1
|
Kubagawa H, Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, Honjo K, Izui S, Radbruch A, Melchers F. Functions of IgM fc receptor (FcµR) related to autoimmunity. Autoimmunity 2024; 57:2323563. [PMID: 38465789 DOI: 10.1080/08916934.2024.2323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation. We also propose the potential phenotypes in individuals with FCMR deficiency and the model for FcµR-mediated regulation of self-reactive B cells.
Collapse
Affiliation(s)
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
2
|
Gilbert FB, Rainard P. Expression of the receptor for IgM (FcμR) by bovine neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105235. [PMID: 39089639 DOI: 10.1016/j.dci.2024.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Bovine neutrophils possess a particular set of receptors for immunoglobulins. They have been shown to express a distinctive receptor for IgG2, and it has long been known that they interact poorly with IgG1 but that they can use IgM antibodies as opsonins. We show that the binding of labeled IgM was inhibited by unlabeled IgM but not by IgA, suggesting that bovine neutrophils express a specific IgM receptor. The binding of non-aggregated IgM is strong at 4 °C, but shedding occurs at 37 °C. We designed anti-peptide antibodies based on the sequence of the FcμR, the newly described receptor for IgM. These antibodies bound to bovine neutrophils at 4 °C. At 37 °C, labeling was lost, but the loss was inhibited by pretreatment with cytochalasin D, indicating internalization of the receptor after cross-linking by antibodies. Neutrophils that had internalized the receptor were no longer able to bind IgM. Eosinophils showed a low level of FcμR expression. FcμR expression by neutrophils was not increased by stimulation with Toll-like receptor agonists or the complement anaphylatoxin C5a, and decreased by TNF-α. Exposure of neutrophils to IFN-γ for 18 h increased FcμR expression without augmenting the binding of IgG1 or IgG2. We confirmed that bovine neutrophils can use IgM to phagocytose and kill bacteria without the help of Complement. Neutrophils that have migrated into the lumen of inflamed lactating mammary glands expressed the FcμR. These results indicate that bovine neutrophils express an IgM receptor, the FcμR, which is functional to contribute to the opsonophagocytosis of bacteria at inflammatory sites. Expression of the FcμR by neutrophils gives IgM a particular importance for the immune defense in the bovine species.
Collapse
|
3
|
Stark K, Kilani B, Stockhausen S, Busse J, Schubert I, Tran TD, Gaertner F, Leunig A, Pekayvaz K, Nicolai L, Fumagalli V, Stermann J, Stephan F, David C, Müller MB, Heyman B, Lux A, da Palma Guerreiro A, Frenzel LP, Schmidt CQ, Dopler A, Moser M, Chandraratne S, von Brühl ML, Lorenz M, Korff T, Rudelius M, Popp O, Kirchner M, Mertins P, Nimmerjahn F, Iannacone M, Sperandio M, Engelmann B, Verschoor A, Massberg S. Antibodies and complement are key drivers of thrombosis. Immunity 2024; 57:2140-2156.e10. [PMID: 39226900 DOI: 10.1016/j.immuni.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcμR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.
Collapse
Affiliation(s)
- Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sven Stockhausen
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johanna Busse
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thuy-Duong Tran
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Florian Gaertner
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexander Leunig
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Julia Stermann
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Felix Stephan
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christian David
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Biomedical Center (BMC) LMU Munich, Munich, Germany
| | - Martin B Müller
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany; Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50937, Germany; Center of Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50937, Germany
| | - Lukas P Frenzel
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50937, Germany; Center of Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50937, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Arthur Dopler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany; Institute of Experimental Hematology, TranslaTUM, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marie-Luise von Brühl
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Biomedical Center (BMC) LMU Munich, Munich, Germany
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, University Hospital, LMU Munich, Munich, Germany
| | - Admar Verschoor
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany.
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Study Team CS, Osier FH. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection. Life Sci Alliance 2024; 7:e202301910. [PMID: 38803222 PMCID: PMC11106525 DOI: 10.26508/lsa.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.
Collapse
Affiliation(s)
- Micha Rosenkranz
- https://ror.org/013czdx64 Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N Nkumama
- B Cell Immunology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sara Kraker
- https://ror.org/013czdx64 Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie Blickling
- https://ror.org/013czdx64 Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis Odera
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- https://ror.org/013czdx64 Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- https://ror.org/013czdx64 Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chmi-Sika Study Team
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith Ha Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- https://ror.org/041kmwe10 Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
5
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
6
|
Rosenkranz M, Fürle K, Hibbert J, Ulmer A, Ali A, Giese T, Blank A, Haefeli WE, Böhnlein E, Lanzer M, Thomson-Luque R. Multifunctional IgG/IgM antibodies and cellular cytotoxicity are elicited by the full-length MSP1 SumayaVac-1 malaria vaccine. NPJ Vaccines 2023; 8:112. [PMID: 37558673 PMCID: PMC10412566 DOI: 10.1038/s41541-023-00701-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Radical control of malaria likely requires a vaccine that targets both the asymptomatic liver stages and the disease-causing blood stages of the human malaria parasite Plasmodium falciparum. While substantial progress has been made towards liver stage vaccines, the development of a blood stage vaccine is lagging behind. We have recently conducted a first-in-human clinical trial to evaluate the safety and immunogenicity of the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as adjuvant. Here, we show that the vaccine, termed SumayaVac-1, elicited both a humoral and cellular immune response as well as a recall T cell memory. The induced IgG and IgM antibodies were able to stimulate various Fc-mediated effector mechanisms associated with protection against malaria, including phagocytosis, release of reactive oxygen species, production of IFN-γ as well as complement activation and fixation. The multifunctional activity of the humoral immune response remained for at least 6 months after vaccination and was comparable to that of naturally acquired anti-MSP1 antibodies from semi-immune adults from Kenya. We further present evidence of SumayaVac-1 eliciting a recallable cellular cytotoxicity by IFN-γ producing CD8+ T cells. Our study revitalizes MSP1FL as a relevant blood stage vaccine candidate and warrants further evaluation of SumayaVac-1 in a phase II efficacy trial.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Ulmer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arin Ali
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University Hospital and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Antje Blank
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Lanzer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Sumaya-Biotech GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
7
|
Fei X, Li JF, Fang YD, Liu LP, Liu KJ, Zeng WW, Wang WH. Distribution characteristics of FcμR positive cells in small intestinal lymph nodes of Bactrian camel. PLoS One 2023; 18:e0287329. [PMID: 37471384 PMCID: PMC10358951 DOI: 10.1371/journal.pone.0287329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Exploring the expression characteristics of FcμR in small intestinal lymph nodes of bactrian camels can lay the foundation for further revealing the function of FcμR. The FcμR expression characteristics were systematically analysed by using prokaryotic expression, antibody preparation, immunohistochemical staining and statistical analysis. FcμR positive cells were mainly located in the lymphoid follicles and their numbers decreased in the order of duodenal lymph nodes, jejunal lymph nodes and ileal lymph nodes, and the number of positive cells was statistically significant between different intestinal segments (P<0.05). The FcμR is expressed in lymphoid follicular B cells, which not only facilitates the body's ability to regulate secretory IgM levels, but also acts as a local immune defence barrier. The small intestine has dual functions of immune tolerance and immune response, the proximal part mainly focuses on immune tolerance, and the distal part mainly focuses on immune response. This distribution ensures the unity of the duodenal absorption and immune defence, and also significantly increases the efficiency of the entire small intestine, which is why the number of FcμR positive cells decreases in the order of duodenal lymph nodes, jejunal lymph nodes and ileal lymph nodes.
Collapse
Affiliation(s)
- Xie Fei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian fei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ying dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Li ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ke Jiang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wei wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wen hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Li Y, Shen H, Zhang R, Ji C, Wang Y, Su C, Xiao J. Immunoglobulin M perception by FcμR. Nature 2023; 615:907-912. [PMID: 36949194 DOI: 10.1038/s41586-023-05835-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin M (IgM) is the first antibody to emerge during embryonic development and the humoral immune response1. IgM can exist in several distinct forms, including monomeric, membrane-bound IgM within the B cell receptor (BCR) complex, pentameric and hexameric IgM in serum and secretory IgM on the mucosal surface. FcμR, the only IgM-specific receptor in mammals, recognizes different forms of IgM to regulate diverse immune responses2-5. However, the underlying molecular mechanisms remain unknown. Here we delineate the structural basis of the FcμR-IgM interaction by crystallography and cryo-electron microscopy. We show that two FcμR molecules interact with a Fcμ-Cμ4 dimer, suggesting that FcμR can bind to membrane-bound IgM with a 2:1 stoichiometry. Further analyses reveal that FcμR-binding sites are accessible in the context of IgM BCR. By contrast, pentameric IgM can recruit four FcμR molecules to bind on the same side and thereby facilitate the formation of an FcμR oligomer. One of these FcμR molecules occupies the binding site of the secretory component. Nevertheless, four FcμR molecules bind to the other side of secretory component-containing secretory IgM, consistent with the function of FcμR in the retrotransport of secretory IgM. These results reveal intricate mechanisms of IgM perception by FcμR.
Collapse
Affiliation(s)
- Yaxin Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Hao Shen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Ruixue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
9
|
Kubagawa H, Clark C, Skopnik CM, Mahmoudi Aliabadi P, Al-Qaisi K, Teuber R, Jani PK, Radbruch A, Melchers F, Engels N, Wienands J. Physiological and Pathophysiological Roles of IgM Fc Receptor (FcµR) Isoforms. Int J Mol Sci 2023; 24:ijms24065728. [PMID: 36982860 PMCID: PMC10058298 DOI: 10.3390/ijms24065728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
IgM is the first antibody to emerge during phylogeny, ontogeny, and immune responses and serves as a first line of defense. Effector proteins interacting with the Fc portion of IgM, such as complement and its receptors, have been extensively studied for their functions. IgM Fc receptor (FcµR), identified in 2009, is the newest member of the FcR family and is intriguingly expressed by lymphocytes only, suggesting the existence of distinct functions as compared to the FcRs for switched Ig isotypes, which are expressed by various immune and non-hematopoietic cells as central mediators of antibody-triggered responses by coupling the adaptive and innate immune responses. Results from FcµR-deficient mice suggest a regulatory function of FcµR in B cell tolerance, as evidenced by their propensity to produce autoantibodies of both IgM and IgG isotypes. In this article, we discuss conflicting views about the cellular distribution and potential functions of FcµR. The signaling function of the Ig-tail tyrosine-like motif in the FcµR cytoplasmic domain is now formally shown by substitutional experiments with the IgG2 B cell receptor. The potential adaptor protein associating with FcµR and the potential cleavage of its C-terminal cytoplasmic tail after IgM binding are still enigmatic. Critical amino acid residues in the Ig-like domain of FcµR for interacting with the IgM Cµ4 domain and the mode of interaction are now defined by crystallographic and cryo-electron microscopic analyses. Some discrepancies on these interactions are discussed. Finally, elevated levels of a soluble FcµR isoform in serum samples are described as the consequence of persistent B cell receptor stimulation, as seen in chronic lymphocytic leukemia and probably in antibody-mediated autoimmune disorders.
Collapse
Affiliation(s)
| | - Caren Clark
- Institute of Cellular & Molecular Immunology, University Medical Center, 37073 Göttingen, Germany
| | | | | | | | - Ruth Teuber
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center, 37073 Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
10
|
Alugupalli AS, Cravens MP, Walker JA, Gulandijany D, Dickinson GS, Debes GF, Schifferli DM, Bäumler AJ, Alugupalli KR, Alugupalli KR. The Lack of Natural IgM Increases Susceptibility and Impairs Anti-Vi Polysaccharide IgG Responses in a Mouse Model of Typhoid. Immunohorizons 2022; 6:807-816. [PMID: 36480484 DOI: 10.4049/immunohorizons.2200088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating IgM present in the body prior to any apparent Ag exposure is referred to as natural IgM. Natural IgM provides protective immunity against a variety of pathogens. Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever in humans. Because mice are not permissive to S. Typhi infection, we employed a murine model of typhoid using S. enterica serovar Typhimurium expressing the Vi polysaccharide (ViPS) of S. Typhi (S. Typhimurium strain RC60) to evaluate the role of natural IgM in pathogenesis. We found that natural mouse IgM binds to S. Typhi and S. Typhimurium. The severity of S. Typhimurium infection in mice is dependent on presence of the natural resistance-associated macrophage protein 1 (Nramp1) allele; therefore, we infected mice deficient in secreted form of IgM (sIgM) on either a Nramp1-resistant (129S) or -susceptible (C57BL/6J) background. We found that the lack of natural IgM results in a significantly increased susceptibility and an exaggerated liver pathology regardless of the route of infection or the Nramp1 allele. Reconstitution of sIgM-/- mice with normal mouse serum or purified polyclonal IgM restored the resistance to that of sIgM+/+ mice. Furthermore, immunization of sIgM-/- mice with heat-killed S. Typhi induced a significantly reduced anti-ViPS IgG and complement-dependent bactericidal activity against S. Typhi in vitro, compared with that of sIgM+/+ mice. These findings indicate that natural IgM is an important factor in reducing the typhoid severity and inducing an optimal anti-ViPS IgG response to vaccination.
Collapse
Affiliation(s)
- Akhil S Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Matthew P Cravens
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Dania Gulandijany
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Gregory S Dickinson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Dieter M Schifferli
- Department of Microbiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA; and
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
11
|
Chen R, Liu B, Zhang X, Qin M, Dong J, Gu G, Wu C, Wang J, Nan Y. A porcine reproductive and respiratory syndrome virus (PRRSV)-specific IgM as a novel adjuvant for an inactivated PRRSV vaccine improves protection efficiency and enhances cell-mediated immunity against heterologous PRRSV challenge. Vet Res 2022; 53:65. [PMID: 35986391 PMCID: PMC9389807 DOI: 10.1186/s13567-022-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Current strategies for porcine reproductive and respiratory syndrome (PRRS) control are inadequate and mainly restricted to immunization using different PRRS virus (PPRSV) vaccines. Although there are no safety concerns, the poor performance of inactivated PRRSV vaccines has restricted their practical application. In this research, we employed the novel PRRSV-specific IgM monoclonal antibody (Mab)-PR5nf1 as a vaccine adjuvant for the formulation of a cocktail composed of inactivated PRRSV (KIV) and Mab-PR5nf1 along with a normal adjuvant to enhance PRRSV-KIV vaccine-mediated protection and further compared it with a normal KIV vaccine and modified live virus vaccine (MLV). After challenge with highly pathogenic (HP)-PRRSV, our results suggested that the overall survival rate (OSR) and cell-mediated immunity (CMI), as determined by serum IFN-γ quantification and IFN-γ ELISpot assay, were significantly improved by adding PRRSV-specific IgM to the PRRSV-KIV vaccine. It was also notable that both the OSR and CMI in the Mab-PR5nf1-adjuvanted KIV group were even higher than those in the MLV group, whereas the CMI response is normally poorly evoked by KIV vaccines or subunit vaccines. Compared with those in piglets immunized with the normal KIV vaccine, viral shedding and serum neutralizing antibody levels were also improved, and reduced viral shedding appeared to be a result of enhanced CMI caused by the inclusion of IgM as an adjuvant. In conclusion, our data provide not only a new formula for the development of an effective PRRSV-KIV vaccine for practical use but also a novel method for improving antigen-specific CMI induction by inactivated vaccines and subunit vaccines.
Collapse
|
12
|
Melcher C, Yu J, Duong VHH, Westphal K, Helmi Siasi Farimany N, Shaverskyi A, Zhao B, Strowig T, Glage S, Brand K, Chan AC, Föger N, Lee KH. B cell-mediated regulatory mechanisms control tumor-promoting intestinal inflammation. Cell Rep 2022; 40:111051. [PMID: 35830810 DOI: 10.1016/j.celrep.2022.111051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Mechanisms underlying tumor-promoting inflammatory processes in colitis-associated colorectal cancer (CAC) remain largely elusive. Here, we provide genetic evidence for distinct B cell-mediated immunoregulatory mechanisms that protect from chronic colitis versus CAC. We demonstrate an inherent capacity of interleukin-10 (IL-10)-producing B cells to differentiate into immunoglobulin A (IgA) plasma cells (PCs) upon Toll-like receptor (TLR) activation. Our data show that B cell-derived IL-10 is essential to limit pathogenic T helper type 1 (Th1)/Th17 T cell responses during chronic colitis, while IgA PCs derived from IL-10+ B cells are being implicated in restraining tumorigenesis during CAC. Formation of a tumor-protective intestinal environment was associated with clonal expansion of specific types of colonic IgA PCs and development of an altered microbiota that attenuated CAC. We thus propose that regulatory B cell-mediated immunomodulation entails temporal release of IL-10, which is superseded by the generation of specific IgA affecting the microbial community, thereby controlling chronic inflammation and tumorigenesis in a distinctive but interrelated manner.
Collapse
Affiliation(s)
- Christian Melcher
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Jinbo Yu
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vu Huy Hoang Duong
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Katrin Westphal
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Noushin Helmi Siasi Farimany
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Shaverskyi
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Experimental Pathology, Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrew C Chan
- Research, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Niko Föger
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Kyeong-Hee Lee
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
13
|
Kubli SP, Ramachandran P, Duncan G, Brokx R, Mak TW. Reply to: Questioning whether the IgM Fc receptor (FcμR) is expressed by innate immune cells. Nat Commun 2022; 13:3950. [PMID: 35817786 PMCID: PMC9273603 DOI: 10.1038/s41467-022-31226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shawn P Kubli
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | - Gordon Duncan
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Rich Brokx
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
14
|
Skopnik CM, Riedel R, Addo RK, Heinz GA, Heinrich F, Honjo K, Durek P, Enghard P, Mashreghi MF, Radbruch A, Kubagawa H. Questioning whether IgM Fc receptor (FcµR) is expressed by innate immune cells. Nat Commun 2022; 13:3951. [PMID: 35817797 PMCID: PMC9273587 DOI: 10.1038/s41467-022-29407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - René Riedel
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Richard K Addo
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Kazuhito Honjo
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35209, USA
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätmedizin, 10117, Berlin, Germany
| | | | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany.
| |
Collapse
|
15
|
Gregoire C, Spinelli L, Villazala-Merino S, Gil L, Holgado MP, Moussa M, Dong C, Zarubica A, Fallet M, Navarro JM, Malissen B, Milpied P, Gaya M. Viral infection engenders bona fide and bystander subsets of lung-resident memory B cells through a permissive mechanism. Immunity 2022; 55:1216-1233.e9. [PMID: 35768001 PMCID: PMC9396418 DOI: 10.1016/j.immuni.2022.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Lung-resident memory B cells (MBCs) provide localized protection against reinfection in respiratory airways. Currently, the biology of these cells remains largely unexplored. Here, we combined influenza and SARS-CoV-2 infection with fluorescent-reporter mice to identify MBCs regardless of antigen specificity. We found that two main transcriptionally distinct subsets of MBCs colonized the lung peribronchial niche after infection. These subsets arose from different progenitors and were both class switched, somatically mutated, and intrinsically biased in their differentiation fate toward plasma cells. Combined analysis of antigen specificity and B cell receptor repertoire segregated these subsets into “bona fide” virus-specific MBCs and “bystander” MBCs with no apparent specificity for eliciting viruses generated through an alternative permissive process. Thus, diverse transcriptional programs in MBCs are not linked to specific effector fates but rather to divergent strategies of the immune system to simultaneously provide rapid protection from reinfection while diversifying the initial B cell repertoire.
Collapse
Affiliation(s)
- Claude Gregoire
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Lionel Spinelli
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Sergio Villazala-Merino
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Laurine Gil
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - María Pía Holgado
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Myriam Moussa
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Chuang Dong
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Ana Zarubica
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Jean-Marc Navarro
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France; Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Pierre Milpied
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France.
| | - Mauro Gaya
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France.
| |
Collapse
|
16
|
Fricker M, Qin L, Sánchez‐Ovando S, Simpson JL, Baines KJ, Riveros C, Scott HA, Wood LG, Wark PAB, Kermani NZ, Chung KF, Gibson PG. An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy 2022; 77:1204-1215. [PMID: 34510493 PMCID: PMC9541696 DOI: 10.1111/all.15087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022]
Abstract
Background Neutrophilic asthma (NA) is a clinically important asthma phenotype, the cellular and molecular basis of which is not completely understood. Airway macrophages are long‐lived immune cells that exert important homeostatic and inflammatory functions which are dysregulated in asthma. Unique transcriptomic programmes reflect varied macrophage phenotypes in vitro. We aimed to determine whether airway macrophages are transcriptomically altered in NA. Methods We performed RNASeq analysis on flow cytometry‐isolated sputum macrophages comparing NA (n = 7) and non‐neutrophilic asthma (NNA, n = 13). qPCR validation of RNASeq results was performed (NA n = 13, NNA n = 23). Pathway analysis (PANTHER, STRING) of differentially expressed genes (DEGs) was performed. Gene set variation analysis (GSVA) was used to test for enrichment of NA macrophage transcriptomic signatures in whole sputum microarray (cohort 1 ‐ controls n = 16, NA n = 29, NNA n = 37; cohort 2 U‐BIOPRED ‐ controls n = 16, NA n = 47, NNA n = 57). Results Flow cytometry‐sorting significantly enriched sputum macrophages (99.4% post‐sort, 44.9% pre‐sort, p < .05). RNASeq analysis confirmed macrophage purity and identified DEGs in NA macrophages. Selected DEGs (SLAMF7, DYSF, GPR183, CSF3, PI3, CCR7, all p < .05 NA vs. NNA) were confirmed by qPCR. Pathway analysis of NA macrophage DEGs was consistent with responses to bacteria, contribution to neutrophil recruitment and increased expression of phagocytosis and efferocytosis factors. GSVA demonstrated neutrophilic macrophage gene signatures were significantly enriched in whole sputum microarray in NA vs. NNA and controls in both cohorts. Conclusions We demonstrate a pathophysiologically relevant sputum macrophage transcriptomic programme in NA. The finding that there is transcriptional activation of inflammatory programmes in cell types other than neutrophils supports the concept of NA as a specific endotype.
Collapse
Affiliation(s)
- Michael Fricker
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Ling Qin
- Department of Respiratory Medicine Department of Pulmonary and Critical Care Medicine Xiangya Hospital Central South University Changsha China
| | - Stephany Sánchez‐Ovando
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Jodie L. Simpson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Katherine J. Baines
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Carlos Riveros
- Statistical services (CReDITSS) Hunter Medical Research Institute Newcastle NSW Australia
| | - Hayley A. Scott
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Lisa G. Wood
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Peter AB. Wark
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Nazanin Z. Kermani
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Peter G. Gibson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| |
Collapse
|
17
|
Kubelkova K, Macela A. Francisella and Antibodies. Microorganisms 2021; 9:microorganisms9102136. [PMID: 34683457 PMCID: PMC8538966 DOI: 10.3390/microorganisms9102136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023] Open
Abstract
Immune responses to intracellular pathogens depend largely upon the activation of T helper type 1-dependent mechanisms. The contribution of B cells to establishing protective immunity has long been underestimated. Francisella tularensis, including a number of subspecies, provides a suitable model for the study of immune responses against intracellular bacterial pathogens. We previously demonstrated that Francisella infects B cells and activates B-cell subtypes to produce a number of cytokines and express the activation markers. Recently, we documented the early production of natural antibodies as a consequence of Francisella infection in mice. Here, we summarize current knowledge on the innate and acquired humoral immune responses initiated by Francisella infection and their relationships with the immune defense systems.
Collapse
|
18
|
Flowers EM, Neely HR, Guo J, Almeida T, Ohta Y, Castro CD, Flajnik MF. Identification of the Fc-alpha/mu receptor in Xenopus provides insight into the emergence of the poly-Ig receptor (pIgR) and mucosal Ig transport. Eur J Immunol 2021; 51:2590-2606. [PMID: 34411303 DOI: 10.1002/eji.202149383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Indexed: 01/17/2023]
Abstract
The polyimmunoglobulin receptor (pIgR) transcytoses J chain-containing antibodies through mucosal epithelia. In mammals, two cis-duplicates of PIGR, FCMR, and FCAMR, flank the PIGR gene. A PIGR duplication is first found in amphibians, previously annotated as PIGR2 (herein xlFCAMR), and is expressed by APCs. We demonstrate that xlFcamR is the equivalent of mammalian FcamR. It has been assumed that pIgR is the oldest member of this family, yet our data could not distinguish whether PIGR or FCAMR emerged first; however, FCMR was the last family member to emerge. Interestingly, bony fish "pIgR" is not an orthologue of tetrapod pIgR, and possibly acquired its function via convergent evolution. PIGR/FCAMR/FCMR are members of a larger superfamily, including TREM, CD300, and NKp44, which we name the "double-disulfide Ig superfamily" (ddIgSF). Domains related to each ddIgSF family were identified in cartilaginous fish (sharks, chimeras) and encoded in a single gene cluster syntenic to the human pIgR locus. Thus, the ddIgSF families date back to the earliest antibody-based adaptive immunity, but apparently not before. Finally, our data strongly suggest that the J chain arose in evolution only for Ig multimerization. This study provides a framework for further studies of pIgR and the ddIgSF in vertebrates.
Collapse
Affiliation(s)
- Emily M Flowers
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Harold R Neely
- Department of Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Guo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tereza Almeida
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caitlin D Castro
- Committee on Immunology and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Kubagawa H, Skopnik CM, Al-Qaisi K, Calvert RA, Honjo K, Kubagawa Y, Teuber R, Aliabadi PM, Enghard P, Radbruch A, Sutton BJ. Differences between Human and Mouse IgM Fc Receptor (FcµR). Int J Mol Sci 2021; 22:ijms22137024. [PMID: 34209905 PMCID: PMC8267714 DOI: 10.3390/ijms22137024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Both non-immune "natural" and antigen-induced "immune" IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since the bona fide IgM Fc receptor (FcµR) was identified in humans by a functional cloning strategy in 2009, the roles of FcµR in these IgM effector functions have begun to be explored. In this short essay, we describe the differences between human and mouse FcµRs in terms of their identification processes, cellular distributions and ligand binding activities with emphasis on our recent findings from the mutational analysis of human FcµR. We have identified at least three sites of human FcµR, i.e., Asn66 in the CDR2, Lys79 to Arg83 in the DE loop and Asn109 in the CDR3, responsible for its constitutive IgM-ligand binding. Results of computational structural modeling analysis are consistent with these mutational data and a model of the ligand binding, Ig-like domain of human FcµR is proposed. Serendipitously, substitution of Glu41 and Met42 in the CDR1 of human FcµR with mouse equivalents Gln and Leu, either single or more prominently in combination, enhances both the receptor expression and IgM binding. These findings would help in the future development of preventive and therapeutic interventions targeting FcµR.
Collapse
Affiliation(s)
- Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
- Correspondence: ; Tel.: +49-030-2846-0782
| | - Christopher M. Skopnik
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Khlowd Al-Qaisi
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Rosaleen A. Calvert
- Randall Centre for Cell and Molecular Biophysics, King’s College, London SE1 1UL, UK; (R.A.C.); (B.J.S.)
| | - Kazuhito Honjo
- Department of Pathology of University of Alabama at Birmingham, Birmingham, AL 35294, USA.; (K.H.); (Y.K.)
| | - Yoshiki Kubagawa
- Department of Pathology of University of Alabama at Birmingham, Birmingham, AL 35294, USA.; (K.H.); (Y.K.)
| | - Ruth Teuber
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Pedram Mahmoudi Aliabadi
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätmedizin, 10117 Berlin, Germany;
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany; (C.M.S.); (K.A.-Q.); (R.T.); (P.M.A.); (A.R.)
| | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics, King’s College, London SE1 1UL, UK; (R.A.C.); (B.J.S.)
| |
Collapse
|
20
|
Skopnik CM, Al-Qaisi K, Calvert RA, Enghard P, Radbruch A, Sutton BJ, Kubagawa H. Identification of Amino Acid Residues in Human IgM Fc Receptor (FcµR) Critical for IgM Binding. Front Immunol 2021; 11:618327. [PMID: 33584711 PMCID: PMC7873564 DOI: 10.3389/fimmu.2020.618327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
Both non-immune “natural” and antigen-induced “immune” IgM are important for protection against infections and for regulation of immune responses to self-antigens. The roles of its Fc receptor (FcµR) in these IgM effector functions have begun to be explored. In the present study, by taking advantage of the difference in IgM-ligand binding of FcµRs of human (constitutive binding) and mouse (transient binding), we replaced non-conserved amino acid residues of human FcµR with mouse equivalents before establishment of cell lines stably expressing mutant or wild-type (WT) receptors. The resultant eight-different mutant FcµR-bearing cells were compared with WT receptor-bearing cells for cell-surface expression and IgM-binding by flow cytometric assessments using receptor-specific mAbs and IgM paraproteins as ligands. Three sites Asn66, Lys79-Arg83, and Asn109, which are likely in the CDR2, DE loop and CDR3 of the human FcµR Ig-like domain, respectively, were responsible for constitutive IgM binding. Intriguingly, substitution of Glu41 and Met42 in the presumed CDR1 with the corresponding mouse residues Gln and Leu, either single or more prominently in combination, enhanced both the receptor expression and IgM binding. A four-aa stretch of Lys24-Gly27 in the predicted A ß-strand of human FcµR appeared to be essential for maintenance of its proper receptor conformation on plasma membranes because of reduction of both receptor expression and IgM-binding potential when these were mutated. Results from a computational structural modeling analysis were consistent with these mutational data and identified a possible mode of binding of FcµR with IgM involving the loops including Asn66, Arg83 and Asn109 of FcµR interacting principally with the Cµ4 domain including Gln510 and to a lesser extent Cµ3 domain including Glu398, of human IgM. To our knowledge, this is the first experimental report describing the identification of amino acid residues of human FcµR critical for binding to IgM Fc.
Collapse
Affiliation(s)
| | - Khlowd Al-Qaisi
- Humoral Immune Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Rosaleen A Calvert
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätmedizin, Berlin, Germany
| | - Andreas Radbruch
- Humoral Immune Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Brian J Sutton
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Hiromi Kubagawa
- Humoral Immune Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| |
Collapse
|
21
|
Singh VK, Kumar S, Dhaked RK, Ansari AS, Lohiya NK, Tapryal S. Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen. 3 Biotech 2020; 10:463. [PMID: 33047090 PMCID: PMC7541101 DOI: 10.1007/s13205-020-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Glycoprotein D (gD) of Herpes Simplex Virus-2 is used as an antigen in various anti-herpes subunit vaccines owing to its involvement in binding the host cell receptors for host infectivity. However, most of these monomeric protein based candidates have shown low immunogenicity in animal models. To enhance the immunogenicity of gD, a fresh approach of fusing its ectodomain with the Fc domain(s) of IgM has been adopted to oligomerize the viral antigen and to exploite the immune-modulating potential of IgM Fc. Six vaccine constructs, generated by fusing three gD-ectodomain-length-variants with the Ig µ-chain domain 4 (µCH4) and µCH3-CH4 fragment, were cloned in Escherichia coli using pET28b( +) vector. The vaccine proteins were expressed in the form of inclusion bodies (IBs) and were in vitro refolded into protein oligomers of high stoichiometries of ~ 15–24, with 70–80% refolding yields. The conformations of gD and Fc components of the refolded oligomers were analyzed by ELISA and CD spectroscopy and were found to be native-like. The sizes and profiles of the size-distribution of oligomers were determined by dynamic light scattering (DLS). The candidate C2 (gD-μCH3-CH4), showing the most compact oligomer size and uniform distribution of its particles was chosen as the suitable candidate for mice immunization studies to assess the immunogenicity of the antigen gD. The C2 oligomer stimulated a strong anti-gD humoral response with an antibody titer of 102,400 and a strong, biased Th1 immune response in C57BL/6 mice, indicating its potential as a strong immunogen which may serve as an effective vaccine candidate.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| | - Sandeep Kumar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| | - Rajeev Kumar Dhaked
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Abdul S. Ansari
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Nirmal K. Lohiya
- Indian Society for the Study of Reproduction and Fertility, Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Suman Tapryal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| |
Collapse
|
22
|
Kumar S, Singh VK, Vasam M, Patil PS, Dhaked RK, Ansari AS, Lohiya NK, Parashar D, Tapryal S. An in vitro refolding method to produce oligomers of anti-CHIKV, E2-IgM Fc fusion subunit vaccine candidates expressed in E. coli. J Immunol Methods 2020; 487:112869. [PMID: 32971119 DOI: 10.1016/j.jim.2020.112869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Recombinant envelope protein-1 (E1) and E2 of Chikungunya virus (CHIKV) has been shown to elicit neutralizing antibodies and a balanced Th1/Th2 response in mice however with limited protection. Recently reported CHIK virus-like particles showed augmented immunity and protection in adult mice in comparison to E1 and E2, however exacerbated the disease in aged subjects. In order to improve the overall efficacy of protein based vaccines, novel strategies need to be adopted. The discovery of IgM Fc receptor (FcμR) and its role in humoral immune response led us to hypothesise that fusion of an antigen with Fc of IgM may enhance its immunogenicity by polymerizing it and FcμR mediated activation of B and other immune cells. We report in the current study, expression of E2 subunit of CHIKV in fusion with various IgM Fc domains/peptides in E. coli, their in-vitro refolding, characterization and immune response in C57BL/6 mice. Candidates fused with CH3-CH4 Fc fragment produced stable oligomers, whereas the one fused with peptides remained monomeric. The latter elicited a strong humoral and a balanced Th1/Th2 response in mice, whereas the polymeric candidate despite eliciting a strong humoral response, stimulated a biased Th1 response and exhibited higher virus neutralization in Vero cells.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Vikas Kumar Singh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Manohar Vasam
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Poonam Shewale Patil
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A Dr. Ambedkar Road, Pune 411001, India
| | - Rajeev K Dhaked
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Abdul S Ansari
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, JLN Marg, Jaipur, Rajasthan 302004, India
| | - Nirmal K Lohiya
- Department of Zoology, Centre for Advanced Studies, Indian Society for the Study of Reproduction & Fertility, University of Rajasthan, Jaipur, Rajasthan 302004, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A Dr. Ambedkar Road, Pune 411001, India
| | - Suman Tapryal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
23
|
Chang LS, Guo MMH, Yan JH, Huang YH, Lo MH, Kuo HC. Low FCMR mRNA expression in leukocytes of patients with Kawasaki disease six months after disease onset. Pediatr Allergy Immunol 2020; 31:554-559. [PMID: 32073687 DOI: 10.1111/pai.13235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Immunoglobulin (Ig) M plays an important role in immune regulation. FCMR-encoded FcμR is a receptor of IgM. Previous research has suggested that IgM levels may be involved in the coronary artery lesions of Kawasaki syndrome or Kawasaki disease (KD). In this study, we aimed to explore the roles of mRNA expressions of IgM receptors, particularly FCMR, in KD patients. FCMR encodes the Fc fragment of immunoglobulin M receptor. METHODS We enrolled 60 KD patients and 55 non-KD controls. Whole-blood leukocytes were isolated, and the mRNA expression for FCMR was determined. Each mRNA consisted of a sample taken before intravenous immunoglobulin (IVIG) was administered (acute, KD1) and those taken at three weeks, six months, and one year later (KD3, KD4, KD5). Paired KD subjects were analyzed from both the acute and convalescent phases (n = 28). RESULTS After six months and one year of treatment, KD patients still apparently have lower FCMR compared with controls (P = .004). FCMR expressions were downregulated in male patients with KD prior to IVIG administration (P = .044). The FCMR of paired KD patients who received IVIG treatments after six months was significantly lower than before undergoing IVIG treatment (P = .044). Expressions in the polymorphonuclear leukocytes were similar to those in the peripheral blood mononuclear cells. CONCLUSION The unique data supported that FCMR is expressed by granulocytes at RNA levels in humans and demonstrated lower FCMR six months after the onset of KD. The findings remind us of the need to track the health of children with KD over the long term, even if we think patients have fully recovered.
Collapse
Affiliation(s)
- Ling-Sai Chang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mindy Ming-Huey Guo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Jia-Huei Yan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Hung Lo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Meryk A, Pangrazzi L, Hagen M, Hatzmann F, Jenewein B, Jakic B, Hermann-Kleiter N, Baier G, Jylhävä J, Hurme M, Trieb K, Grubeck-Loebenstein B. Fcμ receptor as a Costimulatory Molecule for T Cells. Cell Rep 2020; 26:2681-2691.e5. [PMID: 30840890 DOI: 10.1016/j.celrep.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022] Open
Abstract
Fc receptor for IgM (FcμR)-deficient mice display dysregulated function of neutrophils, dendritic cells, and B cells. The relevance of FcμR to human T cells is still unknown. We show that FcμR is mostly stored inside the cell and that surface expression is tightly regulated. Decreased surface expression on T cells from elderly individuals is associated with alterations in the methylation pattern of the FCMR gene. Binding and internalization of IgM stimulate transport of FcμR to the cell surface to ensure sustained IgM uptake. Concurrently, IgM accumulates within the cell, and the surface expression of other receptors increases, among them the T cell receptor (TCR) and costimulatory molecules. This leads to enhanced TCR signaling, proliferation, and cytokine release, in response to low, but not high, doses of antigen. Our findings indicate that FcμR is an important regulator of T cell function and reveal an additional mode of interaction between B and T cells.
Collapse
Affiliation(s)
- Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria.
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Magdalena Hagen
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Hatzmann
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Mikko Hurme
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, 4600 Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Regulation of Humoral Immune Responses and B Cell Tolerance by the IgM Fc Receptor (FcμR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1254:75-86. [DOI: 10.1007/978-981-15-3532-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Lee PY, Nelson-Maney N, Huang Y, Levescot A, Wang Q, Wei K, Cunin P, Li Y, Lederer JA, Zhuang H, Han S, Kim EY, Reeves WH, Nigrovic PA. High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage. JCI Insight 2019; 4:129703. [PMID: 31391335 DOI: 10.1172/jci.insight.129703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is a life-threatening pulmonary complication associated with systemic lupus erythematosus, vasculitis, and stem cell transplant. Little is known about the pathophysiology of DAH, and no targeted therapy is currently available. Pristane treatment in mice induces systemic autoimmunity and lung hemorrhage that recapitulates hallmark pathologic features of human DAH. Using this experimental model, we performed high-dimensional analysis of lung immune cells in DAH by mass cytometry and single-cell RNA sequencing. We found a large influx of myeloid cells to the lungs in DAH and defined the gene expression profile of infiltrating monocytes. Bone marrow-derived inflammatory monocytes actively migrated to the lungs and homed adjacent to blood vessels. Using 3 models of monocyte deficiency and complementary transfer studies, we established a central role of inflammatory monocytes in the development of DAH. We further found that the myeloid transcription factor interferon regulatory factor 8 is essential to the development of both DAH and type I interferon-dependent autoimmunity. These findings collectively reveal monocytes as a potential treatment target in DAH.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nathan Nelson-Maney
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yuelong Huang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anaïs Levescot
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Qiang Wang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kevin Wei
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Cunin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yi Li
- Division of Rheumatology, Beth Israel Deaconess Hospital, Boston, Massachusetts, USA
| | - James A Lederer
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Haoyang Zhuang
- Division of Rheumatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shuhong Han
- Division of Rheumatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Edy Y Kim
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Westley H Reeves
- Division of Rheumatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Fcmr regulates mononuclear phagocyte control of anti-tumor immunity. Nat Commun 2019; 10:2678. [PMID: 31213601 PMCID: PMC6581943 DOI: 10.1038/s41467-019-10619-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells contribute to tumor progression, but how the constellation of receptors they express regulates their functions within the tumor microenvironment (TME) is unclear. We demonstrate that Fcmr (Toso), the putative receptor for soluble IgM, modulates myeloid cell responses to cancer. In a syngeneic melanoma model, Fcmr ablation in myeloid cells suppressed tumor growth and extended mouse survival. Fcmr deficiency increased myeloid cell population density in this malignancy and enhanced anti-tumor immunity. Single-cell RNA sequencing of Fcmr-deficient tumor-associated mononuclear phagocytes revealed a unique subset with enhanced antigen processing/presenting properties. Conversely, Fcmr activity negatively regulated the activation and migratory capacity of myeloid cells in vivo, and T cell activation by bone marrow-derived dendritic cells in vitro. Therapeutic targeting of Fcmr during oncogenesis decreased tumor growth when used as a single agent or in combination with anti-PD-1. Thus, Fcmr regulates myeloid cell activation within the TME and may be a potential therapeutic target. Myeloid cells modulate the immune response within the tumour microenvironment, but the underlying mechanisms remain largely unknown. Here, the authors show that Fcmr – the putative receptor for soluble IgM – is a potent negative regulator of anti-tumour immunity.
Collapse
|
28
|
Kubagawa H, Honjo K, Ohkura N, Sakaguchi S, Radbruch A, Melchers F, Jani PK. Functional Roles of the IgM Fc Receptor in the Immune System. Front Immunol 2019; 10:945. [PMID: 31130948 PMCID: PMC6509151 DOI: 10.3389/fimmu.2019.00945] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
It is now evident from studies of mice unable to secrete IgM that both non-immune “natural” and antigen-induced “immune” IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since identification of its Fc receptor (FcμR) by a functional cloning strategy in 2009, the roles of FcμR in these IgM effector functions have begun to be explored. Unlike Fc receptors for switched Ig isotypes (e.g., FcγRs, FcεRs, FcαR, Fcα/μR, pIgR, FcRn), FcμR is selectively expressed by lymphocytes: B, T, and NK cells in humans and only B cells in mice. FcμR may have dual signaling ability: one through a potential as yet unidentified adaptor protein non-covalently associating with the FcμR ligand-binding chain via a His in transmembrane segment and the other through its own Tyr and Ser residues in the cytoplasmic tail. FcμR binds pentameric and hexameric IgM with a high avidity of ~10 nM in solution, but more efficiently binds IgM when it is attached to a membrane component via its Fab region on the same cell surface (cis engagement). Four different laboratories have generated Fcmr-ablated mice and eight different groups of investigators have examined the resultant phenotypes. There have been some clear discrepancies reported that appear to be due to factors including differences in the exons of Fcmr that were targeted to generate the knockouts. One common feature among these different mutant mice, however, is their propensity to produce autoantibodies of both IgM and IgG isotypes. In this review, we briefly describe recent findings concerning the functions of FcμR in both mice and humans and propose a model for how FcμR plays a regulatory role in B cell tolerance.
Collapse
Affiliation(s)
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Naganari Ohkura
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| |
Collapse
|
29
|
Liu J, Wang Y, Xiong E, Hong R, Lu Q, Ohno H, Wang JY. Role of the IgM Fc Receptor in Immunity and Tolerance. Front Immunol 2019; 10:529. [PMID: 30967868 PMCID: PMC6438924 DOI: 10.3389/fimmu.2019.00529] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin (Ig) M is the first antibody isotype to appear during evolution, ontogeny and immune responses. IgM not only serves as the first line of host defense against infections but also plays an important role in immune regulation and immunological tolerance. For many years, IgM is thought to function by binding to antigen and activating complement system. With the discovery of the IgM Fc receptor (FcμR), it is now clear that IgM can also elicit its function through FcμR. In this review, we will describe the molecular characteristics of FcμR, its role in B cell development, maturation and activation, humoral immune responses, host defense, and immunological tolerance. We will also discuss the functional relationship between IgM-complement and IgM-FcμR pathways in regulating immunity and tolerance. Finally, we will discuss the potential involvement of FcμR in human diseases.
Collapse
Affiliation(s)
- Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rongjian Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Shibuya A, Honda SI, Shibuya K. A pro-inflammatory role of Fcα/μR on marginal zone B cells in sepsis. Int Immunol 2019; 29:519-524. [PMID: 29281010 DOI: 10.1093/intimm/dxx059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Fc receptors play important roles for a wide array of immune responses. In contrast to the well-defined Fcγ and Fcε receptors, the molecular and functional characteristics of Fc receptors for IgA and IgM have remained incompletely understood for years. Recent progress has unveiled the characteristics of Fc receptors for IgA and IgM, including Fcα/μ receptor (Fcα/μR) (CD351), polymeric immunoglobulin receptor (poly-IgR), Fcα receptor (FcαRI) (CD89) and Fcμ receptor (FcμR). In this review, we summarize the molecular and functional characteristics of Fcα/μR in comparison with poly-IgR, FcμR and FcαRI, and focus particularly on the pro-inflammatory function of Fcα/μR expressed on marginal zone B cells in sepsis.
Collapse
Affiliation(s)
- Akira Shibuya
- Department of Immunology, Life Science Center of Tsukuba Advanced Research Alliance (TARA) and Faculty of Medicine, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki, Japan
| | - Shin-Ichiro Honda
- Department of Immunology, Life Science Center of Tsukuba Advanced Research Alliance (TARA) and Faculty of Medicine, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Life Science Center of Tsukuba Advanced Research Alliance (TARA) and Faculty of Medicine, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Tang CH, Chang S, Hashimoto A, Chen YJ, Kang CW, Mato AR, Del Valle JR, Gabrilovich DI, Hu CC. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice. Cancer Immunol Res 2018; 6:696-710. [PMID: 29650518 DOI: 10.1158/2326-6066.cir-17-0582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS-/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS-/-/Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS-/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR.
Collapse
Affiliation(s)
| | - Shiun Chang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Yi-Ju Chen
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Chang Won Kang
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - Anthony R Mato
- Center for CLL, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Juan R Del Valle
- Department of Chemistry, University of South Florida, Tampa, Florida
| | | | - Chih-Chi Hu
- The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Irigoyen A, Jimenez-Luna C, Benavides M, Caba O, Gallego J, Ortuño FM, Guillen-Ponce C, Rojas I, Aranda E, Torres C, Prados J. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers. PLoS One 2018; 13:e0194844. [PMID: 29617451 PMCID: PMC5884535 DOI: 10.1371/journal.pone.0194844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 01/16/2023] Open
Abstract
Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses (‘gained’ genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.
Collapse
Affiliation(s)
- Antonio Irigoyen
- Department of Medical Oncology, Virgen de la Salud Hospital, Toledo, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Manuel Benavides
- Department of Medical Oncology, Virgen de la Victoria Hospital, Malaga, Spain
| | - Octavio Caba
- Department of Health Sciences, University of Jaen, Jaen, Spain
- * E-mail:
| | - Javier Gallego
- Department of Medical Oncology, University General Hospital of Elche, Alicante, Spain
| | - Francisco Manuel Ortuño
- Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | | | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | - Enrique Aranda
- Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
33
|
Yu J, Duong VHH, Westphal K, Westphal A, Suwandi A, Grassl GA, Brand K, Chan AC, Föger N, Lee KH. Surface receptor Toso controls B cell-mediated regulation of T cell immunity. J Clin Invest 2018; 128:1820-1836. [PMID: 29461978 DOI: 10.1172/jci97280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.
Collapse
Affiliation(s)
- Jinbo Yu
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | | | - Katrin Westphal
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | - Andreas Westphal
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Hannover Medical School, Hannover, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Hannover Medical School, Hannover, Germany
| | | | - Andrew C Chan
- Research, Genentech, South San Francisco, California, USA
| | - Niko Föger
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | - Kyeong-Hee Lee
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| |
Collapse
|
34
|
Burbano C, Villar-Vesga J, Orejuela J, Muñoz C, Vanegas A, Vásquez G, Rojas M, Castaño D. Potential Involvement of Platelet-Derived Microparticles and Microparticles Forming Immune Complexes during Monocyte Activation in Patients with Systemic Lupus Erythematosus. Front Immunol 2018; 9:322. [PMID: 29545790 PMCID: PMC5837989 DOI: 10.3389/fimmu.2018.00322] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Microparticles (MPs) are vesicles derived from the plasma membrane of different cells, are considered a source of circulating autoantigens, and can form immune complexes (MPs-ICs). The number of MPs and MPs-ICs increases in patients with systemic lupus erythematosus (SLE). MPs activate myeloid cells by inducing IL-6 and TNF-α in both SLE and other diseases. Therefore, we propose that the recognition of MPs-ICs by monocytes rather that MPs may define their phenotype and contribute to the inflammatory process in patients with SLE. Thus, the aims of this study were to evaluate the association among circulating MPs-ICs from different cell sources, alterations observed in monocyte subsets, and disease activity in patients with SLE and to establish whether monocytes bind and respond to MPs-ICs in vitro. Circulating MPs and monocyte subsets were characterized in 60 patients with SLE and 60 healthy controls (HCs) using multiparametric flow cytometry. Patients had higher MP counts and frequencies of MPs-CD41a + (platelet-derived) compared with HCs, regardless of disease activity. MPs from patients with SLE were C1q + and formed ICs with IgM and IgG. MPs-IgG + were positively correlated with active SLE (aSLE), whereas MPs-IgM + were negatively correlated. Most of the circulating total ICs-IgG + were located on MPs. The proportion and number of non-classical monocytes were significantly decreased in patients with SLE compared with HCs and in patients with aSLE compared with patients with the inactive disease. Non-classical monocytes obtained from patients with SLE exhibited increased levels of CD64 associated with MPs-IgG +, MPs-C1q +, total circulating ICs-IgG +, and disease activity. The direct effects of MPs and MPs-IgG + on monocytes were evaluated in cell culture. Monocytes from both HCs and patients bound to and internalized MPs and MPs-IgG + independent of CD64. These vesicles derived from platelets (PMPs), mainly PMPs-IgG +, activated monocytes in vitro and increased the expression of CD69, CD64, and pro-inflammatory cytokines such as IL-1β, TNF-α, and IFN-α. Therefore, MPs are one of the most representative sources of the total amount of circulating ICs-IgG + in patients with SLE. MPs-IgG + are associated with SLE activity, and PMPs-IgG + stimulate monocytes, changing their phenotype and promoting pro-inflammatory responses related to disease activity.
Collapse
Affiliation(s)
- Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan Villar-Vesga
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Janine Orejuela
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Carlos Muñoz
- Sección de Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Adriana Vanegas
- Sección de Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
35
|
Liu J, Zhu H, Qian J, Xiong E, Zhang L, Wang YQ, Chu Y, Kubagawa H, Tsubata T, Wang JY. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front Immunol 2018; 9:160. [PMID: 29459869 PMCID: PMC5807594 DOI: 10.3389/fimmu.2018.00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/18/2018] [Indexed: 11/14/2022] Open
Abstract
The marginal zone B cells (MZB) are located at the interface between the circulation and lymphoid tissue and as a gatekeeper play important roles in both innate and adaptive immune responses. We have previously found that MZB are significantly reduced in mice deficient in the IgM Fc receptor (FcμR) but how FcμR regulates the development and function of MZB remains unknown. In this study, we found that both marginal zone precursor (MZP) and MZB were decreased in FcμR−/− mice. The reduction of MZP and MZB was not due to impaired proliferation of these cells but rather due to their increased death. Further analysis revealed that FcμR−/− MZB had reduced tonic BCR signal, as evidenced by their decreased levels of phosphorylated SYK and AKT relative to WT MZB. MZB in FcμR−/− mice responded poorly to LPS in vivo when compared with MZB in WT mice. Consistent with the reduced proportion of MZB and their impaired response to LPS, antibody production against the type 1 T-independent Ag, NP-LPS, was significantly reduced in FcμR−/− mice. Moreover, FcμR−/− mice were highly susceptible to Citrobacter rodentium-induced sepsis. These results reveal a critical role for FcμR in the survival and activation of MZB and in protection against acute bacterial infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanying Zhu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lumin Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
36
|
Witter AR, Okunnu BM, Berg RE. The Essential Role of Neutrophils during Infection with the Intracellular Bacterial Pathogen Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2017; 197:1557-65. [PMID: 27543669 DOI: 10.4049/jimmunol.1600599] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 01/04/2023]
Abstract
Neutrophils have historically been characterized as first responder cells vital to host survival because of their ability to contain and eliminate bacterial and fungal pathogens. However, recent studies have shown that neutrophils participate in both protective and detrimental responses to a diverse array of inflammatory and infectious diseases. Although the contribution of neutrophils to extracellular infections has been investigated for decades, their specific role during intracellular bacterial infections has only recently been appreciated. During infection with the Gram-positive intracellular pathogen Listeria monocytogenes, neutrophils are recruited from the bone marrow to sites of infection where they use novel bacterial-sensing pathways leading to phagocytosis and production of bactericidal factors. This review summarizes the requirement of neutrophils during L. monocytogenes infection by examining both neutrophil trafficking and function during primary and secondary infection.
Collapse
Affiliation(s)
- Alexandra R Witter
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Busola M Okunnu
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Rance E Berg
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
37
|
Nguyen TTT, Graf BA, Randall TD, Baumgarth N. sIgM-FcμR Interactions Regulate Early B Cell Activation and Plasma Cell Development after Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:1635-1646. [PMID: 28747342 DOI: 10.4049/jimmunol.1700560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
Previous studies with mice lacking secreted IgM (sIgM) due to a deletion of the μs splice region (μs-/- ) had shown sIgM involvement in normal B cell development and in support of maximal Ag-specific IgG responses. Because of the changes to B cell development, it remains unclear to which extent and how sIgM directly affects B cell responses. In this study, we aimed to explore the underlying mechanisms of sIgM-mediated IgG response regulation during influenza virus infection. Generating mice with normally developed μs-deficient B cells, we demonstrate that sIgM supports IgG responses by enhancing early Ag-specific B cell expansion, not by altering B cell development. Lack of FcμR expression on B cells, but not lack of Fcα/μR expression or complement activation, reduced antiviral IgG responses to the same extent as observed in μs-/- mice. B cell-specific Fcmr-/- mice lacked robust clonal expansion of influenza hemagglutinin-specific B cells early after infection and developed fewer spleen and bone marrow IgG plasma cells and memory B cells, compared with controls. However, germinal center responses appeared unaffected. Provision of sIgM rescued plasma cell development from μs-/- but not Fcmr-/- B cells, as demonstrated with mixed bone marrow chimeric mice. Taken together, the data suggest that sIgM interacts with FcμR on B cells to support early B cell activation and the development of long-lived humoral immunity.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Center for Comparative Medicine, University of California Davis, Davis, CA 95616.,Graduate Group in Immunology, University of California Davis, Davis, CA 95616
| | - Beth A Graf
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California Davis, Davis, CA 95616; .,Graduate Group in Immunology, University of California Davis, Davis, CA 95616.,Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA 95616
| |
Collapse
|
38
|
The IgM receptor FcμR limits tonic BCR signaling by regulating expression of the IgM BCR. Nat Immunol 2017; 18:321-333. [PMID: 28135254 PMCID: PMC5310993 DOI: 10.1038/ni.3677] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
The IgM Fc receptor (FcμR), originally cloned as “Fas-apoptosis inhibitory molecule (FAIM3/TOSO)” can function as a cell surface receptor for secreted IgM on a variety of cell types. We report that FcμR also is expressed in the trans-Golgi network of developing B cells, where it constrains IgM- but not IgD-BCR transport. In FcμR absence, IgM-BCR surface expression was increased, resulting in enhanced tonic BCR signaling. B cell-specific FcμR-deficiency enhanced spontaneous differentiation of B-1 cells, resulting in increases in natural IgM levels, and dysregulated B-2 cell homeostasis, causing spontaneous germinal center formation, increased serum autoantibody titers, and excessive B cell accumulation. Thus, FcμR/FAIM3 is a critical regulator of B cell biology by constraining IgM-BCR transport and cell surface expression.
Collapse
|
39
|
Kubagawa H, Skopnik CM, Zimmermann J, Durek P, Chang HD, Yoo E, Bertoli LF, Honjo K, Radbruch A. Authentic IgM Fc Receptor (FcμR). Curr Top Microbiol Immunol 2017; 408:25-45. [PMID: 28702710 DOI: 10.1007/82_2017_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the bona fide Fc receptor for IgM antibody (FcµR) was identified eight years ago, much progress has been made in defining its biochemical nature, cellular distribution, and effector function. However, there are clearly conflicting results, especially about the cellular distribution and function of murine FcµR. In this short article, we will discuss recent findings from us and other investigators along with our interpretations and comments that may help to resolve the existing puzzles and should open new avenues of investigation.
Collapse
Affiliation(s)
- Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany.
| | | | - Jakob Zimmermann
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| | - Esther Yoo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | | | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35209, USA
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum in Berlin, 10117, Berlin, Germany
| |
Collapse
|
40
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
41
|
Planells-Ferrer L, Urresti J, Coccia E, Galenkamp KMO, Calleja-Yagüe I, López-Soriano J, Carriba P, Barneda-Zahonero B, Segura MF, Comella JX. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 2016; 139:11-21. [DOI: 10.1111/jnc.13729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Jorge Urresti
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Elena Coccia
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Koen M. O. Galenkamp
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Isabel Calleja-Yagüe
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Paulina Carriba
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Miguel F. Segura
- Group of Translational Research in Childhood and Adolescent Cancer; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| |
Collapse
|
42
|
Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation 2016; 39:1090-8. [PMID: 27040283 DOI: 10.1007/s10753-016-0340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epilepsy, which affects about 1 % of the population worldwide, leads to poor prognosis and increased morbidity. However, effective drugs providing satisfactory control on seizure relapse were rare, which encouraged more etiological studies. Whether inflammation is one of key events underlying seizure is in debate. In order to explore the role of inflammatory in the pathogenesis and development of epilepsy, we conducted intra-caudal vein injection of leukocytes to aggravated brain inflammatory process in kainic acid-induced seizure model in this study. The results showed that intravenous administration of activated leukocytes increased the frequency and reduced the latent phase of seizure recurrences in rat models of epileptic seizure, during which leukocyte inflammation, brain-blood barrier damage, and neuron injury were also significantly aggravated, indicating that leukocyte infiltration might facilitate seizure recurrence through aggravating brain inflammation, brain-blood barrier damage, and neuron injury.
Collapse
Affiliation(s)
- Zanhua Liu
- Department of Neurology, Dalian Municipal Central Hospital affiliated to Dalian Medical University, Dalian, China
| | - Suping Wang
- Department of Neurology, Dalian Municipal Central Hospital affiliated to Dalian Medical University, Dalian, China
| | - Jinjie Liu
- NO.2 VIP ward, Dalian Municipal Central Hospital affiliated to Dalian Medical University, Dalian, China
| | - Feng Wang
- Department of Neurology, The Shanghai First People's Hospital affiliated to Shanghai JiaoTong University, 85 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital affiliated to Dalian Medical University, Dalian, China
| | - Yongbo Zhao
- Department of Neurology, The Shanghai First People's Hospital affiliated to Shanghai JiaoTong University, 85 Wujin Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
43
|
Wang H, Coligan JE, Morse HC. Emerging Functions of Natural IgM and Its Fc Receptor FCMR in Immune Homeostasis. Front Immunol 2016; 7:99. [PMID: 27014278 PMCID: PMC4791374 DOI: 10.3389/fimmu.2016.00099] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 01/02/2023] Open
Abstract
Most natural IgM antibodies are encoded by germline Ig sequences and are produced in large quantities by both mice and humans in the absence of intentional immunization. Natural IgM are reactive with many conserved epitopes, including those shared by microorganisms and autoantigens. As a result, these antibodies play important roles in clearing intruding pathogens, as well as apoptotic/necrotic cells and otherwise damaged tissues. While natural IgM binds to target structures with low affinity due to a lack of significant selection by somatic hypermutation, its pentameric structure with 10 antigen-binding sites enables these antibodies to bind multivalent target antigens with high avidity. Opsonization of antigen complexed with IgM is mediated by cell surface Fc receptors. While the existence of Fc alpha/mu receptor has been known for some time, only recently has the Fc receptor specific for IgM (FCMR) been identified. In this review, we focus on our current understandings of how natural IgM and FCMR regulate the immune system and maintain homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| |
Collapse
|
44
|
Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell 2015; 163:1400-12. [PMID: 26607794 DOI: 10.1016/j.cell.2015.11.009] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/18/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
Extensive cellular heterogeneity exists within specific immune-cell subtypes classified as a single lineage, but its molecular underpinnings are rarely characterized at a genomic scale. Here, we use single-cell RNA-seq to investigate the molecular mechanisms governing heterogeneity and pathogenicity of Th17 cells isolated from the central nervous system (CNS) and lymph nodes (LN) at the peak of autoimmune encephalomyelitis (EAE) or differentiated in vitro under either pathogenic or non-pathogenic polarization conditions. Computational analysis relates a spectrum of cellular states in vivo to in-vitro-differentiated Th17 cells and unveils genes governing pathogenicity and disease susceptibility. Using knockout mice, we validate four new genes: Gpr65, Plzp, Toso, and Cd5l (in a companion paper). Cellular heterogeneity thus informs Th17 function in autoimmunity and can identify targets for selective suppression of pathogenic Th17 cells while potentially sparing non-pathogenic tissue-protective ones.
Collapse
|
45
|
Idzkowska E, Eljaszewicz A, Miklasz P, Musial WJ, Tycinska AM, Moniuszko M. The Role of Different Monocyte Subsets in the Pathogenesis of Atherosclerosis and Acute Coronary Syndromes. Scand J Immunol 2015; 82:163-73. [PMID: 25997925 DOI: 10.1111/sji.12314] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The inflammation underlying both atherosclerosis and acute coronary syndromes is strongly related to monocyte-related actions. However, different monocyte subsets can play differential roles in the formation and destabilization of atherosclerotic plaque as well as healing of damaged myocardial tissue. Monocytes are currently being divided into three functionally distinct subsets with different levels of CD14 (cluster of differentiation 14) and CD16 expression. Thus, there are classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. Here, we summarize the current knowledge on complex activities of different monocyte subsets in atherosclerosis and acute coronary syndromes. Moreover, we discuss which monocyte subsets can serve either as predictive biomarkers of cardiovascular risk or as potential targets used in atherosclerosis and its complications.
Collapse
Affiliation(s)
- E Idzkowska
- Department of Cardiology, Medical University of Bialystok, Poland
| | - A Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - P Miklasz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland
| | - W J Musial
- Department of Cardiology, Medical University of Bialystok, Poland
| | - A M Tycinska
- Department of Cardiology, Medical University of Bialystok, Poland
| | - M Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland.,Department of Allergology and Internal Medicine, Medical University of Bialystok, Poland
| |
Collapse
|
46
|
Lapke N, Tartz S, Lee KH, Jacobs T. The application of anti-Toso antibody enhances CD8(+) T cell responses in experimental malaria vaccination and disease. Vaccine 2015; 33:6763-70. [PMID: 26597034 DOI: 10.1016/j.vaccine.2015.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/28/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Toso is a molecule highly expressed on B cells. It influences their survival and was identified as an IgM binding molecule. B cells and natural antibodies play a role in vaccination-induced CD8(+) T cell responses. We investigated the impact of an anti-Toso antibody on vaccination efficiency in a malaria vaccination model. In this model, CD8(+) T cells exert antiparasitic functions on infected hepatocytes in the liver stage of the disease. In vaccinated anti-Toso treated mice, more antigen-specific CD8(+) T cells were induced than in control mice and after infection with Plasmodium berghei ANKA (PbA) sporozoites, the liver parasite burden was lower. In B cell deficient mice, the anti-Toso antibody did not stimulate the CD8(+) T cell response, indicating that B cells were mediating this effect. Furthermore, we analyzed the influence of anti-Toso treatment on non-vaccinated mice in the PbA infection model, in which CD8(+) T cells cause brain pathology. Anti-Toso treatment increased cerebral pathology and the accumulation of CD8(+) T cells in the brain. Thus, anti-Toso treatment enhanced the CD8(+) T cell response against PbA in a vaccination and in an infection model. Our findings indicate that Toso may be a novel target to boost vaccine-induced CD8(+) T cell responses.
Collapse
Affiliation(s)
- Nina Lapke
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Susanne Tartz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Kyeong-Hee Lee
- Institute for Clinical Chemistry and Inflammation Research, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| |
Collapse
|
47
|
Kubagawa H, Carroll MC, Jacob CO, Lang KS, Lee KH, Mak T, McAndrews M, Morse HC, Nolan GP, Ohno H, Richter GH, Seal R, Wang JY, Wiestner A, Coligan JE. Nomenclature of Toso, Fas apoptosis inhibitory molecule 3, and IgM FcR. THE JOURNAL OF IMMUNOLOGY 2015; 194:4055-7. [PMID: 25888699 DOI: 10.4049/jimmunol.1500222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hiromi Kubagawa and John E. Coligan coordinated an online meeting to define an appropriate nomenclature for the cell surface glycoprotein presently designated by different names: Toso, Fas apoptosis inhibitory molecule 3 (FAIM3), and IgM FcR (FcμR). FAIM3 and Faim3 are the currently approved symbols for the human and mouse genes, respectively, in the National Center for Biotechnology Information, Ensembl, and other databases. However, recent functional results reported by several groups of investigators strongly support a recommendation for renaming FAIM3/Faim3 as FCMR/Fcmr, a name better reflecting its physiological function as the FcR for IgM. Participants included 12 investigators involved in studying Toso/FAIM3(Faim3)/FμR, representatives from the Human Genome Nomenclature Committee (Ruth Seal) and the Mouse Genome Nomenclature Committee (Monica McAndrews), and an observer from the IgM research field (Michael Carroll). In this article, we provide a brief background of the key research on the Toso/FAIM3(Faim3)/FcμR proteins, focusing on the ligand specificity and functional activity, followed by a brief summary of discussion about adopting a single name for this molecule and its gene and a resulting recommendation for genome nomenclature committees.
Collapse
Affiliation(s)
- Hiromi Kubagawa
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294;
| | | | - Chaim O Jacob
- Department of Medicine, University of Southern California School of Medicine, Los Angeles, CA 90033
| | - Karl S Lang
- Institute for Immunology, University of Duisburg-Essen, Essen 45147, Germany
| | - Kyeong-Hee Lee
- Institute for Clinical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Tak Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario M5T 2M9, Canada
| | - Monica McAndrews
- Mouse Genome Informatics, Jackson Laboratory, Bar Harbor, ME 04609
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Günther H Richter
- Kinderklinik, Klinikum Rechts der Isar, Technische Universität München, Munich 81664, Germany
| | - Ruth Seal
- Human Genome Organisation Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Trust Genome Campus Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; and
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - John E Coligan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
48
|
Zimring JC, Spitalnik SL. Pathobiology of Transfusion Reactions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:83-110. [DOI: 10.1146/annurev-pathol-012414-040318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James C. Zimring
- Puget Sound Blood Center Research Institute, Seattle, Washington 98102;
- Departments of Laboratory Medicine and Internal Medicine, Division of Hematology, University of Washington, Seattle, Washington 98195
| | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
49
|
Abstract
INTRODUCTION The Fc receptors (FcRs) and their interactions with immunoglobulin and innate immune opsonins, such as C-reactive protein, are key players in humoral and cellular immune responses. As the effector mechanism for some therapeutic monoclonal antibodies, and often a contributor to the pathogenesis and progression of autoimmunity, FcRs are promising targets for treating autoimmune diseases. AREAS COVERED This review discusses the nature of different FcRs and the various mechanisms of their involvement in initiating and modulating immunocyte functions and their biological consequences. It describes a range of current strategies in targeting FcRs and manipulating their interaction with specific ligands, while presenting the pros and cons of these approaches. This review also discusses potential new strategies including regulation of FcR expression and receptor crosstalk. EXPERT OPINION FcRs are appealing targets in the treatment of inflammatory autoimmune diseases. However, there are still knowledge limitations and technical challenges, the most important being a better understanding of the individual roles of each of the FcRs and enhancement of the specificity in targeting particular cell types and specific FcRs.
Collapse
Affiliation(s)
- Xinrui Li
- The University of Alabama , SHEL 272, 1825 University Blvd, Birmingham, AL 35294 , USA
| | | |
Collapse
|
50
|
Toso regulates differentiation and activation of inflammatory dendritic cells during persistence-prone virus infection. Cell Death Differ 2014; 22:164-73. [PMID: 25257173 DOI: 10.1038/cdd.2014.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 12/24/2022] Open
Abstract
During virus infection and autoimmune disease, inflammatory dendritic cells (iDCs) differentiate from blood monocytes and infiltrate infected tissue. Following acute infection with hepatotropic viruses, iDCs are essential for re-stimulating virus-specific CD8(+) T cells and therefore contribute to virus control. Here we used the lymphocytic choriomeningitis virus (LCMV) model system to identify novel signals, which influence the recruitment and activation of iDCs in the liver. We observed that intrinsic expression of Toso (Faim3, FcμR) influenced the differentiation and activation of iDCs in vivo and DCs in vitro. Lack of iDCs in Toso-deficient (Toso(-/-)) mice reduced CD8(+) T-cell function in the liver and resulted in virus persistence. Furthermore, Toso(-/-) DCs failed to induce autoimmune diabetes in the rat insulin promoter-glycoprotein (RIP-GP) autoimmune diabetes model. In conclusion, we found that Toso has an essential role in the differentiation and maturation of iDCs, a process that is required for the control of persistence-prone virus infection.
Collapse
|