1
|
Sayegh H, Zagouras A, Neal JW, Witteles RM, Zhu H, Waliany S. Classes of Antineoplastic Agents Associated with Increased Risk of Cancer Therapy-associated Hypertension and Management Strategies. Cardiol Clin 2025; 43:31-42. [PMID: 39551560 DOI: 10.1016/j.ccl.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypertension (HTN) has been found to be the most common comorbidity in patients with cancer. In addition to increased prevalence of baseline HTN, patients with cancer may be at increased risk of HTN as a short-term or long-term adverse event from cancer therapy. Different classes of cancer therapies have been implicated in the development of HTN, including inhibitors of vascular endothelial growth factor (VEGF), Bruton tyrosine kinase inhibitors, proteasome inhibitors, androgen deprivation therapy, and others. While some of these drugs may lead to increases in blood pressure through on-target effects (eg, with VEGF inhibition), others may be associated with HTN from off-target mechanisms that are not always well understood.
Collapse
Affiliation(s)
- Hoda Sayegh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexia Zagouras
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Ronald M Witteles
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Han Zhu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Sarah Waliany
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Sánchez-Martínez C, Grueso E, Calvo-López T, Martinez-Ortega J, Ruiz A, Almendral JM. VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications. Cells 2024; 13:1815. [PMID: 39513922 PMCID: PMC11545703 DOI: 10.3390/cells13211815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF's functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF-virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Esther Grueso
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Tosato G, Wang Y. Celebrating the 1945 JNCI pioneering contribution to antiangiogenic therapy for cancer. J Natl Cancer Inst 2024; 116:1715-1720. [PMID: 39178374 DOI: 10.1093/jnci/djae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuyi Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Huang C, Kaur A, Ji L, Tian H, Webster KA, Li W. Suppression of matrigel-induced choroidal neovascularization by AAV delivery of a novel anti-Scg3 antibody. Gene Ther 2024; 31:587-593. [PMID: 39333408 DOI: 10.1038/s41434-024-00491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Efforts to develop gene therapy for long-term treatment of neovascular disease are hampered by ongoing concerns that biologics against vascular endothelial growth factor (VEGF) inhibit both physiological and pathological angiogenesis and are therefore at elevated risk of adverse side effects. A potential solution is to develop disease-targeted gene therapy. Secretogranin III (Scg3), a unique disease-restricted angiogenic factor described by our group, contributes significantly to ocular neovascular disease. We have shown that Scg3 blockade with a monoclonal antibody Fab fragment (Fab) stringently inhibits pathological angiogenesis without affecting healthy vessels. Here we tested the therapeutic efficacy of adeno-associated virus (AAV)-anti-Scg3Fab to block choroidal neovascularization (CNV) induced by subretinal injection of Matrigel in a mouse model. Intravitreal AAV-anti-Scg3Fab significantly reduced CNV and suppressed CNV-associated leukocyte infiltration and macrophage activation. The efficacy and anti-inflammatory effects were equivalent to those achieved by positive control AAV-aflibercept against VEGF. Efficacies of AAV-anti-Scg3Fab and AAV-aflibercept were sustained over 4 months post AAV delivery. The findings support development of AAV-anti-Scg3 as an alternative to AAV-anti-VEGF with equivalent efficacy and potentially safer mechanism of action.
Collapse
Affiliation(s)
- Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Chen R, Cheng T, Xie S, Sun X, Chen M, Zhao S, Ruan Q, Ni X, Rao M, Quan X, Chen K, Zhang S, Cheng T, Xu Y, Chen Y, Yang Y, Cao Y. Effective Prevention and Treatment of Acute Leukemias in Mice by Activation of Thermogenic Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402332. [PMID: 39049685 PMCID: PMC11481385 DOI: 10.1002/advs.202402332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) are common hematological malignancies in adults. Despite considerable research advances, the development of standard therapies, supportive care, and prognosis for the majority of AML and ALL patients remains poor and the development of new effective therapy is urgently needed. Here, it is reported that activation of thermogenic adipose tissues (TATs) by cold exposure or β3-adrenergic receptor agonists markedly alleviated the development and progression of AML and ALL in mouse leukemia models. TAT activation (TATA) monotherapy substantially reduces leukemic cells in bone marrow and peripheral blood, and suppresses leukemic cell invasion, including hepatomegaly and splenomegaly. Notably, TATA therapy prolongs the survivals of AML- and ALL-bearing mice. Surgical removal of thermogenic brown adipose tissue (BAT) or genetic deletion of uncoupling protein 1 (UCP1) largely abolishes the TATA-mediated anti-leukemia effects. Metabolomic pathway analysis demonstrates that glycolytic metabolism, which is essential for anabolic leukemic cell growth, is severely impaired in TATA-treated leukemic cells. Moreover, a combination of TATA therapy with chemotherapy produces enhanced anti-leukemic effects and reduces chemotoxicity. These data provide a new TATA-based therapeutic paradigm for the effective treatment of AML, ALL, and likely other types of hematological malignancies.
Collapse
Affiliation(s)
- Ruibo Chen
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Tianran Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Sisi Xie
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Xiaoting Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325035China
| | - Mingjia Chen
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shumin Zhao
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Qingyan Ruan
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Xiaolei Ni
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Mei Rao
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Xinyi Quan
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Kaiwen Chen
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shiyue Zhang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Tao Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Yuanfu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Yuguo Chen
- Department of Emergency MedicineShandong Provincial Clinical Research Center for Emergency and Critical Care MedicineMedical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care MedicineChina’s Ministry of EducationNMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugShandong International Cooperative Laboratory for Emergency and Critical Care MedicineQilu Hospital of Shandong UniversityJinan250012China
| | - Yunlong Yang
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolna17165Sweden
| |
Collapse
|
6
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Yang Y, Wang Y, Chen B, Liu Y, Gu K. A real-world drug safety surveillance study of lenvatinib from the FAERS database. Expert Opin Drug Saf 2024:1-13. [PMID: 39145923 DOI: 10.1080/14740338.2024.2393284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND There is a need to determine lenvatinib-associated real-world adverse events (AEs) as its adverse effects may result in its discontinuation. RESEARCH DESIGN AND METHODS Lenvatinib-associated AEs were analyzed and quantified and risk signals from the first quarter of 2015 to the fourth quarter of 2023 were detected through data mining. Potential targets for lenvatinib-associated cholecystitis, cholangitis, and hepatic encephalopathy were identified by data mining. RESULT 68 Preferred Terms (PTs) with an important imbalance were kept. Unexpected AEs, such as immune-mediated hepatitis, portal vein thrombosis and adrenal insufficiency were associated with the use of lenvatinib use. Lenvatinib alone was more strongly associated with adrenal insufficiency than lenvatinib and pembrolizumab combination. Hepatic encephalopathy was more strongly correlated with drug use when Lenvatinib was administered to male patients with hepatocellular carcinoma. Most AEs occurred during the first month after treatment, with a median onset time of 41 days. FGFR4, PDGFRA, and KIT (Lenvatinib targets) are potentially linked to cholecystitis, cholangitis, and hepatic encephalopathy. CONCLUSIONS We identified Lenvatinib-associated AEs and discovered new AEs that will be useful for clinical monitoring and risk assessment.
Collapse
Affiliation(s)
- Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yafen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yuchen Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
8
|
Fan Z, Karakone M, Nagarajan S, Nagy N, Mildenberger W, Petrova E, Hinte LC, Bijnen M, Häne P, Nelius E, Chen J, Ferapontova I, von Meyenn F, Trepiccione F, Berber M, Ribas DP, Eichmann A, Zennaro MC, Takeda N, Fischer JW, Spyroglou A, Reincke M, Beuschlein F, Loffing J, Greter M, Stockmann C. Macrophages preserve endothelial cell specialization in the adrenal gland to modulate aldosterone secretion and blood pressure. Cell Rep 2024; 43:114395. [PMID: 38941187 DOI: 10.1016/j.celrep.2024.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
Macrophages play crucial roles in organ-specific functions and homeostasis. In the adrenal gland, macrophages closely associate with sinusoidal capillaries in the aldosterone-producing zona glomerulosa. We demonstrate that macrophages preserve capillary specialization and modulate aldosterone secretion. Using macrophage-specific deletion of VEGF-A, single-cell transcriptomics, and functional phenotyping, we found that the loss of VEGF-A depletes PLVAP+ fenestrated endothelial cells in the zona glomerulosa, leading to increased basement membrane collagen IV deposition and subendothelial fibrosis. This results in increased aldosterone secretion, called "haptosecretagogue" signaling. Human aldosterone-producing adenomas also show capillary rarefaction and basement membrane thickening. Mice with myeloid cell-specific VEGF-A deletion exhibit elevated serum aldosterone, hypokalemia, and hypertension, mimicking primary aldosteronism. These findings underscore macrophage-to-endothelial cell signaling as essential for endothelial cell specialization, adrenal gland function, and blood pressure regulation, with broader implications for other endocrine organs.
Collapse
Affiliation(s)
- Zheng Fan
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland.
| | - Mara Karakone
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland
| | | | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wiebke Mildenberger
- University of Zurich, Institute for Experimental Immunology, 8057 Zurich, Switzerland
| | - Ekaterina Petrova
- University of Zurich, Institute for Experimental Immunology, 8057 Zurich, Switzerland
| | - Laura Catharina Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mitchell Bijnen
- University of Zurich, Institute for Experimental Immunology, 8057 Zurich, Switzerland
| | - Philipp Häne
- University of Zurich, Institute for Experimental Immunology, 8057 Zurich, Switzerland
| | - Eric Nelius
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland
| | - Jing Chen
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland
| | - Irina Ferapontova
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mesut Berber
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland
| | - David Penton Ribas
- Electrophysiology Facility (e-phac), Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zürich, Switzerland
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ariadni Spyroglou
- Klinik für Endokrinologie, Diabetologie, und Klinische Ernährung, UniversitätsSpital Zürich (USZ) and UZH, Raemistrasse 100, 8091 Zurich, Switzerland; Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Martin Reincke
- Klinik für Endokrinologie, Diabetologie, und Klinische Ernährung, UniversitätsSpital Zürich (USZ) and UZH, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie, und Klinische Ernährung, UniversitätsSpital Zürich (USZ) and UZH, Raemistrasse 100, 8091 Zurich, Switzerland; Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Johannes Loffing
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland
| | - Melanie Greter
- University of Zurich, Institute for Experimental Immunology, 8057 Zurich, Switzerland
| | - Christian Stockmann
- University of Zurich, Institute of Anatomy, 8057 Zurich, Switzerland; INSERM U970, Paris Cardiovascular Research Center, Paris, France.
| |
Collapse
|
9
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
10
|
Hossain MI, Haque M, Akter M, Sharmin S, Ahmed A. Blood-brain barrier disruption and edema formation due to prolonged starvation in wild-type mice. Brain Circ 2024; 10:145-153. [PMID: 39036296 PMCID: PMC11259321 DOI: 10.4103/bc.bc_88_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Different types of diseases have been treated by restricted caloric intake or fasting. Although during this long time, fasting protective measures, for example, supplements, are given to the patients to protect vital organs such as the liver and kidney, little attention is given to the brain. The current research aims to investigate hypoglycemia due to prolonged fasting disrupts blood-brain barrier (BBB) in mice. MATERIALS AND METHODS Immunohistochemistry (IHC) and in situ hybridization (ISH) techniques were used to examine the expression of different genes. Evans blue extravasation and wet-dry technique were performed to evaluate the integrity of BBB and the formation of brain edema, respectively. RESULTS We confirmed that hypoglycemia affected mice fasting brain by examining the increased expression of glucose transporter protein 1 and hyperphosphorylation of tau protein. We subsequently found downregulated expression of some genes, which are involved in maintaining BBB such as vascular endothelial growth factor (VEGF) in astrocytes and claudin-5 (a vital component of BBB) and VEGF receptor (VEGFR1) in endothelial cells by ISH. We also found that prolonged fasting caused the brain endothelial cells to express lipocalin-2, an inflammatory marker of brain endothelial cells. We performed Evans blue extravasation to show more dye was retained in the brain of fasted mice than in control mice as a result of BBB disruption. Finally, wet-dry method showed that the brain of prolonged fasted mice contained significantly higher amount of water confirming the formation of brain edema. Therefore, special attention should be given to the brain during treatment with prolonged fasting for various diseases. CONCLUSIONS Our results demonstrated that hypoglycemia due to prolonged fasting disrupts BBB and produces brain edema in wild-type mice, highlighting the importance of brain health during treatment with prolonged fasting.
Collapse
Affiliation(s)
- M. Ibrahim Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mehjabeen Haque
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Maria Akter
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Sabrina Sharmin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Asif Ahmed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
11
|
Jacobsen A, Siebler J, Grützmann R, Stürzl M, Naschberger E. Blood Vessel-Targeted Therapy in Colorectal Cancer: Current Strategies and Future Perspectives. Cancers (Basel) 2024; 16:890. [PMID: 38473252 DOI: 10.3390/cancers16050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
The vasculature is a key player and regulatory component in the multicellular microenvironment of solid tumors and, consequently, a therapeutic target. In colorectal carcinoma (CRC), antiangiogenic treatment was approved almost 20 years ago, but there are still no valid predictors of response. In addition, treatment resistance has become a problem. Vascular heterogeneity and plasticity due to species-, organ-, and milieu-dependent phenotypic and functional differences of blood vascular cells reduced the hope of being able to apply a standard approach of antiangiogenic therapy to all patients. In addition, the pathological vasculature in CRC is characterized by heterogeneous perfusion, impaired barrier function, immunosuppressive endothelial cell anergy, and metabolic competition-induced microenvironmental stress. Only recently, angiocrine proteins have been identified that are specifically released from vascular cells and can regulate tumor initiation and progression in an autocrine and paracrine manner. In this review, we summarize the history and current strategies for applying antiangiogenic treatment and discuss the associated challenges and opportunities, including normalizing the tumor vasculature, modulating milieu-dependent vascular heterogeneity, and targeting functions of angiocrine proteins. These new strategies could open perspectives for future vascular-targeted and patient-tailored therapy selection in CRC.
Collapse
Affiliation(s)
- Anne Jacobsen
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Kussmaulallee 12, D-91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
- Department of General and Visceral Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Jürgen Siebler
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
- Department of Medicine 1-Gastroenterology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Robert Grützmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
- Department of General and Visceral Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Kussmaulallee 12, D-91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Kussmaulallee 12, D-91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), D-91054 Erlangen, Germany
| |
Collapse
|
12
|
Iwamoto H, Suzuki H, Masuda A, Sakaue T, Nakamura T, Tanaka T, Sakai M, Imamura Y, Yano H, Torimura T, Koga H, Yasuda K, Tsurusaki M, Seki T, Kawaguchi T. A tumor endothelial cell-specific microRNA replacement therapy for hepatocellular carcinoma. iScience 2024; 27:108797. [PMID: 38303694 PMCID: PMC10831275 DOI: 10.1016/j.isci.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Current approved anti-angiogenic drugs (AAD) for hepatocellular carcinoma (HCC) inhibit tumor angiogenesis, but affect the hepatic vasculature resulting in adverse effects. Tumor endothelial cells (TECs) differ from normal endothelial cells. In this study, we aimed to detect TEC-specific miRNAs and develop an anti-angiogenic treatment specific for TECs. We established HCC orthotopic mouse models. TEC-specific miRNAs were detected using a microRNA array. Finally, we evaluated the therapeutic effects of the TEC-specific miRNA agonist cocktail. In total, 260 TEC-specific genes were detected. Among the top ten downregulated TEC-specific miRNAs, miR-139-3p and 214-3p were important for the TEC phenotype. The TEC-specific microRNA agonist cocktail showed significant anti-tumor effects by inhibiting tumor angiogenesis without affecting hepatic vasculatures in HCC orthotopic mouse models. Moreover, it significantly downregulated tip-cell sprouting-related genes. We identified two downregulated TEC-specific miRNAs; microRNA replacement therapy, which targets the downregulated TEC-specific miRNAs, is an effective and promising treatment for HCC.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
- Department of Medicine, Iwamoto Internal Medicine Clinic, Kitakyushu 802 0832, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Miwa Sakai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Yasuko Imamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Kaori Yasuda
- Cell Innovator, Inc., Venture Business Laboratory of Kyushu University, Fukuoka 812-8582, Japan
| | - Masakatsu Tsurusaki
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-Sayama 589 8511, Japan
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| |
Collapse
|
13
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Ji L, Waduge P, Wu Y, Huang C, Kaur A, Oliveira P, Tian H, Zhang J, Stout JT, Weng CY, Webster KA, Li W. Secretogranin III Selectively Promotes Vascular Leakage in the Deep Vascular Plexus of Diabetic Retinopathy. Int J Mol Sci 2023; 24:10531. [PMID: 37445707 PMCID: PMC10341987 DOI: 10.3390/ijms241310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss in working-age adults, induces mosaic patterns of vasculopathy that may be associated with spatial heterogeneity of intraretinal endothelial cells. We recently reported that secretogranin III (Scg3), a neuron-derived angiogenic and vascular leakage factor, selectively binds retinal vessels of diabetic but not healthy mice. Here, we investigated endothelial heterogeneity of three retinal vascular plexuses in DR pathogenesis and the therapeutic implications. Our unique in vivo ligand binding assay detected a 22.7-fold increase in Scg3 binding to retinal vessels of diabetic mice relative to healthy mice. Functional immunohistochemistry revealed that Scg3 predominantly binds to the DR-stressed CD31- deep retinal vascular plexus but not to the relatively healthy CD31+ superficial and intermediate plexuses within the same diabetic retina. In contrast, VEGF bound to healthy and diabetic retinal vessels indiscriminately with low activity. FITC-dextran assays indicated that selectively increased retinal vascular leakage coincides with Scg3 binding in diabetic mice that was independent of VEGF, whereas VEGF-induced leakage did not distinguish between diabetic and healthy mice. Dose-response curves showed that the anti-Scg3 humanized antibody (hAb) and anti-VEGF aflibercept alleviated DR leakage with equivalent efficacies, and that the combination acted synergistically. These findings suggest: (i) the deep plexus is highly sensitive to DR; (ii) Scg3 binding to the DR deep plexus coincides with the loss of CD31 and compromised endothelial junctions; (iii) anti-Scg3 hAb alleviates vascular leakage by selectively targeting the DR-stressed deep plexus within the same diabetic retina; (iv) combined anti-Scg3 and anti-VEGF treatments synergistically ameliorate DR through distinct mechanisms.
Collapse
Affiliation(s)
- Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yan Wu
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paola Oliveira
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China;
| | - J. Timothy Stout
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Y. Weng
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keith A. Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens L, Alnaqbi H, Alshamsi FY, Safar HA, Carmeliet P. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 2023:10.1038/s41568-023-00591-5. [PMID: 37349410 DOI: 10.1038/s41568-023-00591-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.
Collapse
Affiliation(s)
- Qun Zeng
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aisha Shigna Nadukkandy
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lies Franssens
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Fatima Yousif Alshamsi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
17
|
Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 2023; 22:476-495. [PMID: 37041221 DOI: 10.1038/s41573-023-00671-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/13/2023]
Abstract
Angiogenesis is an essential process in normal development and in adult physiology, but can be disrupted in numerous diseases. The concept of targeting angiogenesis for treating diseases was proposed more than 50 years ago, and the first two drugs targeting vascular endothelial growth factor (VEGF), bevacizumab and pegaptanib, were approved in 2004 for the treatment of cancer and neovascular ophthalmic diseases, respectively. Since then, nearly 20 years of clinical experience with anti-angiogenic drugs (AADs) have demonstrated the importance of this therapeutic modality for these disorders. However, there is a need to improve clinical outcomes by enhancing therapeutic efficacy, overcoming drug resistance, defining surrogate markers, combining with other drugs and developing the next generation of therapeutics. In this Review, we examine emerging new targets, the development of new drugs and challenging issues such as the mode of action of AADs and elucidating mechanisms underlying clinical benefits; we also discuss possible future directions of the field.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
19
|
De Leo S, Trevisan M, Colombo C, Moneta C, Giancola N, Fugazzola L. Hypocalcemia During Lenvatinib Treatment for Advanced Thyroid Cancer: Clinical Features and Management in a Real-Life Setting. Thyroid 2023; 33:74-81. [PMID: 36326203 DOI: 10.1089/thy.2022.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background: Several toxicities are recorded during treatment of advanced thyroid cancer (TC) with antiangiogenic drugs, including lenvatinib (LEN). Hypocalcemia was reported in registration studies, but little data are available from real-life cohorts. The aim of our study was to describe the incidence, characteristics, and the management of hypocalcemia in patients on LEN treatment. Methods: This is a retrospective cohort study of consecutive patients with advanced TC, treated with LEN for at least six months at a single tertiary center in Italy. Phosphocalcic metabolism was evaluated during treatment. Results: We included 25 patients treated for a mean of 29 ± 19 months (range 6-68 months). Hypocalcemia occurred in 6 of the 25 patients (24% [95% confidence interval 9.36-45.13%]), being of grade ≥3 in 2 of the 25 patients (8%), and recurrent in 4 of 6 patients (67%). The median time to hypocalcemia onset was 3 months (range 0.5-13 months) from starting LEN. No differences were found between patients who developed or not hypocalcemia regarding either starting/mean dose of LEN or clinicopathological characteristics. During the hypocalcemic crisis, the 2 patients with grade ≥3 hypocalcemia had low magnesium and low or inappropriately normal parathormone (PTH) levels, while 2 of 3 patients with grade 2 hypocalcemia had a secondary hyperparathyroidism. Hypocalcemia was managed with calcium oral supplementation in most cases, although up to 10% of patients required intravenous calcium treatment and transient LEN withdrawal. Conclusions: In this relatively small cohort, we observed an incidence of hypocalcemia of 24%, which is higher than that reported in the registration trial (6.9%). Both PTH-dependent and PTH-independent mechanisms explained hypocalcemia in the present cohort. Monitoring of serum calcium levels is strongly advised during the first year of LEN treatment, as hypocalcemia may be severe. More research is needed to confirm our findings and inform possible risk factors for hypocalcemia in advanced TC patients treated with LEN.
Collapse
Affiliation(s)
- Simone De Leo
- Department of Endocrine and Metabolic Diseases, Endocrine Oncology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Matteo Trevisan
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carla Colombo
- Department of Endocrine and Metabolic Diseases, Endocrine Oncology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Moneta
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Noemi Giancola
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Endocrine Oncology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Jing X, Wu J, Dong C, Gao J, Seki T, Kim C, Urgard E, Hosaka K, Yang Y, Long S, Huang P, Zheng J, Szekely L, Zhang Y, Tao W, Coquet J, Ge M, Chen Y, Adner M, Cao Y. COVID-19 instigates adipose browning and atrophy through VEGF in small mammals. Nat Metab 2022; 4:1674-1683. [PMID: 36482111 PMCID: PMC9771808 DOI: 10.1038/s42255-022-00697-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Patients with COVID-19 frequently manifest adipose atrophy, weight loss and cachexia, which significantly contribute to poor quality of life and mortality1,2. Browning of white adipose tissue and activation of brown adipose tissue are effective processes for energy expenditure3-7; however, mechanistic and functional links between SARS-CoV-2 infection and adipose thermogenesis have not been studied. In this study, we provide experimental evidence that SARS-CoV-2 infection augments adipose browning and non-shivering thermogenesis (NST), which contributes to adipose atrophy and body weight loss. In mouse and hamster models, SARS-CoV-2 infection activates brown adipose tissue and instigates a browning or beige phenotype of white adipose tissues, including augmented NST. This browning phenotype was also observed in post-mortem adipose tissue of four patients who died of COVID-19. Mechanistically, high levels of vascular endothelial growth factor (VEGF) in the adipose tissue induces adipose browning through vasculature-adipocyte interaction. Inhibition of VEGF blocks COVID-19-induced adipose tissue browning and NST and partially prevents infection-induced body weight loss. Our data suggest that the browning of adipose tissues induced by COVID-19 can contribute to adipose tissue atrophy and weight loss observed during infection. Inhibition of VEGF signaling may represent an effective approach for preventing and treating COVID-19-associated weight loss.
Collapse
Affiliation(s)
- Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Caijuan Dong
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institute, Stockholm, Sweden
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siwen Long
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Laszlo Szekely
- Department of Pathology/Cytology, Karolinska University Laboratory, Stockholm, Sweden
| | - Yuanting Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong, Hong Kong
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Minghua Ge
- Department of Head, Neck and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuguo Chen
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institute, Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
21
|
Cao Y. Blood vessels in fat tissues and vasculature-derived signals in controlling lipid metabolism and metabolic disease. Chin Med J (Engl) 2022; 135:2647-2652. [PMID: 36382988 PMCID: PMC9943976 DOI: 10.1097/cm9.0000000000002406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 65 Stockholm, Sweden
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
22
|
Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol 2022; 86:251-261. [PMID: 35307547 DOI: 10.1016/j.semcancer.2022.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of cancer-associated mortality and the underlying mechanisms of cancer metastasis remain elusive. Both blood and lymphatic vasculatures are essential structures for mediating distal metastasis. The vasculature plays multiple functions, including accelerating tumor growth, sustaining the tumor microenvironment, supplying growth and invasive signals, promoting metastasis, and causing cancer-associated systemic disease. VEGF is one of the key angiogenic factors in tumors and participates in the initial stage of tumor development, progression and metastasis. Consequently, VEGF and its receptor-mediated signaling pathways have become one of the most important therapeutic targets for treating various cancers. Today, anti-VEGF-based antiangiogenic drugs (AADs) are widely used in the clinic for treating different types of cancer in human patients. Despite nearly 20-year clinical experience with AADs, the impact of these drugs on cancer metastasis and systemic disease remains largely unknown. In this review article, we focus our discussion on tumor VEGF in cancer metastasis and systemic disease and mechanisms underlying AADs in clinical benefits.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
23
|
Trevisan M, Colombo C, Giancola N, Moneta C, Dionigi G, Fugazzola L, De Leo S. Lenvatinib-induced hypocalcaemia due to transient primary hypoparathyroidism. Endocrine 2022; 78:197-200. [PMID: 35857272 PMCID: PMC9298163 DOI: 10.1007/s12020-022-03139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022]
Abstract
CONTEXT Radioiodine refractory differentiated thyroid cancer can be effectively treated with multi-tyrosine-kinase inhibitors (MKIs). Hypocalcaemia has been reported among the side effects of these drugs, but little is known about its pathophysiology and clinical relevance. CASE REPORT We report the case of a 78-years-old woman with an aggressive papillary thyroid cancer infiltrating perithyroidal structures. The extent of surgery was limited to hemithyroidectomy, RAI treatment could not be performed, and she started lenvatinib treatment. After 4 months of therapy, the patient accessed the Emergency Department for a grade III hypocalcaemia (corrected serum calcium: 6.6 mg/dL, n.v. 8.1-10.4 mg/dL), due to primary hypoparathyroidism (serum PTH: 12.6 ng/L, n.v. 13-64 ng/L). The patient was treated with intravenous calcium infusions and vitamin D supplementation. After discharge, the oral dose of carbonate calcium (CaCO3) was of 6 g/day, and was titrated according to blood exams. Two weeks after discharge, while taking CaCO3 at the dose of 3 g/day, the patient experienced symptomatic grade II hypercalcemia (corrected serum calcium: 11.6 mg/dL), associated to the spontaneous reprise of PTH secretion, and leading to oral calcium withdrawal. During the subsequent follow-up, the patient remained eucalcemic without calcium supplementation. CONCLUSIONS Though hypocalcaemia has been described as potential side effect of MKI treatment, this is the first report of a lenvatinib-induced primary hypoparathyroidism, in a patient with a documented normal parathyroid function after surgery. The periodical assessment of calcium-phosphorus metabolism is thus warranted to prevent this potentially lethal side effect, in both post-surgical hypoparathyroid and euparathyroid patients.
Collapse
Affiliation(s)
- Matteo Trevisan
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Noemi Giancola
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Claudia Moneta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianlorenzo Dionigi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Surgery, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Laura Fugazzola
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| | - Simone De Leo
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
24
|
Sun Q, Wang Y, Ji H, Sun X, Xie S, Chen L, Li S, Zeng W, Chen R, Tang Q, Zuo J, Hou L, Hosaka K, Lu Y, Liu Y, Ye Y, Yang Y. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death Dis 2022; 13:724. [PMID: 35985991 PMCID: PMC9391381 DOI: 10.1038/s41419-022-05171-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Nasopharyngeal carcinoma (NPC) clinical trials show that antiangiogenic drugs (AADs) fail to achieve the expected efficacy, and combining AAD with chemoradiotherapy does not show superiority over chemoradiotherapy alone. Accumulating evidence suggests the intrinsic AAD resistance in NPC patients with poorly understood molecular mechanisms. Here, we describe NPC-specific FGF-2 expression-triggered, VEGF-independent angiogenesis as a mechanism of AAD resistance. Angiogenic factors screening between AAD-sensitive cancer type and AAD-resistant NPC showed high FGF-2 expression in NPC in both xenograft models and clinical samples. Mechanistically, the FGF-2-FGFR1-MYC axis drove endothelial cell survival and proliferation as an alternative to VEGF-VEGFR2-MYC signaling. Genetic knockdown of FGF-2 in NPC tumor cells reduced tumor angiogenesis, enhanced AAD sensitivity, and reduced pulmonary metastasis. Moreover, lenvatinib, an FDA recently approved multi-kinase inhibitor targeting both VEGFR2 and FGFR1, effectively inhibits the tumor vasculature, and exhibited robust anti-tumor effects in NPC-bearing nude mice and humanized mice compared with an agent equivalent to bevacizumab. These findings provide mechanistic insights on FGF-2 signaling in the modulation of VEGF pathway activation in the NPC microenvironment and propose an effective NPC-targeted therapy by using a clinically available drug.
Collapse
Affiliation(s)
- Qi Sun
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Yujie Wang
- grid.452847.80000 0004 6068 028XDepartment of Otolaryngology, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 518035 Shenzhen, Guangdong China
| | - Hong Ji
- grid.452509.f0000 0004 1764 4566Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu China
| | - Xiaoting Sun
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China ,grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden ,grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Sisi Xie
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China ,grid.256112.30000 0004 1797 9307Longyan First Hospital Affiliated to Fujian Medical University, 364000 Longyan, Fujian China
| | - Longtian Chen
- grid.256112.30000 0004 1797 9307Longyan First Hospital Affiliated to Fujian Medical University, 364000 Longyan, Fujian China
| | - Sen Li
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Weifan Zeng
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Ruibo Chen
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Qi Tang
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Ji Zuo
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Likun Hou
- grid.412532.3Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Kayoko Hosaka
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yongtian Lu
- grid.452847.80000 0004 6068 028XDepartment of Otolaryngology, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 518035 Shenzhen, Guangdong China
| | - Ying Liu
- grid.39436.3b0000 0001 2323 5732Institute of Translational Medicine, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Ying Ye
- grid.24516.340000000123704535Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yunlong Yang
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| |
Collapse
|
25
|
Bernier-Latmani J, Mauri C, Marcone R, Renevey F, Durot S, He L, Vanlandewijck M, Maclachlan C, Davanture S, Zamboni N, Knott GW, Luther SA, Betsholtz C, Delorenzi M, Brisken C, Petrova TV. ADAMTS18 + villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun 2022; 13:3983. [PMID: 35810168 PMCID: PMC9271081 DOI: 10.1038/s41467-022-31571-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/21/2022] [Indexed: 12/17/2022] Open
Abstract
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a “just-right” level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18+ telocytes maintain a “just-right” level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.
| | - Cristina Mauri
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - François Renevey
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Catherine Maclachlan
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Suzel Davanture
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Graham W Knott
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Mauro Delorenzi
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
26
|
Ji L, Waduge P, Wan W, Tian H, Li J, Zhang J, Chen R, Li W. Comparative ligandomics implicates secretogranin III as a disease‐restricted angiogenic factor in laser‐induced choroidal neovascularization. FEBS J 2022; 289:3521-3534. [DOI: 10.1111/febs.16356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Liyang Ji
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
- Department of Ophthalmology The Fourth Affiliated Hospital of China Medical University Shenyang Liaoning China
| | - Prabuddha Waduge
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
| | - Wencui Wan
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
- Department of Ophthalmology First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Hong Tian
- Everglades Biopharma, LLC Houston TX USA
| | - Jin Li
- Department of Molecular & Human Genetics Baylor College of Medicine Houston TX USA
| | - Jinsong Zhang
- Department of Ophthalmology The Fourth Affiliated Hospital of China Medical University Shenyang Liaoning China
| | - Rui Chen
- Department of Molecular & Human Genetics Baylor College of Medicine Houston TX USA
| | - Wei Li
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
| |
Collapse
|
27
|
Bernier-Latmani J, Cisarovsky C, Mahfoud S, Ragusa S, Dupanloup I, Barras D, Renevey F, Nassiri S, Anderle P, Squadrito ML, Siegert S, Davanture S, González-Loyola A, Fournier N, Luther SA, Benedito R, Valet P, Zhou B, De Palma M, Delorenzi M, Sempoux C, Petrova TV. Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth. NATURE CARDIOVASCULAR RESEARCH 2022; 1:476-490. [PMID: 35602406 PMCID: PMC7612746 DOI: 10.1038/s44161-022-00061-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Stem and progenitor cells residing in the intestinal crypts drive the majority of colorectal cancers (CRCs), yet vascular contribution to this niche remains largely unexplored. VEGFA is a key driver of physiological and tumor angiogenesis. Accordingly, current anti-angiogenic cancer therapies target the VEGFA pathway. Here we report that in CRC expansion of the stem/progenitor pool in intestinal crypts requires VEGFA-independent growth and remodeling of blood vessels. Epithelial transformation induced expression of the endothelial peptide apelin, directs migration of distant venous endothelial cells towards progenitor niche vessels ensuring optimal perfusion. In the absence of apelin, loss of injury-inducible PROX1+ epithelial progenitors inhibited both incipient and advanced intestinal tumor growth. Our results establish fundamental principles for the reciprocal communication between vasculature and the intestinal progenitor niche and provide a mechanism for resistance to VEGFA-targeting drugs in CRCs.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Christophe Cisarovsky
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Samantha Mahfoud
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Simone Ragusa
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Dupanloup
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Barras
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - François Renevey
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pascale Anderle
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Stefanie Siegert
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Suzel Davanture
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Alejandra González-Loyola
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Nadine Fournier
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Philippe Valet
- Institut RESTORE, UMR 1301-INSERM, 5070-CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Mauro Delorenzi
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology, Ludwig Center for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
28
|
Wang Y, Sun Q, Ye Y, Sun X, Xie S, Zhan Y, Song J, Fan X, Zhang B, Yang M, Lv L, Hosaka K, Yang Y, Nie G. FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight 2022; 7:157874. [PMID: 35439170 PMCID: PMC9220856 DOI: 10.1172/jci.insight.157874] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Molecular signaling in the tumor microenvironment (TME) is complex, and crosstalks among various cell compartments in supporting metastasis remain poorly understood. In particular, the role of vascular pericytes, a critical cellular component in the TME, in cancer invasion and metastasis warrants further investigation. Here we report an elevation of FGF-2 signaling in both nasopharyngeal carcinoma (NPC) patient samples and xenograft mouse models promotes NPC metastasis. Mechanistically, tumor cell-derived FGF-2 strongly promoted pericyte proliferation and pericyte-specific expression of an orphan chemokine (C-X-C motif) ligand 14 (CXCL14) via FGFR1- AHR signaling. Gain and loss-of-function experiments validated that pericyte-derived CXCL14 promoted macrophage recruitment and polarization towards an M2-like phenotype. Genetic knockdown of FGF2 or genetic depletion of tumoral pericytes blocked CXCL14 expression and tumor-associated macrophage (TAM) infiltration. Pharmacological inhibition of TAMs by clodronate liposomes treatment resulted in a reduction of FGF-2-induced pulmonary metastasis. Together, these findings shed light on the inflammatory role of tumoral pericytes in promoting TAM-mediated metastasis. We provide mechanistic insight into an FGF-2-FGFR1-pericyte-CXCL14-TAM stromal communication axis in NPC and propose an effective anti-metastasis therapy concept by targeting a pericyte-derived inflammation for NPC or FGF-2-high tumors.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Sun
- Fudan University, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, Tongji University, Shanghai, China
| | - Xiaoting Sun
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Yuhang Zhan
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Jian Song
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoqin Fan
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bin Zhang
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ming Yang
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lei Lv
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai, China
| | - Kayoko Hosaka
- Department of Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
29
|
MORTALIN-Ca 2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett 2022; 537:215678. [PMID: 35447282 DOI: 10.1016/j.canlet.2022.215678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, with the combination of rituximab and chemotherapy being the standard treatment for it. Although rituximab monotherapy has a remarkable response rate, drug resistance with unclear mechanisms and lack of effective second-line therapy limit the survival benefits of patients with lymphoma. Here, we report that MORTALIN is highly expressed and correlates with resistance to rituximab-based therapy and poor survival in patients with DLBCL. Mechanistically, gain- and loss-of-function experiments revealed that the voltage-dependent anion channel 1-binding protein, MORTALIN, regulated Ca2+ release from the endoplasmic reticulum through mitochondria-associated membrane, facilitating AP1-mediated cell proliferation and YY-1-mediated downregulation of FAS in DLBCL cells. These dual mechanisms contribute to rituximab resistance. In mouse models, genetic depletion of MORTALIN markedly increased the antitumor activity of rituximab. We shed mechanistic light on MORTALIN-Ca2+-CaMKII-AP1-mediated proliferation and MORTALIN-Ca2+-CaMKII-inhibited death receptor in DLBCL, leading to rituximab resistance, and propose MORTALIN as a novel target for the treatment of DLBCL.
Collapse
|
30
|
Hargreaves A, Barry ST, Bigley A, Kendrew J, Price S. Tumors Modulate the Systemic Vascular Response to Anti‐angiogenic Therapy. J Appl Toxicol 2022; 42:1371-1384. [PMID: 35152467 PMCID: PMC9543901 DOI: 10.1002/jat.4301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022]
Abstract
Toxicologic evaluation of new drug candidates routinely utilizes healthy animals. In oncology, there remains a limited understanding of the effects of novel test candidates in a diseased host. For vascular modulating agents (VMAs), an increased understanding of preclinical tumour–host interaction, and its potential to exacerbate or alleviate ‘off‐target’ effects of anti‐angiogenic administration, could aid in the prediction of adverse clinical outcomes in a defined cancer patient. We have previously reported that the implantation and growth of a range of human‐ and mouse‐derived tumours leads to structural vascular and, potentially, functional signalling changes within host mouse endocrine tissues, indicating possible roles for tumour‐ and host‐derived cytokines/growth factors and the liberation of myeloid‐derived suppressor cells in this phenomenon. Here, we further demonstrate that the growth of the Calu‐6 xenograft is associated with a resistance to VMA‐induced mouse peripheral endocrine vascular rarefaction (toxicity), with potential functional impact, notably with respect to mixed tyrosine kinase inhibition. The pathogenesis of these findings indicates a potential role for both tumour‐ and host‐derived basic fibroblast growth factor (bFGF), with associated upregulation in the intra‐tumoural autotaxin‐lysophosphatic acid signalling axis. The growth of the Calu‐6 xenograft is associated with a resistance to vascular modulating agent‐induced mouse peripheral endocrine vascular rarefaction (toxicity), with potential functional impact, notably with respect to mixed tyrosine kinase inhibition. The pathogenesis of these findings indicates a potential role for basic fibroblast growth factor, with associated upregulation in the autotaxin‐lysophosphatic acid signalling axis.
Collapse
Affiliation(s)
- Adam Hargreaves
- PathCelerate Ltd., Alderley Park, Mereside, Macclesfield England, UK
- University of Surrey, University Campus, Guildford England, UK
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge England, UK
| | - Alison Bigley
- OracleBio Ltd., BioCity Scotland, North Lanarkshire Scotland, UK
| | - Jane Kendrew
- Sygnature Discovery Ltd., Alderley Park, Mereside, Macclesfield England, UK
| | - Shirley Price
- University of Surrey, University Campus, Guildford England, UK
| |
Collapse
|
31
|
Karaman S, Paavonsalo S, Heinolainen K, Lackman MH, Ranta A, Hemanthakumar KA, Kubota Y, Alitalo K. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med 2022; 219:212969. [PMID: 35050301 PMCID: PMC8785977 DOI: 10.1084/jem.20210565] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth. Here we show that vascular regression induced by VEGFR2 deletion in postnatal and adult mice is aggravated by additional deletion of VEGFR1 or VEGFR3 in the intestine, kidney, and pancreas, but not in the liver or kidney glomeruli. In the adult mice, hepatic and intestinal vessels regressed within a few days after gene deletion, whereas vessels in skin and retina remained stable for at least four weeks. Our results show changes in endothelial transcriptomes and organ-specific vessel maintenance mechanisms that are dependent on VEGFR signaling pathways and reveal previously unknown functions of VEGFR1 and VEGFR3 in endothelial cells.
Collapse
Affiliation(s)
- Sinem Karaman
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Paavonsalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Krista Heinolainen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Madeleine H. Lackman
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Amanda Ranta
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W, Yu J, Peng T, Chen X, Li L, Xie W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys 2022; 715:109098. [PMID: 34856194 DOI: 10.1016/j.abb.2021.109098] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (VECs), which are lined up in the inner surface of blood vessels, are in direct contact with the metabolite-related endogenous danger signals in the circulatory system. Moreover, VECs death impairs vasodilation and increases endothelium-dependent permeability, which is strongly correlated with the development of atherosclerosis (AS). Among several forms of cell death, regulatory death of endothelial cells frequently occurs in AS, mainly including ferroptosis, pyroptosis, apoptosis and autophagy. In this review, we summarize regulatory factors and signaling mechanisms of regulatory death in endothelial cells, discussing their effects in the context of the atherosclerotic procession.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- 2019 Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China; School of Public Health, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
33
|
Dai C, Waduge P, Ji L, Huang C, He Y, Tian H, Zuniga-Sanchez E, Bhatt A, Pang IH, Su G, Webster KA, Li W. Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy. Cell Mol Life Sci 2022; 79:63. [PMID: 35006382 PMCID: PMC9007175 DOI: 10.1007/s00018-021-04111-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 01/12/2023]
Abstract
Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.
Collapse
Affiliation(s)
- Chang Dai
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Ye He
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, USA
| | | | - Amit Bhatt
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Texas Children Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas, Fort Worth, TX, USA
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin, China
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- Everglades Biopharma, LLC, Houston, TX, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
34
|
Monti S, Presciuttini F, Deiana MG, Motta C, Mori F, Renzelli V, Stigliano A, Toscano V, Pugliese G, Poggi M. Cortisol Deficiency in Lenvatinib Treatment of Thyroid Cancer: An Underestimated Common Adverse Event. Thyroid 2022; 32:46-53. [PMID: 34663079 PMCID: PMC8792496 DOI: 10.1089/thy.2021.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Lenvatinib treatment has shown a significant improvement in progression-free survival in patients with metastatic, progressive, radioiodine-refractory differentiated thyroid cancer, although its use is associated with considerable toxicity. Fatigue is one of the most frequent adverse events (AEs). It has been reported that adrenal insufficiency (AI) may be involved in lenvatinib-related fatigue. In our study, we assessed the pituitary/adrenal axis before and during treatment, and the possible involvement of AI in lenvatinib-related fatigue. This was done to clarify the incidence, development, and time course of AI during lenvatinib treatment. Methods: We studied 13 patients who were selected for lenvatinib therapy. Adrenal function was evaluated by measuring cortisol and adrenocorticotropic hormone (ACTH) levels and through the ACTH (250 μg) stimulation test. Results: During treatment, seven patients (54%) developed AI. High levels of ACTH were observed in accordance with the diagnosis of primary AI (PAI). By evaluating the first ACTH test, before starting lenvatinib treatment, we found that patients with <646.6 nmol/L cortisol peak had an increased risk of developing PAI during lenvatinib treatment. Fatigue was observed in 11 patients (84.6%) during lenvatinib treatment. Cortisone acetate treatment induced an improvement in fatigue in six of seven patients (85.7%) in the PAI group, without the need to change the lenvatinib dosage. Conclusions: PAI may be considered one of the most common AEs associated with lenvatinib. Our data strongly suggest that PAI could be involved in lenvatinib-associated fatigue, particularly in patients with extreme fatigue. In this context, early diagnosis of PAI is essential, especially since glucocorticoid replacement therapy can induce a significant improvement in fatigue, without the need to reduce the dosage of lenvatinib. However, further studies are required to confirm these preliminary findings.
Collapse
Affiliation(s)
- Salvatore Monti
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
- Address correspondence to: Salvatore Monti, MD, PhD, Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, via di Grottarossa 1035/1039, I-00189 Rome, Italy
| | - Federica Presciuttini
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Maria Grazia Deiana
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Cecilia Motta
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Fedra Mori
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Valerio Renzelli
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Antonio Stigliano
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Vincenzo Toscano
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Giuseppe Pugliese
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| | - Maurizio Poggi
- Endocrinology and Diabetes Unit, Azienda Ospedaliero-Universitaria Sant'Andrea, “Sapienza” University, Rome, Italy
| |
Collapse
|
35
|
He Y, Tian H, Dai C, Wen R, Li X, Webster KA, Li W. Optimal Efficacy and Safety of Humanized Anti-Scg3 Antibody to Alleviate Oxygen-Induced Retinopathy. Int J Mol Sci 2021; 23:350. [PMID: 35008775 PMCID: PMC8745183 DOI: 10.3390/ijms23010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
The retinopathy of prematurity (ROP), a neovascular retinal disorder presenting in premature infants, is the leading causes of blindness in children. Currently, there is no approved drug therapy for ROP in the U.S., highlighting the urgent unmet clinical need for a novel therapeutic to treat the disease. Secretogranin III (Scg3) was recently identified as a disease-selective angiogenic factor, and Scg3-neutralizing monoclonal antibodies were reported to alleviate pathological retinal neovascularization in mouse models. In this study, we characterized the efficacy and safety of a full-length humanized anti-Scg3 antibody (hAb) to ameliorate retinal pathology in oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, by implementing histological and functional analyses. Our results demonstrate that the anti-Scg3 hAb outperforms the vascular endothelial growth factor inhibitor aflibercept in terms of efficacy and safety to treat OIR mice. Our findings support the development of anti-Scg3 hAb for clinical application.
Collapse
Affiliation(s)
- Ye He
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA; (Y.H.); (C.D.); (R.W.); (K.A.W.)
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX 77054, USA;
| | - Chang Dai
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA; (Y.H.); (C.D.); (R.W.); (K.A.W.)
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rong Wen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA; (Y.H.); (C.D.); (R.W.); (K.A.W.)
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300392, China;
| | - Keith A. Webster
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA; (Y.H.); (C.D.); (R.W.); (K.A.W.)
- Everglades Biopharma, LLC, Houston, TX 77054, USA;
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA; (Y.H.); (C.D.); (R.W.); (K.A.W.)
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Jiang P, Zhang Y, Cui J, Wang X, Li Y. Inhibitory effects of icotinib combined with antiangiogenic drugs in human non-small cell lung cancer xenograft models are better than single target drugs. Thorac Cancer 2021; 13:257-264. [PMID: 34855286 PMCID: PMC8758432 DOI: 10.1111/1759-7714.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022] Open
Abstract
Background This study aimed to evaluate the inhibitory effects and potential mechanisms of icotinib combined with antiangiogenic drugs on lung adenocarcinoma in vivo. Methods A total of 72 mouse xenograft models established with human lung adenocarcinoma cells (HCC827) were randomly divided into six groups, including control, icotinib (Ic), bevacizumab (Bev), recombinant human endostatin (En), Ic + Bev and Ic + En groups. Mouse weights and tumor volumes were measured regularly. Half of the nude mice in each group were sacrificed after 16 days of drug treatment. The remaining animals were observed for another 16 days without drug supply. Immunohistochemical staining was performed to detect microvessel density in tumor heart, liver, brain specimens from the nude mice and Ki67 expression. Differential expression of vascular endothelial growth factor (VEGFA) in tumor tissue specimens was determined by ELISA and Western blot. Results The results showed that the combined drugs inhibited tumor growth more substantially compared with single drugs, without increasing the toxic effects. The antiangiogenesis effect of the combination was better than that of single drug treatment. In addition, both types of targeted drugs and combination medication not only significantly reduced microvessel density in the tumor tissue itself, but also had a certain impact on decreasing microvessel density in the liver. The combination decreased VEGFA and Ki‐67 amounts significantly more than icotinib or endostatin as a monotherapy. Conclusions Icotinib combined with bevacizumab or rh‐endostatin has a stronger inhibitory effect on tumor growth than single‐target drug in vivo, with no additional side effects.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pulmonary and Critical Care Medicine, Weihai Municipal Hospital, Weihai, China
| | - Yan Zhang
- The Fourth People's Hospital of Jinan, Jinan, China
| | - Jiadong Cui
- Department of Pulmonary Medicine, Dong'e County People's Hospital, Liaocheng, China
| | - Xiuxiu Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
37
|
Xue L, Gao X, Zhang H, Tang J, Wang Q, Li F, Li X, Yu X, Lu Z, Huang Y, Tang R, Yang W. Antiangiogenic antibody BD0801 combined with immune checkpoint inhibitors achieves synergistic antitumor activity and affects the tumor microenvironment. BMC Cancer 2021; 21:1134. [PMID: 34686154 PMCID: PMC8539826 DOI: 10.1186/s12885-021-08859-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Signaling through VEGF/VEGFR induces cancer angiogenesis and affects immune cells. An increasing number of studies have recently focused on combining anti-VEGF/VEGFR agents and immune checkpoint inhibitors (ICIs) to treat cancer in preclinical and clinical settings. BD0801 is a humanized rabbit anti-VEGF monoclonal antibody in the clinical development stage. Methods In this study, the anti-cancer activities of BD0801 and its potential synergistic anti-tumor effects when combined with different immunotherapies were assessed by using in vitro assays and in vivo tumor models. Ex vivo studies were conducted to reveal the possible mechanisms of actions (MOA) underlying the tumor microenvironment modification. Results BD0801 showed more potent antitumor activity than bevacizumab, reflected by stronger blockade of VEGF/VEGFR binding and enhanced inhibitory effects on human umbilical vein endothelial cells (HUVECs). BD0801 exhibited dose-dependent tumor growth inhibitory activities in xenograft and murine syngeneic tumor models. Notably, combining BD0801 with either anti-PD-1 or anti-PD-L1 antibodies showed synergistic antitumor efficacy in both lung and colorectal cancer mouse models. Furthermore, the mechanistic studies suggested that the MOA of the antitumor synergy involves improved tumor vasculature normalization and enhanced T-cell mediated immunity, including increased tumor infiltration of CD8+ and CD4+ T cells and reduced double-positive CD8+PD-1+ T cells. Conclusions These data provide a solid rationale for combining antiangiogenic agents with immunotherapy for cancer treatment and support further clinical development of BD0801 in combination with ICIs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08859-5.
Collapse
Affiliation(s)
- Liting Xue
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Xingyuan Gao
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Haoyu Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Jianxing Tang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Qian Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Feng Li
- DMPK and Clinical Pharmacology, Suzhou Ribo Life Science Co. Ltd, Kushan, Jiangsu, China
| | - Xinxin Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Xiaohong Yu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Zhihong Lu
- Green Valley Research Institute, Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Yue Huang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Renhong Tang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China
| | - Wenqing Yang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Solari E, Marcozzi C, Negrini D, Moriondo A. Interplay between Gut Lymphatic Vessels and Microbiota. Cells 2021; 10:cells10102584. [PMID: 34685564 PMCID: PMC8534149 DOI: 10.3390/cells10102584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic vessels play a distinctive role in draining fluid, molecules and even cells from interstitial and serosal spaces back to the blood circulation. Lymph vessels of the gut, and especially those located in the villi (called lacteals), not only serve this primary function, but are also responsible for the transport of lipid moieties absorbed by the intestinal mucosa and serve as a second line of defence against possible bacterial infections. Here, we briefly review the current knowledge of the general mechanisms allowing lymph drainage and propulsion and will focus on the most recent findings on the mutual relationship between lacteals and intestinal microbiota.
Collapse
|
39
|
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. .,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
40
|
Sun Y, Chen W, Torphy RJ, Yao S, Zhu G, Lin R, Lugano R, Miller EN, Fujiwara Y, Bian L, Zheng L, Anand S, Gao F, Zhang W, Ferrara SE, Goodspeed AE, Dimberg A, Wang XJ, Edil BH, Barnett CC, Schulick RD, Chen L, Zhu Y. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci Transl Med 2021; 13:eabc8922. [PMID: 34321321 PMCID: PMC8749958 DOI: 10.1126/scitranslmed.abc8922] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
The immature and dysfunctional vascular network within solid tumors poses a substantial obstacle to immunotherapy because it creates a hypoxic tumor microenvironment that actively limits immune cell infiltration. The molecular basis underpinning this vascular dysfunction is not fully understood. Using genome-scale receptor array technology, we showed here that insulin-like growth factor binding protein 7 (IGFBP7) interacts with its receptor CD93, and we subsequently demonstrated that this interaction contributes to abnormal tumor vasculature. Both CD93 and IGFBP7 were up-regulated in tumor-associated endothelial cells. IGFBP7 interacted with CD93 via a domain different from multimerin-2, the known ligand for CD93. In two mouse tumor models, blockade of the CD93/IGFBP7 interaction by monoclonal antibodies promoted vascular maturation to reduce leakage, leading to reduced tumor hypoxia and increased tumor perfusion. CD93 blockade in mice increased drug delivery, resulting in an improved antitumor response to gemcitabine or fluorouracil. Blockade of the CD93 pathway triggered a substantial increase in intratumoral effector T cells, thereby sensitizing mouse tumors to immune checkpoint therapy. Last, analysis of samples from patients with cancer under anti-programmed death 1/programmed death-ligand 1 treatment revealed that overexpression of the IGFBP7/CD93 pathway was associated with poor response to therapy. Thus, our study identified a molecular interaction involved in tumor vascular dysfunction and revealed an approach to promote a favorable tumor microenvironment for therapeutic intervention.
Collapse
Affiliation(s)
- Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wei Chen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310012, P. R. China
| | - Robert J Torphy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sheng Yao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gefeng Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronggui Lin
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Emily N Miller
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuki Fujiwara
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linghua Zheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sudarshan Anand
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Weizhou Zhang
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
| | - Andrew E Goodspeed
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carlton C Barnett
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Kabir AU, Subramanian M, Lee DH, Wang X, Krchma K, Wu J, Naismith T, Halabi CM, Kim JY, Pulous FE, Petrich BG, Kim S, Park HC, Hanson PI, Pan H, Wickline SA, Fremont DH, Park C, Choi K. Dual role of endothelial Myct1 in tumor angiogenesis and tumor immunity. Sci Transl Med 2021; 13:13/583/eabb6731. [PMID: 33658356 DOI: 10.1126/scitranslmed.abb6731] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/01/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
The cross-talk between angiogenesis and immunity within the tumor microenvironment (TME) is critical for tumor prognosis. While pro-angiogenic and immunosuppressive TME promote tumor growth, anti-angiogenic and immune stimulatory TME inhibit tumor progression. Therefore, there is a great interest in achieving vascular normalization to improve drug delivery and enhance antitumor immunity. However, anti-vascular endothelial growth factor (VEGF) mechanisms to normalize tumor vessels have offered limited therapeutic efficacies for patients with cancer. Here, we report that Myct1, a direct target of ETV2, was nearly exclusively expressed in endothelial cells. In preclinical mouse tumor models, Myct1 deficiency reduced angiogenesis, enhanced high endothelial venule formation, and promoted antitumor immunity, leading to restricted tumor progression. Analysis of The Cancer Genome Atlas (TCGA) datasets revealed a significant (P < 0.05) correlation between MYCT1 expression, angiogenesis, and antitumor immunity in human cancers, as suggested by decreased FOXP3 expression and increased antitumor macrophages in patients with low MYCT1 expression. Mechanistically, MYCT1 interacted with tight junction protein Zona Occludens 1 and regulated Rho GTPase-mediated actin cytoskeleton dynamics, thereby promoting endothelial motility in the angiogenic environment. Myct1-deficient endothelial cells facilitated trans-endothelial migration of cytotoxic T lymphocytes and polarization of M1 macrophages. Myct1 targeting combined with anti-PD1 treatment significantly (P < 0.05) increased complete tumor regression and long-term survival in anti-PD1-responsive and -refractory tumor models in mice. Our data collectively support a critical role for Myct1 in controlling tumor angiogenesis and reprogramming tumor immunity. Myct1-targeted vascular control, in combination with immunotherapy, may become an exciting therapeutic strategy.
Collapse
Affiliation(s)
- Ashraf Ul Kabir
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.,Molecular and Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Madhav Subramanian
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Dong Hun Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Teri Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadi E Pulous
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian G Petrich
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan 15335, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan 15335, Republic of Korea
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-5624, USA
| | - Hua Pan
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Samuel A Wickline
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA. .,Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA. .,Molecular and Cell Biology Program, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.,Graduate School of Biotechnology, Kyung Hee University, Yong In 17104, Republic of Korea
| |
Collapse
|
42
|
Sugimoto R, Inada H, Tanaka Y, Senju T, Aratake Y, Nakanishi A, Miki M, Lee L, Hisano T, Matsumoto Y, Mano Y, Iguchi T, Sugimachi K, Okumura Y, Taguchi K, Furukawa M. Improved indocyanine green retention after short-term lenvatinib withdrawal in three patients with hepatocellular carcinoma. Clin J Gastroenterol 2021; 14:1484-1490. [PMID: 34176067 PMCID: PMC8437917 DOI: 10.1007/s12328-021-01470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Use of lenvatinib, which has a high response rate in advanced hepatocellular carcinoma, sometimes results in tumor shrinkage and resectability of previously unresectable liver cancers. In Asia, including Japan, liver reserve, one of the determinants of resectability, is mainly determined by the indocyanine green (ICG) retention rate. Three patients with advanced liver cancer treated at our institution had very poor ICG retention rates during treatment with lenvatinib. Lenvatinib may reduce blood flow in both cancerous and non-cancerous regions by inhibiting vascular endothelial growth factor. Therefore, accurate determination of liver function likely requires withdrawal of this treatment several days before ICG retention testing.
Collapse
Affiliation(s)
- Rie Sugimoto
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan.
| | - Hiroki Inada
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Yuki Tanaka
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Takeshi Senju
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Yoshifusa Aratake
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Akira Nakanishi
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Masami Miki
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Lingaku Lee
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Terumasa Hisano
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Yoshihiro Matsumoto
- Department of Hepato-Biliary and Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Yohei Mano
- Department of Hepato-Biliary and Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Tomohiro Iguchi
- Department of Hepato-Biliary and Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Keishi Sugimachi
- Department of Hepato-Biliary and Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Yukihiko Okumura
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka City Fukuoka Prefecture, 811-1395, Japan
| |
Collapse
|
43
|
Elshimy G, Gandhi A, Guo R, Correa R. Tyrosine Kinase Inhibitors' Newly Reported Endocrine Side Effect: Pazopanib-Induced Primary Adrenal Insufficiency in a Patient With Metastatic Renal Cell Cancer. J Investig Med High Impact Case Rep 2021; 8:2324709620936808. [PMID: 32583692 PMCID: PMC7339903 DOI: 10.1177/2324709620936808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been used in the treatment of multiple types of cancer. Pazopanib is one of the TKIs and is considered a first-line treatment for adult patients with metastatic renal cell carcinoma. Many endocrine-related adverse effects have been noted with the use of TKIs including hypothyroidism, vitamin D deficiency, altered bone density, secondary hyperparathyroidism, abnormal glucose metabolism, gynecomastia, and hypogonadism. Subclinical glucocorticoid deficiency and adrenal insufficiency have been reported with the use of TKIs in only a few cases so far; thus, its true prevalence and clinical significance have yet to be fully elucidated. The mechanism is still not fully understood; however, adrenal toxicity with hemorrhage and/or necrosis of the adrenal glands has been observed in studies. In this article, we describe the first reported case of pazopanib inducing primary adrenal insufficiency in a patient with metastatic renal cell carcinoma diagnosed after the exclusion of all other causes of primary adrenal insufficiency.
Collapse
Affiliation(s)
- Ghada Elshimy
- University of Arizona, Phoenix, AZ, USA.,Phoenix VA Medical Center, Phoenix, AZ, USA
| | | | - Rong Guo
- University of Arizona, Phoenix, AZ, USA
| | - Ricardo Correa
- University of Arizona, Phoenix, AZ, USA.,Phoenix VA Medical Center, Phoenix, AZ, USA
| |
Collapse
|
44
|
Hargreaves A, Barry ST, Bigley A, Kendrew J, Price S. Tumors modulate fenestrated vascular beds and host endocrine status. J Appl Toxicol 2021; 41:1952-1965. [PMID: 33977518 DOI: 10.1002/jat.4176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/12/2022]
Abstract
Allograft and xenograft transplantation into a mouse host is frequently utilized to study cancer biology, tumor behavior, and response to treatment. Preclinical studies employing these models often focus solely upon the intra-tumoral effects of a given treatment, without consideration of systemic toxicity or tumor-host interaction, nor whether this latter relationship could modulate the toxicologic response to therapy. Here it is demonstrated that the implantation and growth of a range of human- and mouse-derived cell lines leads to structural vascular and, potentially, functional changes within peripheral endocrine tissues, a process that could conceivably ameliorate the severity of anti-angiogenic-induced fenestrated vessel attenuation. Observations suggest a multifactorial process, which may involve host- and tumor-derived cytokines/growth factors, and the liberation of myeloid-derived suppressor cells. Further investigation revealed a structurally comparable response to the administration of exogenous estrogen. These findings, in addition to providing insight into the development of clinical anti-angiogenic "adaptation," may be of significance within the "cancer-cachexia" and cancer-related anemia syndromes in man.
Collapse
|
45
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|
46
|
Sharma P, Mittal S. Nanotechnology: revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opin Drug Deliv 2021; 18:1131-1149. [PMID: 33691548 DOI: 10.1080/17425247.2021.1888925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive retinal disease that degrades the eye's ability to grasp visual acuity. The antivascular endothelial growth factor (VEGF) therapies have made significant strides in improving the quality of life, and there is a continued opportunity to improve delivery, outcomes, and patient convenience and compliance. The treatments available could gain better clinical outcome from novel therapeutics through nanotechnology application.Areas covered: This review summarizes AMD biology and the pathophysiology of the disease along with the successes and limitations of available therapies. It further discusses the promising nanotechnology modalities that could become the cornerstone of future AMD research for improving delivery and reducing frequency of administration thus, enabling development of novel therapeutics.Expert opinion: The robust translation from preclinical work to clinical outcome for AMD remains an unmet need. Continuing to investigate in deeper understanding of biology and advancing high-quality targets into the clinic in combination with the application of advanced nanotechnology to design patient-centric offerings for both dry and wet AMD is needed. Because of the lack of regulatory precedence, and challenging manufacturing and supply chain need, the future of nano-enabled technologies is challenging but presents exciting treatment options for AMD.
Collapse
Affiliation(s)
| | - Sachin Mittal
- Pharmaceutical Sciences, Merck & Co., Inc, Kenilworth, NJ, USA
| |
Collapse
|
47
|
Shigesawa T, Suda G, Kimura M, Maehara O, Tokuchi Y, Kubo A, Yamada R, Furuya K, Baba M, Kitagataya T, Suzuki K, Ohara M, Kawagishi N, Nakai M, Sho T, Natsuizaka M, Morikawa K, Ogawa K, Sakamoto N. Baseline serum angiopoietin-2 and VEGF levels predict the deterioration of the liver functional reserve during lenvatinib treatment for hepatocellular carcinoma. PLoS One 2021; 16:e0247728. [PMID: 33647018 PMCID: PMC7920365 DOI: 10.1371/journal.pone.0247728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
A deteriorated liver functional reserve during systemic therapy for unresectable hepatocellular carcinoma (HCC) causes poor patient outcomes. We aimed to identify predictive factors associated with the deterioration of Child-Pugh score at 8 weeks after lenvatinib initiation. Patients with adequate clinical data and baseline preserved serum samples available were included. Baseline fibroblast growth factor (FGF)19 and 21, angiopoietin (ANG)2, and vascular endothelial growth factor (VEGF) levels were evaluated. Thirty-seven patients were included, and 6, 15, 14, and 2 experienced complete response, partial response, stable disease, and progressive disease, respectively. Twenty-four (65%) and 13 (35%) patients showed a maintained/improved and deteriorated Child-Pugh-score, respectively. While baseline clinical data, treatment response, and laboratory data were similar between these two patient groups, baseline ANG2 and VEGF levels were significantly higher (P = 0.0017) and lower (P = 0.0231), respectively, in patients with deteriorated Child-Pugh score than in those without. Based on receiver operating characteristic curve analysis, cut-off values for ANG2 and VEGF were found to be 3,108 pg/mL and 514.9 pg/mL, respectively. Among patients with low VEGF and high ANG2, 89% (8/9) exhibited a deteriorated Child-Pugh score, whereas none of the patients (0/9) with high VEGF and low ANG2 did. The deterioration of the Child-Pugh score in patients with unresectable HCC who are treated with lenvatinib may be predictable based on combined baseline serum ANG2 and VEGF levels.
Collapse
Affiliation(s)
- Taku Shigesawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Maehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Tokuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Kubo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ren Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Furuya
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization (JCHO) Hokkaido Hospital, Hokkaido, Japan
| | - Masaru Baba
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization (JCHO) Hokkaido Hospital, Hokkaido, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Suoh M, Hagihara A, Yamamura M, Maruyama H, Taira K, Enomoto M, Tamori A, Fujiwara Y, Kawada N. Obstructive Jaundice Due to Duodenal Ulcer Induced by Lenvatinib Therapy for Hepatocellular Carcinoma. Intern Med 2021; 60:545-552. [PMID: 33028766 PMCID: PMC7946507 DOI: 10.2169/internalmedicine.5097-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An 82-year-old man with hepatocellular carcinoma presented with upper abdominal pain, vomiting, and jaundice. He had been taking a standard lenvatinib dose for three months. Although acute cholangitis was suggested, imaging studies failed to detect the biliary obstruction site. An endoscopic examination following discontinuation of lenvatinib and aspirin revealed multiple duodenal ulcers, one of which was formed on the ampulla of Vater and causing cholestasis. Endoscopic biliary drainage and antibiotics improved concomitant Enterobacter cloacae bacteremia. Ulcer healing was confirmed after rabeprazole was replaced with vonoprazan and misoprostol. Our case shows that lenvatinib can induce duodenal ulcers resulting in obstructive jaundice.
Collapse
Affiliation(s)
- Maito Suoh
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan
| | - Masafumi Yamamura
- Department of Gastroenterology, Graduate School of Medicine, Osaka City University, Japan
| | - Hirotsugu Maruyama
- Department of Gastroenterology, Graduate School of Medicine, Osaka City University, Japan
| | - Koichi Taira
- Department of Gastroenterology, Graduate School of Medicine, Osaka City University, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Osaka City University, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan
| |
Collapse
|
49
|
Joly-Tonetti N, Ondet T, Monshouwer M, Stamatas GN. EGFR inhibitors switch keratinocytes from a proliferative to a differentiative phenotype affecting epidermal development and barrier function. BMC Cancer 2021; 21:5. [PMID: 33402117 PMCID: PMC7786949 DOI: 10.1186/s12885-020-07685-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cutaneous adverse drug reactions (CADR) associated with oncology therapy involve 45-100% of patients receiving kinase inhibitors. Such adverse reactions may include skin inflammation, infection, pruritus and dryness, symptoms that can significantly affect the patient's quality of life. To prevent severe skin damages dose adjustment or drug discontinuation is often required, interfering with the prescribed oncology treatment protocol. This is particularly the case of Epidermal Growth Factor Receptor inhibitors (EGFRi) targeting carcinomas. Since the EGFR pathway is pivotal for epidermal keratinocytes, it is reasonable to hypothesize that EGFRi also affect these cells and therefore interfere with the epidermal structure formation and skin barrier function. METHODS To test this hypothesis, the effects of EGFRi and Vascular Endothelial Growth Factor Receptor inhibitors (VEGFRi) at therapeutically relevant concentrations (3, 10, 30, 100 nM) were assessed on proliferation and differentiation markers of human keratinocytes in a novel 3D micro-epidermis tissue culture model. RESULTS EGFRi directly affect basal keratinocyte growth, leading to tissue size reduction and switching keratinocytes from a proliferative to a differentiative phenotype, as evidenced by decreased Ki67 staining and increased filaggrin, desmoglein-1 and involucrin expression compared to control. These effects lead to skin barrier impairment, which can be observed in a reconstructed human epidermis model showing a decrease in trans-epidermal water loss rates. On the other hand, pan-kinase inhibitors mainly targeting VEGFR barely affect keratinocyte differentiation and rather promote a proliferative phenotype. CONCLUSIONS This study contributes to the mechanistic understanding of the clinically observed CADR during therapy with EGFRi. These in vitro results suggest a specific mode of action of EGFRi by directly affecting keratinocyte growth and barrier function.
Collapse
Affiliation(s)
- Nicolas Joly-Tonetti
- Johnson & Johnson Santé Beauté France, 1 Rue Camille Desmoulins, 92787, Issy-les-Moulineaux, France
| | - Thomas Ondet
- Johnson & Johnson Santé Beauté France, 1 Rue Camille Desmoulins, 92787, Issy-les-Moulineaux, France
| | - Mario Monshouwer
- Janssen Pharmaceutical Research and Development, Discovery Sciences, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Georgios N Stamatas
- Johnson & Johnson Santé Beauté France, 1 Rue Camille Desmoulins, 92787, Issy-les-Moulineaux, France.
| |
Collapse
|
50
|
Mallawa Kankanamalage O, Zhou Q, Li X. Understanding the Pathogenesis of Gestational Hypothyroidism. Front Endocrinol (Lausanne) 2021; 12:653407. [PMID: 34113317 PMCID: PMC8185325 DOI: 10.3389/fendo.2021.653407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
Pregnancy is a complex state with many endocrinological challenges to a woman's physiology. Gestational Hypothyroidism (GHT) is an emerging condition where insufficiency of the thyroid gland has developed during pregnancy in a previously euthyroid woman. It is different to overt hypothyroidism, where marked elevation of thyroid-stimulating hormone with corresponding reduction in free thyroxine levels, is well known to cause detrimental effects to both the mother and the baby. During the past couple of decades, it has been shown that GHT is associated with multiple adverse maternal and fetal outcomes such as miscarriage, pre-eclampsia, placental abruption, fetal loss, premature delivery, neurocognitive and neurobehavioral development. However, three randomized controlled trials and a prospective cohort study performed within the last decade, show that there is no neurodevelopmental improvement in the offspring of mothers who received levothyroxine treatment for GHT. Thus, the benefit of initiating treatment for GHT is highly debated within the clinical community as there may also be risks associated with over-treatment. In addition, regulatory mechanisms that could possibly lead to GHT during pregnancy are not well elucidated. This review aims to unravel pregnancy induced physiological challenges that could provide basis for the development of GHT. During pregnancy, there is increased renal clearance of iodine leading to low iodine state. Also, an elevated estrogen level leading to an increase in circulating thyroglobulin level and a decrease in free thyroxine level. Moreover, placenta secretes compounds such as human chorionic gonadotropin (hCG), placental growth factor (PIGF) and soluble FMS-like tyrosine kinase-1 (s-Flt1) that could affect the thyroid function. In turn, the passage of thyroid hormones and iodine to the fetus is highly regulated within the placental barrier. Together, these mechanisms are hypothesized to contribute to the development of intolerance of thyroid function leading to GHT in a vulnerable individual.
Collapse
Affiliation(s)
| | - Qiongjie Zhou
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Qiongjie Zhou, ; Xiaotian Li,
| | - Xiaotian Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Qiongjie Zhou, ; Xiaotian Li,
| |
Collapse
|