1
|
Kumbhojkar N, Mitragotri S. Activated neutrophils: A next generation cellular immunotherapy. Bioeng Transl Med 2025; 10:e10704. [PMID: 39801751 PMCID: PMC11711228 DOI: 10.1002/btm2.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 01/16/2025] Open
Abstract
Cell therapies are at the forefront of novel therapeutics. Neutrophils, despite being the most populous immune cells in human blood circulation, are not considered a viable option for cellular therapies because of their short lifespan and poor understanding of their role in the pathophysiology of various diseases. In inflammatory conditions, neutrophils exhibit an activated phenotype. Activation brings about significant changes to neutrophil biology such as increased lifespan, inflammatory cytokine secretion, and enhanced effector functions. Activated neutrophils also possess the potential to stimulate the downstream immune response and are described as essential effectors in the immune response to tumors. This makes activated neutrophils an interesting candidate for cell therapies. Here, we review the biology of activated neutrophils in detail. We discuss the different ways neutrophils can be activated and the effect they have on other immune cells for stimulation of downstream immune response. We review the conditions where activated neutrophil therapy can be therapeutically beneficial and discuss the challenges associated with their eventual translation. Overall, this review summarizes the current state of understanding of neutrophil-based immunotherapies and their clinical potential.
Collapse
Affiliation(s)
- Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
2
|
Coombs RS, Overacre-Delgoffe AE, Bhattacharjee A, Hand TW, Boyle JP. Mouse innate resistance to Neospora caninum infection is driven by early production of IFNγ by NK cells in response to parasite ligands. mSphere 2024; 9:e0025524. [PMID: 39445806 PMCID: PMC11580461 DOI: 10.1128/msphere.00255-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 10/25/2024] Open
Abstract
Toxoplasma gondii is capable of being transmitted by nearly all warm-blooded animals, and rodents are a major source of parasite dissemination, yet mechanisms driving its broad host range are poorly understood. Although a phylogenetically close relative of T. gondii, Neospora caninum differs from T. gondii in that it does not infect mice and only infects a small number of ruminant and canine species. We recently showed that T. gondii and N. caninum grow similarly in mice during the first 24 h post-infection, but only N. caninum induces an IFNγ-driven response within hours that controls the infection. The goal of the present study was to understand the cellular basis of this rapid response to N. caninum. To do this, we compared immune cell populations at the site of infection 4 h after T. gondii or N. caninum infection in mice. We found that both parasites induced similar frequencies of peritoneal monocytes, while macrophages and dendritic cell populations were not increased compared to uninfected mice. Through a series of knockout mouse experiments, we show that B, T, and NKT cells are not required for immediate IFNγ production and ultimate control of N. caninum infection, suggesting that natural killer (NK) cells are the primary inducers of immediate IFNγ in response to N. caninum. N. caninum infections exhibited significantly more IFNγ+ NK cells in the peritoneum compared with T. gondii-infected and uninfected mice. Finally, we demonstrate that differences in early IFNγ production during N. caninum and T. gondii infections in mice are at least partly due to differences in soluble antigen(s) produced by tachyzoites. IMPORTANCE Pathogen differences in host range are poorly understood at the molecular level even though even closely related pathogen species can have dramatically distinct host ranges. Here, we study two related parasite species that have a dramatic difference in their ability to infect mice. Here, we show that soluble proteins from these species determine one driver of this difference: induction of interferon gamma by cells of the innate immune system.
Collapse
Affiliation(s)
- R. S. Coombs
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - A. Bhattacharjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T. W. Hand
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J. P. Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Wang K, Espinosa V, Wang Y, Lemenze A, Kumamoto Y, Xue C, Rivera A. Innate cells and STAT1-dependent signals orchestrate vaccine-induced protection against invasive Cryptococcus infection. mBio 2024; 15:e0194424. [PMID: 39324785 PMCID: PMC11481872 DOI: 10.1128/mbio.01944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Fungal pathogens are underappreciated causes of significant morbidity and mortality worldwide. In previous studies, we determined that a heat-killed, Cryptococcus neoformans fbp1-deficient strain (HK-fbp1) is a potent vaccine candidate. We determined that vaccination with HK-fbp1 confers protective immunity against lethal Cryptococcosis in an interferon γ (IFNγ)-dependent manner. In this study, we set out to uncover cellular sources and relevant targets of the protective effects of IFNγ in response to the HK-fbp1 vaccine. We found that early IFNγ production peaks at day 3 and that monocytes and neutrophils are important sources of this cytokine after vaccination. Neutralization of IFNγ at day 3 results in impaired CCR2+ monocyte recruitment and reduced differentiation into monocyte-derived dendritic cells (Mo-DC). In turn, depletion of CCR2+ cells prior to immunization results in impaired activation of IFNγ-producing CD4 and CD8 T cells. Thus, monocytes are important targets of innate IFNγ and help promote further IFNγ production by lymphocytes. We employed monocyte-fate mapper and conditional STAT1 knockout mice to uncover that STAT1 activation in CD11c+ cells, including alveolar macrophages, Mo-DCs, and monocyte-derived macrophages (Mo-Mac) is essential for HK-fbp1 vaccine-induced protection. Altogether, our aggregate findings suggest critical roles for innate cells as orchestrators of vaccine-induced protection against Cryptococcus infection.IMPORTANCEThe number of patients susceptible to invasive fungal infections across the world continues to rise at an alarming pace yet current antifungal drugs are often inadequate. Immune-based interventions and novel antifungal vaccines hold the promise of significantly improving patient outcomes. In previous studies, we identified a Cryptococcus neoformans mutant strain (Fbp1-deficient) as a potent, heat-inactivated vaccine candidate capable of inducing homologous and heterologous antifungal protection. In this study, we used a combination of methods together with a cohort of conditional knockout mouse strains to interrogate the roles of innate cells in the orchestration of vaccine-induced antifungal protection. We uncovered novel roles for neutrophils and monocytes as coordinators of a STAT1-dependent cascade of responses that mediate vaccine-induced protection against invasive cryptococcosis. This new knowledge will help guide the future development of much-needed antifungal vaccines.
Collapse
Affiliation(s)
- Keyi Wang
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vanessa Espinosa
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Alexander Lemenze
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yosuke Kumamoto
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Amariliz Rivera
- Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
4
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
5
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
6
|
Schanz ML, Bitters AM, Zadeii KE, Joulani D, Chamberlain AK, López-Yglesias AH. IL-12 Mediates T-bet-Expressing Myeloid Cell-Dependent Host Resistance against Toxoplasma gondii. Immunohorizons 2024; 8:355-362. [PMID: 38687282 PMCID: PMC11066714 DOI: 10.4049/immunohorizons.2400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.
Collapse
Affiliation(s)
- Madison L. Schanz
- Department of Microbiology and Immunology, Indiana University School of Medicine–Terre Haute, Terre Haute, IN
| | - Abigail M. Bitters
- Department of Microbiology and Immunology, Indiana University School of Medicine–Terre Haute, Terre Haute, IN
| | - Kamryn E. Zadeii
- Department of Biology, Indiana State University, Terre Haute, IN
| | - Dana Joulani
- Department of Microbiology and Immunology, Indiana University School of Medicine–Terre Haute, Terre Haute, IN
| | - Angela K. Chamberlain
- Department of Microbiology and Immunology, Indiana University School of Medicine–Terre Haute, Terre Haute, IN
| | - Américo H. López-Yglesias
- Department of Microbiology and Immunology, Indiana University School of Medicine–Terre Haute, Terre Haute, IN
| |
Collapse
|
7
|
Lüder CGK. IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections. Front Immunol 2024; 15:1356216. [PMID: 38384452 PMCID: PMC10879624 DOI: 10.3389/fimmu.2024.1356216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/β, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.
Collapse
Affiliation(s)
- Carsten G. K. Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Macedo IS, Lara FA, Barbosa HS, Saraiva EM, Menna-Barreto RFS, Mariante RM. Human neutrophil extracellular traps do not impair in vitro Toxoplasma gondii infection. Front Immunol 2023; 14:1282278. [PMID: 38115994 PMCID: PMC10728484 DOI: 10.3389/fimmu.2023.1282278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Toxoplasma gondii, responsible for causing toxoplasmosis, is a prevalent food and waterborne pathogen worldwide. It commonly infects warm-blooded animals and affects more than a third of the global human population. Once ingested, the parasite enters the host's small intestine and rapidly disseminates throughout the body via the bloodstream, infiltrating various tissues. Leukocyte-driven responses are vital against T. gondii, with neutrophils playing a dual role: swiftly recruited to infection sites, releasing inflammatory mediators, and serving as a replication hub and Trojan horses, aiding parasite spread. Neutrophils from various hosts release extracellular traps (NETs) against the protozoan. However, gaps persist regarding the mechanisms of NETs production to parasite and their significance in infection control. This study investigates the interplay between human neutrophils and T. gondii, exploring dynamics, key molecules, and signaling pathways involved in NETs production upon protozoan challenge. Methods and Results Using confocal and electron microscopy, live cell imaging, pharmacological inhibitors, and DNA quantification assays, we find that human neutrophils promptly release both classical and rapid NETs upon pathogen stimulation. The NETs structure exhibits diverse phenotypes over time and is consistently associated with microorganisms. Mechanisms involve neutrophil elastase and peptidylarginine deiminase, along with intracellular calcium signaling and the PI3K pathway. Unexpectedly, human traps do not diminish viability or infectivity, but potentially aid in capturing parasites for subsequent neutrophil phagocytosis and elimination. Discussion By revealing NETs formation mechanisms and their nuanced impact on T. gondii infection dynamics, our findings contribute to broader insights into host-pathogen relationships.
Collapse
Affiliation(s)
- Isabela S. Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávio A. Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S. Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael M. Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Shi Y, Li J, Yang W, Chen J. Protective immunity induced by DNA vaccine containing Tg GRA35, Tg GRA42, and Tg GRA43 against Toxoplasma gondii infection in Kunming mice. Front Cell Infect Microbiol 2023; 13:1236130. [PMID: 38029261 PMCID: PMC10644269 DOI: 10.3389/fcimb.2023.1236130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Toxoplasma gondii can cause congenital infection and abortion in humans and warm-blooded animals. T. gondii dense granule proteins, GRA35, GRA42, and GRA43, play a critical role in the establishment of chronic infection. However, their potential to induce protective immunity against T. gondii infection remains unexplored. Objective This study aimed to test the efficacy of a DNA vaccine encompassing GRA35, GRA42, and GRA43 in inducing protective immunity against the highly virulent T. gondii RH strain (type I) and the brain cyst-forming PRU strain (type II). Methods The eukaryotic plasmids pVAX-GRA35, pVAX-GRA42, and pVAX-GRA43 were constructed and formulated into two- or three-gene cocktail DNA vaccines. The indirect immunofluorescence assay (IFA) was used to analyze their expression and immunogenicity. Mice were immunized with a single-gene, two-genes, or multicomponent eukaryotic plasmid, intramuscularly. We assessed antibody levels, cytotoxic T-cell (CTL) responses, cytokines, and lymphocyte surface markers by using flow cytometry. Additionally, mouse survival and cyst numbers in the brain of mice challenged 1 to 2 months postvaccination were determined. Results Specific humoral and cellular immune responses were elicited in mice immunized with single-, two-, or three-gene cocktail DNA vaccine, as indicated by significant increases in serum antibody concentrations of total IgG, IgG2a/IgG1 ratio, cytokine levels (IFN-γ, IL-2, IL-12, IL-4, and IL-10), lymphocyte proliferation, lymphocyte populations (CD4+ and CD8+ T lymphocytes), CTL activities, and survival, as well as decreased brain cysts, in comparison with control mice. Moreover, compared with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43, multicomponent DNA vaccine with three genes (pVAX-GRA35 + pVAX-GRA42 + pVAX-GRA43) induced the higher humoral and cellular immune responses, including serum antibody concentrations, cytokine levels, lymphocyte proliferation, lymphocyte populations, CTL activities and survival, resulting in prolonged survival time and reduced brain cyst loads. Furthermore, mice immunized with pVAX-GRA35 + pVAX-GRA42, pVAX-GRA42 + pVAX-GRA43, or pVAX-GRA35 + pVAX-GRA43 showed greater Th1 immune responses and protective efficacy than the single-gene-vaccinated groups. Conclusion These results demonstrate that TgGRA35, TgGRA42, or TgGRA43 are vaccine candidates against T. gondii infection, and the three-gene DNA vaccine cocktail conferred the strongest protection against T. gondii infection.
Collapse
Affiliation(s)
- Youbo Shi
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Jianbing Li
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Weili Yang
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Jia Chen
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Wu H, Guo C, Liu Z, Cai J, Wang C, Yi H, Sanyal A, Puri P, Zhou H, Wang XY. Neutrophils exacerbate acetaminophen-induced liver injury by producing cytotoxic interferon-γ. Int Immunopharmacol 2023; 123:110734. [PMID: 37541108 PMCID: PMC10603570 DOI: 10.1016/j.intimp.2023.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Drug (e.g., acetaminophen, APAP)-associated hepatotoxicity is the major cause of acute liver failure. Emerging evidence shows that initial tissue damage caused by APAP triggers molecular and cellular immune responses, which can modulate the severity of hepatoxicity. The pro-inflammatory and cytotoxic cytokine interferon (IFN)-γ has been reported as a key molecule contributing to APAP-induced liver injury (AILI). However, its cellular source remains undetermined. RESULTS In the current study, we show that elevation of serum IFN-γ in patients with drug hepatotoxicity correlates with disease severity. Neutralization of IFN-γ in a mouse model of AILI effectively reduces hepatotoxicity. Strikingly, we reveal that IFN-γ is expressed primarily by hepatic neutrophils, not by conventional immune cells with known IFN-γ-producing capability, e.g., CD8+ T cells, CD4+ T cells, natural killer cells, or natural killer T cells. Upon encountering APAP-injured hepatocytes, neutrophils secrete cytotoxic IFN-γ further causing cell stress and damage, which can be abrogated in the presence of blocking antibodies for IFN-γ or IFN-γreceptor. Furthermore, removal of neutrophils in vivo substantially decreases hepatic IFN-γ levels concomitantly with reduced APAP hepatotoxicity, whereas adoptive transfer of IFN-γ-producing neutrophils confers IFN-γ-/- mice susceptibility to APAP administration. CONCLUSIONS Our findings uncover a novel mechanism of neutrophil action in promoting AILI and provide new insights into immune modulation of the disease pathogenesis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Zheng Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jinyang Cai
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chong Wang
- Nephrology Department, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Arun Sanyal
- Division of Gastroenterology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Puneet Puri
- Richmond VA Medical Center, Richmond 23249, VA, USA
| | - Huiping Zhou
- Richmond VA Medical Center, Richmond 23249, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Richmond VA Medical Center, Richmond 23249, VA, USA.
| |
Collapse
|
11
|
Saad AE, Ashour DS, Rashad E. Immunomodulatory effects of chronic trichinellosis on Toxoplasma gondii RH virulent strain in experimental rats. Pathog Glob Health 2023; 117:417-434. [PMID: 36922743 PMCID: PMC10177679 DOI: 10.1080/20477724.2023.2191233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Mixed parasitic infections could affect the host immunological responses and re-design the pathogenesis of each other. The impact of Toxoplasma gondii (T. gondii) and Trichinella spiralis (T. spiralis) co-infection on the immune response remains unclear. The objective of the present study was to investigate the possible effect of chronic trichinellosis on the immune response of rats infected with T. gondii virulent RH strain. Animals were divided into four groups: group I: non-infected negative control; group II: infected with T. spiralis; group III: infected with T. gondii and group IV: infected with T. spiralis then infected with T. gondii 35 days post T. spiralis infection (co-infected group). The interaction between T. spiralis and T. gondii was evaluated by histopathological examination of liver and brain tissues, immunohistochemical expression of inducible nitric oxide synthase (iNOS), and β-catenin in the brain tissues, and CD4+ and CD8+ T cells percentages, and tumor necrosis factor (TNF)-alpha expression in the spleen tissues. Along with, splenic interleukin (IL)-4 and IL-10 mRNA expression levels were measured 15 days post-Toxoplasma infection. Our study revealed that prior infection with T. spiralis leads to attenuation of Th1 response against T. gondii, including iNOS, TNF-α, and CD8+ T-cell response with improvement of the histopathological changes in the tissues. In conclusion, in the co-infected rats, a balanced immune response has been developed with the end result, improvement of the histopathological changes in the liver and brain.
Collapse
Affiliation(s)
- Abeer E. Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Medical Parasitology sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Zhang J, Yang Z, Ma H, Tian X, Li J, Zhang Z, Yang L, Feng M, Mei X, Zhang Z, Li X, Wang S. Recombinant Toxoplasma gondii Calreticulin protein provides partial protection against acute and chronic toxoplasmosis. Acta Trop 2023; 241:106883. [PMID: 36870430 DOI: 10.1016/j.actatropica.2023.106883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Toxoplasma gondii, a highly prevalent apicomplexan pathogen, can cause serious or even fatal toxoplasmosis in both animals and humans. Immunoprophylaxis is considered a promising strategy for controlling this disease. Calreticulin (CRT) is known as a pleiotropic protein, which is critical for calcium storage and phagocytosis of apoptotic cells. Our study examined the protective effects of recombinant T. gondii Calreticulin (rTgCRT) as a recombinant subunit vaccine against the T. gondii challenge in mice. Here, rTgCRT was successfully expressed in vitro using prokaryptic expression system. Polyclonal antibody (pAb) has been prepared by immunizing Sprague Dawley rats with rTgCRT. Western blotting showed that rTgCRT and natural TgCRT protein were recognized by serum of T. gondii infected mice and rTgCRT pAb, respectively. T lymphocyte subsets and antibody response were monitored using flow cytometry and enzyme-linked immunosorbent assay (ELISA). The results showed that ISA 201 rTgCRT could stimulate lymphocyte proliferation and induce high levels of total and subclasses of IgG. After the RH strain challenge, a longer survival period was given by the ISA 201 rTgCRT vaccine compared to the control groups; after infection with the PRU strain, we observed a 100% survival rate and a significant reduction in cysts load and size. In the neutralization test, high concentrations of rat-rTgCRT pAb provided 100% protection, while in the passive immunization trial, only weak protection was observed after RH challenge, indicating that rTgCRT pAb needs further modification to improve its activity in vivo. Taken together, these data confirmed that rTgCRT can trigger strong cellular and humoral immune responses against acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- Jing Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Hangbin Ma
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Jiani Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Zihang Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Longxin Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Mengchuang Feng
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Xingrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
13
|
Murillo-León M, Bastidas-Quintero AM, Endres NS, Schnepf D, Delgado-Betancourt E, Ohnemus A, Taylor GA, Schwemmle M, Staeheli P, Steinfeldt T. IFN-λ is protective against lethal oral Toxoplasma gondii infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529861. [PMID: 36865100 PMCID: PMC9980175 DOI: 10.1101/2023.02.24.529861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Interferons are essential for innate and adaptive immune responses against a wide variety of pathogens. Interferon lambda (IFN-λ) protects mucosal barriers during pathogen exposure. The intestinal epithelium is the first contact site for Toxoplasma gondii (T. gondii) with its hosts and the first defense line that limits parasite infection. Knowledge of very early T. gondii infection events in the gut tissue is limited and a possible contribution of IFN-λ has not been investigated so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional (Villin-Cre) knockout mouse models and bone marrow chimeras of oral T. gondii infection and mouse intestinal organoids a significant impact of IFN-λ signaling in intestinal epithelial cells and neutrophils to T. gondii control in the gastrointestinal tract. Our results expand the repertoire of interferons that contribute to the control of T. gondii and may lead to novel therapeutic approaches against this world-wide zoonotic pathogen.
Collapse
Affiliation(s)
- Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Niklas S. Endres
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Current address:Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Current address: Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, NC 27710 Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, NC 27705 Durham, North Carolina, United States of America
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Moretto MM, Chen J, Meador M, Phan J, Khan IA. A Lower Dose of Infection Generates a Better Long-Term Immune Response against Toxoplasma gondii. Immunohorizons 2023; 7:177-190. [PMID: 36883950 PMCID: PMC10563383 DOI: 10.4049/immunohorizons.2300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular pathogen, induces a strong immune response in the infected host. In the encephalitis model of infection, long-term protective immunity is mediated by CD8 T cells, with the CD4 T cell population providing important help. Most of the immune studies have used a 10- to 20-cyst dose of T. gondii, which leads to T cell dysfunctionality during the late phase of chronic infection and increases the chances of reactivation. In the current study, we compared the immune response of mice orally infected with either 2 or 10 cysts of T. gondii. During the acute phase, we demonstrate that the lower dose of infection generates a reduced number of CD4 and CD8 T cells, but the frequency of functional CD4 or CD8 T cells is similar in animals infected with two different doses. However, Ag-experienced T cells (both CD4 and CD8) are better maintained in lower dose-infected mice at 8 wk postinfection, with an increase number functional cells that exhibit lower multiple inhibitory receptor expression. In addition to better long-term T cell immunity, animals infected with a lower dose display reduced inflammation manifested by lesser Ag-specific T cell and cytokine responses during the very early stage of the acute infection. Our studies suggest a previously unappreciated role of dose-dependent early programming/imprinting of the long-term CD4/CD8 T cell response during T. gondii infection. These observations point to the need for an in-depth analysis of how early events shape long-term immunity against this pathogen.
Collapse
Affiliation(s)
- Magali M. Moretto
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Jie Chen
- Department of Medicine, The George Washington University, Washington, DC
| | - Morgan Meador
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Jasmine Phan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Imtiaz A. Khan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
15
|
Rovira-Diaz E, El-Naccache DW, Reyes J, Zhao Y, Nasuhidehnavi A, Chen F, Gause WC, Yap GS. The Impact of Helminth Coinfection on Innate and Adaptive Immune Resistance and Disease Tolerance during Toxoplasmosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2160-2171. [PMID: 36426972 PMCID: PMC10065986 DOI: 10.4049/jimmunol.2200504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 01/04/2023]
Abstract
More than 2 billion people worldwide are infected with helminths. Thus, it is possible for individuals to experience concomitant infection with helminth and intracellular microbes. Although the helminth-induced type 2 response can suppress type 1 proinflammatory responses required for the immunity against intracellular pathogens in the context of a coinfection, conflicting evidence suggest that helminth infection can enhance antimicrobial immunity. Using a coinfection model with the intestinal helminth Heligmosomoides polygyrus followed by infection with Toxoplasma gondii in Mus Musculus, we showed that the complex and dynamic effect of helminth infection is highly suppressive during the innate phase (days 0-3) of T. gondii infection and less stringent during the acute phase (d10). Helminth coinfection had a strong suppressive effect on the neutrophil, monocytic, and early IFN-γ/IL-12 responses. The IFN-γ response was later restored by compensatory production from T cells despite decreased effector differentiation of T. gondii-specific CD8 T cells. In accordance with the attenuated IFN-γ response, parasite loads were elevated during the acute phase (d10) of T. gondii infection but were transiently controlled by the compensatory T cell response. Unexpectedly, 40% of helminth-coinfected mice exhibited a sustained weight loss phenotype during the postacute phase (d14-18) that was not associated with T. gondii outgrowth, indicating that coinfection led to decreased disease tolerance during T. gondii infection. Our work uncovers the dynamic nature of the helminth immunomodulatory effects on concomitant infections or immune responses and unveils a loss of disease tolerance phenotype triggered by coinfection with intestinal helminth.
Collapse
Affiliation(s)
- Eliezer Rovira-Diaz
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - Darine W. El-Naccache
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - Jojo Reyes
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - Azadeh Nasuhidehnavi
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - Fei Chen
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - William C. Gause
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| |
Collapse
|
16
|
Espinosa V, Dutta O, Heung LJ, Wang K, Chang YJ, Soteropoulos P, Hohl TM, Siracusa MC, Rivera A. Cutting Edge: Neutrophils License the Maturation of Monocytes into Effective Antifungal Effectors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1827-1831. [PMID: 36216513 PMCID: PMC10115354 DOI: 10.4049/jimmunol.2200430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
Neutrophils are critical for the direct eradication of Aspergillus fumigatus conidia, but whether they mediate antifungal defense beyond their role as effectors is unclear. In this study, we demonstrate that neutrophil depletion impairs the activation of protective antifungal CCR2+ inflammatory monocytes. In the absence of neutrophils, monocytes displayed limited differentiation into monocyte-derived dendritic cells, reduced formation of reactive oxygen species, and diminished conidiacidal activity. Upstream regulator analysis of the transcriptional response in monocytes predicted a loss of STAT1-dependent signals as the potential basis for the dysfunction seen in neutrophil-depleted mice. We find that conditional removal of STAT1 on CCR2+ cells results in diminished antifungal monocyte responses, whereas exogenous administration of IFN-γ to neutrophil-depleted mice restores monocyte-derived dendritic cell maturation and reactive oxygen species production. Altogether, our findings support a critical role for neutrophils in antifungal immunity not only as effectors but also as important contributors to antifungal monocyte activation, in part by regulating STAT1-dependent functions.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Orchi Dutta
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Lena J Heung
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Yun-Juan Chang
- Genomics Research Program, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Patricia Soteropoulos
- Genomics Research Program, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Tobias M Hohl
- Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ;
| |
Collapse
|
17
|
Snyder LM, Belmares-Ortega J, Doherty CM, Denkers EY. Impact of MyD88, Microbiota, and Location on Type 1 and Type 3 Innate Lymphoid Cells during Toxoplasma gondii Infection. Immunohorizons 2022; 6:660-670. [PMID: 36096673 PMCID: PMC10994198 DOI: 10.4049/immunohorizons.2200070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii induces strong IFN-γ-based immunity. Innate lymphoid cells (ILC), in particular ILC1, are an important innate source of this protective cytokine during infection. Our objective was to determine how MyD88-dependent signaling influences ILC function during peroral compared with i.p. infection with T. gondii. MyD88 +/+ and MyD88 -/- mice were orally inoculated with ME49 cysts, and small intestinal lamina propria ILC were assessed using flow cytometry. We observed T-bet+ ILC1, retinoic acid-related orphan receptor γt+ ILC3, and a population of T-bet+retinoic acid-related orphan receptor γt+ double-positive ILC. In MyD88 -/- mice, IFN-γ-producing T-bet+ ILC1 frequencies were reduced compared with wild-type. Treatment of MyD88 -/- mice with an antibiotic mixture to deplete microflora reduced IFN-γ+ ILC1 frequencies. To examine ILC responses outside of the mucosal immune system, peritoneal exudate cells were collected from wild-type and knockout mice after i.p. inoculation with ME49 cysts. In this compartment, ILC were highly polarized to the ILC1 subset that increased significantly and became highly positive for IFN-γ over the course of infection. Increased ILC1 was associated with expression of the Ki67 cell proliferation marker, and the response was driven by IL-12p40. In the absence of MyD88, IFN-γ expression by ILC1 was not maintained, but proliferation remained normal. Collectively, these data reveal new aspects of ILC function that are influenced by location of infection and shaped further by MyD88-dependent signaling.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Jessica Belmares-Ortega
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Claire M Doherty
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Eric Y Denkers
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
18
|
Could a simple biomarker as neutrophil-to-lymphocyte ratio reflect complex processes orchestrated by neutrophils? J Transl Autoimmun 2022. [DOI: 10.1016/j.jtauto.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Humayun M, Ayuso JM, Park KY, Martorelli Di Genova B, Skala MC, Kerr SC, Knoll LJ, Beebe DJ. Innate immune cell response to host-parasite interaction in a human intestinal tissue microphysiological system. SCIENCE ADVANCES 2022; 8:eabm8012. [PMID: 35544643 PMCID: PMC9075809 DOI: 10.1126/sciadv.abm8012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 05/03/2023]
Abstract
Protozoan parasites that infect humans are widespread and lead to varied clinical manifestations, including life-threatening illnesses in immunocompromised individuals. Animal models have provided insight into innate immunity against parasitic infections; however, species-specific differences and complexity of innate immune responses make translation to humans challenging. Thus, there is a need for in vitro systems that can elucidate mechanisms of immune control and parasite dissemination. We have developed a human microphysiological system of intestinal tissue to evaluate parasite-immune-specific interactions during infection, which integrates primary intestinal epithelial cells and immune cells to investigate the role of innate immune cells during epithelial infection by the protozoan parasite, Toxoplasma gondii, which affects billions of people worldwide. Our data indicate that epithelial infection by parasites stimulates a broad range of effector functions in neutrophils and natural killer cell-mediated cytokine production that play immunomodulatory roles, demonstrating the potential of our system for advancing the study of human-parasite interactions.
Collapse
Affiliation(s)
- Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose M. Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Keon Young Park
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheena C. Kerr
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura J. Knoll
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
21
|
Ajendra J. Lessons in type 2 immunity: Neutrophils in Helminth infections. Semin Immunol 2021; 53:101531. [PMID: 34836773 DOI: 10.1016/j.smim.2021.101531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Madushani KP, Shanaka KASN, Madusanka RK, Lee J. Molecular characterization and expressional analysis of two poly (ADP-ribose) polymerase (PARP) domain-containing Gig2 isoforms in rockfish (Sebastes schlegelii) and their antiviral activity against viral hemorrhagic septicemia virus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:219-227. [PMID: 34509626 DOI: 10.1016/j.fsi.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Remedies toward sustainable aquaculture rely upon research that unveils the molecular mechanisms behind host immunity and their interactions with pathogens. Antiviral defense is a major innate immune response in fish. The antiviral protein GCHV-induced gene-2 (Gig2), a member of the interferon-stimulated gene (ISG), was identified and characterized from rockfish (Sebastes schlegelii). Gig2 exists in two isoforms, namely, SsGig2-I1 and SsGig2-I2, in rockfish with lengths of 163 and 223 bp, respectively. Bioinformatic analysis indicated the availability of poly (ADP-ribose) polymerase domain in both proteins, and 51.3% identity and 71.3% similarity between both isoforms were observed. The basal expression pattern revealed the highest tissue-specific expression in rockfish gills for both isoforms. The immune challenge experiment disclosed a distinctive and strong expression of each transcript in the presence of poly I:C. Both isoforms are localized in the endoplasmic reticulum. Interferon (IFN) pathway gene analysis revealed no significant upregulation of IFN related genes. Viral hemorrhagic septicemia virus (VHSV) gene expression analysis revealed strong downregulation of viral transcripts after 48 h of infection in the presence of Gig2 isoforms. Collectively, these results indicate the protective role of Gig2 in rockfish against VHSV infection and help broaden our understanding of the innate immunity of fish.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
23
|
Abstract
Toxoplasmosis affects one-third of the human population worldwide. Humans are accidental hosts and are infected after consumption of undercooked meat and water contaminated with Toxoplasma gondii cysts and oocysts, respectively. Neutrophils have been shown to participate in the control of T. gondii infection in mice through a variety of effector mechanisms, such as reactive oxygen species (ROS) and neutrophil extracellular trap (NET) formation. However, few studies have demonstrated the role of neutrophils in individuals naturally infected with T. gondii. In the current study, we evaluated the activation status of neutrophils in individuals with acute or chronic toxoplasmosis and determined the role of T. gondii-induced NET formation in the amplification of the innate and adaptive immune responses. We observed that neutrophils are highly activated during acute infection through increased expression of CD66b. Moreover, neutrophils from healthy donors (HDs) cocultured with tachyzoites produced ROS and formed NETs, with the latter being dependent on glycolysis, succinate dehydrogenase, gasdermin D, and neutrophil elastase. Furthermore, we observed elevated levels of the chemokines (CXC motif) CXCL8 and (CC motif) CCL4 ligands in plasma from patients with acute toxoplasmosis and production by neutrophils from HDs exposed to T. gondii. Finally, we showed that T. gondii-induced NETs activate neutrophils and promote the recruitment of autologous CD4+ T cells and the production of interferon gamma (IFN-γ), tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-17, and IL-10 by peripheral blood mononuclear cells. In conclusion, we demonstrated that T. gondii activates neutrophils and promotes the release of NETs, which amplify human innate and adaptive immune responses.
Collapse
|
24
|
Snyder LM, Doherty CM, Mercer HL, Denkers EY. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog 2021; 17:e1009970. [PMID: 34597344 PMCID: PMC8513874 DOI: 10.1371/journal.ppat.1009970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/13/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88. Toxoplasma gondii is an apicomplexan parasite estimated to infect 30–50% of humans worldwide. The parasite normally establishes latency in brain and muscle tissue marked by persistent asymptomatic infection. T. gondii masterfully strikes a balance between eliciting strong, anti-parasite immunity while also persisting in the host. Although the murine host recognizes Toxoplasma profilin via MyD88 and Toll-like receptors 11/12, humans lack these receptors and MyD88 deficient patients retain resistance to T. gondii infection. Given these observations, it is important to identify MyD88 independent pathways of immunity. Using an oral infection mouse model, we identified cellular sources of IL-12 and IFN-γ, two cytokines that are essential for host resistance to this microbial pathogen. We determined how these responses are impacted by the presence and absence of MyD88 and the intestinal microbiota. Our data demonstrate that T. gondii triggers MyD88-independent innate and adaptive immunity in the intestinal mucosa that requires the presence of intestinal microbes. These pathways may be conserved among species and understanding how they work in rodents will likely help determine how humans recognize and respond to T. gondii infection.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Heather L Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
25
|
Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021; 22:4726. [PMID: 33946935 PMCID: PMC8125486 DOI: 10.3390/ijms22094726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.
Collapse
Affiliation(s)
| | | | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
26
|
Recombinant Toxoplasma gondii Ribosomal Protein P2 Modulates the Functions of Murine Macrophages In Vitro and Provides Immunity against Acute Toxoplasmosis In Vivo. Vaccines (Basel) 2021; 9:vaccines9040357. [PMID: 33917244 PMCID: PMC8068005 DOI: 10.3390/vaccines9040357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023] Open
Abstract
Almost every warm-blooded animal can be an intermediate host for Toxoplasma gondii (T. gondii); there is still no efficient vaccine and medicine available for T. gondii infections. Detected on the surface of free tachyzoites of T. gondii, T. gondii ribosomal protein P2 (TgRPP2) has been identified as a target for protection against toxoplasmosis. In the present study, TgRPP2 was firstly expressed in a prokaryotic expression system, and the purified recombinant TgRPP2 (rTgRPP2) was characterized by its modulation effects on murine macrophages. Then, the purified rTgRPP2 was injected into mice to evaluate the immune protection of rTgRPP2. The results indicated that rTgRPP2 could bind to murine Ana-1 cells and showed good reactogenicity. After incubation with purified rTgRPP2, the proliferation, apoptosis, phagocytosis, nitric oxide (NO) production, and cytokines secreted by murine macrophages were modulated. Furthermore, the in vivo experiments indicated that animals immunized with rTgRPP2 could generate a significantly high level of antibodies, cytokines, and major histocompatibility complex (MHC) molecules, leading to a prolonged survival time. All of the results indicated that murine macrophages could be regulated by rTgRPP2 and are essential for the maintenance of tissue homeostasis. Immunization with rTgRPP2 triggered significant protection, with prolonged survival time in a mice model of acute toxoplasmosis. Our results lend credibility to the idea that rTgRPP2 could be a potential target for drug design and vaccine development.
Collapse
|
27
|
Yu Z, Chen S, Aleem M, He S, Yang Y, Zhou T, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Histone deacetylase SIR2 in Toxoplasma gondii modulates functions of murine macrophages in vitro and protects mice against acute toxoplasmosis in vivo. Microb Pathog 2021; 154:104835. [PMID: 33731306 DOI: 10.1016/j.micpath.2021.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Silent information regulator 2 (SIR2) in histone deacetylase (HDAC) is particularly conserved and widely expressed in all eukaryotic cells. HDAC is a crucial post-translational modification protein regulating gene expression. In the present study, a Toxoplasma gondii (T. gondii) silent information regulator 2 (TgSIR2) gene in HDAC was cloned and the modulation effects of recombinant TgSIR2 (rTgSIR2) on murine Ana-1 macrophages were characterized in vitro. The results indicated that rTgSIR2 had a good capacity to eliminate T. gondii by promoting proliferation, apoptosis, and phagocytosis, and modulating the secretion of nitric oxide (NO), pro-inflammatory cytokines, and anti-inflammatory cytokines. In in vivo experiments, animals were immunized with recombinant TgSIR2, followed by a lethal dose of T. gondii RH strain challenge 14 days after the second immunization. As compared to the blank and control group, the animals immunized with rTgSIR2 could generate specific humoral responses, as demonstrated by the significantly high titers of total IgG and subclasses IgG1 and IgG2a. Significant increases of IFN-γ, IL-4, and IL-10 were seen, while no significant changes were detected in IL-17. The percentage of CD4+ and CD8+ T lymphocytes in animals immunized with rTgSIR2 significantly increased. A significantly long survival time was also observed in animals vaccinated with rTgSIR2 14 days after the last immunization. All these results clearly indicate that rTgSIR2 played an essential role in modulating host macrophages and offered the potential to develop a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- ZhengQing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - SiYing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - MuhammadTahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - SuHui He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - TianYuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - JunLong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China.
| | - JianXun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China.
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
28
|
Innate IFN-γ Is Essential for Systemic Chlamydia muridarum Control in Mice, While CD4 T Cell-Dependent IFN-γ Production Is Highly Redundant in the Female Reproductive Tract. Infect Immun 2021; 89:IAI.00541-20. [PMID: 33257535 PMCID: PMC8097277 DOI: 10.1128/iai.00541-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.
Collapse
|
29
|
Zhuo X, Du K, Ding H, Lou D, Zheng B, Lu S. A Carbamoyl Phosphate Synthetase II (CPSII) Deletion Mutant of Toxoplasma gondii Induces Partial Protective Immunity in Mice. Front Microbiol 2021; 11:616688. [PMID: 33519775 PMCID: PMC7840960 DOI: 10.3389/fmicb.2020.616688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite. T. gondii primarily infection in pregnant women may result in fetal abortion, and infection in immunosuppressed population may result in toxoplasmosis. Carbamoyl phosphate synthetase II (CPSII) is a key enzyme in the de novo pyrimidine-biosynthesis pathway, and has a crucial role in parasite replication. We generated a mutant with complete deletion of CPSII via clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 in type-1 RH strain of T. gondii. We tested the intracellular proliferation of this mutant and found that it showed significantly reduced replication in vitro, though CPSII deletion did not completely stop the parasite growth. The immune responses induced by the infection of RHΔCPSII tachyzoites in mice were evaluated. During infection in mice, the RHΔCPSII mutant displayed notable defects in replication and virulence, and significantly enhanced the survival of mice compared with survival of RH-infected mice. We tracked parasite propagation from ascitic fluid in mice infected with the RHΔCPSII mutant, and few tachyzoites were observed at early infection. We also observed that the RHΔCPSII mutant induced greater accumulation of neutrophils. The mutant induced a higher level of T-helper type-1 cytokines [interferon (IFN)-γ, interleukin (IL)-12]. The mRNA levels of signal transducer and activator of transcription cellular transcription factor 1 and IFN regulatory factor 8 were significantly higher in the RHΔCPSII mutant-infected group. Together, these data suggest that CPSII is crucial for parasite growth, and that strains lack the de novo pyrimidine biosynthesis pathway and salvage pathway may become a promising live attenuated vaccine to prevent infection with T. gondii.
Collapse
Affiliation(s)
- Xunhui Zhuo
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Kaige Du
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China.,Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Haojie Ding
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
30
|
Frank K, Abeynaike S, Nikzad R, Patel RR, Roberts AJ, Roberto M, Paust S. Alcohol dependence promotes systemic IFN-γ and IL-17 responses in mice. PLoS One 2020; 15:e0239246. [PMID: 33347446 PMCID: PMC7751976 DOI: 10.1371/journal.pone.0239246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences. AUD is associated with a variety of physiological changes and is a substantial risk factor for numerous diseases. We aimed to characterize systemic alterations in immune responses using a well-established mouse model of chronic intermittent alcohol exposure to induce alcohol dependence. We exposed mice to chronic intermittent ethanol vapor for 4 weeks and analyzed the expression of cytokines IFN-γ, IL-4, IL-10, IL-12 and IL-17 by different immune cells in the blood, spleen and liver of alcohol dependent and non-dependent control mice through multiparametric flow cytometry. We found increases in IFN-γ and IL-17 expression in a cell type- and organ-specific manner. Often, B cells and neutrophils were primary contributors to increased IFN-γ and IL-17 levels while other cell types played a secondary role. We conclude that chronic alcohol exposure promotes systemic pro-inflammatory IFN-γ and IL-17 responses in mice. These responses are likely important in the development of alcohol-related diseases, but further characterization is necessary to understand the initiation and effects of systemic inflammatory responses to chronic alcohol exposure.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Rana Nikzad
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wang Y, Zhu J, Cao Y, Shen J, Yu L. Insight Into Inflammasome Signaling: Implications for Toxoplasma gondii Infection. Front Immunol 2020; 11:583193. [PMID: 33391259 PMCID: PMC7772217 DOI: 10.3389/fimmu.2020.583193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammasomes are multimeric protein complexes regulating the innate immune response to invading pathogens or stress stimuli. Recent studies have reported that nucleotide-binding leucine-rich repeat-containing (NLRs) proteins and DNA sensor absent in melanoma 2 (AIM2) serve as inflammasome sentinels, whose stimulation leads to the proteolytic activation of caspase-1, proinflammatory cytokine secretion, and pyroptotic cell death. Toxoplasma gondii, an obligate intracellular parasite of phylum Apicomplexans, is reportedly involved in NLRP1, NLRP3 and AIM2 inflammasomes activation; however, mechanistic evidence regarding the activation of these complexes is preliminary. This review describes the current understanding of inflammasome signaling in rodent and human models of T. gondii infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
33
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Kazimirskii AN, Salmasi JM, Poryadin GV. Antiviral system of innate immunity: COVID-19 pathogenesis and treatment. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antiviral system of innate immunity includes two main components: the mitochondrial antiviral sensor — the mitochondrial outer membrane protein and peripheral blood neutrophils capable of forming neutrophilic extracellular traps. Depending on the activation pathway of the mitochondrial antiviral sensor (MAVS), two possible variants of cells death, apoptosis or cellular degeneration with necrotic changes, develop during cell infection with an RNA-containing virus. The development of virus-induced apoptosis of infected cells causes the formation of neutrophilic extracellular traps, the secretion of inflammatory cytokines, ROS generation, tissue damage, hemocoagulation and the development of an acute inflammatory process with the development of COVID-19 pneumonia. Violation of the prion-like reaction of MAVS in response to viral infection of the cell triggers an alternative pathway for activating autophagy. Cells under conditions of prolonged activation of autophagy experience necrotic changes and are eliminated from the organism by monocytes/macrophages that secrete anti-inflammatory cytokines. This type of reaction of the antiviral system of innate immunity corresponds to the asymptomatic course of the disease. From the most significant aspects of the pathogenesis of the coronavirus infection COVID-19 given, recommendations for the prophylactic treatment of this dangerous disease follow. The proposed treatment can significantly decrease the severity of COVID-19 disease and reduce mortality.
Collapse
Affiliation(s)
- AN Kazimirskii
- Pirogov Russian National Research Medical University. Moscow, Russia
| | - JM Salmasi
- Pirogov Russian National Research Medical University. Moscow, Russia
| | - GV Poryadin
- Pirogov Russian National Research Medical University. Moscow, Russia
| |
Collapse
|
35
|
Briukhovetska D, Ohm B, Mey FT, Aliberti J, Kleingarn M, Huber-Lang M, Karsten CM, Köhl J. C5aR1 Activation Drives Early IFN-γ Production to Control Experimental Toxoplasma gondii Infection. Front Immunol 2020; 11:1397. [PMID: 32733463 PMCID: PMC7362728 DOI: 10.3389/fimmu.2020.01397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite infecting animals and humans. In intermediate hosts, such as humans or rodents, rapidly replicating tachyzoites drive vigorous innate and adaptive immune responses resulting in bradyzoites that survive within tissue cysts. Activation of the innate immune system is critical during the early phase of infection to limit pathogen growth and to instruct parasite-specific adaptive immunity. In rodents, dendritic cells (DCs) sense T. gondii through TLR11/12, leading to IL-12 production, which activates NK cells to produce IFN-γ as an essential mechanism for early parasite control. Further, C3 can bind to T. gondii resulting in limited complement activation. Here, we determined the role of C5a/C5aR1 axis activation for the early innate immune response in a mouse model of peritoneal T. gondii infection. We found that C5ar1−/− animals suffered from significantly higher weight loss, disease severity, mortality, and parasite burden in the brain than wild type control animals. Severe infection in C5ar1−/− mice was associated with diminished serum concentrations of IL-12, IL-27, and IFN-γ. Importantly, the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6, and TNF-α, as well as several CXC and CC chemokines, were decreased in comparison to wt animals, whereas anti-inflammatory IL-10 was elevated. The defect in IFN-γ production was associated with diminished Ifng mRNA expression in the spleen and the brain, reduced frequency of IFN-γ+ NK cells in the spleen, and decreased Nos2 expression in the brain of C5ar1−/− mice. Mechanistically, DCs from the spleen of C5ar1−/− mice produced significantly less IL-12 in response to soluble tachyzoite antigen (STAg) stimulation in vivo and in vitro. Our findings suggest a model in which the C5a/C5aR1 axis promotes IL-12 induction in splenic DCs that is critical for IFN-γ production from NK cells and subsequent iNOS expression in the brain as a critical mechanism to control acute T. gondii infection.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Birte Ohm
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fabian T Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julio Aliberti
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
36
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog 2020; 16:e1008586. [PMID: 32453782 PMCID: PMC7274473 DOI: 10.1371/journal.ppat.1008586] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The murine innate immune response against Toxoplasma gondii is predominated by the interaction of TLR11/12 with Toxoplasma profilin. However, mice lacking Tlr11 or humans, who do not have functional TLR11 or TLR12, still elicit a strong innate immune response upon Toxoplasma infection. The parasite factors that determine this immune response are largely unknown. Herein, we investigated two dense granule proteins (GRAs) secreted by Toxoplasma, GRA15 and GRA24, for their role in stimulating the innate immune response in Tlr11-/- mice and in human cells, which naturally lack TLR11/TLR12. Our results show that GRA15 and GRA24 synergistically shape the early immune response and parasite virulence in Tlr11-/- mice, with GRA15 as the predominant effector. Nevertheless, acute virulence in Tlr11-/- mice is still dominated by allelic combinations of ROP18 and ROP5, which are effectors that determine evasion of the immunity-related GTPases. In human macrophages, GRA15 and GRA24 play a major role in the induction of IL12, IL18 and IL1β secretion. We further show that GRA15/GRA24-mediated IL12, IL18 and IL1β secretion activates IFNγ secretion by peripheral blood mononuclear cells (PBMCs), which controls Toxoplasma proliferation. Taken together, our study demonstrates the important role of GRA15 and GRA24 in activating the innate immune response in hosts lacking TLR11.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16:e1008572. [PMID: 32413093 PMCID: PMC7255617 DOI: 10.1371/journal.ppat.1008572] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
The apicomplexan Toxoplasma gondii induces strong protective immunity dependent upon recognition by Toll-like receptors (TLR)11 and 12 operating in conjunction with MyD88 in the murine host. However, TLR11 and 12 proteins are not present in humans, inspiring us to investigate MyD88-independent pathways of resistance. Using bicistronic IL-12-YFP reporter mice on MyD88+/+ and MyD88-/- genetic backgrounds, we show that CD11c+MHCII+F4/80- dendritic cells, F4/80+ macrophages, and Ly6G+ neutrophils were the dominant cellular sources of IL-12 in both wild type and MyD88 deficient mice after parasite challenge. Parasite dense granule protein GRA24 induces p38 MAPK activation and subsequent IL-12 production in host macrophages. We show that Toxoplasma triggers an early and late p38 MAPK phosphorylation response in MyD88+/+ and MyD88-/- bone marrow-derived macrophages. Using the uracil auxotrophic Type I T. gondii strain cps1-1, we demonstrate that the late response does not require active parasite proliferation, but strictly depends upon GRA24. By i. p. inoculation with cps1-1 and cps1-1:Δgra24, we identified unique subsets of chemokines and cytokines that were up and downregulated by GRA24. Finally, we demonstrate that cps1-1 triggers a strong host-protective GRA24-dependent Th1 response in the absence of MyD88. Our data identify GRA24 as a major mediator of p38 MAPK activation, IL-12 induction and protective immunity that operates independently of the TLR/MyD88 cascade.
Collapse
Affiliation(s)
- Heather L. Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lindsay M. Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
38
|
Coombs RS, Blank ML, English ED, Adomako-Ankomah Y, Urama ICS, Martin AT, Yarovinsky F, Boyle JP. Immediate Interferon Gamma Induction Determines Murine Host Compatibility Differences between Toxoplasma gondii and Neospora caninum. Infect Immun 2020; 88:e00027-20. [PMID: 32014892 PMCID: PMC7093116 DOI: 10.1128/iai.00027-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. "Immediate" IFN-γ and IL-12p40 production was not detected in MyD88-/- mice. However, unlike IL-12p40-/- and IFN-γ-/- mice, MyD88-/- mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88-/- mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.
Collapse
Affiliation(s)
- Rachel S Coombs
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew L Blank
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth D English
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yaw Adomako-Ankomah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Andrew T Martin
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jon P Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Nishiyama S, Pradipta A, Ma JS, Sasai M, Yamamoto M. T cell-derived interferon-γ is required for host defense to Toxoplasma gondii. Parasitol Int 2020; 75:102049. [PMID: 31901434 DOI: 10.1016/j.parint.2019.102049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
Interferon-γ (IFN-γ) is important for host defense against various intracellular organisms including a protozoan pathogen Toxoplasma gondii. Various immune cells are recently shown to produce IFN-γ in T. gondii infection, however, it remains elusive which cell types are important for anti-T. gondii host defense so far. Here we generate a new IFN-γ reporter "GREVEN" mouse line in which a fusion protein of Venus and NanoLuc to analyze IFN-γ producing cells during T. gondii infection and find that CD4+, CD8+, γδ T cells and natural killer cells express Venus in a time dependent manner. Furthermore, Lck-Cre/Ifngfl/fl mice are highly susceptible to T. gondii infection. Taken together, our results demonstrate that T cell-derived IFN-γ plays an important role in anti-T. gondii host defense.
Collapse
Affiliation(s)
- Saishi Nishiyama
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan..
| |
Collapse
|
40
|
Li FY, Wang SF, Bernardes ES, Liu FT. Galectins in Host Defense Against Microbial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:141-167. [DOI: 10.1007/978-981-15-1580-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Sasai M, Yamamoto M. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827072 PMCID: PMC6906438 DOI: 10.1038/s12276-019-0353-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Hosts have been fighting pathogens throughout the evolution of all infectious diseases. Toxoplasma gondii is one of the most common infectious agents in humans but causes only opportunistic infection in healthy individuals. Similar to antimicrobial immunity against other organisms, the immune response against T. gondii activates innate immunity and in turn induces acquired immune responses. After activation of acquired immunity, host immune cells robustly produce the proinflammatory cytokine interferon-γ (IFN-γ), which activates a set of IFN-γ-inducible proteins, including GTPases. IFN-inducible GTPases are essential for cell-autonomous immunity and are specialized for effective clearance and growth inhibition of T. gondii by accumulating in parasitophorous vacuole membranes. Recent studies suggest that the cell-autonomous immune response plays a protective role in host defense against not only T. gondii but also various intracellular bacteria. Moreover, the negative regulatory mechanisms of such strong immune responses are also important for host survival after infection. In this review, we will discuss in detail recent advances in the understanding of host defenses against T. gondii and the roles played by cell-autonomous immune responses. Researchers are extensively studying immune responses to the single-celled parasite Toxoplasma gondii, which infects around one-third of humans, often harmlessly, but can cause life-threatening toxoplasmosis infections in patients with weakened immune systems. Masahiro Yamamoto and Miwa Sasai at Osaka University in Japan review recent advances in understanding the interactions between the immune system and the parasite. They consider non-specific ‘innate’ immune responses and also the ‘acquired’ responses that target specific parts of the parasite, referred to as antigens. Methods that selectively switch off genes in mice are revealing details presumed to also be relevant for humans. Significant molecules, molecular signaling pathways and immune-regulating processes are being identified. Recent studies suggest cell-autonomous immunity, the ability of host cells to defend themselves against attack, plays a significant role in fighting Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan. .,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
42
|
Gaafar MR, El-Zawawy LA, El-Temsahy MM, Shalaby TI, Hassan AY. Silver nanoparticles as a therapeutic agent in experimental cyclosporiasis. Exp Parasitol 2019; 207:107772. [PMID: 31610183 DOI: 10.1016/j.exppara.2019.107772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/24/2022]
Abstract
Cyclosporiasis is an emerging worldwide infection caused by an obligate intracellular protozoan parasite, Cyclospora cayetanensis. In immunocompetent patients, it is mainly manifested by self-limited diarrhea, which is persistent and may be fatal in immunocompromised patients. The standard treatment for cyclosporiasis is a combination of two antibiotics, trimethoprim and sulfamethoxazole. Gastrointestinal, haematologic and renal side effects were reported with this combination. Moreover, sulfa allergy, foetal anomalies and recurrence were recorded with no alternative drug treatment option. In this study, silver nanoparticles were chemically synthesized to be evaluated for the first time for their anti-cyclospora effects in both immunocompetent and immunosuppressed experimental mice in comparison to the standard treatment. The effect of silver nanoparticles was assessed through studying stool oocyst load, oocyst viability, ultrastructural changes in oocysts, and estimation of serum gamma interferon. Toxic effect of the therapeutic agents was evaluated by measuring liver enzymes, urea and creatinine in mouse sera. Results showed that silver nanoparticles had promising anti-cyclospora potentials. The animals that received these nanoparticles showed a statistically significant decrease in the oocyst burden and number of viable oocysts in stool and a statistically significant increase in serum gamma interferon in comparison to the corresponding group receiving the standard treatment and to the infected non-treated control group. Scanning electron microscopic examination revealed mutilated oocysts with irregularities, poring and perforations. Biochemical results showed no evidence of toxicity of silver nanoparticles, as the sera of the mice showed a statistically non-significant decrease in liver enzymes in immunocompetent subgroups, and a statistically significant decrease in immunosuppressed subgroups. Furthermore, a statistically non-significant decrease in urea and creatinine was recorded in all subgroups. Thus, silver nanoparticles proved their effectiveness against Cyclospora infection, and this will draw the attention to its use as an alternative to the standard therapy.
Collapse
Affiliation(s)
- M R Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - L A El-Zawawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - M M El-Temsahy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - Th I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Egypt
| | - A Y Hassan
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
43
|
Zhang Y, He J, Zheng H, Huang S, Lu F. Association of TREM-1, IL-1β, IL-33/ST2, and TLR Expressions With the Pathogenesis of Ocular Toxoplasmosis in Mouse Models on Different Genetic Backgrounds. Front Microbiol 2019; 10:2264. [PMID: 31649630 PMCID: PMC6794992 DOI: 10.3389/fmicb.2019.02264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Ocular toxoplasmosis (OT) is one of the most common causes of posterior uveitis. The signaling of triggering receptor expressed on myeloid cells (TREM)-1 amplifies inflammation, whereas TREM-2 signaling is anti-inflammatory. IL-1β is a major driver of inflammation during infection. Toll-like receptors (TLRs) play important roles in protective immune response during Toxoplasma gondii infection, and interleukin (IL)-33 receptor (T1/ST2) signaling prevents toxoplasmic encephalitis in mice. However, the pathogenic mechanisms of OT are not yet well elucidated. To investigate the role of TREM-1, TREM-2, IL-1β, IL-33/ST2, and TLRs in OT of susceptible C57BL/6 (B6) and resistant BALB/c mice, both strains of mice were intravitreally infected with 500 tachyzoites of the RH strain of T. gondii. Histopathological analysis showed that T. gondii-infected B6 mice had more severe ocular damage observed by light microscopy, higher number of neutrophil elastase-positive cells in the eyes detected by immunohistochemical staining, more T. gondii tachyzoites in the eyes observed by transmission electron microscopy, and higher mRNA expression levels of tachyzoite-specific surface antigen 1 detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) in comparison of T. gondii-infected BALB/c mice. Detected by using qRT-PCR, the mRNA expression levels of TREM-1, IL-1β, IL-33, ST2, TLR11, TLR12, and TLR13 were significantly higher in the eyes of T. gondii-infected B6 mice than those of T. gondii-infected BALB/c mice, whereas the mRNA expression levels of TLR3 and TLR9 were significantly higher in the eyes of T. gondii-infected BALB/c mice than those of T. gondii-infected B6 mice. Correlation analysis showed that significant positive correlations existed between TREM-1 and IL-1β/IL-33/ST2/TLR9/TLR11 in the eyes of B6 mice and existed between TREM-1 and IL-33/ST2/TLR3/TLR9/TLR13 in the eyes of BALB/c mice after ocular T. gondii infection. Our data revealed that, compared with T. gondii-resistant BALB/c mice, ocular T. gondii infection can stimulate higher production of TREM-1, IL-33, ST2, TLR11, TLR12, and TLR13 in the eyes of T. gondii-susceptible B6 mice, however, whether those lead to more severe ocular pathology in the susceptible B6 mice remain to be further studied.
Collapse
Affiliation(s)
- Yanxia Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Public Experimental Teaching Center, Sun Yat-sen University, Guangzhou, China
| | - Huanqin Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
López-Yglesias AH, Camanzo E, Martin AT, Araujo AM, Yarovinsky F. TLR11-independent inflammasome activation is critical for CD4+ T cell-derived IFN-γ production and host resistance to Toxoplasma gondii. PLoS Pathog 2019; 15:e1007872. [PMID: 31194844 PMCID: PMC6599108 DOI: 10.1371/journal.ppat.1007872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/28/2019] [Accepted: 05/25/2019] [Indexed: 01/27/2023] Open
Abstract
Innate recognition of invading intracellular pathogens is essential for regulating robust and rapid CD4+ T cell effector function, which is critical for host-mediated immunity. The intracellular apicomplexan parasite, Toxoplasma gondii, is capable of infecting almost any nucleated cell of warm-blooded animals, including humans, and establishing tissue cysts that persist throughout the lifetime of the host. Recognition of T. gondii by TLRs is essential for robust IL-12 and IFN-γ production, two major cytokines involved in host resistance to the parasite. In the murine model of infection, robust IL-12 and IFN-γ production have been largely attributed to T. gondii profilin recognition by the TLR11 and TLR12 heterodimer complex, resulting in Myd88-dependent IL-12 production. However, TLR11 or TLR12 deficiency failed to recapitulate the acute susceptibility to T. gondii infection seen in Myd88-/- mice. T. gondii triggers inflammasome activation in a caspase-1-dependent manner resulting in cytokine release; however, it remains undetermined if parasite-mediated inflammasome activation impacts IFN-γ production and host resistance to the parasite. Using mice which lack different inflammasome components, we observed that the inflammasome played a limited role in host resistance when TLR11 remained functional. Strikingly, in the absence of TLR11, caspase-1 and -11 played a significant role for robust CD4+ TH1-derived IFN-γ responses and host survival. Moreover, we demonstrated that in the absence of TLR11, production of the caspase-1-dependent cytokine IL-18 was sufficient and necessary for CD4+ T cell-derived IFN-γ responses. Mechanistically, we established that T. gondii-mediated activation of the inflammasome and IL-18 were critical to maintain robust CD4+ TH1 IFN-γ responses during parasite infection in the absence of TLR11. It is currently estimated that one third of the world’s population is seropositive for the parasite Toxoplasma gondii and this parasite can lead to serious illness and death in immunocompromised patients, and is one of the leading causes of foodborne-related deaths in the United States. Host immunity against the parasite has largely been attributed to recognition of the parasite-derived protein, profilin, by the innate Toll-like receptors (TLRs), TLR11 and TLR12. T. gondii also triggers inflammasome activation in a caspase-1-dependent manner resulting in cytokine release. However, how these innate recognition systems regulate TH1 immunity and host resistance remains largely unknown. Therefore, using genetically modified mice, we investigated TLR11-dependent and -independent host immunity against the parasite. Our research establishes that in the absence of TLR11, inflammasome activation and subsequent production of the inflammasome-dependent molecule, IL-18 are critical for host immunity to the parasite. These data provide novel mechanistic insight into how TLR and inflammasomes cooperate in regulation of TH1 immunity and host protection.
Collapse
Affiliation(s)
- Américo H. López-Yglesias
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY United States of America
| | - Ellie Camanzo
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY United States of America
| | - Andrew T. Martin
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY United States of America
| | - Alessandra M. Araujo
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY United States of America
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY United States of America
- * E-mail:
| |
Collapse
|
45
|
Ahn JH, Cho J, Kwon BE, Lee GS, Yoon SI, Kang SG, Kim PH, Kweon MN, Yang H, Vallance BA, Kim YI, Chang SY, Ko HJ. IκBζ facilitates protective immunity against Salmonella infection via Th1 differentiation and IgG production. Sci Rep 2019; 9:8397. [PMID: 31182790 PMCID: PMC6557891 DOI: 10.1038/s41598-019-44019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/23/2019] [Indexed: 01/12/2023] Open
Abstract
Inhibitor of kappa B (IκB)-ζ transcription is rapidly induced by stimulation with TLR ligands and IL-1. Despite high IκBζ expression in inflammation sites, the association of IκBζ with host defence via systemic immune responses against bacterial infection remains unclear. Oral immunisation with a recombinant attenuated Salmonella vaccine (RASV) strain did not protect IκBζ-deficient mice against a lethal Salmonella challenge. IκBζ-deficient mice failed to produce Salmonella LPS-specific IgG, especially IgG2a, although inflammatory cytokine production and immune cell infiltration into the liver increased after oral RASV administration. Moreover, IκBζ-deficient mice exhibited enhanced splenic germinal centre reactions followed by increased total IgG production, despite IκBζ-deficient B cells having an intrinsic antibody class switching defect. IκBζ-deficient CD4+ T cells poorly differentiated into Th1 cells. IFN-γ production by CD4+ T cells from IκBζ-deficient mice immunised with RASV significantly decreased after restimulation with heat-killed RASV in vitro, suggesting that IκBζ-deficient mice failed to mount protective immune responses against Salmonella infection because of insufficient Th1 and IgG production. Therefore, IκBζ is crucial in protecting against Salmonella infection by inducing Th1 differentiation followed by IgG production.
Collapse
Affiliation(s)
- Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Hyungjun Yang
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea.
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
46
|
Liu K, Wen H, Cai H, Wu M, An R, Chu D, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Toxoplasma gondii Macrophage Migration Inhibitory Factor. Front Microbiol 2019; 10:813. [PMID: 31105655 PMCID: PMC6491892 DOI: 10.3389/fmicb.2019.00813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for toxoplasmosis, which can cause severe disease in the fetus and immunocompromised individuals. Developing an effective vaccine is crucial to control this disease. Macrophage migration inhibitory factor (MIF) has gained substantial attention as a pivotal upstream cytokine to mediate innate and adaptive immune responses. Homologs of MIF have been discovered in many parasitic species, and one homolog of MIF has been isolated from the parasite Toxoplasma gondii. In this study, the recombinant Toxoplasma gondii MIF (rTgMIF) as a protein vaccine was expressed and evaluated by intramuscular injection in BALB/c mice. We divided the mice into different dose groups of vaccines, and all immunizations with purified rTgMIF protein were performed at 0, 2, and 4 weeks. The protective efficacy of vaccination was analyzed by antibody assays, cytokine measurements and lymphoproliferative assays, respectively. The results obtained indicated that the rTgMIF vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody and IFN-γ production compared to those of the controls, in addition to slight higher levels of IL-4 production. After vaccination, a stronger lymphoproliferative response was also noted. Additionally, the survival time of mice immunized with rTgMIF was longer than that of the mice in control groups after challenge infection with virulent T. gondii RH tachyzoites. Moreover, the number of brain tissue cysts in vaccinated mice was reduced by 62.26% compared with the control group. These findings demonstrated that recombinant TgMIF protein is a potential candidate for vaccine development against toxoplasmosis.
Collapse
Affiliation(s)
- Kang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Abstract
Neutrophils are increasingly appreciated as multifaceted regulators of innate immunity and inflammation. Historically, these important innate cells have been considered suicidal phagocytes with a primary role in the destruction of extracellular pathogens. Recent studies have significantly altered this simplistic view of neutrophils and have instead presented extensive evidence for a complex role for neutrophils in the control of diverse inflammatory conditions. It is now appreciated that neutrophils are crucial not only for efficient clearance of various pathogens but also in the development and control of inflammatory states such as autoimmunity, cancer, and tissue repair. Mounting evidence also suggests that neutrophils are capable of differential activation giving rise to distinctly polarized cells with diverse effector functions. Interferon lambda (IFN-λ) (also known as type III IFN) has emerged as an unexpected regulator of neutrophil function. IFN-λs are the newest members of the IFN family of antiviral cytokines and although initial studies suggested identical biological activities to type I IFNs, it is now apparent that type III IFN has distinct functions in vivo. In this article, I summarize recent evidence linking type III IFNs to the regulation and potential tailoring of neutrophil responses. These exciting observations might have important implications for the development of IFN-λs as novel therapeutic cytokines for the treatment of a diversity of inflammatory states where neutrophils are crucial players.
Collapse
Affiliation(s)
- Amariliz Rivera
- Department of Pediatrics, Center for Immunity and Inflammation, Rutgers Health and Biomedical Sciences, Newark, New Jersey
| |
Collapse
|
48
|
Hussain K, Hargreaves CE, Rowley TF, Sopp JM, Latham KV, Bhatta P, Sherington J, Cutler RM, Humphreys DP, Glennie MJ, Strefford JC, Cragg MS. Impact of Human FcγR Gene Polymorphisms on IgG-Triggered Cytokine Release: Critical Importance of Cell Assay Format. Front Immunol 2019; 10:390. [PMID: 30899264 PMCID: PMC6417454 DOI: 10.3389/fimmu.2019.00390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibody (mAb) immunotherapy has transformed the treatment of allergy, autoimmunity, and cancer. The interaction of mAb with Fc gamma receptors (FcγR) is often critical for efficacy. The genes encoding the low-affinity FcγR have single nucleotide polymorphisms (SNPs) and copy number variation that can impact IgG Fc:FcγR interactions. Leukocyte-based in vitro assays remain one of the industry standards for determining mAb efficacy and predicting adverse responses in patients. Here we addressed the impact of FcγR genetics on immune cell responses in these assays and investigated the importance of assay format. FcγR genotyping of 271 healthy donors was performed using a Multiplex Ligation-Dependent Probe Amplification assay. Freeze-thawed/pre-cultured peripheral blood mononuclear cells (PBMCs) and whole blood samples from donors were stimulated with reagents spanning different mAb functional classes to evaluate the association of FcγR genotypes with T-cell proliferation and cytokine release. Using freeze-thawed/pre-cultured PBMCs, agonistic T-cell-targeting mAb induced T-cell proliferation and the highest levels of cytokine release, with lower but measurable responses from mAb which directly require FcγR-mediated cellular effects for function. Effects were consistent for individual donors over time, however, no significant associations with FcγR genotypes were observed using this assay format. In contrast, significantly elevated IFN-γ release was associated with the FCGR2A-131H/H genotype compared to FCGR2A-131R/R in whole blood stimulated with Campath (p ≤ 0.01) and IgG1 Fc hexamer (p ≤ 0.05). Donors homozygous for both the high affinity FCGR2A-131H and FCGR3A-158V alleles mounted stronger IFN-γ responses to Campath (p ≤ 0.05) and IgG1 Fc Hexamer (p ≤ 0.05) compared to donors homozygous for the low affinity alleles. Analysis revealed significant reductions in the proportion of CD14hi monocytes, CD56dim NK cells (p ≤ 0.05) and FcγRIIIa expression (p ≤ 0.05), in donor-matched freeze-thawed PBMC compared to whole blood samples, likely explaining the difference in association between FcγR genotype and mAb-mediated cytokine release in the different assay formats. These findings highlight the significant impact of FCGR2A and FCGR3A SNPs on mAb function and the importance of using fresh whole blood assays when evaluating their association with mAb-mediated cytokine release in vitro. This knowledge can better inform on the utility of in vitro assays for the prediction of mAb therapy outcome in patients.
Collapse
Affiliation(s)
- Khiyam Hussain
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chantal E. Hargreaves
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Joshua M. Sopp
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kate V. Latham
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | - Martin J. Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan C. Strefford
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
49
|
Reynolds CJ, Chong DLW, Li Y, Black SL, Cutler A, Webster Z, Manji J, Altmann DM, Boyton RJ. Bioluminescent Reporting of In Vivo IFN-γ Immune Responses during Infection and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2502-2510. [PMID: 30814307 PMCID: PMC6452029 DOI: 10.4049/jimmunol.1801453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
IFN-γ is a key cytokine of innate and adaptive immunity. It is important to understand temporal changes in IFN-γ production and how these changes relate to the role of IFN-γ in diverse models of infectious and autoimmune disease, making the ability to monitor and track IFN-γ production in vivo of a substantial benefit. IFN-γ ELISPOTs have been a central methodology to measure T cell immunity for many years. In this study, we add the capacity to analyze IFN-γ responses with high sensitivity and specificity, longitudinally, in vitro and in vivo. This allows the refinement of experimental protocols because immunity can be tracked in real-time through a longitudinal approach. We have generated a novel murine IFN-γ reporter transgenic model that allows IFN-γ production to be visualized and quantified in vitro and in vivo as bioluminescence using an imaging system. At baseline, in the absence of an inflammatory stimulus, IFN-γ signal from lymphoid tissue is detectable in vivo. Reporter transgenics are used in this study to track the IFN-γ response to Pseudomonas aeruginosa infection in the lung over time in vivo. The longitudinal development of the adaptive T cell immunity following immunization with Ag is identified from day 7 in vivo. Finally, we show that we are able to use this reporter transgenic to follow the onset of autoimmune T cell activation after regulatory T cell depletion in an established model of systemic autoimmunity. This IFN-γ reporter transgenic, termed “Gammaglow,” offers a valuable new modality for tracking IFN-γ immunity, noninvasively and longitudinally over time.
Collapse
Affiliation(s)
- Catherine J Reynolds
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| | - Deborah L W Chong
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| | - Yihan Li
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| | - S Lucas Black
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| | - Amy Cutler
- Transgenics and Embryonic Stem Cell Facility, Medical Research Council London Institute of Medical Sciences, London W12 ONN, United Kingdom
| | - Zoe Webster
- Transgenics and Embryonic Stem Cell Facility, Medical Research Council London Institute of Medical Sciences, London W12 ONN, United Kingdom
| | - Jiten Manji
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| | - Daniel M Altmann
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| | - Rosemary J Boyton
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London W12 ONN, United Kingdom; and
| |
Collapse
|
50
|
Kwon KW, Kim SJ, Kim H, Kim WS, Kang SM, Choi E, Ha SJ, Yoon JH, Shin SJ. IL-15 Generates IFN-γ-producing Cells Reciprocally Expressing Lymphoid-Myeloid Markers during Dendritic Cell Differentiation. Int J Biol Sci 2019; 15:464-480. [PMID: 30745835 PMCID: PMC6367559 DOI: 10.7150/ijbs.25743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/02/2018] [Indexed: 11/23/2022] Open
Abstract
Recently, interest in IL-15-differentiated cells has increased; however, the phenotypic definition of IL-15-differentiated bone marrow-derived cells (IL-15-DBMCs) is still under debate, particularly the generation of IFN-γ-producing innate cells such as premature NK (pre-mNK) cells, natural killer dendritic cells (NKDCs), interferon-producing killer dendritic cells (IKDCs), and type 1 innate lymphoid cells (ILC1s), all of which are IL-15-dependent. Here, we revisited the immunophenotypic characteristics of IFN-γ-producing IL-15-DBMCs and their functional role in the control of intracellular Mycobacterium tuberculosis (Mtb) infection. When comparing the cytokine levels between bone marrow-derived dendritic cells (BMDCs) and IL-15-DBMCs upon stimulation with various TLR agonists, only the CD11cint population of IL-15-DBMCs produced significant levels of IFN-γ, decreased levels of MHC-II, and increased levels of B220. Neither BMDCs nor IL-15-DBMCs were found to express DX5 or NK1.1, which are representative markers for the NK cell lineage and IKDCs. When the CD11cintB220+ population of IL-15-DBMCs was enriched, the Thy1.2+Sca-1+ population showed a marked increase in IFN-γ production. In addition, while depletion of the B220+ and Thy1.2+ populations of IL-15-DBMCs, but not the CD19+ population, inhibited IFN-γ production, enrichment of these cell populations increased IFN-γ. Ultimately, co-culture of sorted IFN-γ-producing B220+Thy1.2+ IL-15-DBMCs with Mtb-infected macrophages resulted in control of the intracellular growth of Mtb via the IFN-γ-nitric oxide axis in a donor cell number-dependent manner. Taken together, the results indicate that IFN-γ-producing IL-15-DBMCs could be redefined as CD11cintB220+Thy1.2+Sca-1+ cells, which phenotypically resemble both IKDCs and ILC1s, and may have therapeutic potential for controlling infectious intracellular bacteria such as Mtb.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, and Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|