1
|
Braakman R, Satinsky B, O’Keefe TJ, Longnecker K, Hogle SL, Becker JW, Li RC, Dooley K, Arellano A, Kido Soule MC, Kujawinski EB, Chisholm SW. Global niche partitioning of purine and pyrimidine cross-feeding among ocean microbes. SCIENCE ADVANCES 2025; 11:eadp1949. [PMID: 39752493 PMCID: PMC11698098 DOI: 10.1126/sciadv.adp1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups. The cyanobacterium Prochlorococcus exudes both compound classes, which metabolic reconstructions suggest follows synchronous daily genome replication. Co-occurring heterotrophs differentiate into purine- and pyrimidine-using generalists or specialists that use compounds for different purposes. The most abundant heterotroph, SAR11, is a specialist that uses purines as sources of energy, carbon, and/or nitrogen, with subgroups differentiating along ocean-scale gradients in the supply of energy and nitrogen, in turn producing putative cryptic nitrogen cycles that link many microbes. Last, in an SAR11 subgroup that dominates where Prochlorococcus is abundant, adenine additions to cultures inhibit DNA synthesis, poising cells for replication. We argue that this subgroup uses inferred daily adenine pulses from Prochlorococcus to synchronize to the daily photosynthate supply from surrounding phytoplankton.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Earth, Atmospheric, & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandon Satinsky
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler J. O’Keefe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krista Longnecker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Shane L. Hogle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jamie W. Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert C. Li
- Department of Earth, Atmospheric, & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keven Dooley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aldo Arellano
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melissa C. Kido Soule
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Motta FC, McGoff K, Cummins B, Haase SB. Generalized measures of population synchrony. Math Biosci 2024:109344. [PMID: 39732161 DOI: 10.1016/j.mbs.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
Synchronized behavior among individuals, broadly defined, is a ubiquitous feature of populations. Understanding mechanisms of (de)synchronization demands meaningful, interpretable, computable quantifications of synchrony, relevant to measurements that can be made of complex, dynamic populations. Despite the importance to analyzing and modeling populations, existing notions of synchrony often lack rigorous definitions, may be specialized to a particular experimental system and/or measurement, or may have undesirable properties that limit their utility. Here we introduce a notion of synchrony for populations of individuals occupying a compact metric space that depends on the Fréchet variance of the distribution of individuals across the space. We establish several fundamental and desirable mathematical properties of our proposed measure of synchrony, including continuity and invariance to metric scaling. We establish a general approximation result that controls the disparity between synchrony in the true space and the synchrony observed through a discretization of state space, as may occur when observable states are limited by measurement constraints. We develop efficient algorithms to compute synchrony for distributions in a variety of state spaces, including all finite state spaces and empirical distributions on the circle, and provide accessible implementations in an open-source Python module. To demonstrate the usefulness of the synchrony measure in biological applications, we investigate several biologically relevant models of mechanisms that can alter the dynamics of population synchrony over time, and reanalyze published experimental and model data concerning the dynamics of the intraerythrocytic developmental cycles of Plasmodium parasites. We anticipate that the rigorous definition of population synchrony and the mathematical and biological results presented here will be broadly useful in analyzing and modeling populations in a variety of contexts.
Collapse
Affiliation(s)
- Francis C Motta
- Department of Mathematics and Statistics, Florida Atlantic University, Boca Raton, FL, USA.
| | - Kevin McGoff
- Department of Mathematics and Statistics, UNC Charlotte, Charlotte, NC, USA
| | - Breschine Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
3
|
DePoy AN, Wall H, Tinker KA, Ottesen EA. Microbial transcriptional responses to host diet maintain gut microbiome homeostasis in the American cockroach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621369. [PMID: 39554183 PMCID: PMC11565919 DOI: 10.1101/2024.10.31.621369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Diet is considered a key determinant of gut microbiome composition and function. However, studies in the American cockroach have revealed surprising stability in hindgut microbiome taxonomic composition following shifts in host diet. To discover microbial activities underlying this stability, we analyzed microbial community transcriptomes from hindguts of cockroaches fed diverse diets. We used a taxon-centric approach in which we clustered genomes based on taxonomic relatedness and functional similarity and examined the transcriptional profiles of each cluster independently. In total, we analyzed a set of 18 such "genome clusters", including key taxa within Bacteroidota, Bacillota, Desulfobacterota, and Euryarcheaeota phyla. We found that microbial transcriptional responses to diet varied across diets and microbial functional profiles, with the strongest transcriptional shifts seen in taxa predicted to be primarily focused on degradation of complex dietary polysaccharides. These groups upregulated genes associated with utilization of diet-sourced polysaccharides in response to bran and dog food diets, while they upregulated genes for degradation of potentially host-derived polysaccharides in response to tuna, butter, and starvation diets. In contrast, chemolithotrophic taxa, such as Desulfobacterota and Methanimicrococcus, exhibited stable transcriptional profiles, suggesting that compensatory changes in the metabolism of other microbial community members are sufficient to support their activities across major dietary shifts. These results provide new insight into microbial activities supporting gut microbiome stability in the face of variable diets in omnivores.
Collapse
|
4
|
Balasubrahmaniam N, King JC, Hegarty B, Dannemiller KC. Moving beyond species: fungal function in house dust provides novel targets for potential indicators of mold growth in homes. MICROBIOME 2024; 12:231. [PMID: 39517024 PMCID: PMC11549777 DOI: 10.1186/s40168-024-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Increased risk of asthma and other respiratory diseases is associated with exposures to microbial communities growing in damp and moldy indoor environments. The exact causal mechanisms remain unknown, and occupant health effects have not been consistently associated with any species-based mold measurement methods. We need new quantitative methods to identify homes with potentially harmful fungal growth that are not dependent upon species. The goal of this study was to identify genes consistently associated with fungal growth and associated function under damp conditions for use as potential indicators of mold in homes regardless of fungal species present. A de novo metatranscriptomic analysis was performed using house dust from across the US, incubated at 50%, 85%, or 100% equilibrium relative humidity (ERH) for 1 week. RESULTS Gene expression was a function of moisture (adonis2 p < 0.001), with fungal metabolic activity increasing with an increase in moisture condition (Kruskal-Wallis p = 0.003). Genes associated with fungal growth such as sporulation (n = 264), hyphal growth (n = 62), and secondary metabolism (n = 124) were significantly upregulated at elevated ERH conditions when compared to the low 50% ERH (FDR-adjusted p ≤ 0.001, log2FC ≥ 2), indicating that fungal function is influenced by damp conditions. A total of 67 genes were identified as consistently associated with the elevated 85% or 100% ERH conditions and included fungal developmental regulators and secondary metabolite genes such as brlA (log2FC = 7.39, upregulated at 100% compared to 85%) and stcC (log2FC = 8.78, upregulated at 85% compared to 50%). CONCLUSIONS Our results demonstrate that moisture conditions more strongly influence gene expression of indoor fungal communities compared to species presence. Identifying genes indicative of microbial growth under damp conditions will help develop robust monitoring techniques for indoor microbial exposures and improve understanding of how dampness and mold are linked to disease. Video Abstract.
Collapse
Affiliation(s)
- Neeraja Balasubrahmaniam
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Jon C King
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Bridget Hegarty
- Department of Civil & Environmental Engineering, College of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210, USA.
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Chen X, Hu C, Wei W, Yang Y, Weinbauer MG, Li H, Ren S, Ma R, Huang Y, Luo T, Jiao N, Zhang R. Virus-Host Interactions Drive Contrasting Bacterial Diel Dynamics in the Ocean. RESEARCH (WASHINGTON, D.C.) 2023; 6:0213. [PMID: 37614364 PMCID: PMC10443526 DOI: 10.34133/research.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Marine organisms perform a sea of diel rhythmicity. Planktonic diel dynamics have been shown to be driven by light, energy resources, circadian rhythms, and the coordinated coupling of photoautotrophs and heterotrophic bacterioplankton. Here, we explore the diel fluctuation of viral production and decay and their impact on the total and active bacterial community in the coastal and open seawaters of the South China Sea. The results showed that the night-production diel pattern of lytic viral production was concurrent with the lower viral decay at night, contributing to the accumulation of the viral population size during the night for surface waters. The diel variations in bacterial activity, community composition, and diversity were found highly affected by viral dynamics. This was revealed by the finding that bacterial community diversity was positively correlated to lytic viral production in the euphotic zone of the open ocean but was negatively related to lysogenic viral production in the coastal ocean. Such distinct but contrasting correlations suggest that viral life strategies can not only contribute to diversifying bacterial community but also potentially piggyback their host to dominate bacterial community, suggesting the tightly synchronized depth-dependent and habitat-specific diel patterns of virus-host interactions. It further implies that viruses serve as an ecologically important driver of bacterial diel dynamics across the ocean, highlighting the viral roles in bacterial ecological and biogeochemical processes in the ocean.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer 06230, France
| | - Hongbo Li
- National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, PR China
| | - Shiying Ren
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Yibin Huang
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, USA
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| |
Collapse
|
6
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
7
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Das S, Najar IN, Sherpa MT, Kumar S, Sharma P, Mondal K, Tamang S, Thakur N. Baseline metagenome-assembled genome (MAG) data of Sikkim hot springs from Indian Himalayan geothermal belt (IHGB) showcasing its potential CAZymes, and sulfur-nitrogen metabolic activity. World J Microbiol Biotechnol 2023; 39:179. [PMID: 37133792 DOI: 10.1007/s11274-023-03631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Here we present the construction and characterization of metagenome assembled genomes (MAGs) from two hot springs residing in the vicinity of Indian Himalayan Geothermal Belt (IHGB). A total of 78 and 7 taxonomic bins were obtained for Old Yume Samdong (OYS) and New Yume Samdong (NYS) hot springs respectively. After passing all the criteria only 21 and 4 MAGs were further studied based on the successful prediction of their 16 S rRNA. Various databases were used such as GTDB, Kaiju, EzTaxon, BLAST XY Plot and NCBI BLAST to get the taxonomic classification of various 16 S rRNA predicted MAGs. The bacterial genomes found were from both thermophilic and mesophilic bacteria among which Proteobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the abundant phyla. However, in case of OYS, two genomes belonged to archaeal Methanobacterium and Methanocaldococcus. Functional characterization revealed the richness of CAZymes such as Glycosyl Transferase (GT) (56.7%), Glycoside Hydrolase (GH) (37.4%), Carbohydrate Esterase family (CE) (8.2%), and Polysaccharide Lyase (PL) (1.9%). There were negligible antibiotic resistance genes in the MAGs however, a significant heavy metal tolerance gene was found in the MAGs. Thus, it may be assumed that there is no coexistence of antibiotic and heavy metal resistance genes in these hot spring microbiomes. Since the selected hot springs possess good sulfur content thus, we also checked the presence of genes for sulfur and nitrogen metabolism. It was found that MAGs from both the hot springs possess significant number of genes related to sulfur and nitrogen metabolism.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
- Department of Life Science and Bioinformatics, Hargobind Khurana School of Life Sciences, Assam University, Silchar, Assam, 788011, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Krishnendu Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
9
|
Determinants of Total and Active Microbial Communities Associated with Cyanobacterial Aggregates in a Eutrophic Lake. mSystems 2023; 8:e0099222. [PMID: 36927063 PMCID: PMC10134853 DOI: 10.1128/msystems.00992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Cyanobacterial aggregates (CAs) comprised of photosynthetic and phycospheric microorganisms are often the cause of cyanobacterial blooms in eutrophic freshwater lakes. Although phylogenetic diversity in CAs has been extensively studied, much less was understood about the activity status of microorganisms inside CAs and determinants of their activities. In this study, the 16S rRNA gene (rDNA)-based total communities within CAs in Lake Taihu of China were analyzed over a period of 6 months during the bloom season; the 16S rRNA-based active communities during daytime, nighttime, and under anoxic conditions were also profiled. Synchronous turnover of both cyanobacterial and phycospheric communities was observed, suggesting the presence of close interactions. The rRNA/rDNA ratio-based relative activities of individual taxa were predominantly determined by their rDNA-based relative abundances. In particular, high-abundance taxa demonstrated comparatively lower activities, whereas low-abundance taxa were generally more active. In comparison, hydrophysicochemical factors as well as diurnal and redox conditions showed much less impact on relative activities of microbial taxa within CAs. Nonetheless, total and active communities exhibited differences in community assembly processes, the former of which were almost exclusively controlled by homogeneous selection during daytime and under anoxia. Taken together, the results from this study provide novel insights into the relationships among microbial activities, community structure, and environmental conditions and highlight the importance of further exploring the regulatory mechanisms of microbial activities at the community level. IMPORTANCE Cyanobacterial aggregates are important mediators of biogeochemical cycles in eutrophic lakes during cyanobacterial blooms, yet regulators of microbial activities within them are not well understood. This study revealed rDNA-based abundances strongly affected the relative activities of microbial taxa within Microcystis aggregates, as well as trade-off effects between microbial abundances and activities. Environmental conditions further improved the levels of relative activities and affected community assembly mechanisms in phycospheric communities. The relationships among microbial activities, abundances, and environmental conditions improve our understanding of the regulatory mechanisms of microbial activities in cyanobacterial aggregates and also provide a novel clue for studying determinants of microbial activities in other ecosystems.
Collapse
|
10
|
Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression. THE ISME JOURNAL 2023; 17:813-822. [PMID: 36871069 DOI: 10.1038/s41396-023-01390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Identifying mechanisms by which bacterial species evolve and maintain genomic diversity is particularly challenging for the uncultured lineages that dominate the surface ocean. A longitudinal analysis of bacterial genes, genomes, and transcripts during a coastal phytoplankton bloom revealed two co-occurring, highly related Rhodobacteraceae species from the deeply branching and uncultured NAC11-7 lineage. These have identical 16S rRNA gene amplicon sequences, yet their genome contents assembled from metagenomes and single cells indicate species-level divergence. Moreover, shifts in relative dominance of the species during dynamic bloom conditions over 7 weeks confirmed the syntopic species' divergent responses to the same microenvironment at the same time. Genes unique to each species and genes shared but divergent in per-cell inventories of mRNAs accounted for 5% of the species' pangenome content. These analyses uncover physiological and ecological features that differentiate the species, including capacities for organic carbon utilization, attributes of the cell surface, metal requirements, and vitamin biosynthesis. Such insights into the coexistence of highly related and ecologically similar bacterial species in their shared natural habitat are rare.
Collapse
|
11
|
Pontiller B, Martínez-García S, Joglar V, Amnebrink D, Pérez-Martínez C, González JM, Lundin D, Fernández E, Teira E, Pinhassi J. Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system. THE ISME JOURNAL 2022; 16:2360-2372. [PMID: 35804052 PMCID: PMC9478159 DOI: 10.1038/s41396-022-01273-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Coastal upwelling zones are hotspots of oceanic productivity, driven by phytoplankton photosynthesis. Bacteria, in turn, grow on and are the principal remineralizers of dissolved organic matter (DOM) produced in aquatic ecosystems. However, the molecular processes that key bacterial taxa employ to regulate the turnover of phytoplankton-derived DOM are not well understood. We therefore carried out comparative time-series metatranscriptome analyses of bacterioplankton in the Northwest Iberian upwelling system, using parallel sampling of seawater and mesocosms with in situ-like conditions. The mesocosm experiment uncovered a taxon-specific progression of transcriptional responses from bloom development (characterized by a diverse set of taxa in the orders Cellvibrionales, Rhodobacterales, and Pelagibacterales), over early decay (mainly taxa in the Alteromonadales and Flavobacteriales), to senescence phases (Flavobacteriales and Saprospirales taxa). Pronounced order-specific differences in the transcription of glycoside hydrolases, peptidases, and transporters were found, supporting that functional resource partitioning is dynamically structured by temporal changes in available DOM. In addition, comparative analysis of mesocosm and field samples revealed a high degree of metabolic plasticity in the degradation and uptake of carbohydrates and nitrogen-rich compounds, suggesting these gene systems critically contribute to modulating the stoichiometry of the labile DOM pool. Our findings suggest that cascades of transcriptional responses in gene systems for the utilization of organic matter and nutrients largely shape the fate of organic matter on the time scales typical of upwelling-driven phytoplankton blooms.
Collapse
|
12
|
Bachy C, Wittmers F, Muschiol J, Hamilton M, Henrissat B, Worden AZ. The Land-Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:585-616. [PMID: 35259927 DOI: 10.1146/annurev-arplant-071921-100530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems-the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.
Collapse
Affiliation(s)
- Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Muschiol
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Hamilton
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille Université (AMU), Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratories, Woods Hole, Massachusetts, USA
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
13
|
Kamikawa R, Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T, Onuma R, Cenci U, Moog D, Speak S, Sarkozi K, Toseland A, van Oosterhout C, Oyama K, Kato M, Kume K, Kayama M, Azuma T, Ishii KI, Miyashita H, Henrissat B, Lombard V, Win J, Kamoun S, Kashiyama Y, Mayama S, Miyagishima SY, Tanifuji G, Mock T, Nakamura Y. Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. SCIENCE ADVANCES 2022; 8:eabi5075. [PMID: 35486731 PMCID: PMC9054022 DOI: 10.1126/sciadv.abi5075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takako Mochizuki
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | - Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Ugo Cenci
- Université de Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8
- SYNMIKRO Research Center, Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - Samuel Speak
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Krisztina Sarkozi
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kaori Oyama
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Keitaro Kume
- Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ken-ichiro Ishii
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Shigeki Mayama
- Advanced Support Center for Science Teachers, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yasukazu Nakamura
- Department of Informatics, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| |
Collapse
|
14
|
Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol 2022; 6:218-229. [DOI: 10.1038/s41559-021-01606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
|
15
|
Rain-Franco A, Mouquet N, Gougat-Barbera C, Bouvier T, Beier S. Niche breadth affects bacterial transcription patterns along a salinity gradient. Mol Ecol 2021; 31:1216-1233. [PMID: 34878694 DOI: 10.1111/mec.16316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Understanding the molecular mechanisms that determine a species' life history is important for predicting their susceptibility to environmental change. While specialist species with a narrow niche breadth (NB) maximize their fitness in their optimum habitat, generalists with broad NB adapt to multiple environments. The main objective of this study was to identify general transcriptional patterns that would distinguish bacterial strains characterized by contrasted NBs along a salinity gradient. More specifically, we hypothesized that genes encoding fitness-related traits, such as biomass production, have a higher degree of transcriptional regulation in specialists than in generalists, because the fitness of specialists is more variable under environmental change. By contrast, we expected that generalists would exhibit enhanced transcriptional regulation of genes encoding traits that protect them against cellular damage. To test these hypotheses, we assessed the transcriptional regulation of fitness-related and adaptation-related genes of 11 bacterial strains in relation to their NB and stress exposure under changing salinity conditions. The results suggested that transcriptional regulation levels of fitness- and adaptation-related genes correlated with the NB and/or the stress exposure of the inspected strains. We further identified a shortlist of candidate stress marker genes that could be used in future studies to monitor the susceptibility of bacterial populations or communities to environmental changes.
Collapse
Affiliation(s)
- Angel Rain-Franco
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France
| | - Nicolas Mouquet
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | | | - Thierry Bouvier
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | - Sara Beier
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France.,Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| |
Collapse
|
16
|
Evaluation of genomic sequence-based growth rate methods for synchronized Synechococcus cultures. Appl Environ Microbiol 2021; 88:e0174321. [PMID: 34705550 DOI: 10.1128/aem.01743-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Standard methods for calculating microbial growth rates (μ) through the use of proxies, such as in situ fluorescence, cell cycle, or cell counts, are critical for determining the magnitude of the role bacteria play in marine carbon (C) and nitrogen (N) cycles. Taxon-specific growth rates in mixed assemblages would be useful for attributing biogeochemical processes to individual species and understanding niche differentiation among related clades, such as found in Synechococcus and Prochlorococcus. We tested three novel DNA sequencing-based methods (iRep, bPTR, and GRiD) for evaluating growth of light synchronized Synechococcus cultures under different light intensities and temperatures. In vivo fluorescence and cell cycle analysis were used to obtain standard estimates of growth rate for comparison with the sequence-based methods (SBM). None of the SBM values were correlated with growth rates calculated by standard techniques despite the fact that all three SBM were correlated with percentage of cells in S phase (DNA replication) over the diel cycle. Inaccuracy in determining the time of maximum DNA replication is unlikely to account entirely for the absence of relationship between SBM and growth rate, but the fact that most microbes in the surface ocean exhibit some degree of diel cyclicity is a caution for application of these methods. SBM correlate with DNA replication but cannot be interpreted quantitatively in terms of growth rate. Importance Small but abundant, cyanobacterial strains such as the photosynthetic Synechococcus spp. are essential because they contribute significantly to primary productivity in the ocean. These bacteria generate oxygen and provide biologically-available carbon, which is essential for organisms at higher trophic levels. The small size and diversity of natural microbial assemblages means that taxon-specific activities (e.g., growth rate) are difficult to obtain in the field. It has been suggested that sequence-based methods (SBM) may be able to solve this problem. We find, however, that SBM can detect DNA replication and are correlated with phases of the cell cycle but cannot be interpreted in terms of absolute growth rate for Synechococcus cultures growing under a day-night cycle, like that experienced in the ocean.
Collapse
|
17
|
Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge. Sci Rep 2021; 11:16200. [PMID: 34376772 PMCID: PMC8355221 DOI: 10.1038/s41598-021-95676-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their significant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to five distinct small pigmented eukaryote cell populations, identified and sorted by flow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8-2 µm) and Bacillariophyceae (0.8-3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed differences in the old plume core and at one of the plume margin stations. Such results reflect the dynamic interactions of the plume and offshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly affected by habitat types at this time of the year.
Collapse
|
18
|
Murphy ARJ, Scanlan DJ, Chen Y, Adams NBP, Cadman WA, Bottrill A, Bending G, Hammond JP, Hitchcock A, Wellington EMH, Lidbury IDEA. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle. Nat Commun 2021; 12:4554. [PMID: 34315891 PMCID: PMC8316502 DOI: 10.1038/s41467-021-24646-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.
Collapse
Affiliation(s)
- Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Nanotemper Technologies GmbH, Flößergasse 4, Munich, Germany
| | - William A Cadman
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Andrew Bottrill
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gary Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Ian D E A Lidbury
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
19
|
Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc Natl Acad Sci U S A 2021; 118:2011038118. [PMID: 33547239 PMCID: PMC8017926 DOI: 10.1073/pnas.2011038118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most organisms coordinate key biological events to coincide with the day/night cycle. These diel oscillations are entrained through the activity of light-sensitive photoreceptors that allow organisms to respond rapidly to changes in light exposure. In the ocean, the plankton community must additionally contend with dramatic changes in the quantity and quality of light over depth. Here, we show that the predominantly blue-light field in the open-ocean environment may have driven expansion of blue light-sensitive regulatory elements in open-ocean eukaryotic plankton derived from secondary and tertiary endosymbiosis. The diel transcription of genes encoding light-sensitive elements indicate that photosynthetic and heterotrophic marine protists respond to and anticipate fluctuating light conditions in the dynamic marine environment. The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
Collapse
|
20
|
Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol 2021; 6:524-532. [PMID: 33495621 DOI: 10.1038/s41564-020-00851-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Niche theory is a foundational ecological concept that explains the distribution of species in natural environments. Identifying the dimensions of any organism's niche is challenging because numerous environmental factors can affect organism viability. We used serial invasion experiments to introduce Ruegeria pomeroyi DSS-3, a heterotrophic marine bacterium, into a coastal phytoplankton bloom on 14 dates. RNA-sequencing analysis of R. pomeroyi was conducted after 90 min to assess its niche dimensions in this dynamic ecosystem. We identified ~100 external conditions eliciting transcriptional responses, which included substrates, nutrients, metals and biotic interactions such as antagonism, resistance and cofactor synthesis. The peak bloom was characterized by favourable states for most of the substrate dimensions, but low inferred growth rates of R. pomeroyi at this stage indicated that its niche was narrowed by factors other than substrate availability, most probably negative biotic interactions with the bloom dinoflagellate. Our findings indicate chemical and biological features of the ocean environment that can constrain where heterotrophic bacteria survive.
Collapse
|
21
|
DeLong EF. Genome-enabled exploration of microbial ecology and evolution in the sea: a rising tide lifts all boats. Environ Microbiol 2021; 23:1301-1321. [PMID: 33459471 PMCID: PMC8049014 DOI: 10.1111/1462-2920.15403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/26/2022]
Abstract
As a young bacteriologist just launching my career during the early days of the 'microbial revolution' in the 1980s, I was fortunate to participate in some early discoveries, and collaborate in the development of cross-disciplinary methods now commonly referred to as "metagenomics". My early scientific career focused on applying phylogenetic and genomic approaches to characterize 'wild' bacteria, archaea and viruses in their natural habitats, with an emphasis on marine systems. These central interests have not changed very much for me over the past three decades, but knowledge, methodological advances and new theoretical perspectives about the microbial world certainly have. In this invited 'How we did it' perspective, I trace some of the trajectories of my lab's collective efforts over the years, including phylogenetic surveys of microbial assemblages in marine plankton and sediments, development of microbial community gene- and genome-enabled surveys, and application of genome-guided, cultivation-independent functional characterization of novel enzymes, pathways and their relationships to in situ biogeochemistry. Throughout this short review, I attempt to acknowledge, all the mentors, students, postdocs and collaborators who enabled this research. Inevitably, a brief autobiographical review like this cannot be fully comprehensive, so sincere apologies to any of my great colleagues who are not explicitly mentioned herein. I salute you all as well!
Collapse
Affiliation(s)
- Edward F DeLong
- Daniel K. Inouye Centre for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
22
|
Zhang Y, Ryan JP, Hobson BW, Kieft B, Romano A, Barone B, Preston CM, Roman B, Raanan BY, Pargett D, Dugenne M, White AE, Freitas FH, Poulos S, Wilson ST, DeLong EF, Karl DM, Birch JM, Bellingham JG, Scholin CA. A system of coordinated autonomous robots for Lagrangian studies of microbes in the oceanic deep chlorophyll maximum. Sci Robot 2021; 6:6/50/eabb9138. [PMID: 34043577 DOI: 10.1126/scirobotics.abb9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.e., Lagrangian. Here, we report the development and application of a system of coordinated robots for studying planktonic biological communities drifting within the ocean. The presented Lagrangian system uses three coordinated autonomous robotic platforms. The focal platform consists of an autonomous underwater vehicle (AUV) fitted with a robotic water sampler. This platform localizes and drifts within a DCM community, periodically acquiring samples while continuously monitoring the local environment. The second platform is an AUV equipped with environmental sensing and acoustic tracking capabilities. This platform characterizes environmental conditions by tracking the focal platform and vertically profiling in its vicinity. The third platform is an autonomous surface vehicle equipped with satellite communications and subsea acoustic tracking capabilities. While also acoustically tracking the focal platform, this vehicle serves as a communication relay that connects the subsea robot to human operators, thereby providing situational awareness and enabling intervention if needed. Deployed in the North Pacific Ocean within the core of a cyclonic eddy, this coordinated system autonomously captured fundamental characteristics of the in situ DCM microbial community in a manner not possible previously.
Collapse
Affiliation(s)
- Yanwu Zhang
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Brett W Hobson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Brian Kieft
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Anna Romano
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | | | - Brent Roman
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Ben-Yair Raanan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Douglas Pargett
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | | | - Steve Poulos
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | | | - David M Karl
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - James M Birch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | |
Collapse
|
23
|
Nguyen J, Lara-Gutiérrez J, Stocker R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol Rev 2020; 45:6041721. [PMID: 33338228 PMCID: PMC8371271 DOI: 10.1093/femsre/fuaa068] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
From the homeostasis of human health to the cycling of Earth's elements, microbial activities underlie environmental, medical and industrial processes. These activities occur in chemical and physical landscapes that are highly dynamic and experienced by bacteria as fluctuations. In this review, we first discuss how bacteria can experience both spatial and temporal heterogeneity in their environments as temporal fluctuations of various timescales (seconds to seasons) and types (nutrient, sunlight, fluid flow, etc.). We then focus primarily on nutrient fluctuations to discuss how bacterial communities, populations and single cells respond to environmental fluctuations. Overall, we find that environmental fluctuations are ubiquitous and diverse, and strongly shape microbial behavior, ecology and evolution when compared with environments in which conditions remain constant over time. We hope this review may serve as a guide toward understanding the significance of environmental fluctuations in microbial life, such that their contributions and implications can be better assessed and exploited.
Collapse
Affiliation(s)
- Jen Nguyen
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juanita Lara-Gutiérrez
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Abstract
Today massive amounts of sequenced metagenomic and metatranscriptomic data from different ecological niches and environmental locations are available. Scientific progress depends critically on methods that allow extracting useful information from the various types of sequence data. Here, we will first discuss types of information contained in the various flavours of biological sequence data, and how this information can be interpreted to increase our scientific knowledge and understanding. We argue that a mechanistic understanding of biological systems analysed from different perspectives is required to consistently interpret experimental observations, and that this understanding is greatly facilitated by the generation and analysis of dynamic mathematical models. We conclude that, in order to construct mathematical models and to test mechanistic hypotheses, time-series data are of critical importance. We review diverse techniques to analyse time-series data and discuss various approaches by which time-series of biological sequence data have been successfully used to derive and test mechanistic hypotheses. Analysing the bottlenecks of current strategies in the extraction of knowledge and understanding from data, we conclude that combined experimental and theoretical efforts should be implemented as early as possible during the planning phase of individual experiments and scientific research projects. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| | - Ellen Oldenburg
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
25
|
Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean. ISME JOURNAL 2020; 15:520-533. [PMID: 33033374 DOI: 10.1038/s41396-020-00793-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.
Collapse
|
26
|
Predetermined clockwork microbial worlds: Current understanding of aquatic microbial diel response from model systems to complex environments. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:163-191. [PMID: 32948266 DOI: 10.1016/bs.aambs.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the photic zone of aquatic ecosystems, microorganisms with different metabolisms and their viruses form complex interactions and food webs. Within these interactions, phototrophic microorganisms such as eukaryotic microalgae and cyanobacteria interact directly with sunlight, and thereby generate circadian rhythms. Diel cycling originally generated in microbial phototrophs is directly transmitted toward heterotrophic microorganisms utilizing the photosynthetic products as they are excreted or exuded. Such diel cycling seems to be indirectly propagated toward heterotrophs as a result of complex biotic interactions. For example, cell death of phototrophic microorganisms induced by viral lysis and protistan grazing provides additional resources of dissolved organic matter to the microbial community, and so generates diel cycling in other heterotrophs with different nutrient dependencies. Likewise, differences in the diel transmitting pathway via complex interactions among heterotrophs, and between heterotrophs and their viruses, may also generate higher variation and time lag diel rhythms in different heterotrophic taxa. Thus, sunlight and photosynthesis not only contribute energy and carbon supply, but also directly or indirectly control diel cycling of the microbial community through complex interactions in the photic zone of aquatic ecosystems.
Collapse
|
27
|
Circadian clock-controlled gene expression in co-cultured, mat-forming cyanobacteria. Sci Rep 2020; 10:14095. [PMID: 32839512 PMCID: PMC7445270 DOI: 10.1038/s41598-020-69294-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
Natural coastal microbial mat communities are multi-species assemblages that experience fluctuating environmental conditions and are shaped by resource competition as well as by cooperation. Laboratory studies rarely address the natural complexity of microbial communities but are usually limited to homogeneous mono-cultures of key species grown in liquid media. The mat-forming filamentous cyanobacteria Lyngbya aestuarii and Coleofasciculus chthonoplastes were cultured under different conditions to investigate the expression of circadian clock genes and genes that are under their control. The cyanobacteria were grown in liquid medium or on a solid substrate (glass beads) as mono- or as co-cultures under a light-dark regime and subsequently transferred to continuous light. TaqMan-probe based qPCR assays were used to quantify the expression of the circadian clock genes kaiA, kaiB, and kaiC, and of four genes that are under control of the circadian clock: psbA, nifH, ftsZ, and prx. Expression of kaiABC was influenced by co-culturing the cyanobacteria and whether grown in liquid media or on a solid substrate. Free-running (i.e. under continuous light) expression cycle of the circadian clock genes was observed in L. aestuarii but not in C. chthonoplastes. In the former organism, maximum expression of psbA and nifH occurred temporally separated and independent of the light regime, although the peak shifted in time when the culture was transferred to continuous illumination. Although functionally similar, both species of cyanobacteria displayed different 24-h transcriptional patterns in response to the experimental treatments, suggesting that their circadian clocks have adapted to different life strategies adopted by these mat-forming cyanobacteria.
Collapse
|
28
|
Zhong ZP, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, Cooper ZS, Jang HB, Bolduc B, Deming JW, Sullivan MB. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020; 5:e00246-20. [PMID: 32546670 PMCID: PMC7300359 DOI: 10.1128/msystems.00246-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Abstract
Arctic regions, which are changing rapidly as they warm 2 to 3 times faster than the global average, still retain microbial habitats that serve as natural laboratories for understanding mechanisms of microbial adaptation to extreme conditions. Seawater-derived brines within both sea ice (sea-ice brine) and ancient layers of permafrost (cryopeg brine) support diverse microbes adapted to subzero temperatures and high salinities, yet little is known about viruses in these extreme environments, which, if analogous to other systems, could play important evolutionary and ecosystem roles. Here, we characterized viral communities and their functions in samples of cryopeg brine, sea-ice brine, and melted sea ice. Viral abundance was high in cryopeg brine (1.2 × 108 ml-1) and much lower in sea-ice brine (1.3 × 105 to 2.1 × 105 ml-1), which roughly paralleled the differences in cell concentrations in these samples. Five low-input, quantitative viral metagenomes were sequenced to yield 476 viral populations (i.e., species level; ≥10 kb), only 12% of which could be assigned taxonomy by traditional database approaches, indicating a high degree of novelty. Additional analyses revealed that these viruses: (i) formed communities that differed between sample type and vertically with sea-ice depth; (ii) infected hosts that dominated these extreme ecosystems, including Marinobacter, Glaciecola, and Colwellia; and (iii) encoded fatty acid desaturase (FAD) genes that likely helped their hosts overcome cold and salt stress during infection, as well as mediated horizontal gene transfer of FAD genes between microbes. Together, these findings contribute to understanding viral abundances and communities and how viruses impact their microbial hosts in subzero brines and sea ice.IMPORTANCE This study explores viral community structure and function in remote and extreme Arctic environments, including subzero brines within marine layers of permafrost and sea ice, using a modern viral ecogenomics toolkit for the first time. In addition to providing foundational data sets for these climate-threatened habitats, we found evidence that the viruses had habitat specificity, infected dominant microbial hosts, encoded host-derived metabolic genes, and mediated horizontal gene transfer among hosts. These results advance our understanding of the virosphere and how viruses influence extreme ecosystems. More broadly, the evidence that virally mediated gene transfers may be limited by host range in these extreme habitats contributes to a mechanistic understanding of genetic exchange among microbes under stressful conditions in other systems.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Shelly D Carpenter
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Zachary S Cooper
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Modelling Free-Living and Particle-Associated Bacterial Assemblages across the Deep and Hypoxic Lower St. Lawrence Estuary. mSphere 2020; 5:5/3/e00364-20. [PMID: 32434843 PMCID: PMC7380577 DOI: 10.1128/msphere.00364-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Estuary and Gulf of St. Lawrence (EGSL) in eastern Canada is an appealing ecosystem for studying how microbial communities and metabolic processes are related to environmental change. Ocean and climate variability result in large spatiotemporal variations in environmental conditions and oceanographic processes. The EGSL is also exposed to a variety of additional human pressures that threaten its integrity and sustainable use, including shipping, aquiculture, coastal development, and oil exploration. To monitor and perhaps mitigate the impacts of these human activities on the EGSL, a comprehensive understanding of the biological communities is required. In this study, we provide the first comprehensive view of bacterial diversity in the EGSL and describe the distinct bacterial assemblages associated with different environmental habitats. This work therefore provides an important baseline ecological framework for bacterial communities in the EGSL useful for further studies on how these communities may respond to environmental change. The Estuary and Gulf of St. Lawrence (EGSL) in eastern Canada are among the largest and most productive coastal ecosystems in the world. Very little information on bacterial diversity exists, hampering our understanding of the relationships between bacterial community structure and biogeochemical function in the EGSL. During the productive spring period, we investigated free-living and particle-associated bacterial communities across the stratified waters of the Lower St. Lawrence Estuary, including the particle-rich surface and bottom boundary layers. Modelling of community structure based on 16S rRNA gene and transcript diversity identified bacterial assemblages specifically associated with four habitat types defined by water mass (upper water or lower water column) and size fraction (free living or particle associated). Assemblages from the upper waters represent sets of cooccurring bacterial populations that are widely distributed across Lower St. Lawrence Estuary surface waters and likely key contributors to organic matter degradation during the spring. In addition, we provide strong evidence that particles in deep hypoxic waters and the bottom boundary layer support a metabolically active bacterial community that is compositionally distinct from those of surface particles and the free-living communities. Among the distinctive features of the bacterial assemblage associated with lower-water particles was the presence of uncultivated lineages of Deltaproteobacteria, including marine myxobacteria. Overall, these results provide an important ecological framework for further investigations of the biogeochemical contributions of bacterial populations in this important coastal marine ecosystem. IMPORTANCE The Estuary and Gulf of St. Lawrence (EGSL) in eastern Canada is an appealing ecosystem for studying how microbial communities and metabolic processes are related to environmental change. Ocean and climate variability result in large spatiotemporal variations in environmental conditions and oceanographic processes. The EGSL is also exposed to a variety of additional human pressures that threaten its integrity and sustainable use, including shipping, aquiculture, coastal development, and oil exploration. To monitor and perhaps mitigate the impacts of these human activities on the EGSL, a comprehensive understanding of the biological communities is required. In this study, we provide the first comprehensive view of bacterial diversity in the EGSL and describe the distinct bacterial assemblages associated with different environmental habitats. This work therefore provides an important baseline ecological framework for bacterial communities in the EGSL useful for further studies on how these communities may respond to environmental change.
Collapse
|
30
|
Chen Y, Zeng Q. Temporal transcriptional patterns of cyanophage genes suggest synchronized infection of cyanobacteria in the oceans. MICROBIOME 2020; 8:68. [PMID: 32430017 PMCID: PMC7238727 DOI: 10.1186/s40168-020-00842-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Based on the peak expression times during infection, early, middle, and late genes have been characterized in viruses (cyanophages) that infect the unicellular cyanobacterium Prochlorococcus. Laboratory experiments show that some cyanophages can only replicate in the light and thus exhibit diurnal infection rhythms under light-dark cycles. Field evidence also suggests synchronized infection of Prochlorococcus by cyanophages in the oceans, which should result in progressive expression of cyanophage early, middle, and late genes. However, distinct temporal expression patterns have not been observed in cyanophage field populations. RESULTS In this study, we reanalyzed a previous metatranscriptomic dataset collected in the North Pacific Subtropical Gyre. In this dataset, it was previously shown that aggregate transcripts from cyanophage scaffolds display diurnal transcriptional rhythms with transcript abundances decreasing at night. By mapping metatranscriptomic reads to individual viral genes, we identified periodically expressed genes from putative viruses infecting the cyanobacteria Prochlorococcus and Synechococcus, heterotrophic bacteria, and algae. Of the 41 cyanophage genes, 35 were from cyanomyoviruses. We grouped the periodically expressed cyanomyovirus genes into early, middle, and late genes based on the conserved temporal expression patterns of their orthologs in cyanomyovirus laboratory cultures. We found that the peak expression times of late genes in cyanophage field populations were significantly later than those of early and middle genes, which were similar to the temporal expression patterns of synchronized cyanophage laboratory cultures. CONCLUSIONS The significantly later peak expression times of late genes in cyanomyovirus field populations suggest that cyanophage infection of Prochlorococcus is synchronized in the North Pacific Subtropical Gyre. The night-time peak expression of late genes also suggests synchronized lysis of Prochlorococcus at night, which might result in synchronized release of dissolved organic matter to the marine food web. Video abstract.
Collapse
Affiliation(s)
- Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST Shenzhen Research Institute, Shenzhen, China.
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
31
|
Metegnier G, Paulino S, Ramond P, Siano R, Sourisseau M, Destombe C, Le Gac M. Species specific gene expression dynamics during harmful algal blooms. Sci Rep 2020; 10:6182. [PMID: 32277155 PMCID: PMC7148311 DOI: 10.1038/s41598-020-63326-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Harmful algal blooms are caused by specific members of microbial communities. Understanding the dynamics of these events requires comparing the strategies developed by the problematic species to cope with environmental fluctuations to the ones developed by the other members of the community. During three consecutive years, the meta-transcriptome of micro-eukaryote communities was sequenced during blooms of the toxic dinoflagellate Alexandrium minutum. The dataset was analyzed to investigate species specific gene expression dynamics. Major shifts in gene expression were explained by the succession of different species within the community. Although expression patterns were strongly correlated with fluctuation of the abiotic environment, and more specifically with nutrient concentration, transcripts specifically involved in nutrient uptake and metabolism did not display extensive changes in gene expression. Compared to the other members of the community, A. minutum displayed a very specific expression pattern, with lower expression of photosynthesis transcripts and central metabolism genes (TCA cycle, glucose metabolism, glycolysis…) and contrasting expression pattern of ion transporters across environmental conditions. These results suggest the importance of mixotrophy, cell motility and cell-to-cell interactions during A. minutum blooms.
Collapse
Affiliation(s)
- Gabriel Metegnier
- French Research Institute for Exploitation of the Sea, Ifremer DYNECO PELAGOS, 29280, Plouzané, France.,CNRS, Sorbonne Université, UC, UaCh, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Sauvann Paulino
- French Research Institute for Exploitation of the Sea, Ifremer DYNECO PELAGOS, 29280, Plouzané, France
| | - Pierre Ramond
- French Research Institute for Exploitation of the Sea, Ifremer DYNECO PELAGOS, 29280, Plouzané, France.,CNRS, Sorbonne Université, UMR 7144, Station Biologique de Roscoff, CS90074, 29688, Roscoff Cedex, France
| | - Raffaele Siano
- French Research Institute for Exploitation of the Sea, Ifremer DYNECO PELAGOS, 29280, Plouzané, France
| | - Marc Sourisseau
- French Research Institute for Exploitation of the Sea, Ifremer DYNECO PELAGOS, 29280, Plouzané, France
| | - Christophe Destombe
- CNRS, Sorbonne Université, UC, UaCh, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Mickael Le Gac
- French Research Institute for Exploitation of the Sea, Ifremer DYNECO PELAGOS, 29280, Plouzané, France.
| |
Collapse
|
32
|
Hellweger FL. Combining Molecular Observations and Microbial Ecosystem Modeling: A Practical Guide. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:267-289. [PMID: 31226029 DOI: 10.1146/annurev-marine-010419-010829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Advances in technologies for molecular observation are leading to novel types of data, including gene, transcript, protein, and metabolite levels, which are fundamentally different from the types traditionally compared with microbial ecosystem models, such as biomass (e.g., chlorophyll a) and nutrient concentrations. A grand challenge is to use these data to improve predictive models and use models to explain observed patterns. This article presents a framework that aligns observations and models along the dimension of abstraction or biological organization-from raw sequences to ecosystem patterns for observations, and from sequence simulators to ecological theory for models. It then reviews 16 studies that compared model results with molecular observations. Molecular data can and are being combined with microbial ecosystem models, but to keep up with and take advantage of the full scope of observations, models need to become more mechanistically detailed and complex, which is a technical and cultural challenge for the ecological modeling community.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Specialty Area of Water Quality Engineering (Wasserreinhaltung), Institute of Environmental Science and Engineering, Technical University of Berlin, 10623 Berlin, Germany;
| |
Collapse
|
33
|
Hernández Limón MD, Hennon GMM, Harke MJ, Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional patterns of
Emiliania huxleyi
in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential. Environ Microbiol 2019; 22:381-396. [DOI: 10.1111/1462-2920.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- María D. Hernández Limón
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Gwenn M. M. Hennon
- University of Alaska Fairbanks College of Fisheries and Ocean Sciences Fairbanks AK USA
| | - Matthew J. Harke
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Kyle R. Frischkorn
- Department of Earth and Environmental Science Columbia University New York NY USA
| | - Sheean T. Haley
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Science Columbia University New York NY USA
| |
Collapse
|
34
|
Circadian clock helps cyanobacteria manage energy in coastal and high latitude ocean. ISME JOURNAL 2019; 14:560-568. [PMID: 31685937 DOI: 10.1038/s41396-019-0547-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
The circadian clock coordinates cellular functions over the diel cycle in many organisms. The molecular mechanisms of the cyanobacterial clock are well characterized, but its ecological role remains a mystery. We present an agent-based model of Synechococcus (harboring a self-sustained, bona fide circadian clock) that explicitly represents genes (e.g., kaiABC), transcripts, proteins, and metabolites. The model is calibrated to data from laboratory experiments with wild type and no-clock mutant strains, and it successfully reproduces the main observed patterns of glycogen metabolism. Comparison of wild type and no-clock mutant strains suggests a main benefit of the clock is due to energy management. For example, it inhibits glycogen synthesis early in the day when it is not needed and energy is better used for making the photosynthesis apparatus. To explore the ecological role of the clock, we integrate the model into a dynamic, three-dimensional global circulation model that includes light variability due to seasonal and diel incident radiation and vertical extinction. Model output is compared with field data, including in situ gene transcript levels. We simulate cyanobaceria with and without a circadian clock, which allows us to quantify the fitness benefit of the clock. Interestingly, the benefit is weakest in the low latitude open ocean, where Prochlorococcus (lacking a self-sustained clock) dominates. However, our attempt to experimentally validate this testable prediction failed. Our study provides insights into the role of the clock and an example for how models can be used to integrate across multiple levels of biological organization.
Collapse
|
35
|
Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME JOURNAL 2019; 13:2817-2833. [PMID: 31320727 PMCID: PMC6794264 DOI: 10.1038/s41396-019-0472-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 01/06/2023]
Abstract
Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 μm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity.
Collapse
|
36
|
Gómez-Consarnau L, Needham DM, Weber PK, Fuhrman JA, Mayali X. Influence of Light on Particulate Organic Matter Utilization by Attached and Free-Living Marine Bacteria. Front Microbiol 2019; 10:1204. [PMID: 31214143 PMCID: PMC6558058 DOI: 10.3389/fmicb.2019.01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Light plays a central role on primary productivity of aquatic systems. Yet, its potential impact on the degradation of photosynthetically produced biomass is not well understood. We investigated the patterns of light-induced particle breakdown and bacterial assimilation of detrital C and N using 13C and 15N labeled freeze-thawed diatom cells incubated in laboratory microcosms with a marine microbial community freshly collected from the Pacific Ocean. Particles incubated in the dark resulted in increased bacterial counts and dissolved organic carbon concentrations compared to those incubated in the light. Light also influenced the attached and free-living microbial community structure as detected by 16S rRNA gene amplicon sequencing. For example, Sphingobacteriia were enriched on dark-incubated particles and taxa from the family Flavobacteriaceae and the genus Pseudoalteromonas were numerically enriched on particles in the light. Isotope incorporation analysis by phylogenetic microarray and NanoSIMS (a method called Chip-SIP) identified free-living and attached microbial taxa able to incorporate N and C from the particles. Some taxa, including members of the Flavobacteriaceae and Cryomorphaceae, exhibited increased isotope incorporation in the light, suggesting the use of photoheterotrophic metabolisms. In contrast, some members of Oceanospirillales and Rhodospirillales showed decreased isotope incorporation in the light, suggesting that their heterotrophic metabolism, particularly when occurring on particles, might increase at night or may be inhibited by sunlight. These results show that light influences particle degradation and C and N incorporation by attached bacteria, suggesting that the transfer between particulate and free-living phases are likely affected by external factors that change with the light regime, such as time of day, water column depth and season.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
37
|
Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci U S A 2019; 116:11824-11832. [PMID: 31127042 PMCID: PMC6575173 DOI: 10.1073/pnas.1903080116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sinking particles composed of both organic and inorganic material feed the deep-sea ecosystem and contribute centrally to ocean carbon sequestration. Despite their importance, little is known about the biological composition of sinking particles reaching the deep sea. Time-series analyses of sinking particles unexpectedly revealed bacterial assemblages that were simple and homogeneous over time. Particle-associated eukaryote assemblages, however, were more variable and complex. Several modes of export were observed, including summer inputs from the surface, more stochastic export of surface-derived protists and animals, and contributions from midwater animals and deep-sea bacteria. In summary, sinking particles exhibited temporally variable, heterogeneous biological sources and activities that reflected their important roles in the downward transport and transformation of organic matter in the deep sea. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.
Collapse
|
38
|
León-Sobrino C, Ramond JB, Maggs-Kölling G, Cowan DA. Nutrient Acquisition, Rather Than Stress Response Over Diel Cycles, Drives Microbial Transcription in a Hyper-Arid Namib Desert Soil. Front Microbiol 2019; 10:1054. [PMID: 31139170 PMCID: PMC6527771 DOI: 10.3389/fmicb.2019.01054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Hot desert surface soils are characterized by extremely low water activities for large parts of any annual cycle. It is widely assumed that microbial processes in such soils are very limited. Here we present the first metatranscriptomic survey of microbial community function in a low water activity hyperarid desert soil. Sequencing of total mRNA revealed a diverse and active community, dominated by Actinobacteria. Metatranscriptomic analysis of samples taken at different times over 3 days indicated that functional diel variations were limited at the whole community level, and mostly affected the eukaryotic subpopulation which was induced during the cooler night hours. High levels of transcription of chemoautotrophic carbon fixation genes contrasted with limited expression of photosynthetic genes, indicating that chemoautotrophy is an important alternative to photosynthesis for carbon cycling in desiccated desert soils. Analysis of the transcriptional levels of key N-cycling genes provided strong evidence that soil nitrate was the dominant nitrogen input source. Transcriptional network analyses and taxon-resolved functional profiling suggested that nutrient acquisition processes, and not diurnal environmental variation, were the main drivers of community activity in hyperarid Namib Desert soil. While we also observed significant levels of expression of common stress response genes, these genes were not dominant hubs in the co-occurrence network.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | | | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
39
|
Amato P, Besaury L, Joly M, Penaud B, Deguillaume L, Delort AM. Metatranscriptomic exploration of microbial functioning in clouds. Sci Rep 2019; 9:4383. [PMID: 30867542 PMCID: PMC6416334 DOI: 10.1038/s41598-019-41032-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
Clouds constitute the uppermost layer of the biosphere. They host diverse communities whose functioning remains obscure, although biological activity potentially participates to atmospheric chemical and physical processes. In order to gain information on the metabolic functioning of microbial communities in clouds, we conducted coordinated metagenomics/metatranscriptomics profiling of cloud water microbial communities. Samples were collected from a high altitude atmospheric station in France and examined for biological content after untargeted amplification of nucleic acids. Living microorganisms, essentially bacteria, maintained transcriptional and translational activities and expressed many known complementary physiological responses intended to fight oxidants, osmotic variations and cold. These included activities of oxidant detoxification and regulation, synthesis of osmoprotectants/cryoprotectants, modifications of membranes, iron uptake. Consistently these energy-demanding processes were fueled by central metabolic routes involved in oxidative stress response and redox homeostasis management, such as pentose phosphate and glyoxylate pathways. Elevated binding and transmembrane ion transports demonstrated important interactions between cells and their cloud droplet chemical environments. In addition, polysaccharides, potentially beneficial for survival like exopolysaccharides, biosurfactants and adhesins, were synthesized. Our results support a biological influence on cloud physical and chemical processes, acting notably on the oxidant capacity, iron speciation and availability, amino-acids distribution and carbon and nitrogen fates.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France.
| | - Ludovic Besaury
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| | - Muriel Joly
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| | - Benjamin Penaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| | | | - Anne-Marie Delort
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| |
Collapse
|
40
|
Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nat Commun 2019; 10:1169. [PMID: 30862830 PMCID: PMC6414667 DOI: 10.1038/s41467-019-09106-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses provide top-down control on microbial communities, yet their direct study in natural environments was hindered by culture limitations. The advance of bioinformatics enables cultivation-independent study of viruses. Many studies assemble new viral genomes and study viral diversity using marker genes from free viruses. Here we use cellular metatranscriptomics to study active community-wide viral infections. Recruitment to viral contigs allows tracking infection dynamics over time and space. Our assemblies represent viral populations, but appear biased towards low diversity viral taxa. Tracking relatives of published T4-like cyanophages and pelagiphages reveals high genomic continuity. We determine potential hosts by matching dynamics of infection with abundance of particular microbial taxa. Finally, we quantify the relative contribution of cyanobacteria and viruses to photosystem-II psbA (reaction center) expression in our study sites. We show sometimes >50% of all cyanobacterial+viral psbA expression is of viral origin, highlighting the contribution of viruses to photosynthesis and oxygen production. Here, Sieradzki et al. use metatranscriptomics to study active community-wide viral infections at three coastal California sites throughout a year, identify potential viral hosts, and show that viruses can contribute a substantial amount to photosystem-II psbA expression.
Collapse
|
41
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
42
|
Zhou J, Song X, Zhang CY, Chen GF, Lao YM, Jin H, Cai ZH. Distribution Patterns of Microbial Community Structure Along a 7000-Mile Latitudinal Transect from the Mediterranean Sea Across the Atlantic Ocean to the Brazilian Coastal Sea. MICROBIAL ECOLOGY 2018; 76:592-609. [PMID: 29442157 DOI: 10.1007/s00248-018-1150-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China
| | - Xiao Song
- The Department of Life Science, Tsinghua University, Beijing, People's Republic of China
| | - Chun-Yun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shangdong Province, People's Republic of China
| | - Guo-Fu Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shangdong Province, People's Republic of China.
| | - Yong-Min Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen University Town, Room 905, Marine Building, Xili Town, Shenzhen, 518055, Guangdong Province, People's Republic of China.
| |
Collapse
|
43
|
Arora-Williams K, Olesen SW, Scandella BP, Delwiche K, Spencer SJ, Myers EM, Abraham S, Sooklal A, Preheim SP. Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake. MICROBIOME 2018; 6:165. [PMID: 30227897 PMCID: PMC6145348 DOI: 10.1186/s40168-018-0556-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/05/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microbial processes are intricately linked to the depletion of oxygen in in-land and coastal water bodies, with devastating economic and ecological consequences. Microorganisms deplete oxygen during biomass decomposition, degrading the habitat of many economically important aquatic animals. Microbes then turn to alternative electron acceptors, which alter nutrient cycling and generate potent greenhouse gases. As oxygen depletion is expected to worsen with altered land use and climate change, understanding how chemical and microbial dynamics impact dead zones will aid modeling efforts to guide remediation strategies. More work is needed to understand the complex interplay between microbial genes, populations, and biogeochemistry during oxygen depletion. RESULTS Here, we used 16S rRNA gene surveys, shotgun metagenomic sequencing, and a previously developed biogeochemical model to identify genes and microbial populations implicated in major biogeochemical transformations in a model lake ecosystem. Shotgun metagenomic sequencing was done for one time point in Aug., 2013, and 16S rRNA gene sequencing was done for a 5-month time series (Mar.-Aug., 2013) to capture the spatiotemporal dynamics of genes and microorganisms mediating the modeled processes. Metagenomic binning analysis resulted in many metagenome-assembled genomes (MAGs) that are implicated in the modeled processes through gene content similarity to cultured organism and the presence of key genes involved in these pathways. The MAGs suggested some populations are capable of methane and sulfide oxidation coupled to nitrate reduction. Using the model, we observe that modulating these processes has a substantial impact on overall lake biogeochemistry. Additionally, 16S rRNA gene sequences from the metagenomic and amplicon libraries were linked to processes through the MAGs. We compared the dynamics of microbial populations in the water column to the model predictions. Many microbial populations involved in primary carbon oxidation had dynamics similar to the model, while those associated with secondary oxidation processes deviated substantially. CONCLUSIONS This work demonstrates that the unique capabilities of resident microbial populations will substantially impact the concentration and speciation of chemicals in the water column, unless other microbial processes adjust to compensate for these differences. It further highlights the importance of the biological aspects of biogeochemical processes, such as fluctuations in microbial population dynamics. Integrating gene and population dynamics into biogeochemical models has the potential to improve predictions of the community response under altered scenarios to guide remediation efforts.
Collapse
Affiliation(s)
- Keith Arora-Williams
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Scott W. Olesen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Present address: Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Benjamin P. Scandella
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Present address: Oregon Water Resources Department, Salem, OR USA
| | - Kyle Delwiche
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA USA
| | - Sarah J. Spencer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Elise M. Myers
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Present address: Earth and Environmental Sciences, Columbia University, Palisades, NY USA
| | - Sonali Abraham
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD USA
- Present address: Institute of the Environment and Sustainability, University of California, Los Angeles, CA USA
| | - Alyssa Sooklal
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Sarah P. Preheim
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
44
|
Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:412-427. [PMID: 29411545 DOI: 10.1111/1758-2229.12626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/28/2018] [Indexed: 05/21/2023]
Abstract
This review surveys the current state of knowledge of the concentrations, sources and sinks of reactive oxygen species (ROS) in the ocean. Both abiotic and biotic factors contribute to ROS dynamics in seawater, and ROS can feature prominently in marine microbe-microbe interactions. The sun plays a key role in the production of ROS in the ocean, and consequently ROS concentrations are typically maximal in the sun-exposed surface. However, microbes can also contribute significantly to extracellular ROS. Production of superoxide is widespread within the microbial community, and may benefit the producers as antimicrobial agents or perhaps more generally, as a means of nutrient scavenging. Decomposition of hydrogen peroxide is a community-wide activity, though some members may play less significant roles in this process. The more reactive forms of ROS, singlet oxygen and the hydroxyl radical, may be less important as microbial stressors, as they tend to react with the chemicals in seawater before they can contact the cells. However, exceptions may exist for microbes attached to singlet oxygen-generating sinking particulate matter. Extracellular ROS thus plays an important role in the ecology of marine microbes, the full extent to which we are only beginning to appreciate.
Collapse
Affiliation(s)
- Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
45
|
Zinser ER. Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:399-411. [PMID: 29411546 DOI: 10.1111/1758-2229.12625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 01/27/2017] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (HOOH) is a reactive oxygen species, derived from molecular oxygen, that is capable of damaging microbial cells. Surprisingly, the HOOH defence systems of some aerobes in the oxygenated marine environments are critically depleted, relative to model aerobes. For instance, the gene encoding catalase is absent in the numerically dominant photosynthetic cyanobacterium, Prochlorococcus. Accordingly, Prochlorococcus is highly susceptible to HOOH when exposed as pure cultures. Pure cultures do not exist in the marine environment, however. Catalase-positive community members can remove HOOH from the seawater medium, thus lowering the threat to Prochlorococcus and any other member that likewise lacks their own catalase. This cross-protection may constitute a loosely defined symbiosis, whereby the catalase-positive helper cells may benefit through the acquisition of nutrients released by the beneficiaries such as Prochlorococcus. Other members of the community that may be helped by the catalase-positive cells may include some lineages of Synechococcus - the sister genus of Prochlorococcus - as well as some lineages of SAR11 and ammonia oxidizing archaea and bacteria. The co-occurrence of catalase-positive and -negative members suggests that cross-protection from HOOH-mediated oxidative stress may play an important role in the construction of the marine microbial community.
Collapse
Affiliation(s)
- Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
46
|
Heterotroph Interactions Alter Prochlorococcus Transcriptome Dynamics during Extended Periods of Darkness. mSystems 2018; 3:mSystems00040-18. [PMID: 29854954 PMCID: PMC5974335 DOI: 10.1128/msystems.00040-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes evolve within complex ecological communities where biotic interactions impact both individual cells and the environment as a whole. Here we examine how cellular regulation in the marine cyanobacterium Prochlorococcus is influenced by a heterotrophic bacterium, Alteromonas macleodii, under different light conditions. We monitored the transcriptome of Prochlorococcus, grown either alone or in coculture, across a diel light:dark cycle and under the stress of extended darkness-a condition that cells would experience when mixed below the ocean's euphotic zone. More Prochlorococcus transcripts exhibited 24-h periodic oscillations in coculture than in pure culture, both over the normal diel cycle and after the shift to extended darkness. This demonstrates that biotic interactions, and not just light, can affect timing mechanisms in Prochlorococcus, which lacks a self-sustaining circadian oscillator. The transcriptomes of replicate pure cultures of Prochlorococcus lost their synchrony within 5 h of extended darkness and reflected changes in stress responses and metabolic functions consistent with growth cessation. In contrast, when grown with Alteromonas, replicate Prochlorococcus transcriptomes tracked each other for at least 13 h in the dark and showed signs of continued biosynthetic and metabolic activity. The transcriptome patterns suggest that the heterotroph may be providing energy or essential biosynthetic substrates to Prochlorococcus in the form of organic compounds, sustaining this autotroph when it is deprived of solar energy. Our findings reveal conditions where mixotrophic metabolism may benefit marine cyanobacteria and highlight new impacts of community interactions on basic Prochlorococcus cellular processes. IMPORTANCEProchlorococcus is the most abundant photosynthetic organism on the planet. These cells play a central role in the physiology of surrounding heterotrophs by supplying them with fixed organic carbon. It is becoming increasingly clear, however, that interactions with heterotrophs can affect autotrophs as well. Here we show that such interactions have a marked impact on the response of Prochlorococcus to the stress of extended periods of darkness, as reflected in transcriptional dynamics. These data suggest that diel transcriptional rhythms within Prochlorococcus, which are generally considered to be strictly under the control of light quantity, quality, and timing, can also be influenced by biotic interactions. Together, these findings provide new insights into the importance of microbial interactions on Prochlorococcus physiology and reveal conditions where heterotroph-derived compounds may support autotrophs-contrary to the canonical autotroph-to-heterotroph trophic paradigm.
Collapse
|
47
|
Huggett MJ, McMahon K, Bernasconi R. Future warming and acidification result in multiple ecological impacts to a temperate coralline alga. Environ Microbiol 2018; 20:2769-2782. [DOI: 10.1111/1462-2920.14113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Megan J. Huggett
- Centre for Marine Ecosystems Research, School of Science; Edith Cowan University, 270 Joondalup Dr; Joondalup WA 6027 Australia
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr; Joondalup WA 6027 Australia
- School of Environmental and Life Sciences; The University of Newcastle; Ourimbah NSW 2258 Australia
| | - Kathryn McMahon
- Centre for Marine Ecosystems Research, School of Science; Edith Cowan University, 270 Joondalup Dr; Joondalup WA 6027 Australia
| | - Rachele Bernasconi
- Centre for Marine Ecosystems Research, School of Science; Edith Cowan University, 270 Joondalup Dr; Joondalup WA 6027 Australia
| |
Collapse
|
48
|
Prasinovirus Attack of Ostreococcus Is Furtive by Day but Savage by Night. J Virol 2018; 92:JVI.01703-17. [PMID: 29187539 PMCID: PMC5790953 DOI: 10.1128/jvi.01703-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.
Collapse
|
49
|
Jin SH, Lee SS, Lee B, Jeong SG, Peter M, Lee CS. Programmable Static Droplet Array for the Analysis of Cell–Cell Communication in a Confined Microenvironment. Anal Chem 2017; 89:9722-9729. [DOI: 10.1021/acs.analchem.7b01462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Si Hyung Jin
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | | | - Byungjin Lee
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Seong-Geun Jeong
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | | | - Chang-Soo Lee
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
50
|
Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, Eppley JM, Ferrón S, Fitzsimmons JN, Hayes CT, Romano AE, Turk-Kubo KA, Vislova A, Armbrust EV, Caron DA, Church MJ, Zehr JP, Karl DM, DeLong EF. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol 2017; 2:17118. [DOI: 10.1038/nmicrobiol.2017.118] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
|