-inducible factor 1α (HIF-1α)-dependent increases in ERβ expression. Sprague-Dawley rats and ERα or ERβ knockout mice were exposed to hypobaric hypoxia for 2-3 weeks. The effects of hypoxia were also studied in primary rat or human pulmonary artery endothelial cells (PAECs). Hypoxia increased expression of ERβ, but not ERα, in lungs from HPH rats as well as in rat and human PAECs. ERβ mRNA time dependently increased in PAECs exposed to hypoxia. Normoxic HIF-1α/HIF-2α stabilization increased PAEC ERβ, whereas HIF-1α knockdown decreased ERβ abundance in hypoxic PAECs. In turn, ERβ knockdown in hypoxic PAECs increased HIF-2α expression, suggesting a hypoxia-sensitive feedback mechanism. ERβ knockdown in hypoxic PAECs also decreased expression of the HIF inhibitor prolyl hydroxylase 2 (PHD2), whereas ERβ activation increased PHD2 and decreased both HIF-1α and HIF-2α, suggesting that ERβ regulates the PHD2/HIF-1α/HIF-2α axis during hypoxia. Whereas hypoxic wild-type or ERα knockout mice treated with E2 demonstrated less pulmonary vascular remodeling and decreased HIF-1α after hypoxia compared with untreated hypoxic mice, ERβ knockout mice exhibited increased HIF-2α and an attenuated response to E2 during hypoxia. Taken together, our results demonstrate a novel and potentially therapeutically targetable mechanism whereby hypoxia, via HIF-1α, increases ERβ expression and the E2-ERβ axis targets PHD2, HIF-1α, and HIF-2α to attenuate HPH development.
Collapse
Affiliation(s)
- Andrea L Frump
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Mona Selej
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Jordan A Wood
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Marjorie Albrecht
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Bakhtiyor Yakubov
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine
| | - Irina Petrache
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and
| | - Tim Lahm
- 1 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine.,2 Richard L. Roudebush VA Medical Center, and.,3 Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
15
|
Faria M, Shepherd P, Pan Y, Chatterjee SS, Navone N, Gustafsson JÅ, Strom A. The estrogen receptor variants β2 and β5 induce stem cell characteristics and chemotherapy resistance in prostate cancer through activation of hypoxic signaling. Oncotarget 2018; 9:36273-36288. [PMID: 30555629 PMCID: PMC6284737 DOI: 10.18632/oncotarget.26345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy resistant prostate cancer is a major clinical problem. When the prostate cancer has become androgen deprivation resistant, one of the few treatment regimens left is chemotherapy. There is a strong connection between a cancer's stem cell like characteristics and drug resistance. By performing RNA-seq we observed several factors associated with stem cells being strongly up-regulated by the estrogen receptor β variants, β2 and β5. In addition, most of these factors were also up-regulated by hypoxia. One mechanism of chemotherapy resistance was expression of the hypoxia-regulated, drug transporter genes, where especially ABCG2 and MDR1 were shown to be expressed in recurrent prostate cancer and to cause chemotherapy resistance by efficiently transporting drugs like docetaxel out of the cells. Another mechanism was expression of the hypoxia-regulated Notch3 gene, which causes chemotherapy resistance in urothelial carcinoma, although the mechanism is unknown. It is well known that hypoxic signaling is involved in increasing chemotherapy resistance. Regulation of the hypoxic factors, HIF-1α and HIF-2α is very complex and extends far beyond hypoxia itself. We have recently shown that two of the estrogen receptor β variants, estrogen receptor β2 and β5, bind to and stabilize both HIF-1α and HIF-2α proteins leading to expression of HIF target genes. This study suggests that increased expression of the estrogen receptor β variants, β2 and β5, could be involved in development of a cancer's stem cell characteristics and chemotherapy resistance, indicating that targeting these factors could prevent or reverse chemotherapy resistance and cancer stem cell expansion.
Collapse
Affiliation(s)
- Michelle Faria
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Pan
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Sujash S Chatterjee
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Anders Strom
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear, Receptors and Cell Signaling, Science and Engineering Research Center, Houston, Texas, USA
| |
Collapse
|
16
|
Motawi TK, Darwish HA, Diab I, Helmy MW, Noureldin MH. Combinatorial strategy of epigenetic and hormonal therapies: A novel promising approach for treating advanced prostate cancer. Life Sci 2018; 198:71-78. [PMID: 29455003 DOI: 10.1016/j.lfs.2018.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
AIMS Estrogens act as key factors in prostate biology, cellular proliferation and differentiation as well as cancer development and progression. The expression of estrogen receptor (ER)-β appears to be lost during prostate cancer progression through hypermethylation mechanism. Epigenetic drugs such as 5-aza-2'-deoxycytidine (5-AZAC) and Trichostatin A (TSA) showed efficacy in restoring ERβ expression in prostate cancer cells. This study was designed to explore the potential anti-carcinogenic effects resulting from re-expressing ERβ1 using 5-AZAC and/or TSA, followed by its stimulation with Diarylpropionitrile (DPN), a selective ERβ1 agonist, in prostate cancer cell line PC-3. MAIN METHODS Cells were treated with 5-AZAC, TSA, DPN and their combination. Subsequently, they were subjected to proliferation assays, determinations of ERβ1 expression, protein levels of active caspase-3, cyclin D1, β-catenin and VEGF. KEY FINDINGS Treatment with these drugs exhibited an increase in ERβ1 expression to different extents as well as active caspase-3 levels. Meanwhile, a significant reduction in cyclin D1, VEGF and β-catenin levels was achieved as compared to the vehicle control group (p < 0.05). Interestingly, the triple combination regimen led to the most prominent anti-tumor responses in terms of increased apoptosis, reduced proliferation as well as angiogenesis. SIGNIFICANCE The results support the notion that ERβ1 acts as a tumor suppressor protein and suggest that sequential ERβ1 expression and activation can offer significant anti-tumor responses. The study highlights that the strategy of merging epigenetic and hormonal therapies may be beneficial in treating advanced prostate cancer.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo, Egypt.
| | - Iman Diab
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, El-Bahira, Egypt.
| | - Mohamed H Noureldin
- Department of Pharmacology and Biochemistry, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| |
Collapse
|
17
|
Silva RDS, Lombardi APG, de Souza DS, Vicente CM, Porto CS. Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. Int J Biochem Cell Biol 2018; 96:40-50. [PMID: 29341930 DOI: 10.1016/j.biocel.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and activation of gene transcription.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Ana Paola G Lombardi
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão de Souza
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina M Vicente
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
18
|
The ERβ4 variant induces transformation of the normal breast mammary epithelial cell line MCF-10A; the ERβ variants ERβ2 and ERβ5 increase aggressiveness of TNBC by regulation of hypoxic signaling. Oncotarget 2018; 9:12201-12211. [PMID: 29552303 PMCID: PMC5844739 DOI: 10.18632/oncotarget.24134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/05/2017] [Indexed: 01/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) still remains a challenge to treat in the clinic due to a lack of good targets for treatment. Although TNBC lacks expression of ERα, the expression of ERβ and its variants are detected quite frequently in this cancer type and can represent an avenue for treatment. We show that two of the variants of ERβ, namely ERβ2 and ERβ5, control aggressiveness of TNBC by regulating hypoxic signaling through stabilization of HIF-1α. RNA-seq of patient derived xenografts (PDX) from TNBC shows expression of ERβ2, ERβ4 and ERβ5 variants in more than half of the samples. Furthermore, expression of ERβ4 in the immortalized, normal mammary epithelial cell line MCF-10A that is resistant to tumorsphere formation caused transformation and development of tumorspheres. By contrast, ERβ1, ERβ2 or ERβ5 were unable to support tumorsphere formation. We have previously shown that all variants except ERβ1 stabilize HIF-1α but only ERβ4 appears to have the ability to transform normal mammary epithelial cells, pointing towards a unique property of ERβ4. We propose that ERβ variants may be good diagnostic tools and also serve as novel targets for treatment of breast cancer.
Collapse
|
19
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
20
|
Tao X, Xu L, Yin L, Han X, Qi Y, Xu Y, Song S, Zhao Y, Peng J. Dioscin induces prostate cancer cell apoptosis through activation of estrogen receptor-β. Cell Death Dis 2017; 8:e2989. [PMID: 28796245 PMCID: PMC5596577 DOI: 10.1038/cddis.2017.391] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
Recent researches have shown that estrogen receptor-β (ERβ) activator may be a potent anticancer agent for prostate cancer (PCa), and our previous study also indicated that dioscin can upregulate the expression of ERβ in MC3T3-E1 cell. In the present work, the activity and mechanism of dioscin, a natural product, against PCa were investigated. The results showed that dioscin markedly inhibited cell viability, colony formation, motility and induced apoptosis in PC3 cells. Moreover, dioscin disrupted the formation of PC3 cell-derived mammospheres and reduced aldehyde dehydrogenase (ALDH) level and the CD133+/CD44+ cells, indicating that dioscin had a potent inhibitory activity on prostate cancer stem cells (PCSCs). In vivo results also showed that dioscin significantly suppressed the tumor growth of PC3 cell xenografts in nude mice. Furthermore, mechanism investigation showed that dioscin markedly upregulated ERβ expression level, subsequently increased prolyl hydroxylase 2 level, decreased the levels of hypoxia-inducible factor-1α, vascular endothelial growth factor A and BMI-1, and thus induced cell apoptosis by regulating the expression levels of caspase-3 and Bcl-2 family proteins. In addition, transfection experiment of ERβ-siRNA further indicated that diosicn showed excellent activity against PCa in vitro and in vivo by increasing ERβ expression level. The co-immunoprecipitation (Co-IP) results further suggested that dioscin promoted the interaction of c-ABL and ERβ, but did not change c-ABL expression. Moreover, the molecular docking assay showed that dioscin processed powerful affinity toward to ERβ mainly through the strong hydrogen bonding and hydrophobic effects, and the actions of dioscin on ERβ activation and tumor cells inhibition were significantly weakened in the mutational (Phe-336, Phe-468) PC3 cells. Collectively, these findings proved that dioscin exerted efficient anti-PCa activity via activation of ERβ, which should be developed as an efficient candidate in clinical for treating this cancer in the future.
Collapse
Affiliation(s)
- Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Shasha Song
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| |
Collapse
|
21
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
23
|
Gonzaga ACR, Campolina-Silva GH, Werneck-Gomes H, Moura-Cordeiro JD, Santos LC, Mahecha GAB, Morais-Santos M, Oliveira CA. Profile of cell proliferation and apoptosis activated by the intrinsic and extrinsic pathways in the prostate of aging rats. Prostate 2017; 77:937-948. [PMID: 28480526 DOI: 10.1002/pros.23349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/06/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND Estrogens acting through the receptors ERα and ERβ participate in prostate normal growth and cancer. ERβ is highly expressed in the prostate epithelium, playing pro-apoptotic, anti-proliferative, and pro-differentiation roles. Apoptosis is activated by the intrinsic pathway after castration and by the extrinsic pathway after ERβ agonist treatment. This differential activation of apoptotic pathways is important since a major problem in the treatment of prostate cancer is the recurrence of tumors after androgen withdrawal. However, a comprehensive study about the pattern of apoptosis in the aging prostate is lacking, a knowledge gap that we aimed to address herein. METHODS Cellular age-related proliferative and apoptotic profiles of prostate tissue obtained from aging Wistar rats were evaluated. Cell death (caspase-3, -8, -9, TNFα) was assessed by immunohistochemistry, immunofluorescence, and TUNEL. Cell proliferation (MCM7) and cell survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) were determined by immunohistochemistry. RESULTS As the rats aged, the number of proliferating cells gradually reduced in the normal epithelium of all prostate lobes, while increasing in focal areas of intraepithelial proliferation. Interestingly, in areas of intraepithelial proliferation, we observed a reduction in the number of cells positive for caspase-3, -8, and -9. Regardless the animal's age, few prostate epithelial cells were positive for caspase-3, caspase-9, and TUNEL. In contrast, a progressive increase was seen in the positivity for caspase-8, especially in the atrophic epithelium of ventral prostate, which coincided with a reduction in TNFα immunoreaction. However, morphology of most caspase-8 positive cells suggests that they were not apoptotic. We also found reduced ERβ expression in the same areas. Possibly, low levels of the pro-apoptotic inductors TNFα and ERβ direct caspase-8 activity to an alternative pro-survival role in the atrophic epithelium. This hypothesis is supported by the increased expression of the key survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) in these areas. CONCLUSIONS Our findings reveal that, as the animals age, there is an increase of proliferation in restricted areas of the prostate epithelium, and a concomitant reduction of the apoptosis rate with an increase in cell survival induced by caspase-8, indicating a focused and spontaneous disruption of tissue homeostasis.
Collapse
Affiliation(s)
- Amanda C R Gonzaga
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel H Campolina-Silva
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hipácia Werneck-Gomes
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júnia D Moura-Cordeiro
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia C Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A B Mahecha
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica Morais-Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
24
|
Nelson AW, Groen AJ, Miller JL, Warren AY, Holmes KA, Tarulli GA, Tilley WD, Katzenellenbogen BS, Hawse JR, Gnanapragasam VJ, Carroll JS. Comprehensive assessment of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol Cell Endocrinol 2017; 440:138-150. [PMID: 27889472 PMCID: PMC5228587 DOI: 10.1016/j.mce.2016.11.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022]
Abstract
Estrogen Receptor-β (ERβ) has been implicated in many cancers. In prostate and breast cancer its function is controversial, but genetic studies implicate a role in cancer progression. Much of the confusion around ERβ stems from antibodies that are inadequately validated, yet have become standard tools for deciphering its role. Using an ERβ-inducible cell system we assessed commonly utilized ERβ antibodies and show that one of the most commonly used antibodies, NCL-ER-BETA, is non-specific for ERβ. Other antibodies have limited ERβ specificity or are only specific in one experimental modality. ERβ is commonly studied in MCF-7 (breast) and LNCaP (prostate) cancer cell lines, but we found no ERβ expression in either, using validated antibodies and independent mass spectrometry-based approaches. Our findings question conclusions made about ERβ using the NCL-ER-BETA antibody, or LNCaP and MCF-7 cell lines. We describe robust reagents, which detect ERβ across multiple experimental approaches and in clinical samples.
Collapse
Affiliation(s)
- Adam W Nelson
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK; Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Urology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Arnoud J Groen
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Kelly A Holmes
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute Building, School of Medicine, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute Building, School of Medicine, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 USA
| | - Vincent J Gnanapragasam
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Urology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK.
| |
Collapse
|
25
|
Zhang L, Peng S, Dai X, Gan W, Nie X, Wei W, Hu G, Guo J. Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Lett 2017; 390:11-20. [PMID: 28089830 DOI: 10.1016/j.canlet.2017.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/01/2016] [Accepted: 01/07/2017] [Indexed: 12/11/2022]
Abstract
EglN prolyl hydroxylases, a family of oxygen-sensing enzymes, hydroxylate distinct proteins to modulate diverse physiopathological signals. Aberrant regulations of EglNs result in multiple human diseases, including cancer. Different from EglN1 which function largely depends on the role of hypoxia-induce factor alpha (HIFα) in tumors, the functional significance and the upstream regulatory mechanisms of EglN2, especially in prostate cancer setting, remain largely unclear. Here, we demonstrated that dysregulation of EglN2 facilitated prostate cancer growth both in cells and in vivo. Notably, EglN2 was identified highly expressed in human prostate cancer tissues. Mechanically, Cullin 3-based E3 ubiquitin ligase SPOP, a well-characterized tumor suppressor in prostate cancer, could recognize and destruct EglN2. Meanwhile, androgen receptor (AR), playing a pivotal role in progression and development of prostate cancer, could transcriptionally up-regulate EglN2. Pathologically, SPOP loss-of-function mutations or AR amplification, frequently occurring in prostate cancers, could significantly accumulate EglN2 abundance. Therefore, our study not only underlines an oncogenic role of EglN2 in prostate cancer, but also highlights SPOP as a tumor suppressor to down-regulate EglN2 in prostate cancer.
Collapse
Affiliation(s)
- Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shan Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Mak P, Li J, Samanta S, Mercurio AM. ERβ regulation of NF-kB activation in prostate cancer is mediated by HIF-1. Oncotarget 2016; 6:40247-54. [PMID: 26450901 PMCID: PMC4741892 DOI: 10.18632/oncotarget.5377] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
We examined the regulation of NF-κB in prostate cancer by estrogen receptor β (ERβ) based on the inverse correlation between p65 and ERβ expression that exists in prostate carcinomas and reports that ERβ can inhibit NF-κB activation, although the mechanism is not known. We demonstrate that ERβ functions as a gate-keeper for NF-κB p65 signaling by repressing its expression and nuclear translocation. ERβ regulation of NF-κB signaling is mediated by HIF-1. Loss of ERβ or hypoxia stabilizes HIF-1α, which we found to be a direct driver of IKKβ transcription through a hypoxia response element present in the promoter of the IKKβ gene. The increase of IKKβ expression in ERβ-ablated cells correlates with an increase in phospho-IκBα and concomitant p65 nuclear translocation. An inverse correlation between the expression of ERβ and IKKβ/p65 was also observed in the prostates of ERβ knockout (BERKO) mice, Gleason grade 5 prostate tumors and analysis of prostate cancer databases. These findings provide a novel mechanism for how ERβ prevents NF-κB activation and raise the exciting possibility that loss of ERβ expression is linked to chronic inflammation in the prostate, which contributes to the development of high-grade prostate cancer.
Collapse
Affiliation(s)
- Paul Mak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiarong Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sanjoy Samanta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
27
|
Zurlo G, Guo J, Takada M, Wei W, Zhang Q. New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochim Biophys Acta Rev Cancer 2016; 1866:208-220. [PMID: 27663420 DOI: 10.1016/j.bbcan.2016.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/26/2022]
Abstract
Protein hydroxylation is a post-translational modification catalyzed by 2-oxoglutarate-dependent dioxygenases. The hydroxylation modification can take place on various amino acids, including but not limited to proline, lysine, asparagine, aspartate and histidine. A classical example of this modification is hypoxia inducible factor alpha (HIF-α) prolyl hydroxylation, which affects HIF-α protein stability via the Von-Hippel Lindau (VHL) tumor suppressor pathway, a Cullin 2-based E3 ligase adaptor protein frequently mutated in kidney cancer. In addition to protein stability regulation, protein hydroxylation may influence other post-translational modifications or the kinase activity of the modified protein (such as Akt and DYRK1A/B). In other cases, protein hydroxylation may alter protein-protein interaction and its downstream signaling events in vivo (such as OTUB1, MAPK6 and eEF2K). In this review, we highlight the recently identified protein hydroxylation targets and their pathophysiological roles, especially in cancer settings. Better understanding of protein hydroxylation will help identify novel therapeutic targets and their regulation mechanisms to foster development of more effective treatment strategies for various human cancers.
Collapse
Affiliation(s)
- Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Figueira MI, Correia S, Vaz CV, Cardoso HJ, Gomes IM, Marques R, Maia CJ, Socorro S. Estrogens down-regulate the stem cell factor (SCF)/c-KIT system in prostate cells: Evidence of antiproliferative and proapoptotic effects. Biochem Pharmacol 2015; 99:73-87. [PMID: 26592659 DOI: 10.1016/j.bcp.2015.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
The development of prostate cancer (PCa) is intimately associated with the hormonal environment, and the sex steroids estrogens have been implicated in prostate malignancy. However, if some studies identified estrogens as causative agents of PCa, others indicated that these steroids have a protective role counteracting prostate overgrowth. The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF), have been associated with the control of cell proliferation/apoptosis and prostate carcinogenesis, and studies show that estrogens regulate their expression in different tissues, though, in the case of prostate this remains unknown. The present study aims to evaluate the role of 17β-estradiol (E2) in regulating the expression of SCF/c-KIT in human prostate cell lines and rat prostate, and to investigate the consequent effects on prostate cell proliferation and apoptosis. qPCR, Western Blot, and immuno(cito)histochemistry analysis showed that E2-treatment decreased the expression of SCF and c-KIT both in human prostate cells and rat prostate. Furthermore, the diminished expression of SCF/c-KIT was underpinned by the diminished prostate weight and reduced proliferation index. On the other hand, the results of TUNEL labelling, the increased activity of caspase-3, and the augmented expression of caspase-8 and Fas system in the prostate of E2-treated animals indicated augmented apoptosis in response to E2. The obtained results demonstrated that E2 down-regulated the expression of SCF/c-KIT system in prostate cells, which was associated with antiproliferative and proapoptotic effects. Moreover, these findings support the protective role of estrogens in PCa and open new perspectives on the application of estrogen-based therapies.
Collapse
Affiliation(s)
- Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Correia
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Inês M Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ricardo Marques
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Morais-Santos M, Nunes AEB, Oliveira AG, Moura-Cordeiro JD, Mahecha GAB, Avellar MCW, Oliveira CA. Changes in Estrogen Receptor ERβ (ESR2) Expression without Changes in the Estradiol Levels in the Prostate of Aging Rats. PLoS One 2015; 10:e0131901. [PMID: 26147849 PMCID: PMC4492744 DOI: 10.1371/journal.pone.0131901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 12/04/2022] Open
Abstract
Although the prostate is androgen-dependent, it is also influenced by estrogens, which act via the estrogen receptors ERα and ERβ. In the prostate, ERβ is highly expressed in the epithelium and appears to participate in the regulation of cell proliferation, apoptosis and differentiation. Evidence shows that ERβ is decreased in malignant prostate, suggesting that it plays an important role in protecting this tissue. Despite the relationship between reductions in ERβ and abnormal growth of the gland, little is known about the age-dependent variation of this receptor. Therefore, we aimed to investigate ERβ expression in the prostatic lobes of aging Wistar rats (3 to 24 months). Histopathological alterations, including hyperplasia, intraluminal concretions, nuclear atypia and prostate intraepithelial neoplasias (PIN), were observed in the prostates of aging rats. Epithelial proliferation led to cribriform architecture in some acini, especially in the ventral prostate (VP). In the VP, areas of epithelial atrophy were also observed. Furthermore, in the lateral prostate, there was frequent prostatitis. Immunohistochemistry revealed that the expression of ERβ is reduced in specific areas related to PIN, atrophic abnormalities and cellular atypia in the prostate epithelium of senile rats. Corroborating the involvement of the receptor with proliferative activity, the punctual reduction in ERβ paralleled the increase in cell proliferation especially in areas of PIN and nuclear atypies. The decrease in ERβ reactivity occurred in a hormonal milieu characterized by a constant concentration of estradiol and decreased plasmatic and tissue DHT. This paper is a pioneering study that reveals focal ERβ reduction in the prostate of aging rats and indicates a potential disorder in the ERβ pathway. These data corroborate previous data from humans and dogs that silencing of this receptor may be associated with premalignant or malignant conditions in the prostate.
Collapse
Affiliation(s)
- Mônica Morais-Santos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aryane E. B. Nunes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André G. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júnia Dayrell Moura-Cordeiro
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A. B. Mahecha
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Christina W. Avellar
- Department of Pharmacology, Section of Experimental Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Cleida A. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
30
|
Du J, Zhang L. Integrated analysis of DNA methylation and microRNA regulation of the lung adenocarcinoma transcriptome. Oncol Rep 2015; 34:585-94. [PMID: 26035298 PMCID: PMC4487669 DOI: 10.3892/or.2015.4023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma, as a common type of non-small cell lung cancer (40%), poses a significant threat to public health worldwide. The present study aimed to determine the transcriptional regulatory mechanisms in lung adenocarcinoma. Illumina sequence data GSE 37764 including expression profiling, methylation profiling and non-coding RNA profiling of 6 never-smoker Korean female patients with non-small cell lung adenocarcinoma were obtained from the Gene Expression Omnibus (GEO) database. Differentially methylated genes, differentially expressed genes (DEGs) and differentially expressed microRNAs (miRNAs) between normal and tumor tissues of the same patients were screened with tools in R. Functional enrichment analysis of a variety of differential genes was performed. DEG-specific methylation and transcription factors (TFs) were analyzed with ENCODE ChIP-seq. The integrated regulatory network of DEGs, TFs and miRNAs was constructed. Several overlapping DEGs, such as v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) were screened. DEGs were centrally modified by histones of tri-methylation of lysine 27 on histone H3 (H3K27me3) and di-acetylation of lysine 12 or 20 on histone H2 (H2BK12/20AC). Upstream TFs of DEGs were enriched in different ChIP-seq clusters, such as glucocorticoid receptors (GRs). Two miRNAs (miR-126-3p and miR-30c-2-3p) and three TFs including homeobox A5 (HOXA5), Meis homeobox 1 (MEIS1) and T-box 5 (TBX5), played important roles in the integrated regulatory network conjointly. These DEGs, and DEG-related histone modifications, TFs and miRNAs may be important in the pathogenesis of lung adenocarcinoma. The present results may indicate directions for the next step in the study of the further elucidation and targeted prevention of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jiang Du
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| | - Lin Zhang
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
Dey P, Velazquez-Villegas LA, Faria M, Turner A, Jonsson P, Webb P, Williams C, Gustafsson JÅ, Ström AM. Estrogen Receptor β2 Induces Hypoxia Signature of Gene Expression by Stabilizing HIF-1α in Prostate Cancer. PLoS One 2015; 10:e0128239. [PMID: 26010887 PMCID: PMC4444278 DOI: 10.1371/journal.pone.0128239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/23/2015] [Indexed: 11/17/2022] Open
Abstract
The estrogen receptor (ER) β variant ERβ2 is expressed in aggressive castration-resistant prostate cancer and has been shown to correlate with decreased overall survival. Genome-wide expression analysis after ERβ2 expression in prostate cancer cells revealed that hypoxia was an overrepresented theme. Here we show that ERβ2 interacts with and stabilizes HIF-1α protein in normoxia, thereby inducing a hypoxic gene expression signature. HIF-1α is known to stimulate metastasis by increasing expression of Twist1 and increasing vascularization by directly activating VEGF expression. We found that ERβ2 interacts with HIF-1α and piggybacks to the HIF-1α response element present on the proximal Twist1 and VEGF promoters. These findings suggest that at least part of the oncogenic effects of ERβ2 is mediated by HIF-1α and that targeting of this ERβ2 – HIF-1α interaction may be a strategy to treat prostate cancer.
Collapse
Affiliation(s)
- Prasenjit Dey
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America
| | - Laura A Velazquez-Villegas
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America
| | - Michelle Faria
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America
| | - Anthony Turner
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America
| | - Philp Jonsson
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America
| | - Paul Webb
- Genomic Medicine Program, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, United States of America
| | - Cecilia Williams
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America; Science for Life Laboratory, Department of Proteomics and Nanotechnology, KTH-Royal Institute of Technology, 171 21 Stockholm, Sweden
| | - Jan-Åke Gustafsson
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America; Department of BioSciences and Nutrition, Karolinska Institutet, Novum, S-141 57 Huddinge, Sweden
| | - Anders M Ström
- University of Houston, Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, 3605 Cullen Boulevard, Science & Engineering Research Center, Bldg 545, Houston, Texas 77204-5056, United States of America
| |
Collapse
|
32
|
Mak P, Li J, Samanta S, Chang C, Jerry DJ, Davis RJ, Leav I, Mercurio AM. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor β repression. Cell Rep 2015; 10:1982-91. [PMID: 25818291 DOI: 10.1016/j.celrep.2015.02.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
The role of ERβ in prostate cancer is unclear, although loss of ERβ is associated with aggressive disease. Given that mice deficient in ERβ do not develop prostate cancer, we hypothesized that ERβ loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ERβ is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ERβ is important for tumor formation. ERβ transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ERβ expression is regulated in prostate cancer. Repression of ERβ contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1.
Collapse
Affiliation(s)
- Paul Mak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiarong Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sanjoy Samanta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cheng Chang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - D Joseph Jerry
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Irwin Leav
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Christoforou P, Christopoulos PF, Koutsilieris M. The role of estrogen receptor β in prostate cancer. Mol Med 2014; 20:427-34. [PMID: 25032955 DOI: 10.2119/molmed.2014.00105] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/14/2014] [Indexed: 01/07/2023] Open
Abstract
Although androgen receptor (AR) signaling is the main molecular tool regulating growth and function of the prostate gland, estrogen receptor β (ERβ) is involved in the differentiation of prostatic epithelial cells and numerous antiproliferative actions on prostate cancer cells. However, ERβ splice variants have been associated with prostate cancer initiation and progression mechanisms. ERβ is promising as an anticancer therapy and in the prevention of prostate cancer. Herein, we review the recent experimental findings of ERβ signaling in the prostate.
Collapse
Affiliation(s)
- Paraskevi Christoforou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in prostate cancer. Oncotarget 2014; 5:7217-59. [PMID: 25277175 PMCID: PMC4202120 DOI: 10.18632/oncotarget.2406] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge.
Collapse
Affiliation(s)
| | - Tomasz M. Beer
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Christopher P. Evans
- Department of Urology and Comprehensive Cancer Center, University of California Davis, Davis, CA
| |
Collapse
|
35
|
TGF-β1 mediates estrogen receptor-induced epithelial-to-mesenchymal transition in some tumor lines. Tumour Biol 2014; 35:11277-82. [DOI: 10.1007/s13277-014-2166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/27/2014] [Indexed: 02/02/2023] Open
|
36
|
Abstract
Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research.
Collapse
Affiliation(s)
- Adam W Nelson
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - Wayne D Tilley
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - David E Neal
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - Jason S Carroll
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
37
|
Kim M, Neinast MD, Frank AP, Sun K, Park J, Zehr JA, Vishvanath L, Morselli E, Amelotte M, Palmer BF, Gupta RK, Scherer PE, Clegg DJ. ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Mol Metab 2014; 3:642-51. [PMID: 25161887 PMCID: PMC4142394 DOI: 10.1016/j.molmet.2014.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/10/2023] Open
Abstract
Hypoxia Inducible Factor 1 (HIF-1) promotes fibrosis and inflammation in adipose tissues, while estrogens and Estrogen Receptor α (ERα) have the opposite effect. Here we identify an Estrogen Response Element (ERE) in the promoter of Phd3, which is a negative regulatory enzyme of HIF-1, and we demonstrate HIF-1α is ubiquitinated following 17-β estradiol (E2)/ERα mediated Phd3 transcription. Manipulating ERα in vivo increases Phd3 transcription and reduces HIF-1 activity, while addition of PHD3 ameliorates adipose tissue fibrosis and inflammation. Our findings outline a novel regulatory relationship between E2/ERα, PHD3 and HIF-1 in adipose tissues, providing a mechanistic explanation for the protective effect of E2/ERα in adipose tissue.
Collapse
Affiliation(s)
- Min Kim
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael D Neinast
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Aaron P Frank
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jiyoung Park
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA ; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST Street, Ulsan 689-798, South Korea
| | - Jordan A Zehr
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eugenia Morselli
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mason Amelotte
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Biff F Palmer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Deborah J Clegg
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
38
|
Park C, Lee Y. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation. Biochem Biophys Res Commun 2014; 450:261-6. [PMID: 24938129 DOI: 10.1016/j.bbrc.2014.05.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.
Collapse
Affiliation(s)
- Choa Park
- Department of Bioscience and Biotechnology, College of Life Science, Institute of Biotechnology, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - YoungJoo Lee
- Department of Bioscience and Biotechnology, College of Life Science, Institute of Biotechnology, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea.
| |
Collapse
|
39
|
Fazilaty H, Mehdipour P. Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin Exp Metastasis 2014; 31:595-612. [PMID: 24493024 DOI: 10.1007/s10585-014-9642-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023]
Abstract
Bone metastasis accounts for the vast majority of breast cancer (BC) metastases, and is related to a high rate of morbidity and mortality. A number of seminal studies have uncovered gene expression signatures involved in BC development and bone metastasis; each of them points at a distinct step of the 'invasion-metastasis cascade'. In this review, we provide most recently discovered functions of sets of genes that are selected from widely accepted gene signatures that are implicate in BC progression and bone metastasis. We propose a possible sequential pattern of gene expression that may lead a benign primary breast tumor to get aggressiveness and progress toward bone metastasis. A panel of genes which primarily deal with features like DNA replication, survival, proliferation, then, angiogenesis, migration, and invasion has been identified. TGF-β, FGF, NFκB, WNT, PI3K, and JAK-STAT signaling pathways, as the key pathways involved in breast cancer development and metastasis, are evidently regulated by several genes in all three signatures. Epithelial to mesenchymal transition that is also an important mechanism in cancer stem cell generation and metastasis is evidently regulated by these genes. This review provides a comprehensive insight regarding breast cancer bone metastasis that may lead to a better understanding of the disease and take step toward better treatments.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Pour Sina Street, P.O. Box: 14176-13151, Keshavarz Boulevard, Tehran, Iran
| | | |
Collapse
|
40
|
Chaudhary SC, Singh T, Talwelkar SS, Srivastava RK, Arumugam A, Weng Z, Elmets CA, Afaq F, Kopelovich L, Athar M. Erb-041, an estrogen receptor-β agonist, inhibits skin photocarcinogenesis in SKH-1 hairless mice by downregulating the WNT signaling pathway. Cancer Prev Res (Phila) 2014; 7:186-98. [PMID: 24217507 PMCID: PMC3946228 DOI: 10.1158/1940-6207.capr-13-0276] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Estrogen receptors (ER), including ER-α and ER-β, are known to regulate multiple biologic responses in various cell types. The expression of ER-β is lost in various cancers. ER-β agonists were shown to modulate inflammation, cancer cell proliferation, and differentiation. Here, we investigated the cancer chemopreventive properties of Erb-041, an ER-β agonist, using a model of UVB-induced photocarcinogenesis in SKH-1 mice. Erb-041 significantly reduced UVB-induced carcinogenesis. Tumor numbers and volume were reduced by 60% and 84%, respectively, in the Erb-041-treated group as compared with UVB (alone) control. This inhibition in tumorigenesis was accompanied by the decrease in proliferating cell nuclear antigen (PCNA), cyclin D1, VEGF, and CD31, and an increase in apoptosis. The lost ER-β expression in squamous cell carcinomas (SCC) was significantly recovered by Erb-041 treatment. In addition, the UVB-induced inflammatory responses were remarkably reduced. Myeloperoxidase activity, levels of cytokines (interleukin (IL)-1β, IL-6, and IL-10), and expression of p-ERK (extracellular signal-regulated kinase) 1/2, p-p38, p-IκB, iNOS, COX-2, and nuclear NF-κBp65 were diminished. The number of tumor-associated inflammatory cells (GR-1(+)/CD11b(+) and F4/80(+)) was also decreased. Tumors excised from Erb-041-treated animal were less invasive and showed reduced epithelial-mesenchymal transition (EMT). The enhanced expression of E-cadherin with the concomitantly reduced expression of N-cadherin, Snail, Slug, and Twist characterized these lesions. The WNT/β-catenin signaling pathway, which underlies pathogenesis of skin cancer, was found to be downregulated by Erb-041 treatment. Similar but not identical changes in proliferation and EMT regulatory proteins were noticed following treatment of tumor cells with a WNT signaling inhibitor XAV939. Our results show that Erb-041 is a potent skin cancer chemopreventive agent that acts by dampening the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Sandeep C Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dey P, Barros RPA, Warner M, Ström A, Gustafsson JÅ. Insight into the mechanisms of action of estrogen receptor β in the breast, prostate, colon, and CNS. J Mol Endocrinol 2013; 51:T61-74. [PMID: 24031087 DOI: 10.1530/jme-13-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Estrogen and its receptors (ERs) influence many biological processes in physiology and pathology in men and women. ERs are involved in the etiology and/or progression of cancers of the prostate, breast, uterus, ovary, colon, lung, stomach, and malignancies of the immune system. In estrogen-sensitive malignancies, ERβ usually is a tumor suppressor and ERα is an oncogene. ERβ regulates genes in several key pathways including tumor suppression (p53, PTEN); metabolism (PI3K); survival (Akt); proliferation pathways (p45(Skp2), cMyc, and cyclin E); cell-cycle arresting factors (p21(WAF1), cyclin-dependent kinase inhibitor 1 (CDKN1A)), p27(Kip1), and cyclin-dependent kinases (CDKs); protection from reactive oxygen species, glutathione peroxidase. Because they are activated by small molecules, ERs are excellent targets for pharmaceuticals. ERα antagonists have been used for many years in the treatment of breast cancer and more recently pharmaceutical companies have produced agonists which are very selective for ERα or ERβ. ERβ agonists are being considered for preventing progression of cancer, treatment of anxiety and depression, as anti-inflammatory agents and as agents, which prevent or reduce the severity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd, Science and Engineering Research Center Bldg 545, Houston, Texas 77204-5056, USA Department of Biosciences and Nutrition, Karolinska Institutet, Novum, S-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
42
|
Abstract
The function of vascular endothelial growth factor (VEGF) in cancer is not limited to angiogenesis and vascular permeability. VEGF-mediated signalling occurs in tumour cells, and this signalling contributes to key aspects of tumorigenesis, including the function of cancer stem cells and tumour initiation. In addition to VEGF receptor tyrosine kinases, the neuropilins are crucial for mediating the effects of VEGF on tumour cells, primarily because of their ability to regulate the function and the trafficking of growth factor receptors and integrins. This has important implications for our understanding of tumour biology and for the development of more effective therapeutic approaches.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
43
|
Abstract
Despite over 15 years of research, the exact role, if any, played by estrogen receptor β (ERβ) in human breast cancer remains elusive. A large body of data both in vitro and in vivo supports its role as an antiproliferative, pro-apoptotic factor especially when co-expressed with ERα. However, there is a smaller body of data associating ERβ with growth and survival in breast cancer. In clinical studies and most often in cell culture studies, the pro-growth and pro-survival activity of ERβ occurs in ERα-negative breast cancer tissue and cells. This bi-faceted role of ERβ is discussed in this review.
Collapse
Affiliation(s)
- Etienne Leygue
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9.
| | | |
Collapse
|