1
|
Shorey-Kendrick LE, Crosland BA, Schabel MC, Messaoudi I, Guo M, Drake MG, Nie Z, Edenfield RC, Cinco I, Davies MH, Graham JA, Hagen OL, McCarty OJT, McEvoy CT, Spindel ER, Lo JO. Effects of maternal edible THC consumption on offspring lung growth and function in a rhesus macaque model. Am J Physiol Lung Cell Mol Physiol 2025; 328:L463-L477. [PMID: 39903192 DOI: 10.1152/ajplung.00360.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Prenatal cannabis use is rising, in part due to legalization and perceptions of safety. The impact of prenatal cannabis exposure on offspring development, especially respiratory health, remains largely unknown. The objective of this study was to determine whether in utero exposure to delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, is deleterious to offspring lung development and function using a rhesus macaque model. Female rhesus macaques received a daily edible containing either THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) or placebo during gestation and postnatally. Serial in utero magnetic resonance imaging (MRI) was performed during pregnancy at approximately gestational days (G)110 and G150. At 6 mo of age, infants underwent pulmonary function testing, followed by tissue collection for molecular analysis (bulk RNAseq, whole genome bisulfite sequencing, and spatial RNAseq). THC-exposed infants displayed significantly reduced forced residual capacity, which correlated with nonsignificant decreases in total lung capacity, lung diffusion capacity and lower fetal lung perfusion, oxygen availability, and lung volume measured by MRI. Consistent with these decreases in volume indices, levels of pulmonary growth factors were decreased in bronchial alveolar lavage at 6 mo. Molecular analysis of infant lungs revealed altered epigenetic regulation of gene expression, including at genes involved in extracellular matrix organization and lung development, and activation of immune signaling. Our study suggests that exposure to prenatal edible THC alters epigenetic regulation of lung gene expression and may negatively affect offspring lung development and function. Data from this study will help guide healthcare provider counseling on cannabis use in pregnancy.NEW & NOTEWORTHY In a translational rhesus macaque model, chronic prenatal delta-9-tetrahydrocannabinol exposure resulted in decreased lung volumes in offspring measured at 6 mo of age. These decreases correlated with altered DNA methylation in the lung, including at genes involved in extracellular matrix organization, lung development, and activation of immune signaling, and changes in lung cell composition as measured by spatial transcriptomics. These findings add to the growing evidence that prenatal cannabis exposure may adversely affect offspring development.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - B Adam Crosland
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, United States
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Minzhe Guo
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - R Clayton Edenfield
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, United States
| | - Issac Cinco
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Michael H Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Jason A Graham
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, United States
| | - Olivia L Hagen
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Cindy T McEvoy
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Jamie O Lo
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, Oregon, United States
| |
Collapse
|
2
|
Zhou JY, Chen YQ, Hu G, Zhao H, Wan JB. An integrated strategy for in-depth profiling of N-acylethanolamines in biological samples by UHPLC-HRMS. Anal Chim Acta 2024; 1329:343262. [PMID: 39396319 DOI: 10.1016/j.aca.2024.343262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND N-acylethanolamines (NAEs) are a class of naturally occurring bioactive lipids that play crucial roles in various physiological processes, particularly exhibiting neuroprotective and anti-inflammatory properties. However, the comprehensive profiling of endogenous NAEs in complex biological matrices is challenging due to their low abundance, structural similarity and the limited availability of commercial standards. Here, we propose an integrated strategy for comprehensive profiling of NAEs that combines chemical derivatization and a three-dimensional (3D) prediction model based on quantitative structure-retention time relationship (QSRR) using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS). RESULTS After acetyl chloride (ACC) derivatization, the detection sensitivity of NAEs was significantly improved. We developed a QSRR prediction model to construct an in-house database for 141 NAEs, encompassing information on RT, MS1 (m/z), and MS/MS spectra. Propargylamine-labeled fatty acids were synthesized as RT calibrants across various analytical conditions to enhance the robustness of the RT prediction model. NAEs in biological samples were then in-depth profiled using parallel reaction monitoring (PRM) acquisition. This integrated strategy identified and annotated a total of 50 NAEs across serum, hippocampus and cortex tissues from a 5xFAD mouse model of Alzheimer's disease (AD). Notably, the levels of polyunsaturated NAEs, particularly NAE 20:5 and NAE 22:6, were significantly decreased in 5xFAD mice compared to WT mice, as confirmed by accurate quantitation using ACC-d0/d3 derivatization. SIGNIFICANCE Our integrated strategy exhibits great potential for the in-depth profiling of NAEs in complex biological samples, facilitating the elucidation of NAE functions in diverse physiological and pathological processes.
Collapse
Affiliation(s)
- Jun-Yi Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan-Qing Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
3
|
Guo Y, Wei X, Pei J, Yang H, Zheng XL. Dissecting the role of cannabinoids in vascular health and disease. J Cell Physiol 2024; 239:e31373. [PMID: 38988064 DOI: 10.1002/jcp.31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cannabis, often recognized as the most widely used illegal psychoactive substance globally, has seen a shift in its legal status in several countries and regions for both recreational and medicinal uses. This change has brought to light new evidence linking cannabis consumption to various vascular conditions. Specifically, there is an association between cannabis use and atherosclerosis, along with conditions such as arteritis, reversible vasospasm, and incidents of aortic aneurysm or dissection. Recent research has started to reveal the mechanisms connecting cannabinoid compounds to atherosclerosis development. It is well known that the primary biological roles of cannabinoids operate through the activation of cannabinoid receptor types 1 and 2. Manipulation of the endocannabinoid system, either genetically or pharmacologically, is emerging as a promising approach to address metabolic dysfunctions related to obesity. Additionally, numerous studies have demonstrated the vasorelaxant properties and potential atheroprotective benefits of cannabinoids. In preclinical trials, cannabidiol is being explored as a treatment option for monocrotaline-induced pulmonary arterial hypertension. Although existing literature suggests a direct role of cannabinoids in the pathogenesis of atherosclerosis, the correlation between cannabinoids and other vascular diseases was only reported in some case series or observational studies, and its role and precise mechanisms remain unclear. Therefore, it is necessary to summarize and update previously published studies. This review article aims to summarize the latest clinical and experimental research findings on the relationship between cannabis use and vascular diseases. It also seeks to shed light on the potential mechanisms underlying these associations, offering a comprehensive view of current knowledge in this evolving field of study.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoyun Wei
- Department of Cardiology, The Fifth School of Clinical Medicine of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junyu Pei
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Haibo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Seidinger A, Roberts R, Bai Y, Müller M, Pfeil E, Matthey M, Rieck S, Alenfelder J, König GM, Pfeifer A, Kostenis E, Klinke A, Fleischmann BK, Wenzel D. Pharmacological Gq inhibition induces strong pulmonary vasorelaxation and reverses pulmonary hypertension. EMBO Mol Med 2024; 16:1930-1956. [PMID: 38977926 PMCID: PMC11319782 DOI: 10.1038/s44321-024-00096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease with limited survival. Herein, we propose the pharmacological inhibition of Gq proteins as a novel concept to counteract pulmonary vasoconstriction and proliferation/migration of pulmonary artery smooth muscle cells (PASMCs) in PAH. We demonstrate that the specific pan-Gq inhibitor FR900359 (FR) induced a strong vasorelaxation in large and small pulmonary arteries in mouse, pig, and human subjects ex vivo. Vasorelaxation by FR proved at least as potent as the currently used triple therapy. We also provide in vivo evidence that local pulmonary application of FR prevented right ventricular systolic pressure increase in healthy mice as well as in mice suffering from hypoxia (Hx)-induced pulmonary hypertension (PH). In addition, we demonstrate that chronic application of FR prevented and also reversed Sugen (Su)Hx-induced PH in mice. We also demonstrate that Gq inhibition reduces proliferation and migration of PASMCs in vitro. Thus, our work illustrates a dominant role of Gq proteins for pulmonary vasoconstriction as well as remodeling and proposes direct Gq inhibition as a powerful pharmacological strategy in PH.
Collapse
Affiliation(s)
- Alexander Seidinger
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Richard Roberts
- Pharmacology Research Group, University Hospital of Nottingham, Nottingham, UK
| | - Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Eva Pfeil
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany.
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Genovese T, Duranti A, Monaco F, Siracusa R, Fusco R, Impellizzeri D, D’Amico R, Cordaro M, Cuzzocrea S, Di Paola R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10125. [PMID: 37373275 PMCID: PMC10298572 DOI: 10.3390/ijms241210125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
6
|
Lohova E, Pilmane M. Expression of MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13 in Healthy and Metaplastic Bronchial Epithelium. Diseases 2022; 11:diseases11010005. [PMID: 36648870 PMCID: PMC9844475 DOI: 10.3390/diseases11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background: The normal tissue structure of the respiratory system is necessary to provide adequate protection of the airways and lungs. Prolonged exposure to trigger factors can result in adaptive mechanism activation and lead to the development of chronic pulmonary diseases or even dysplastic changes. Materials and methods: Respiratory system material with a pseudostratified ciliated epithelium was obtained from 12 patients (aged 16 to 95), and material with a stratified squamosa epithelium was obtained from six patients (aged 23 to 93). Routine staining was performed, and an immunohistochemistry was conducted for MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13. Results: Inflammatory processes were not detected in any of the specimens. A number of correlations were identified, with the most important being a strong positive correlation for IL-13 between the alveolar epithelium and alveolar macrophages and a strong positive correlation for IL-6 between the alveolar epithelium and alveolar macrophages in the stratified squamous epithelium group. We also detected a statistically significant difference in IL-6 in alveolar macrophages. Conclusions: There were no signs of dysplastic changes in either group. Increased secretion of IL-13 in the stratified squamous epithelium group shows its involvement in metaplastic changes in the bronchial epithelium. The secretion of atypical factors by hyaline cartilage demonstrates its plasticity and adaptability.
Collapse
|
7
|
Simon A, von Einem T, Seidinger A, Matthey M, Bindila L, Wenzel D. The endocannabinoid anandamide is an airway relaxant in health and disease. Nat Commun 2022; 13:6941. [PMID: 36396957 PMCID: PMC9672354 DOI: 10.1038/s41467-022-34327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive airway diseases are a global medical burden that is expected to increase in the near future. However, the underlying mechanistic processes are poorly understood so far. Herein, we show that the endocannabinoid anandamide (AEA) induces prominent airway relaxation in vitro and in vivo. In contrast to 2-arachidonlyglycerol-induced airway relaxation, this is mediated by fatty acid amide hydrolase (FAAH)-dependent metabolites. In particular, we identify mouse and also human epithelial and airway smooth muscle cells as source of AEA-induced prostaglandin E2 production and cAMP as direct mediator of AEA-dependent airway relaxation. Mass spectrometry experiments demonstrate reduced levels of endocannabinoid-like compounds in lungs of ovalbumin-sensitized mice indicating a pathophysiological relevance of endocannabinoid signalling in obstructive airway disease. Importantly, AEA inhalation protects against airway hyper-reactivity after ovalbumin sensitization. Thus, this work highlights the AEA/FAAH axis as a critical regulator of airway tone that could provide therapeutic targets for airway relaxation.
Collapse
Affiliation(s)
- Annika Simon
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Thomas von Einem
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alexander Seidinger
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Michaela Matthey
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Laura Bindila
- grid.410607.4Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Daniela Wenzel
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany ,grid.10388.320000 0001 2240 3300Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Thomas JM, Sasankan D, Abraham M, Surendran S, Kartha CC, Rajavelu A. DNA methylation signatures on vascular differentiation genes are aberrant in vessels of human cerebral arteriovenous malformation nidus. Clin Epigenetics 2022; 14:127. [PMID: 36229855 PMCID: PMC9563124 DOI: 10.1186/s13148-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Arteriovenous malformation (AVM) is a tangle of arteries and veins, rupture of which can result in catastrophic hemorrhage in vulnerable sites such as the brain. Cerebral AVM is associated with a high mortality rate in humans. The causative factor or the stimulus at the artery-venous junction and the molecular basis of the development and progression of cerebral AVM remain unknown. While it is known that aberrant hemodynamic forces in the artery-vein junction contribute to the development of AVMs, the mechanistic pathways are unclear. Given that various environmental stimuli modulate epigenetic modifications on the chromatin of cells, we speculated that misregulated DNA methylome could lead to cerebral AVM development. To identify the aberrant epigenetic signatures, we used AVM nidus tissues and analyzed the global DNA methylome using the Infinium DNA methylome array. We observed significant alterations of DNA methylation in the genes associated with the vascular developmental pathway. Further, we validated the DNA hypermethylation by DNA bisulfite sequencing analysis of selected genes from human cerebral AVM nidus. Taken together, we provide the first experimental evidence for aberrant epigenetic signatures on the genes of vascular development pathway, in human cerebral AVM nidus.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Dhakshmi Sasankan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India, 695011
| | - Sumi Surendran
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Chandrasekharan C Kartha
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
9
|
Why Multitarget Vasodilatory (Endo)cannabinoids are Not Effective as Antihypertensive Compounds after Chronic Administration: Comparison of Their Effects on Systemic and Pulmonary Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15091119. [PMID: 36145339 PMCID: PMC9503677 DOI: 10.3390/ph15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic and pulmonary hypertension are multifactorial, high-pressure diseases. The first one is a civilizational condition, and the second one is characterized by a very high mortality rate. Searching for new therapeutic strategies is still an important task. (Endo)cannabinoids, known for their strong vasodilatory properties, have been proposed as possible drugs for different types of hypertension. Unfortunately, our review, in which we summarized all publications found in the PubMed database regarding chronic administration of (endo)cannabinoids in experimental models of systemic and pulmonary hypertension, does not confirm any encouraging suggestions, being based mainly on in vitro and acute in vivo experiments. We considered vasodilator or blood pressure (BP) responses and cardioprotective, anti-oxidative, and the anti-inflammatory effects of particular compounds and their influence on the endocannabinoid system. We found that multitarget (endo)cannabinoids failed to modify higher BP in systemic hypertension since they induced responses leading to decreased and increased BP. In contrast, multitarget cannabidiol and monotarget ligands effectively treated pulmonary and systemic hypertension, respectively. To summarize, based on the available literature, only (endo)cannabinoids with a defined site of action are recommended as potential antihypertensive compounds in systemic hypertension, whereas both mono- and multitarget compounds may be effective in pulmonary hypertension.
Collapse
|
10
|
Jain A, Gandhi Z, Desai R, Mansuri U, Rizvi B, Alvarez M, Gupta P. Nationwide Trends in Hospitalizations and Outcomes of Pulmonary Circulation Disorders Among Patients With Cannabis Use Disorder in the United States. Cureus 2022; 14:e22897. [PMID: 35399488 PMCID: PMC8983119 DOI: 10.7759/cureus.22897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 11/05/2022] Open
|
11
|
Genovese T, Duranti A, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Crupi R, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Fatty Acid Amide Hydrolase (FAAH) Inhibition Plays a Key Role in Counteracting Acute Lung Injury. Int J Mol Sci 2022; 23:2781. [PMID: 35269926 PMCID: PMC8910911 DOI: 10.3390/ijms23052781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Acute lung injury (ALI) is a group of lung illnesses characterized by severe inflammation, with no treatment. The fatty acid amide hydrolase (FAAH) enzyme is an integral membrane protein responsible for the hydrolysis of the main endocannabinoids, such as anandamide (AEA). In pre-clinical pain and inflammation models, increasing the endogenous levels of AEA and other bioactive fatty acid amides (FAAs) via genetic deletion or the pharmacological inhibition of FAAH produces many analgesic benefits in several different experimental models. To date, nobody has investigated the role of FAAH inhibition on an ALI mouse model. Mice were subjected to a carrageenan injection and treated orally 1 h after with the FAAH inhibitor URB878 dissolved in a vehicle consisting of 10% PEG-400, 10% Tween-80 and 80% saline at different doses: The inhibition of FAAH activity was able to counteract not only the CAR-induced histological alteration, but also the cascade of related inflammatory events. URB878 clears the way for further studies based on FAAH inhibition in acute lung pathologies.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
12
|
Rieck S, Kilgus S, Meyer JH, Huang H, Zhao L, Matthey M, Wang X, Schmitz-Valckenberg S, Fleischmann BK, Wenzel D. Inhibition of Vascular Growth by Modulation of the Anandamide/Fatty Acid Amide Hydrolase Axis. Arterioscler Thromb Vasc Biol 2021; 41:2974-2989. [PMID: 34615374 PMCID: PMC8608012 DOI: 10.1161/atvbaha.121.316973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Pathological angiogenesis is a hallmark of various diseases characterized by local hypoxia and inflammation. These disorders can be treated with inhibitors of angiogenesis, but current compounds display a variety of side effects and lose efficacy over time. This makes the identification of novel signaling pathways and pharmacological targets involved in angiogenesis a top priority. Approach and Results: Here, we show that inactivation of FAAH (fatty acid amide hydrolase), the enzyme responsible for degradation of the endocannabinoid anandamide, strongly impairs angiogenesis in vitro and in vivo. Both, the pharmacological FAAH inhibitor URB597 and anandamide induce downregulation of gene sets for cell cycle progression and DNA replication in endothelial cells. This is underscored by cell biological experiments, in which both compounds inhibit proliferation and migration and evoke cell cycle exit of endothelial cells. This prominent antiangiogenic effect is also of pathophysiological relevance in vivo, as laser-induced choroidal neovascularization in the eye of FAAH−/− mice is strongly reduced. Conclusions: Thus, elevation of endogenous anandamide levels by FAAH inhibition represents a novel antiangiogenic mechanism.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Sofia Kilgus
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Johanna H Meyer
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Michaela Matthey
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany.,John A. Moran Eye Center, Ophthalmology & Visual Science, University of Utah, Salt Lake City (S.S.-V.)
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany.,Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| |
Collapse
|
13
|
Gierhardt M, Pak O, Walmrath D, Seeger W, Grimminger F, Ghofrani HA, Weissmann N, Hecker M, Sommer N. Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. Eur Respir Rev 2021; 30:30/161/210059. [PMID: 34526314 DOI: 10.1183/16000617.0059-2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.
Collapse
Affiliation(s)
- Mareike Gierhardt
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI) Bad Nauheim, Germany
| | - Oleg Pak
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Dieter Walmrath
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Werner Seeger
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Institute for Lung Health (ILH), Giessen, Germany
| | - Friedrich Grimminger
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Hossein A Ghofrani
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK
| | - Norbert Weissmann
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Matthias Hecker
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Both authors contributed equally
| | - Natascha Sommer
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Both authors contributed equally
| |
Collapse
|
14
|
Cannabinoids-A New Perspective in Adjuvant Therapy for Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms221810048. [PMID: 34576212 PMCID: PMC8472313 DOI: 10.3390/ijms221810048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, no treatment can completely cure pulmonary hypertension (PH), which can lead to right ventricular failure and, consequently, death. Therefore, searching for new therapies remains important. Increased resistance in pulmonary circulation is mainly caused by the excessive contraction and proliferation of small pulmonary arteries. Cannabinoids, a group of lipophilic compounds that all interact with cannabinoid receptors, exert a pulmonary vasodilatory effect through several different mechanisms, including mechanisms that depend on vascular endothelium and/or receptor-based mechanisms, and may also have anti-proliferative and anti-inflammatory properties. The vasodilatory effect is important in regulating pulmonary resistance, which can improve patients’ quality of life. Moreover, experimental studies on the effects of cannabidiol (plant-derived, non-psychoactive cannabinoid) in animal PH models have shown that cannabidiol reduces right ventricular systolic pressure and excessive remodelling and decreases pulmonary vascular hypertrophy and pulmonary vascular resistance. Due to the potentially beneficial effects of cannabinoids on pulmonary circulation and PH, in this work, we review whether cannabinoids can be used as an adjunctive therapy for PH. However, clinical trials are still needed to recommend the use of cannabinoids in the treatment of PH.
Collapse
|
15
|
Baranowska-Kuczko M, Kozłowska H, Kloza M, Harasim-Symbor E, Biernacki M, Kasacka I, Malinowska B. Beneficial Changes in Rat Vascular Endocannabinoid System in Primary Hypertension and under Treatment with Chronic Inhibition of Fatty Acid Amide Hydrolase by URB597. Int J Mol Sci 2021; 22:4833. [PMID: 34063297 PMCID: PMC8125657 DOI: 10.3390/ijms22094833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.
Collapse
Affiliation(s)
- Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
- Department of Clinical Pharmacy, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Białystok, ul. Mickiewicza 2D, 15-222 Białystok, Poland;
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
| |
Collapse
|
16
|
Sadowska O, Baranowska-Kuczko M, Gromotowicz-Popławska A, Biernacki M, Kicman A, Malinowska B, Kasacka I, Krzyżewska A, Kozłowska H. Cannabidiol Ameliorates Monocrotaline-Induced Pulmonary Hypertension in Rats. Int J Mol Sci 2020; 21:ijms21197077. [PMID: 32992900 PMCID: PMC7582795 DOI: 10.3390/ijms21197077] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cannabidiol (CBD) is known for its vasorelaxant (including in the human pulmonary artery), anti-proliferative and anti-inflammatory properties. The aim of our study was to examine the potential preventive effect of chronic CBD administration (10 mg/kg/day for three weeks) on monocrotaline (MCT)-induced pulmonary hypertension (PH) rats. PH was connected with elevation of right ventricular systolic pressure; right ventricle hypertrophy; lung edema; pulmonary artery remodeling; enhancement of the vasoconstrictor and decreasing vasodilatory responses; increases in plasma concentrations of tissue plasminogen activator, plasminogen activator inhibitor type 1 and leukocyte count; and a decrease in blood oxygen saturation. CBD improved all abovementioned changes induced by PH except right ventricle hypertrophy and lung edema. In addition, CBD increased lung levels of some endocannabinoids (anandamide, N-arachidonoyl glycine, linolenoyl ethanolamide, palmitoleoyl ethanolamide and eicosapentaenoyl ethanolamide but not 2-arachidonoylglycerol). CBD did not affect the cardiopulmonary system of control rats or other parameters of blood morphology in PH. Our data suggest that CBD ameliorates MCT-induced PH in rats by improving endothelial efficiency and function, normalization of hemostatic alterations and reduction of enhanced leukocyte count determined in PH. In conclusion, CBD may be a safe, promising therapeutic or adjuvant therapy agent for the treatment of human pulmonary artery hypertension.
Collapse
Affiliation(s)
- Olga Sadowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (O.S.); (M.B.-K.); (A.K.); (B.M.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (O.S.); (M.B.-K.); (A.K.); (B.M.); (A.K.)
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| | | | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (O.S.); (M.B.-K.); (A.K.); (B.M.); (A.K.)
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (O.S.); (M.B.-K.); (A.K.); (B.M.); (A.K.)
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (O.S.); (M.B.-K.); (A.K.); (B.M.); (A.K.)
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (O.S.); (M.B.-K.); (A.K.); (B.M.); (A.K.)
- Correspondence: ; Tel.: +48-85-748-5699
| |
Collapse
|
17
|
Wilt S, Kodani S, Le TNH, Nguyen L, Vo N, Ly T, Rodriguez M, Hudson PK, Morisseau C, Hammock BD, Pecic S. Development of multitarget inhibitors for the treatment of pain: Design, synthesis, biological evaluation and molecular modeling studies. Bioorg Chem 2020; 103:104165. [PMID: 32891856 DOI: 10.1016/j.bioorg.2020.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022]
Abstract
Multitarget-directed ligands are a promising class of drugs for discovering innovative new therapies for difficult to treat diseases. In this study, we designed dual inhibitors targeting the human fatty acid amide hydrolase (FAAH) enzyme and human soluble epoxide hydrolase (sEH) enzyme. Targeting both of these enzymes concurrently with single target inhibitors synergistically reduces inflammatory and neuropathic pain; thus, dual FAAH/sEH inhibitors are likely to be powerful analgesics. Here, we identified the piperidinyl-sulfonamide moiety as a common pharmacophore and optimized several inhibitors to have excellent inhibition profiles on both targeted enzymes simultaneously. In addition, several inhibitors show good predicted pharmacokinetic properties. These results suggest that this series of inhibitors has the potential to be further developed as new lead candidates and therapeutics in pain management.
Collapse
Affiliation(s)
- Stephanie Wilt
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Sean Kodani
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Thanh N H Le
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Lato Nguyen
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Nghi Vo
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Tanya Ly
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Mark Rodriguez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Paula K Hudson
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
18
|
Hypoxia training improves hepatic steatosis partly by downregulation of CB1 receptor in obese mice. Biochem Biophys Res Commun 2020; 525:639-645. [PMID: 32122652 DOI: 10.1016/j.bbrc.2020.02.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Hypoxia training (HT) can reduce body weight and improve fatty liver. However, the mechanism is not clear. A previous study indicated that HT-induced weight loss might be associated with the endocannabinoid system (ECS), which has also been reported recently to be involved in the persistent lipid mediators after weight loss. The present study investigated the effects of HT, a new prospective weight-loss method, on nutritionally obese mice and demonstrated that HT significantly reduced body weight, fat mass, transcriptional expression of liver endocannabinoid receptor 1 (CB1), biosynthetic enzyme diacylglycerol lipase α (DAGLα) and improved the transcriptional expression of degrading enzyme monoacylglycerol lipase (MAGL). Liver endocannabinoids 2-arachidonoylglycerol (2-AG) but not anandamide (AEA) was evidently decreased in response to HT. Simultaneously, HT significantly reduced liver index, serum alanine aminotransferase (ALT) and liver fat contents. Western blot showed decreased expression of liver CB1, sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ) and increased expression of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase-1 (CPT-1) levels after HT. However, intraperitoneal injection of CB1 receptor agonist WIN55212-2 offset the benefits by which HT reduced hepatic fat synthesis, with significant increased protein expression of SREBP-1 and PPARγ. Taken together, these findings reported the alleviation of obesity and hepatic steatosis through HT and provided a putative molecular mechanism by inhibiting the CB1-mediated fat synthesis.
Collapse
|
19
|
Endocannabinoid 2-arachidonoylglycerol is elevated in the coronary circulation during acute coronary syndrome. PLoS One 2019; 14:e0227142. [PMID: 31887202 PMCID: PMC6936850 DOI: 10.1371/journal.pone.0227142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
Objectives The endocannabinoid system modulates coronary circulatory function and atherogenesis. The two major endocannabinoids (eCB), 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA), are increased in venous blood from patients with coronary artery disease (CAD). However, given their short half-life and their autocrine/paracrine mechanism of action, eCB levels in venous blood samples might not reflect arterial or coronary eCB concentrations. The aim of this cross-sectional study was to identify the local concentration profile of eCB and to detect whether and how this concentration profile changes in CAD and NSTEMI versus patients without CAD. Methods and results 83 patients undergoing coronary angiography were included in this study. Patients were divided into three groups based on their definite diagnosis of a) no CAD, b) stable CAD, or c) non-ST-segment elevation myocardial infarction (NSTEMI). Blood was drawn from the arterial sheath and the aorta in all patients and additionally distal to the culprit coronary lesion in CAD- and NSTEMI patients. 2-AG levels varied significantly between patient groups and between the sites of blood extraction. The lowest levels were detected in patients without CAD; the highest 2-AG concentrations were detected in NSTEMI patients and in the coronary arteries. Peripheral 2-AG levels were significantly higher in NSTEMI patients (107.4 ± 28.4 pmol/ml) than in CAD- (17.4 ± 5.4 pmol/ml; p < 0.001), or no-CAD patients (23.9 ± 7.1 pmol/ml; p < 0.001). Moreover, coronary 2-AG levels were significantly higher in NSTEMI patients than in CAD patients (369.3 ± 57.2 pmol/ml vs. 240.1 ± 25.3 pmol/ml; p = 0.024). Conclusions 2-AG showed significant variability in arterial blood samples drawn from distinct locations. Possibly, lesional macrophages synthesise 2-AG locally, which thereby contributes to endothelial dysfunction and local inflammation.
Collapse
|
20
|
Malinowska B, Toczek M, Pędzińska‐Betiuk A, Schlicker E. Cannabinoids in arterial, pulmonary and portal hypertension - mechanisms of action and potential therapeutic significance. Br J Pharmacol 2019; 176:1395-1411. [PMID: 29455452 PMCID: PMC6487561 DOI: 10.1111/bph.14168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system is overactivated in arterial, pulmonary and portal hypertension. In this paper, we present limited clinical data concerning the role of cannabinoids in human hypertension including polymorphism of endocannabinoid system components. We underline differences between the acute cannabinoid administration and their potential hypotensive effect after chronic application in experimental hypertension. We discuss pleiotropic effects of cannabinoids on the cardiovascular system mediated via numerous neuronal and non‐neuronal mechanisms both in normotension and in hypertension. The final results are dependent on the model of hypertension, age, sex, the cannabinoid ligands used or the action via endocannabinoid metabolites. More experimental and clinical studies are needed to clarify the role of endocannabinoids in hypertension, not only in the search for new therapeutic strategies but also in the context of cardiovascular effects of cannabinoids and the steadily increasing legalization of cannabis use for recreational and medical purposes.Linked ArticlesThis article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc
Collapse
Affiliation(s)
- Barbara Malinowska
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | - Marek Toczek
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | - Anna Pędzińska‐Betiuk
- Department of Experimental Physiology and PathophysiologyMedical University of BiałystokBiałystokPoland
| | | |
Collapse
|
21
|
Yin H, Li X, Xia R, Yi M, Cheng Y, Wu Y, Ke B, Wang R. Posttreatment With the Fatty Acid Amide Hydrolase Inhibitor URB937 Ameliorates One-Lung Ventilation-Induced Lung Injury in a Rabbit Model. J Surg Res 2019; 239:83-91. [PMID: 30822695 DOI: 10.1016/j.jss.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND One-lung ventilation (OLV)-induced inflammation is a risk factor for acute lung injury that is responsible for 20% of postoperative pulmonary complications after lung resection. Inflammation is an important trigger for acute lung injury. Fatty acid amide hydrolase (FAAH) is the major enzyme that degrades the endocannabinoid arachidonoylethanolamine (AEA), an important regulator of inflammation, and its downstream metabolites such as arachidonic acid (AA) are also involved in inflammation. Importantly, AEA is also found in lung parenchyma. However, it remains unclear whether pharmacological inhibition of FAAH inhibitor using compounds such as URB937 can attenuate OLV-induced lung injury. MATERIALS AND METHODS New Zealand white rabbits were anesthetized to establish a modified OLV-induced lung injury model. Twenty-four male rabbits were randomly divided into four groups (n = 6): TLV-S (2.5-h two-lung ventilation [TLV] + 1.5 mL/kg saline + 1-h TLV), OLV-S (2.5-h OLV + 1.5 mL/kg saline + 0.5-h OLV + 0.5-h TLV), U-OLV (1.5 mL/kg URB937 + 3.0-h OLV + 0.5-h TLV), and OLV-U (2.5-h OLV + 1.5 mL/kg URB937 + 0.5-h OLV + 0.5-h TLV). Arterial blood gases, lung wet/dry ratio, and lung injury score of the nonventilated lungs were measured. The levels of AEA, AA, prostaglandin I2 (PGI2), thromboxane A2 (TXA2), and leukotriene B4 (LTB4) in the nonventilated lung were also quantified. RESULTS The arterial oxygenation index (PaO2/FiO2) decreased after 0.5-h OLV in the three OLV groups. The PaO2/FiO2 in the OLV-U group was better than that in the OLV-S and U-OLV groups and was accompanied with reductions in the wet/dry ratio and lung injury scores of the nonventilated lungs. The FAAH inhibitor URB937 administered not before but 2.5 h after OLV attenuated OLV-induced lung injury by increasing AEA levels and reducing the levels of downstream metabolites including AA, PGI2, TXA2, and LTB4. CONCLUSIONS Posttreatment with the FAAH inhibitor URB937 attenuated OLV-induced lung injury in rabbits and was associated with increased AEA levels and decreased levels of AA and its downstream metabolites.
Collapse
Affiliation(s)
- Hong Yin
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Anesthesiology, Fifth Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xuehan Li
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Xia
- Department of Anesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Mingliang Yi
- Department of Anesthesiology, Fifth Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yan Cheng
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Wu
- Department of Anesthesiology, Yangtze River Three Gorges Central Hospital, Chongqing, China
| | - Bowen Ke
- Department of Anesthesiology, Yangtze River Three Gorges Central Hospital, Chongqing, China
| | - Rurong Wang
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Winkler F, Herz K, Rieck S, Kimura K, Hu T, Röll W, Hesse M, Fleischmann BK, Wenzel D. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Sci Rep 2018; 8:17582. [PMID: 30514882 PMCID: PMC6279819 DOI: 10.1038/s41598-018-36039-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
For the monitoring of vascular growth as well as adaptive or therapeutic (re)vascularization endothelial-specific reporter mouse models are valuable tools. However, currently available mouse models have limitations, because not all endothelial cells express the reporter in all developmental stages. We have generated PECAM/eGFP embryonic stem (ES) cell and mouse lines where the reporter gene labels PECAM+ endothelial cells and vessels with high specificity. Native eGFP expression and PECAM staining were highly co-localized in vessels of various organs at embryonic stages E9.5, E15.5 and in adult mice. Expression was found in large and small arteries, capillaries and in veins but not in lymphatic vessels. Also in the bone marrow arteries and sinusoidal vessel were labeled, moreover, we could detect eGFP in some CD45+ hematopoietic cells. We also demonstrate that this labeling is very useful to monitor sprouting in an aortic ring assay as well as vascular remodeling in a murine injury model of myocardial infarction. Thus, PECAM/eGFP transgenic ES cells and mice greatly facilitate the monitoring and quantification of endothelial cells ex vivo and in vivo during development and injury.
Collapse
Affiliation(s)
- Florian Winkler
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Katia Herz
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenichi Kimura
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tianyuan Hu
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wilhelm Röll
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Duerr GD, Feißt A, Halbach K, Verfuerth L, Gestrich C, Wenzel D, Zimmer A, Breuer J, Dewald O. CB2-deficiency is associated with a stronger hypertrophy and remodeling of the right ventricle in a murine model of left pulmonary artery occlusion. Life Sci 2018; 215:96-105. [PMID: 30403990 DOI: 10.1016/j.lfs.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023]
Abstract
AIMS Pulmonary hypertension (PH) leads to right ventricular (RV) adaptation and remodeling and has deleterious long-term effects on RV function. The endocannabinoid receptor CB2 has been associated with protective effects in adaptation and remodeling of the left ventricle after ischemia. Therefore, we investigated the role of CB2 receptor in RV adaptation after occlusion of the left pulmonary artery (LPA) in a murine model. MAIN METHODS C57/Bl6 (WT)- and CB2 receptor-deficient (Cnr2-/-)-mice underwent paramedian sternotomy and LPA was occluded using a metal clip. Right heart hemodynamic study (Millar®) preceded organ harvesting for immunohistochemistry and mRNA analysis 7 and 21 days (d) post-occlusion. KEY FINDINGS LPA occlusion led to higher RV systolic pressure in Cnr2-/--hearts, while hemodynamics were comparable with WT-hearts after 21d. Cnr2-/--hearts showed higher macrophage infiltration and lower interleukin-10 expression after 7 d, but otherwise a comparable inflammatory mediator expression profile. Cardiomyocyte-hypertrophy was stronger in Cnr2-/--mice, presenting with higher tenascin-C expression than WT-hearts. Planimetry revealed higher collagen area in Cnr2-/--hearts and small areas of cardiomyocyte-loss. Surrounding cardiomyocytes were cleaved caspase-3- and TUNEL positive in Cnr2-/--hearts. This was associated by maladaptation of myosin heavy-chain isoforms and lower reactive oxygen scavenger enzymes induction in Cnr2-/--hearts. We found comparable morphological changes in both lungs between the two genotypes. SIGNIFICANCE LPA occlusion led to increased systolic pressure and adaptation of RV in CB2-deficient mice. CB2 receptor seems to modulate RV adaptation through expression of contractile elements, reactive oxygen scavenger enzymes, and inflammatory response in order to prevent cardiomyocyte apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Disease Models, Animal
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Inflammation/pathology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/pathology
- Pulmonary Artery/physiopathology
- Reactive Oxygen Species/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Ventricular Function, Right/physiology
Collapse
Affiliation(s)
- Georg Daniel Duerr
- Department of Cardiac Surgery, University Clinical Center Bonn, Germany.
| | - Andreas Feißt
- Department of Cardiac Surgery, University Clinical Center Bonn, Germany
| | - Katharina Halbach
- Department of Cardiac Surgery, University Clinical Center Bonn, Germany
| | - Luise Verfuerth
- Department of Cardiac Surgery, University Clinical Center Bonn, Germany
| | | | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, University of Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Life&Brain Center, University of Bonn, Germany
| | - Johannes Breuer
- Department of Pediatric Cardiology, University Clinical Center Bonn, Germany
| | - Oliver Dewald
- Department of Cardiac Surgery, University Clinical Center Bonn, Germany
| |
Collapse
|
24
|
Olschewski A, Berghausen EM, Eichstaedt CA, Fleischmann BK, Grünig E, Grünig G, Hansmann G, Harbaum L, Hennigs JK, Jonigk D, Kuebler WM, Kwapiszewska G, Pullamsetti SS, Stacher E, Weissmann N, Wenzel D, Schermuly RT. Pathobiology, pathology and genetics of pulmonary hypertension: Update from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272S:4-10. [PMID: 30314839 DOI: 10.1016/j.ijcard.2018.09.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023]
Abstract
The European guidelines, which focus on clinical aspects of pulmonary hypertension (PH), provide only minimal information about the pathophysiological concepts of PH. Here, we review this topic in greater detail, focusing on specific aspects in the pathobiology, pathology and genetics, which include mechanisms of vascular inflammation, the role of transcription factors, ion channels/ion channel diseases, hypoxic pulmonary vasoconstriction, genetics/epigenetics, metabolic dysfunction, and the potential future role of histopathology of PH in the modern era of PH therapy. In addition to new insights in the pathobiology of this disease, this working group of the Cologne Consensus Conference also highlights novel concepts and potential new therapeutic targets to further improve the treatment options in PAH.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Physiology, Medical University of Graz, Austria.
| | - Eva M Berghausen
- Department of Internal Medicine III, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Baden-Württemberg, Germany; Institute of Human Genetics, Heidelberg University, Germany
| | | | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Baden-Württemberg, Germany
| | - Gabriele Grünig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Lars Harbaum
- University Medical Center Hamburg-Eppendorf, II Department of Medicine-Oncology, Hematology, Stem Cell Transplantation, Section of Pneumology, Hamburg, Germany
| | - Jan K Hennigs
- Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of Physiology & Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Physiology, Medical University of Graz, Austria
| | - Soni S Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Austria
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University of Bonn, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
25
|
Richter JS, Quenardelle V, Rouyer O, Raul JS, Beaujeux R, Gény B, Wolff V. A Systematic Review of the Complex Effects of Cannabinoids on Cerebral and Peripheral Circulation in Animal Models. Front Physiol 2018; 9:622. [PMID: 29896112 PMCID: PMC5986896 DOI: 10.3389/fphys.2018.00622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
While cannabis is perceived as a relatively safe drug by the public, accumulating clinical data suggest detrimental cardiovascular effects of cannabinoids. Cannabis has been legalized in several countries and jurisdictions recently. Experimental studies specifically targeting cannabinoids' effects on the cerebral vasculature are rare. There is evidence for transient vasoconstrictive effects of cannabinoids in the peripheral and cerebral vasculature in a complex interplay of vasodilation and vasoconstriction. Vasoreactivity to cannabinoids is dependent on the specific molecules, their metabolites and dose, baseline vascular tone, and vessel characteristics as well as experimental conditions and animal species. We systematically review the currently available literature of experimental results in in vivo and in vitro animal studies, examining cannabinoids' effects on circulation and reactive vasodilation or vasoconstriction, with a particular focus on the cerebral vascular bed.
Collapse
Affiliation(s)
- J. Sebastian Richter
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
| | - Véronique Quenardelle
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| | - Olivier Rouyer
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | | | - Rémy Beaujeux
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
| | - Bernard Gény
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Wolff
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| |
Collapse
|
26
|
Matthey M, Roberts R, Seidinger A, Simon A, Schröder R, Kuschak M, Annala S, König GM, Müller CE, Hall IP, Kostenis E, Fleischmann BK, Wenzel D. Targeted inhibition of G q signaling induces airway relaxation in mouse models of asthma. Sci Transl Med 2018; 9:9/407/eaag2288. [PMID: 28904224 DOI: 10.1126/scitranslmed.aag2288] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/10/2017] [Indexed: 12/24/2022]
Abstract
Obstructive lung diseases are common causes of disability and death worldwide. A hallmark feature is aberrant activation of Gq protein-dependent signaling cascades. Currently, drugs targeting single G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) are used to reduce airway tone. However, therapeutic efficacy is often limited, because various GPCRs contribute to bronchoconstriction, and chronic exposure to receptor-activating medications results in desensitization. We therefore hypothesized that pharmacological Gq inhibition could serve as a central mechanism to achieve efficient therapeutic bronchorelaxation. We found that the compound FR900359 (FR), a membrane-permeable inhibitor of Gq, was effective in silencing Gq signaling in murine and human airway smooth muscle cells. Moreover, FR both prevented bronchoconstrictor responses and triggered sustained airway relaxation in mouse, pig, and human airway tissue ex vivo. Inhalation of FR in healthy wild-type mice resulted in high local concentrations of the compound in the lungs and prevented airway constriction without acute effects on blood pressure and heart rate. FR administration also protected against airway hyperreactivity in murine models of allergen sensitization using ovalbumin and house dust mite as allergens. Our findings establish FR as a selective Gq inhibitor when applied locally to the airways of mice in vivo and suggest that pharmacological blockade of Gq proteins may be a useful therapeutic strategy to achieve bronchorelaxation in asthmatic lung disease.
Collapse
Affiliation(s)
- Michaela Matthey
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Richard Roberts
- Pharmacology Research Group, University Hospital of Nottingham, Nottingham, UK
| | - Alexander Seidinger
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Simon
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ralf Schröder
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Markus Kuschak
- Pharmaceutical Institute, Institute of Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Suvi Annala
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Institute of Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Ian P Hall
- Division of Respiratory Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany. .,PharmaCenter, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
27
|
Neumann V, Knies R, Seidinger A, Simon A, Lorenz K, Matthey M, Breuer J, Wenzel D. The β
2
agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via a adrenoceptor antagonism. FASEB J 2018; 32:2519-2530. [DOI: 10.1096/fj.201700684rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vanessa Neumann
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Ralf Knies
- Department of Pediatric Cardiology Pediatric Heart Center University Clinic Bonn Bonn Germany
| | - Alexander Seidinger
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Annika Simon
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Kristina Lorenz
- Leibniz‐Institut für Analytische Wissenschaften (ISAS) Dortmund Germany
| | - Michaela Matthey
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Johannes Breuer
- Department of Pediatric Cardiology Pediatric Heart Center University Clinic Bonn Bonn Germany
| | - Daniela Wenzel
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| |
Collapse
|
28
|
Kloza M, Baranowska-Kuczko M, Malinowska B, Karpińska O, Harasim-Symbor E, Kasacka I, Kozłowska H. The influence of DOCA-salt hypertension and chronic administration of the FAAH inhibitor URB597 on KCa2.3/KCa3.1-EDH-type relaxation in rat small mesenteric arteries. Vascul Pharmacol 2017; 99:65-73. [DOI: 10.1016/j.vph.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
29
|
Karpińska O, Baranowska-Kuczko M, Kloza M, Kozłowska H. Endocannabinoids modulate G q/11 protein-coupled receptor agonist-induced vasoconstriction via a negative feedback mechanism. ACTA ACUST UNITED AC 2017; 70:214-222. [PMID: 29148061 DOI: 10.1111/jphp.12854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The endocannabinoid (eCB) system centrally and peripherally regulates cardiovascular parameters, including blood pressure, in health and disease. The relationship between Gq/11 protein-coupled receptor activation, regulation of eCBs release (mainly 2-arachidonoylglycerol) and subsequent CB1 receptor activation was initially observed in the central nervous system. Here, we review the latest findings from systemic physiological studies which include for the first time data from pulmonary arteries. We present evidence for direct CB1 -dependent cannabinoid ligand-induced vasorelaxation, vascular expression of eCBs along with their degradation enzymes, and indicate the location of the described interaction. KEY FINDINGS Endocannabinoids (mainly 2-arachidonoylglycerol), acting via CB1 receptors, evoke vasodilatory effects and may modulate responses of vasoconstrictors for Gq/11 protein-coupled receptors including angiotensin II, thromboxane A2 , phenylephrine, noradrenaline in systemic or pulmonary arteries. However, the role of the endothelium in this interaction is not well-established, and the precise vascular location of eCB system components remains unclear, which contributes to discrepancies in the interpretation of results when describing the above-mentioned relationship. SUMMARY Endocannabinoid's negative feedback is responsible for diminishing agonist-induced vasoconstriction, which may be clinically important in the treatment of arterial and pulmonary hypertension. Further research is required to establish the importance of the eCB system and its downstream signalling pathways.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
30
|
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2017; 15:151-166. [PMID: 28905873 DOI: 10.1038/nrcardio.2017.130] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Strielkov I, Pak O, Sommer N, Weissmann N. Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 2017; 123:1647-1656. [PMID: 28751366 DOI: 10.1152/japplphysiol.00103.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a physiological reaction, which adapts lung perfusion to regional ventilation and optimizes gas exchange. Impaired HPV may cause systemic hypoxemia, while generalized HPV contributes to the development of pulmonary hypertension. The triggering mechanisms underlying HPV are still not fully elucidated. Several hypotheses are currently under debate, including a possible decrease as well as an increase in reactive oxygen species as a triggering event. Recent findings suggest an increase in the production of reactive oxygen species in pulmonary artery smooth muscle cells by complex III of the mitochondrial electron transport chain and occurrence of oxygen sensing at complex IV. Other essential components are voltage-dependent potassium and possibly L-type, transient receptor potential channel 6, and transient receptor potential vanilloid 4 channels. The release of arachidonic acid metabolites appears also to be involved in HPV regulation. Further investigation of the HPV mechanisms will facilitate the development of novel therapeutic strategies for the treatment of HPV-related disorders.
Collapse
Affiliation(s)
- Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Natasha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| |
Collapse
|
32
|
Ho WSV, Kelly MEM. Cannabinoids in the Cardiovascular System. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:329-366. [PMID: 28826540 DOI: 10.1016/bs.apha.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB1 and CB2 receptors or non-CB1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation.
Collapse
Affiliation(s)
- Wing S V Ho
- Vascular Biology Research Centre, St George's University of London, London, United Kingdom.
| | | |
Collapse
|
33
|
Karpińska O, Baranowska-Kuczko M, Kloza M, Ambroz Ewicz E, Kozłowski T, Kasacka I, Malinowska B, Kozłowska H. Activation of CB 1 receptors by 2-arachidonoylglycerol attenuates vasoconstriction induced by U46619 and angiotensin II in human and rat pulmonary arteries. Am J Physiol Regul Integr Comp Physiol 2017; 312:R883-R893. [PMID: 28356298 DOI: 10.1152/ajpregu.00324.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 02/08/2023]
Abstract
Recent evidence suggests that endocannabinoids acting via cannabinoid CB1 receptors may modulate vascular responses of various vasoconstrictors in the rodent systemic vasculature. The aim of the study was to investigate whether endocannabinoids modulate the contractile responses evoked by a thromboxane A2 analog (U46619), angiotensin II (ANG II), serotonin (5-HT), and phenylephrine, which stimulate distinct Gq/11 protein-coupled receptors (thromboxane, ANG II type 1, 5-HT2, and α1-adrenergic receptors) in isolated endothelium-intact human and rat pulmonary arteries (hPAs and rPAs, respectively). The CB1 receptor antagonist AM251 (1 μM) and diacylglycerol lipase (2-arachidonoylglycerol synthesis enzyme) inhibitor RHC80267 (40 μM) enhanced contractions induced by U46619 in hPAs and rPAs and by ANG II in rPAs in an endothelium-dependent manner. AM251 did not influence vasoconstrictions induced by 5-HT or phenylephrine in rPAs. The monoacylglycerol lipase (2-arachidonoylglycerol degradation enzyme) inhibitor JZL184 (1 μM), but not the fatty acid amide hydrolase (anandamide degradation enzyme) inhibitor URB597 (1 μM), attenuated contractions evoked by U46619 in hPAs and rPAs and ANG II in rPAs. 2-Arachidonoylglycerol concentration-dependently induced relaxation of hPAs, which was inhibited by endothelium denudation or AM251 and enhanced by JZL184. Expression of CB1 receptors was confirmed in hPAs and rPAs using Western blotting and immunohistochemistry. The present study shows the protective interaction between the endocannabinoid system and vasoconstriction in response to U46619 and ANG II in the human and rat pulmonary circulation. U46619 and ANG II may stimulate rapid endothelial release of endocannabinoids (mainly 2-arachidonoylglycerol), leading to CB1 receptor-dependent and/or CB1 receptor-independent vasorelaxation, which in the negative feedback mechanism reduces later agonist-induced vasoconstriction.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Ewa Ambroz Ewicz
- Department of Inorganic and Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Tomasz Kozłowski
- Department of Thoracic Surgery, Medical University of Białystok, Białystok, Poland; and
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland;
| |
Collapse
|
34
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
35
|
Strewe C, Zeller R, Feuerecker M, Hoerl M, Kumprej I, Crispin A, Johannes B, Debevec T, Mekjavic I, Schelling G, Choukèr A. PlanHab study: assessment of psycho-neuroendocrine function in male subjects during 21 d of normobaric hypoxia and bed rest. Stress 2017; 20:131-139. [PMID: 28166699 DOI: 10.1080/10253890.2017.1292246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Immobilization and hypoxemia are conditions often seen in patients suffering from severe heart insufficiency or primary pulmonary diseases (e.g. fibrosis, emphysema). In future planned long-duration and exploration class space missions (including habitats on the moon and Mars), healthy individuals will encounter such a combination of reduced physical activity and oxygen tension by way of technical reasons and the reduced gravitational forces. These overall unconventional extraterrestrial conditions can result in yet unknown consequences for the regulation of stress-permissive, psycho-neuroendocrine responses, which warrant appropriate measures in order to mitigate foreseeable risks. The Planetary Habitat Simulation Study (PlanHab) investigated these two space-related conditions: bed rest as model of reduced gravity and normobaric hypoxia, with the aim of examining their influence on psycho-neuroendocrine responses. We hypothesized that both conditions independently increase measures of psychological stress and enhance neuroendocrine markers of stress, and that these effects would be exacerbated by combined treatment. The cross-over study composed of three interventions (NBR, normobaric normoxic horizontal bed rest; HBR, normobaric hypoxic horizontal bed rest; HAMB, normobaric hypoxic ambulatory confinement) with 14 male subjects during three sequential campaigns separated by 4 months. The psychological state was determined through three questionnaires and principal neuroendocrine responses were evaluated by measuring cortisol in saliva, catecholamine in urine, and endocannabinoids in blood. The results revealed no effects after 3 weeks of normobaric hypoxia on psycho-neuroendocrine responses. Conversely, bed rest induced neuroendocrine alterations that were not influenced by hypoxia.
Collapse
Affiliation(s)
- C Strewe
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - R Zeller
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - M Feuerecker
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - M Hoerl
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - I Kumprej
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - A Crispin
- c Department of Biometry and Epidemiology, Klinikum Großhadern , University of Munich , Munich , Germany
| | - B Johannes
- d Department of Space Physiology , Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne , Germany
| | - T Debevec
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - I Mekjavic
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - G Schelling
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - A Choukèr
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| |
Collapse
|
36
|
Lerner R, Post J, Loch S, Lutz B, Bindila L. Targeting brain and peripheral plasticity of the lipidome in acute kainic acid-induced epileptic seizures in mice via quantitative mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:255-267. [PMID: 27871881 DOI: 10.1016/j.bbalip.2016.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
Epilepsy is a highly common chronic neurological disorder, manifested in many different types, affecting ~1% of the worldwide human population. The molecular mechanisms of epileptogenesis have not yet been clarified, and pharmacoresistance exhibited by 30-40% of epilepsy patients remains a major obstacle in medical care. Growing evidence indicates a role of lipid signalling pathways in epileptogenesis, thus lipid signals emerge as potential biomarkers for the onset and evolving course of the epileptic disorder, as well as potential therapeutic agents and targets. For this purpose, we applied a lipidomic strategy to unravel lipid alterations in brain regions, periphery tissues and plasma that are specific for acute epileptic seizures in mice at 1h after seizure induction by systemic kainic acid injection as compared to vehicle controls. Specifically, levels of (i) selected phospholipids and sphingomyelins, (ii) the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), and the endocannabinoid-related compounds oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), (iii) arachidonic acid (AA), (iv) selected eicosanoids, and (v) fatty acyl content of lipidome were determined in pulverized tissues from six brain regions of kainic acid induced epileptic seizure models and vehicle controls: hypothalamus, hippocampus, thalamus, striatum, cerebellum and cerebral cortex, and from peripheral organs, such as heart and lungs, and in plasma. Alterations in lipid levels after acute epileptic seizures as compared to non-seizure controls were found to be brain region- and periphery tissue-specific, including specific plasma lipid correlates, highlighting their value as marker candidates in translational research studies, and/or drug discovery and response monitoring.
Collapse
Affiliation(s)
- Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Julia Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Sebastian Loch
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
37
|
Ramírez-López MT, Vázquez M, Bindila L, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Ouro D, Orio L, Suárez J, Lutz B, Gómez de Heras R, Rodríguez de Fonseca F. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring. Front Behav Neurosci 2016; 10:208. [PMID: 27847471 PMCID: PMC5088205 DOI: 10.3389/fnbeh.2016.00208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring.
Collapse
Affiliation(s)
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Rosarío Noemí Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - María Antón
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Daniel Ouro
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
38
|
Lack of hippocampal CB1 receptor desensitization by Δ(9)-tetrahydrocannabinol in aged mice and by low doses of JZL 184. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:603-12. [PMID: 26984820 DOI: 10.1007/s00210-016-1226-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
Activation of cannabinoid CB1 receptors may offer new therapeutic strategies, but the efficiency of CB1 receptor agonists may be impaired by tolerance development upon prolonged administration. We compared the influence of repeated administration of Δ(9)-tetrahydrocannabinol (THC) 10 mg/kg on the motility and on basal and CB1 receptor-stimulated (35)S-GTPγS binding of adolescent and aged mice. Moreover, we determined the influence of JZL 184 (which inhibits the 2-arachidonoylglycerol, 2-AG, degrading enzyme monoacylglycerol lipase, MAGL) on (35)S-GTPγS binding and 2-AG levels of young adult mice. Mouse motility was tested in the open field. (35)S-GTPγS binding was studied in hippocampal membranes. THC and CP 55,940 were used as cannabinoid agonists in the behavioural and biochemical studies, respectively. 2-AG levels were quantified by liquid chromatography-multiple reaction monitoring. The THC (10 mg/kg)-induced hypomotility was stronger in untreated than in THC-pretreated adolescent mice but similar in both treatment groups of aged mice. Basal and stimulated (35)S-GTPγS binding was decreased in membranes from THC-pretreated adolescent but not affected in membranes from aged mice. Treatment of young adult mice with JZL 184 (4, 10 and 40 mg/kg) for 14 days did not affect basal binding. Stimulated binding tended to be decreased by 25 % only in mice treated with JZL 184 (40 mg/kg). Hippocampal 2-AG level was increased by JZL 184 at 40 and 10 but not affected at 4 mg/kg. In conclusion, CB1 receptor tolerance does not occur in aged mice pretreated with THC and in young adult mice treated with a low dose of the MAGL inhibitor JZL 184.
Collapse
|
39
|
Baranowska-Kuczko M, Kozłowska H, Kloza M, Karpińska O, Toczek M, Harasim E, Kasacka I, Malinowska B. Protective role of cannabinoid CB1 receptors and vascular effects of chronic administration of FAAH inhibitor URB597 in DOCA-salt hypertensive rats. Life Sci 2016; 151:288-299. [PMID: 26969765 DOI: 10.1016/j.lfs.2016.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/26/2022]
Abstract
AIMS This study examined whether the fall in blood pressure (BP) induced by the chronic inhibition of fatty acid amide hydrolase (FAAH) by URB597 in deoxycorticosterone acetate (DOCA-salt) hypertensive rats correlates with endocannabinoid-mediated vascular changes. MAIN METHODS Functional studies were performed in isolated endothelium-intact aortas and small mesenteric arteries (sMAs) using organ bath technique and wire myography, respectively. KEY FINDINGS In the DOCA-salt rats, methanandamide-stimulated relaxation was enhanced in sMAs or diminished in aortas. Its vasorelaxant effect in sMAs was sensitive to the antagonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1), capsazepine, in normo- and hypertensive animals and to the antagonist of the cannabinoid CB1 receptors, AM6545, only in DOCA-salt rats. Cannabinoid CB1 receptors were up-regulated merely in DOCA-salt sMAs. URB597 decreased elevated BP in DOCA-salt rats, medial hypertrophy in DOCA-salt aortas. In sMAs it reduced FAAH expression and restored the augmented phenylephrine-induced contraction in the DOCA-salt rats to the level obtained in normotensive controls. In normotensive rats it diminished endothelium-dependent relaxation and increased phenylephrine-induced contraction. SIGNIFICANCE The study showed the protective role of cannabinoid CB1 receptors in DOCA-salt sMAs. Reduction in BP after chronic administration of the FAAH inhibitor URB597 in DOCA-salt hypertensive rats only partially correlates with structural and functional changes in conductance and resistance vessels, respectively. Caution should be taken in studying cannabinoids and FAAH inhibitors as potential therapeutics, because of their vessel- and model-specific activities, and side effects connected with off-target response and activation of alternative pathways of anandamide metabolism.
Collapse
Affiliation(s)
- Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; Department of Clinical Pharmacy, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland.
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Ewa Harasim
- Department of Physiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| |
Collapse
|
40
|
Ramírez-López MT, Vázquez M, Bindila L, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Ouro D, Orio L, Suarez J, Lutz B, Rodríguez de Fonseca F, Gómez de Heras R. Exposure to a Highly Caloric Palatable Diet During Pregestational and Gestational Periods Affects Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Adiposity and Anxiety-Like Behaviors in Male Rat Offspring. Front Behav Neurosci 2016; 9:339. [PMID: 26778987 PMCID: PMC4701936 DOI: 10.3389/fnbeh.2015.00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022] Open
Abstract
Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol) at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory, and emotions.
Collapse
Affiliation(s)
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Rosario Noemí Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - María Antón
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Daniel Ouro
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
41
|
Bindila L, Lutz B. Extraction and Simultaneous Quantification of Endocannabinoids and Endocannabinoid-Like Lipids in Biological Tissues. Methods Mol Biol 2016; 1412:9-18. [PMID: 27245887 DOI: 10.1007/978-1-4939-3539-0_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extraction and quantification of endocannabinoids (eCBs) from biological tissues are essential to unravel their changes in physiological and pathophysiological conditions. We describe here an analytical protocol for extraction of endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), endocannabinoid-like lipids such as palmitoyl ethanolamide (PEA) and oleoyl ethanolamide (OEA), as well as arachidonic acid (AA) from biological tissues using liquid-liquid extraction method and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM).
Collapse
Affiliation(s)
- Laura Bindila
- Institute for Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Beat Lutz
- Institute for Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
42
|
Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2015; 47:288-303. [PMID: 26493804 DOI: 10.1183/13993003.00945-2015] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 01/17/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV.
Collapse
Affiliation(s)
- Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
43
|
Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci Rep 2015; 5:15126. [PMID: 26459926 PMCID: PMC4602305 DOI: 10.1038/srep15126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/17/2015] [Indexed: 01/12/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.
Collapse
|
44
|
Activation of Endocannabinoid System Is Associated with Persistent Inflammation in Human Aortic Aneurysm. BIOMED RESEARCH INTERNATIONAL 2015; 2015:456582. [PMID: 26539497 PMCID: PMC4619808 DOI: 10.1155/2015/456582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 11/19/2022]
Abstract
Human aortic aneurysms have been associated with inflammation and vascular remodeling. Since the endocannabinoid system modulates inflammation and tissue remodeling, we investigated its components in human aortic aneurysms. We obtained anterior aortic wall samples from patients undergoing elective surgery for aortic aneurysm or coronary artery disease as controls. Histological and molecular analysis (RT-qPCR) was performed, and endocannabinoid concentration was determined using LC-MRM. Patient characteristics were comparable between the groups except for a higher incidence of arterial hypertension and diabetes in the control group. mRNA level of cannabinoid receptors was significantly higher in aneurysms than in controls. Concentration of the endocannabinoid 2-arachidonoylglycerol was significantly higher, while the second endocannabinoid anandamide and its metabolite arachidonic acid and palmitoylethanolamide were significantly lower in aneurysms. Histology revealed persistent infiltration of newly recruited leukocytes and significantly higher mononuclear cell density in adventitia of the aneurysms. Proinflammatory environment in aneurysms was shown by significant upregulation of M-CSF and PPARγ but associated with downregulation of chemokines. We found comparable collagen-stained area between the groups, significantly decreased mRNA level of CTGF, osteopontin-1, and MMP-2, and increased TIMP-4 expression in aneurysms. Our data provides evidence for endocannabinoid system activation in human aortic aneurysms, associated with persistent low-level inflammation and vascular remodeling.
Collapse
|
45
|
Inhibition of FAAH reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice. Eur Neuropsychopharmacol 2015; 25:1388-96. [PMID: 25910421 DOI: 10.1016/j.euroneuro.2015.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/02/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023]
Abstract
There is evidence to suggest that a dysregulation of endocannabinoid signaling may contribute to the etiology and pathophysiology of migraine. Thus, patients suffering from chronic migraine or medication overuse headache showed alterations in the activity of the arachidonoylethanolamide (AEA) degrading enzyme fatty acid amide hydrolase (FAAH) and a specific AEA membrane transporter, alongside with changes in AEA levels. The precise role of different endocannabinoid system components is, however, not clear. We have therefore investigated mice with a genetic deletion of the two main cannabinoid receptors CB1 and CB2, or the main endocannabinoid degrading enzymes, FAAH and monoacylglycerol lipase (MAGL), which degrades 2-arachidonoylglycerol (2-AG), in a nitroglycerine-induced animal model of migraine. We found that nitroglycerin-induced mechanical allodynia and neuronal activation of the trigeminal nucleus were completely abolished in FAAH-deficient mice. To validate these results, we used two structurally different FAAH inhibitors, URB597 and PF3945. Both inhibitors also dose-dependently blocked nitroglycerin-induced hyperalgesia and the activation of trigeminal neurons. The effects of the genetic deletion of pharmacological blockade of FAAH are mediated by CB1 receptors, because they were completely disrupted with the CB1 antagonist rimonabant. These results identify FAAH as a target for migraine pharmacotherapy.
Collapse
|
46
|
Abstract
The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Gene Deletion
- Gene Expression Regulation
- Genotype
- Humans
- Hydrolysis
- Mice, Knockout
- Mice, Mutant Strains
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Mutation
- Phenotype
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|
47
|
O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:621-8. [DOI: 10.1007/s00210-014-0991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/14/2014] [Indexed: 01/01/2023]
|
48
|
Mechanisms of endothelium-dependent relaxation evoked by anandamide in isolated human pulmonary arteries. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:477-86. [PMID: 24682422 PMCID: PMC3984660 DOI: 10.1007/s00210-014-0961-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
Endocannabinoids contract, relax or do not affect vessels with different calibre and tone in the pulmonary circulation in four species. The aim of the present study was to determine the mechanisms involved in the anandamide-induced relaxation of human pulmonary arteries (hPAs). Studies were performed in the isolated hPAs pre-constricted with the prostanoid TP receptor agonist, U-46619. To detect fatty acid amide hydrolase (FAAH) expression, Western blots were used. Anandamide concentration dependently relaxed the endothelium-intact hPAs pre-constricted with U-46619. The anandamide-induced relaxation was virtually abolished by removal of the endothelium and strongly attenuated by inhibitors of cyclooxygenases (indomethacin, COX-1/COX-2, and nimesulide, COX-2), nitric oxide synthase (N (G) -nitro-L-arginine methyl ester) given separately or in combination, FAAH (URB597), and the prostanoid IP receptor antagonist, RO1138452. The anandamide-evoked relaxation in the endothelium-intact vessels was attenuated in KCl pre-constricted preparations or by the inhibitor of large-conductance Ca(2+)-activated K(+) channels, iberiotoxin. In experiments performed in the presence of URB597 to exclude effects of anandamide metabolites, the antagonist of the endothelial cannabinoid receptor, O-1918, diminished the anandamide-evoked relaxation whereas the antagonists of cannabinoid CB1, CB2 and vanilloid TRPV1 receptors, AM251, SR144528 and capsazepine, respectively, had no effect. Western blot studies revealed the occurrence of FAAH protein in the hPAs. The present study shows that anandamide breakdown products, cyclooxygenase pathways, nitric oxide, potassium channels and the O-1918-sensitive cannabinoid receptor play a role in the anandamide-induced relaxation of the hPAs with intact endothelium.
Collapse
|
49
|
Welschoff J, Matthey M, Wenzel D. RGD peptides induce relaxation of pulmonary arteries and airways
via
β3‐integrins. FASEB J 2014; 28:2281-92. [DOI: 10.1096/fj.13-246348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|