1
|
Lian Q, Zhang Y, Zhang J, Peng Z, Wang W, Du M, Li H, Zhang X, Cheng L, Du R, Zhou Z, Yang Z, Xin G, Pu Y, Feng Z, Wu Q, Xuanyuan G, Bai S, Hu R, Negrão S, Bryan GJ, Bachem CWB, Zhou Y, Zhang R, Shang Y, Huang S, Lin T, Qi J. A genomic variation map provides insights into potato evolution and key agronomic traits. MOLECULAR PLANT 2025; 18:570-589. [PMID: 39861948 DOI: 10.1016/j.molp.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. In the present study, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja. We identified a jasmonic acid biosynthetic gene possibly affecting the tuber dormancy period. Genome-wide association studies revealed a UDP-glycosyltransferase gene for the biosynthesis of anti-nutritional steroidal glycoalkaloids (SGAs), and a Dehydration Responsive Element Binding (DREB) transcription factor conferring increased average tuber weight. In addition, genome similarity and group-specific SNP analyses indicated that tetraploid potatoes originated from the diploid Solanum tuberosum group Stenotomum. These findings shed light on the evolutionary trajectory of potato domestication and improvement, providing a solid foundation for advancing hybrid potato-breeding practices.
Collapse
Affiliation(s)
- Qun Lian
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yingying Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jinzhe Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weilun Wang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Miru Du
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Hongbo Li
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Xinyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Cheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ran Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zijian Zhou
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhenqiang Yang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Guohui Xin
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuanyuan Pu
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhiwen Feng
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Qian Wu
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Guochao Xuanyuan
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shunbuer Bai
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Rong Hu
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, the Netherlands
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jianjian Qi
- Inner Mongolia Potato Engineering and Technology Research Center, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Inskeep TR, Groen SC. Network properties constrain natural selection on gene expression in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639144. [PMID: 40060403 PMCID: PMC11888156 DOI: 10.1101/2025.02.19.639144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Gene regulatory networks (GRNs) integrate genetic and environmental signals to coordinate complex phenotypes and evolve through a balance of selection and drift. Using publicly available datasets from Caenorhabditis elegans, we investigated the extent of natural selection on transcript abundance by linking population-scale variation in gene expression to fecundity, a key fitness component. While the expression of most genes covaried only weakly with fitness, which is typical for polygenic traits, we identified seven transcripts under significant directional selection. These included nhr-114 and feh-1, implicating variation in nutrient-sensing and metabolic pathways as impacting fitness. Stronger directional selection on tissue-specific and older genes highlighted the germline and nervous system as focal points of adaptive change. Network position further constrained selection on gene expression; high-connectivity genes faced stronger stabilizing and directional selection, highlighting GRN architecture as a key factor in microevolutionary dynamics. The activity of transcription factors such as zip-3, which regulates mitochondrial stress responses, emerged as targets of selection, revealing potential links between energy homeostasis and fitness. Our findings demonstrate how GRNs mediate the interplay between selection and drift, shaping microevolutionary trajectories of gene expression and phenotypic diversity.
Collapse
Affiliation(s)
- Tyler R Inskeep
- Department of Botany and Plant Sciences, University of California, Riverside
- Institute for Integrative Genome Biology, University of California, Riverside
| | - Simon C Groen
- Department of Botany and Plant Sciences, University of California, Riverside
- Department of Nematology, University of California, Riverside
| |
Collapse
|
3
|
Glaus AN, Brechet M, Swinnen G, Lebeigle L, Iwaszkiewicz J, Ambrosini G, Julca I, Zhang J, Roberts R, Iseli C, Guex N, Jiménez-Gómez J, Glover N, Martin GB, Strickler S, Soyk S. Repairing a deleterious domestication variant in a floral regulator gene of tomato by base editing. Nat Genet 2025; 57:231-241. [PMID: 39747596 DOI: 10.1038/s41588-024-02026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
Crop genomes accumulate deleterious mutations-a phenomenon known as the cost of domestication. Precision genome editing has been proposed to eliminate such potentially harmful mutations; however, experimental demonstration is lacking. Here we identified a deleterious mutation in the tomato transcription factor SUPPRESSOR OF SP2 (SSP2), which became prevalent in the domesticated germplasm and diminished DNA binding to genome-wide targets. We found that the action of SSP2 is partially redundant with that of its paralog SSP in regulating shoot and inflorescence architecture. However, redundancy was compromised during tomato domestication and lost completely in the closely related species Physalis grisea, in which a single ortholog regulates shoot branching. We applied base editing to directly repair the deleterious mutation in cultivated tomato and obtained plants with compact growth that provide an early fruit yield. Our work shows how deleterious variants have sensitized modern genotypes for phenotypic tuning and illustrates how repairing deleterious mutations with genome editing may allow predictable crop improvement.
Collapse
Affiliation(s)
- Anna N Glaus
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marion Brechet
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwen Swinnen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ludivine Lebeigle
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irene Julca
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jing Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Christian Iseli
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Natasha Glover
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Susan Strickler
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
- Plant Science and Conservation Chicago Botanic Garden, Glencoe, IL, USA
- Plant Biology and Conservation Program Northwestern University, Evanston, IL, USA
| | - Sebastian Soyk
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Comai L. Rewards and dangers of regulatory innovation. Trends Genet 2024; 40:917-926. [PMID: 39168725 DOI: 10.1016/j.tig.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Adaptive evolution often involves structural variation affecting genes or cis-regulatory changes that engender novel and favorable gain-of-function gene regulation. Such mutation could result in a favorable dominant trait. At the same time, the gene product could be dosage sensitive if its change in concentration disrupts another trait. As a result, the mutant allele would display dosage-sensitive pleiotropy (DSP). By minimizing imbalance while conserving the favorable dominant effect, heterozygosity can increase fitness and result in heterosis. The properties of these alleles are consistent with evidence from multiple studies that indicate increased fitness of heterozygous regulatory mutations. DSP can help explain mysterious properties of heterosis as well as other effects of hybridization.
Collapse
Affiliation(s)
- Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Wei K, Sharifova S, Zhao X, Sinha N, Nakayama H, Tellier A, Silva-Arias GA. Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Mol Ecol 2024; 33:e17536. [PMID: 39360493 DOI: 10.1111/mec.17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.
Collapse
Affiliation(s)
- Kai Wei
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Saida Sharifova
- Department of Life Sciences, Graduate School of Science, Arts and Technology, Khazar University, Baku, Azerbaijan
| | - Xiaoyun Zhao
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Neelima Sinha
- Department of Plant Biology, University of California Davis, Davis, California, USA
| | - Hokuto Nakayama
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Aurélien Tellier
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo A Silva-Arias
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
- Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Chialva M, Stelluti S, Novero M, Masson S, Bonfante P, Lanfranco L. Genetic and functional traits limit the success of colonisation by arbuscular mycorrhizal fungi in a tomato wild relative. PLANT, CELL & ENVIRONMENT 2024; 47:4275-4292. [PMID: 38953693 DOI: 10.1111/pce.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
To understand whether domestication had an impact on susceptibility and responsiveness to arbuscular mycorrhizal fungi (AMF) in tomato (Solanum lycopersicum), we investigated two tomato cultivars ("M82" and "Moneymaker") and a panel of wild relatives including S. neorickii, S. habrochaites and S. pennellii encompassing the whole Lycopersicon clade. Most genotypes revealed good AM colonisation levels when inoculated with the AMF Funneliformis mosseae. By contrast, both S. pennellii accessions analysed showed a very low colonisation, but with normal arbuscule morphology, and a negative response in terms of root and shoot biomass. This behaviour was independent of fungal identity and environmental conditions. Genomic and transcriptomic analyses revealed in S. pennellii the lack of genes identified within QTLs for AM colonisation, a limited transcriptional reprogramming upon mycorrhization and a differential regulation of strigolactones and AM-related genes compared to tomato. Donor plants experiments indicated that the AMF could represent a cost for S. pennellii: F. mosseae could extensively colonise the root only when it was part of a mycorrhizal network, but a higher mycorrhization led to a higher inhibition of plant growth. These results suggest that genetics and functional traits of S. pennellii are responsible for the limited extent of AMF colonisation.
Collapse
Affiliation(s)
- Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Stelluti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Simon Masson
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
7
|
Chen G, Shi G, Dai Y, Zhao R, Wu Q. Graph-Based Pan-Genome Reveals the Pattern of Deleterious Mutations during the Domestication of Saccharomyces cerevisiae. J Fungi (Basel) 2024; 10:575. [PMID: 39194902 DOI: 10.3390/jof10080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The "cost of domestication" hypothesis suggests that the domestication of wild species increases the number, frequency, and/or proportion of deleterious genetic variants, potentially reducing their fitness in the wild. While extensively studied in domesticated species, this phenomenon remains understudied in fungi. Here, we used Saccharomyces cerevisiae, the world's oldest domesticated fungus, as a model to investigate the genomic characteristics of deleterious variants arising from fungal domestication. Employing a graph-based pan-genome approach, we identified 1,297,761 single nucleotide polymorphisms (SNPs), 278,147 insertion/deletion events (indels; <30 bp), and 19,967 non-redundant structural variants (SVs; ≥30 bp) across 687 S. cerevisiae isolates. Comparing these variants with synonymous SNPs (sSNPs) as neutral controls, we found that the majority of the derived nonsynonymous SNPs (nSNPs), indels, and SVs were deleterious. Heterozygosity was positively correlated with the impact of deleterious SNPs, suggesting a role of genetic diversity in mitigating their effects. The domesticated isolates exhibited a higher additive burden of deleterious SNPs (dSNPs) than the wild isolates, but a lower burden of indels and SVs. Moreover, the domesticated S. cerevisiae showed reduced rates of adaptive evolution relative to the wild S. cerevisiae. In summary, deleterious variants tend to be heterozygous, which may mitigate their harmful effects, but they also constrain breeding potential. Addressing deleterious alleles and minimizing the genetic load are crucial considerations for future S. cerevisiae breeding efforts.
Collapse
Affiliation(s)
- Guotao Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruilin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Mendoza-Revilla J, Trop E, Gonzalez L, Roller M, Dalla-Torre H, de Almeida BP, Richard G, Caton J, Lopez Carranza N, Skwark M, Laterre A, Beguir K, Pierrot T, Lopez M. A foundational large language model for edible plant genomes. Commun Biol 2024; 7:835. [PMID: 38982288 PMCID: PMC11233511 DOI: 10.1038/s42003-024-06465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/17/2024] [Indexed: 07/11/2024] Open
Abstract
Significant progress has been made in the field of plant genomics, as demonstrated by the increased use of high-throughput methodologies that enable the characterization of multiple genome-wide molecular phenotypes. These findings have provided valuable insights into plant traits and their underlying genetic mechanisms, particularly in model plant species. Nonetheless, effectively leveraging them to make accurate predictions represents a critical step in crop genomic improvement. We present AgroNT, a foundational large language model trained on genomes from 48 plant species with a predominant focus on crop species. We show that AgroNT can obtain state-of-the-art predictions for regulatory annotations, promoter/terminator strength, tissue-specific gene expression, and prioritize functional variants. We conduct a large-scale in silico saturation mutagenesis analysis on cassava to evaluate the regulatory impact of over 10 million mutations and provide their predicted effects as a resource for variant characterization. Finally, we propose the use of the diverse datasets compiled here as the Plants Genomic Benchmark (PGB), providing a comprehensive benchmark for deep learning-based methods in plant genomic research. The pre-trained AgroNT model is publicly available on HuggingFace at https://huggingface.co/InstaDeepAI/agro-nucleotide-transformer-1b for future research purposes.
Collapse
|
9
|
Fuentes RR, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck HC, Schijlen E, Schouten HJ, Bai Y, Fransz P, Stam M, de Jong H, Trivino SD, de Ridder D, van Dijk ADJ, Peters SA. A catalogue of recombination coldspots in interspecific tomato hybrids. PLoS Genet 2024; 20:e1011336. [PMID: 38950081 PMCID: PMC11244794 DOI: 10.1371/journal.pgen.1011336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/12/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Jihed Chouaref
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Seo MG, Lim Y, Hendelman A, Robitaille G, Beak HK, Hong WJ, Park SJ, Lippman ZB, Park YJ, Kwon CT. Evolutionary conservation of receptor compensation for stem cell homeostasis in Solanaceae plants. HORTICULTURE RESEARCH 2024; 11:uhae126. [PMID: 38919555 PMCID: PMC11197305 DOI: 10.1093/hr/uhae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/21/2024] [Indexed: 06/27/2024]
Abstract
Stem cell homeostasis is pivotal for continuous and programmed formation of organs in plants. The precise control of meristem proliferation is mediated by the evolutionarily conserved signaling that encompasses complex interactions among multiple peptide ligands and their receptor-like kinases. Here, we identified compensation mechanisms involving the CLAVATA1 (CLV1) receptor and its paralogs, BARELY ANY MERISTEMs (BAMs), for stem cell proliferation in two Solanaceae species, tomato and groundcherry. Genetic analyses of higher-order mutants deficient in multiple receptor genes, generated via CRISPR-Cas9 genome editing, reveal that tomato SlBAM1 and SlBAM2 compensate for slclv1 mutations. Unlike the compensatory responses between orthologous receptors observed in Arabidopsis, tomato slclv1 mutations do not trigger transcriptional upregulation of four SlBAM genes. The compensation mechanisms within receptors are also conserved in groundcherry, and critical amino acid residues of the receptors associated with the physical interaction with peptide ligands are highly conserved in Solanaceae plants. Our findings demonstrate that the evolutionary conservation of both compensation mechanisms and critical coding sequences between receptor-like kinases provides a strong buffering capacity during stem cell homeostasis in tomato and groundcherry.
Collapse
Affiliation(s)
- Myeong-Gyun Seo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yoonseo Lim
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gina Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Hong Kwan Beak
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Ju Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
11
|
Zeng T, Ni Y, Li J, Chen H, Lu Q, Jiang M, Xu L, Liu C, Xiao P. Comprehensive analysis of the mitochondrial genome of Rehmannia glutinosa: insights into repeat-mediated recombinations and RNA editing-induced stop codon acquisition. FRONTIERS IN PLANT SCIENCE 2024; 15:1326387. [PMID: 38807783 PMCID: PMC11130359 DOI: 10.3389/fpls.2024.1326387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Rehmannia glutinosa is an economically significant medicinal plant. Yet, the structure and sequence of its mitochondrial genome has not been published, which plays a crucial role in evolutionary analysis and regulating respiratory-related macromolecule synthesis. In this study, the R. glutinosa mitogenome was sequenced employing a combination of Illumina short reads and Nanopore long reads, with subsequent assembly using a hybrid strategy. We found that the predominant configuration of the R. glutinosa mitogenome comprises two circular chromosomes. The primary structure of the mitogenome encompasses two mitochondrial chromosomes corresponding to the two major configurations, Mac1-1 and Mac1-2. The R. glutinosa mitogenome encoded an angiosperm-typical set of 24 core genes, nine variable genes, three rRNA genes, and 15 tRNA genes. A phylogenetic analysis using the 16 shared protein-coding genes (PCG) yielded a tree consistent with the phylogeny of Lamiales species and two outgroup taxa. Mapping RNA-seq data to the coding sequences (CDS) of the PCGs revealed 507 C-to-U RNA editing sites across 31 PCGs of the R. glutinosa mitogenome. Furthermore, one start codon (nad4L) and two stop codons (rpl10 and atp6) were identified as products of RNA editing events in the R. glutinosa mitogenome.
Collapse
Affiliation(s)
- Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qianqi Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Soto F, San Martín-Davison A, Salinas-Cornejo J, Madrid-Espinoza J, Ruiz-Lara S. Identification, Classification, and Transcriptional Analysis of Rab GTPase Genes from Tomato ( Solanum lycopersicum) Reveals Salt Stress Response Genes. Genes (Basel) 2024; 15:453. [PMID: 38674387 PMCID: PMC11049601 DOI: 10.3390/genes15040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Salinity in plants generates an osmotic and ionic imbalance inside cells that compromises the viability of the plant. Rab GTPases, the largest family within the small GTPase superfamily, play pivotal roles as regulators of vesicular trafficking in plants, including the economically important and globally cultivated tomato (Solanum lycopersicum). Despite their significance, the specific involvement of these small GTPases in tomato vesicular trafficking and their role under saline stress remains poorly understood. In this work, we identified and classified 54 genes encoding Rab GTPases in cultivated tomato, elucidating their genomic distribution and structural characteristics. We conducted an analysis of duplication events within the S. lycopersicum genome, as well as an examination of gene structure and conserved motifs. In addition, we investigated the transcriptional profiles for these Rab GTPases in various tissues of cultivated and wild tomato species using microarray-based analysis. The results showed predominantly low expression in most of the genes in both leaves and vegetative meristem, contrasting with notably high expression levels observed in seedling roots. Also, a greater increase in gene expression in shoots from salt-tolerant wild tomato species was observed under normal conditions when comparing Solanum habrochaites, Solanum pennellii, and Solanum pimpinellifolium with S. lycopersicum. Furthermore, an expression analysis of Rab GTPases from Solanum chilense in leaves and roots under salt stress treatment were also carried out for their characterization. These findings revealed that specific Rab GTPases from the endocytic pathway and the trans-Golgi network (TGN) showed higher induction in plants exposed to saline stress conditions. Likewise, disparities in gene expression were observed both among members of the same Rab GTPase subfamily and between different subfamilies. Overall, this work emphasizes the high degree of conservation of Rab GTPases, their high functional diversification in higher plants, and the essential role in mediating salt stress tolerance and suggests their potential for further exploration of vesicular trafficking mechanisms in response to abiotic stress conditions.
Collapse
Affiliation(s)
| | | | | | | | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (F.S.); (A.S.M.-D.); (J.S.-C.); (J.M.-E.)
| |
Collapse
|
13
|
Jia C, Lai Q, Zhu Y, Feng J, Dan X, Zhang Y, Long Z, Wu J, Wang Z, Qumu X, Wang R, Wang J. Intergrative metabolomic and transcriptomic analyses reveal the potential regulatory mechanism of unique dihydroxy fatty acid biosynthesis in the seeds of an industrial oilseed crop Orychophragmus violaceus. BMC Genomics 2024; 25:29. [PMID: 38172664 PMCID: PMC10765717 DOI: 10.1186/s12864-023-09906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.
Collapse
Affiliation(s)
- Changfu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiang Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiman Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajun Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiqin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiali Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zeng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiner Qumu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Bulut M, Nunes-Nesi A, Fernie AR, Alseekh S. Characterization of PetM cytochrome b6f subunit 7 domain-containing protein in tomato. HORTICULTURE RESEARCH 2023; 10:uhad224. [PMID: 38094587 PMCID: PMC10716634 DOI: 10.1093/hr/uhad224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2024]
Abstract
In recent years, multiple advances have been made in understanding the photosynthetic machinery in model organisms. Knowledge transfer to horticultural important fruit crops is challenging and time-consuming due to restrictions in gene editing tools and prolonged life cycles. Here, we characterize a gene encoding a PetM domain-containing protein in tomato. The CRISPR/Cas9 knockout lines of the PetM showed impairment in the chloroplastic electron transport rate (ETR), reduced CO2 assimilation, and reduction of carotenoids and chlorophylls (Chl) under several light conditions. Further, growth-condition-dependent elevation or repression of Chl a/b ratios and de-epoxidation states were identified, underlining possible impairment compensation mechanisms. However, under low light and glasshouse conditions, there were basal levels in CO2 assimilation and ETR, indicating a potential role of the PetM domain in stabilizing the cytochrome b6f complex (Cb6f) under higher light irradiance and increasing its quantum efficiency. This suggests a potential evolutionary role in which this domain might stabilize the site of the Cb6f regulating ratios of cyclic and linear electron transport and its potential importance during the conquest of terrestrial ecosystems during which plants were exposed to higher irradiance. Finally, the results are discussed with regard to metabolism and their implication to photosynthesis from an agronomic perspective.
Collapse
Affiliation(s)
- Mustafa Bulut
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900 MG, Brazil
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Plant Metabolomics, The Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Plant Metabolomics, The Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Leibman-Markus M, Gupta R, Schuster S, Avni A, Bar M. Members of the tomato NRC4 h-NLR family augment each other in promoting basal immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111632. [PMID: 36758729 DOI: 10.1016/j.plantsci.2023.111632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Plants possess an efficient, two-tiered immune system to combat pathogens and pests. Several decades of research have characterized different features of these two well-known tiers, PTI and ETI (Pattern/ Effector-triggered Immunity). NLR (Nucleotide-binding domain Leucine-rich Repeat) receptors have been found to link PTI to ETI, and be required for full potentiation of plant immune responses in several systems. Intra-cellular helper-NLRs (h-NLRs) mediate ETI and have been focused on extensively in recent research. Previously, we investigated the roles of the h-NLR SlNRC4a in tomato immunity, finding that a specific mutation in this gene results in gain of function constitutive defense activation and broad disease resistance. Deletion of the entire NRC4 clade, which contains 3 genes, can compromise tomato immunity. Here, we decided to investigate the role of an additional clade member, SlNRC4b, in basal immunity. We generated a gain of function mutant in SlNRC4b using CRISPR-Cas9, as well as a double gain of function mutant in both genes. Similarly to the slnrc4a mutant, a slnrc4b mutant also possessed increased basal immunity and broad spectrum disease resistance. The double mutant displayed additive effects in some cases, with significant increases in resistance to fungal phytopathogens as compared with each of the single mutants. Our work confirms that the NRC4 family h-NLRs are important in the plant immune system, suggesting that this gene family has the potential to be promising in targeted agricultural adaptation in the Solanaceae family, promoting disease resistance and prevention of yield loss to pathogens.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, ARO, Volcani Institute, Rishon LeZion, Israel; School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, ARO, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
16
|
Lin Q, Chen J, Liu X, Wang B, Zhao Y, Liao L, Allan AC, Sun C, Duan Y, Li X, Grierson D, Verdonk JC, Chen K, Han Y, Bi J. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol 2023; 24:95. [PMID: 37101232 PMCID: PMC10131461 DOI: 10.1186/s13059-023-02945-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Apple is an economically important fruit crop. Changes in metabolism accompanying human-guided evolution can be revealed using a multiomics approach. We perform genome-wide metabolic analysis of apple fruits collected from 292 wild and cultivated accessions representing various consumption types. RESULTS We find decreased amounts of certain metabolites, including tannins, organic acids, phenolic acids, and flavonoids as the wild accessions transition to cultivated apples, while lysolipids increase in the "Golden Delicious" to "Ralls Janet" pedigree, suggesting better storage. We identify a total of 222,877 significant single-nucleotide polymorphisms that are associated with 2205 apple metabolites. Investigation of a region from 2.84 to 5.01 Mb on chromosome 16 containing co-mapping regions for tannins, organic acids, phenolic acids, and flavonoids indicates the importance of these metabolites for fruit quality and nutrition during breeding. The tannin and acidity-related genes Myb9-like and PH4 are mapped closely to fruit weight locus fw1 from 3.41 to 3.76 Mb on chromosome 15, a region under selection during domestication. Lysophosphatidylethanolamine (LPE) 18:1, which is suppressed by fatty acid desaturase-2 (FAD2), is positively correlated to fruit firmness. We find the fruit weight is negatively correlated with salicylic acid and abscisic acid levels. Further functional assays demonstrate regulation of these hormone levels by NAC-like activated by Apetala3/Pistillata (NAP) and ATP binding cassette G25 (ABCG25), respectively. CONCLUSIONS This study provides a metabolic perspective for selection on fruit quality during domestication and improvement, which is a valuable resource for investigating mechanisms controlling apple metabolite content and quality.
Collapse
Affiliation(s)
- Qiong Lin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Jing Chen
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070 China
| | - Yaoyao Zhao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liao Liao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Chongde Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuquan Duan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
- Plant and Science Crop Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Julian C. Verdonk
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuepeng Han
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
17
|
Nakayama H, Ichihashi Y, Kimura S. Diversity of tomato leaf form provides novel insights into breeding. BREEDING SCIENCE 2023; 73:76-85. [PMID: 37168814 PMCID: PMC10165341 DOI: 10.1270/jsbbs.22061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 05/13/2023]
Abstract
Tomato (Solanum lycopersicum L.) is cultivated widely globally. The crop exhibits tremendous morphological variations because of its long breeding history. Apart from the commercial tomato varieties, wild species and heirlooms are grown in certain regions of the world. Since the fruit constitutes the edible part, much of the agronomical research is focused on it. However, recent studies have indicated that leaf morphology influences fruit quality. As leaves are specialized photosynthetic organs and the vascular systems transport the photosynthetic products to sink organs, the architectural characteristics of the leaves have a strong influence on the final fruit quality. Therefore, comprehensive research focusing on both the fruit and leaf morphology is required for further tomato breeding. This review summarizes an overview of knowledge of the basic tomato leaf development, morphological diversification, and molecular mechanisms behind them and emphasizes its importance in breeding. Finally, we discuss how these findings and knowledge can be applied to future tomato breeding.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
- Corresponding author (e-mail: )
| | | | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
18
|
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu Rev Anim Biosci 2023; 11:93-114. [PMID: 36332644 PMCID: PMC9933137 DOI: 10.1146/annurev-animal-080522-093311] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.
Collapse
Affiliation(s)
- Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, California, USA;
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Stella C Yuan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
20
|
Lu J, Zhen S, Zhang J, Xie Y, He C, Wang X, Wang Z, Zhang S, Li Y, Cui Y, Wang G, Wang J, Liu J, Li L, Gu R, Zheng X, Fu J. Combined population transcriptomic and genomic analysis reveals cis-regulatory differentiation of non-coding RNAs in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:16. [PMID: 36662257 DOI: 10.1007/s00122-023-04293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Long intergenic non-coding RNA (lincRNA), cis-acting expression quantitative trait locus (cis-eQTL), maize, regulatory evolution. The law of genetic variation during domestication explains the evolutionary mechanism and provides a theoretical basis for improving existing varieties of maize. Previous studies focused on exploiting regulatory variations controlling the expression of protein-coding genes rather than of non-protein-coding genes. Here, we examined the genetic and evolutionary features of long non-coding RNAs from intergenic regions (long intergenic non-coding RNAs, lincRNAs) using population-scale transcriptome data and identified 1168 lincRNAs with cis-acting expression quantitative trait loci (cis-eQTLs). We found that lincRNAs are more likely to be regulated by cis-eQTLs, which exert stronger effects than the protein-coding genes. During maize domestication and improvement, upregulated alleles of lincRNAs, which originated from both standing variation and new mutation, accumulate more frequently and show larger effect sizes than the coding genes. A stronger signature of genetic differentiation was observed in their regulatory regions compared to those of randomly sampled lincRNAs. In addition, we found that cis-regulatory differentiation of lincRNAs is related to the sequence conservation of lincRNA transcripts. Non-conserved lincRNAs more tend to gain upregulated alleles and show a stronger relationship with selected traits than conserved lincRNAs between maize and its wild relatives. Our findings in maize improve the understanding of cis-regulatory variation in lincRNA genes during domestication and improvement and provide an effective approach for prioritizing candidates for further investigation.
Collapse
Affiliation(s)
- Jiawen Lu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sihan Zhen
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng He
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoli Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheyuan Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Song Zhang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Vu NT, Nguyen NBT, Ha HH, Nguyen LN, Luu LH, Dao HQ, Vu TT, Huynh HTT, Le HTT. Evolutionary analysis and expression profiling of the HSP70 gene family in response to abiotic stresses in tomato ( Solanum lycopersicum). Sci Prog 2023; 106:368504221148843. [PMID: 36650980 PMCID: PMC10358566 DOI: 10.1177/00368504221148843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heat shock protein 70 (HSP70) genes play essential roles in guarding plants against abiotic stresses, including heat, drought, and salt. In this study, the SlHSP70 gene family in tomatoes has been characterized using bioinformatic tools. 25 putative SlHSP70 genes in the tomato genome were found and classified into five subfamilies, with multi-subcellular localizations. Twelve pairs of gene duplications were identified, and segmental events were determined as the main factor for the gene family expansion. Based on public RNA-seq data, gene expression analysis identified the majority of genes expressed in the examined organelles. Further RNA-seq analysis and then quantitative RT-PCR validation showed that many SlHSP70 members are responsible for cellular feedback to heat, drought, and salt treatments, in which, at least five genes might be potential key players in the stress response. Our results provided a thorough overview of the SlHSP70 gene family in the tomato, which may be useful for the evolutionary and functional analysis of SlHSP70 under abiotic stress conditions.
Collapse
Affiliation(s)
- Nam Tuan Vu
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Bich Thi Nguyen
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hanh Hong Ha
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Nhat Nguyen
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ly Han Luu
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Quang Dao
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trinh Thi Vu
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hue Thu Thi Huynh
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hien Thu Thi Le
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Genome Biodiversity, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
22
|
Liu N, Wu B, Pandey MK, Huang L, Luo H, Chen Y, Zhou X, Chen W, Huai D, Yu B, Chen H, Guo J, Lei Y, Liao B, Varshney RK, Jiang H. Gene expression and DNA methylation altering lead to the high oil content in wild allotetraploid peanut ( A. monticola). FRONTIERS IN PLANT SCIENCE 2022; 13:1065267. [PMID: 36589096 PMCID: PMC9802669 DOI: 10.3389/fpls.2022.1065267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The wild allotetraploid peanut Arachis monticola contains a higher oil content than the cultivated allotetraploid Arachis hypogaea. Besides the fact that increasing oil content is the most important peanut breeding objective, a proper understanding of its molecular mechanism controlling oil accumulation is still lacking. METHODS We investigated this aspect by performing comparative transcriptomics from developing seeds between three wild and five cultivated peanut varieties. RESULTS The analyses not only showed species-specific grouping transcriptional profiles but also detected two gene clusters with divergent expression patterns between two species enriched in lipid metabolism. Further analysis revealed that expression alteration of lipid metabolic genes with co-expressed transcription factors in wild peanut led to enhanced activity of oil biogenesis and retarded the rate of lipid degradation. In addition, bisulfite sequencing was conducted to characterize the variation of DNA methylation between wild allotetraploid (245, WH 10025) and cultivated allotetraploid (Z16, Zhh 7720) genotypes. CG and CHG context methylation was found to antagonistically correlate with gene expression during seed development. Differentially methylated region analysis and transgenic assay further illustrated that variations of DNA methylation between wild and cultivated peanuts could affect the oil content via altering the expression of peroxisomal acyl transporter protein (Araip.H6S1B). DISCUSSION From the results, we deduced that DNA methylation may negatively regulate lipid metabolic genes and transcription factors to subtly affect oil accumulation divergence between wild and cultivated peanuts. Our work provided the first glimpse on the regulatory mechanism of gene expression altering for oil accumulation in wild peanut and gene resources for future breeding applications.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
23
|
Hämälä T, Ning W, Kuittinen H, Aryamanesh N, Savolainen O. Environmental response in gene expression and DNA methylation reveals factors influencing the adaptive potential of Arabidopsis lyrata. eLife 2022; 11:e83115. [PMID: 36306157 PMCID: PMC9616567 DOI: 10.7554/elife.83115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding what factors influence plastic and genetic variation is valuable for predicting how organisms respond to changes in the selective environment. Here, using gene expression and DNA methylation as molecular phenotypes, we study environmentally induced variation among Arabidopsis lyrata plants grown at lowland and alpine field sites. Our results show that gene expression is highly plastic, as many more genes are differentially expressed between the field sites than between populations. These environmentally responsive genes evolve under strong selective constraint - the strength of purifying selection on the coding sequence is high, while the rate of adaptive evolution is low. We find, however, that positive selection on cis-regulatory variants has likely contributed to the maintenance of genetically variable environmental responses, but such variants segregate only between distantly related populations. In contrast to gene expression, DNA methylation at genic regions is largely insensitive to the environment, and plastic methylation changes are not associated with differential gene expression. Besides genes, we detect environmental effects at transposable elements (TEs): TEs at the high-altitude field site have higher expression and methylation levels, suggestive of a broad-scale TE activation. Compared to the lowland population, plants native to the alpine environment harbor an excess of recent TE insertions, and we observe that specific TE families are enriched within environmentally responsive genes. Our findings provide insight into selective forces shaping plastic and genetic variation. We also highlight how plastic responses at TEs can rapidly create novel heritable variation in stressful conditions.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Weixuan Ning
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Nader Aryamanesh
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of OuluOuluFinland
| |
Collapse
|
24
|
Verma SK, Singh CK, Taunk J, Gayacharan, Chandra Joshi D, Kalia S, Dey N, Singh AK. Vignette of Vigna domestication: From archives to genomics. Front Genet 2022; 13:960200. [PMID: 36338960 PMCID: PMC9634637 DOI: 10.3389/fgene.2022.960200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 06/26/2024] Open
Abstract
The genus Vigna comprises fast-growing, diploid legumes, cultivated in tropical and subtropical parts of the world. It comprises more than 200 species among which Vigna angularis, Vigna radiata, Vigna mungo, Vigna aconitifolia, Vigna umbellata, Vigna unguiculata, and Vigna vexillata are of enormous agronomic importance. Human selection along with natural variability within these species encompasses a vital source for developing new varieties. The present review convokes the early domestication history of Vigna species based on archeological pieces of evidence and domestication-related traits (DRTs) together with genetics of domestication. Traces of early domestication of Vigna have been evidenced to spread across several temperate and tropical regions of Africa, Eastern Asia, and few parts of Europe. Several DRTs of Vigna species, such as pod shattering, pod and seed size, dormancy, seed coat, seed color, maturity, and pod dehiscence, can clearly differentiate wild species from their domesticates. With the advancement in next-generation high-throughput sequencing techniques, exploration of genetic variability using recently released reference genomes along with de novo sequencing of Vigna species have provided a framework to perform genome-wide association and functional studies to figure out different genes related to DRTs. In this review, genes and quantitative trait loci (QTLs) related to DRTs of different Vigna species have also been summarized. Information provided in this review will enhance the in-depth understanding of the selective pressures that causes crop domestication along with nature of evolutionary selection made in unexplored Vigna species. Furthermore, correlated archeological and domestication-related genetic evidence will facilitate Vigna species to be considered as suitable model plants.
Collapse
Affiliation(s)
| | | | - Jyoti Taunk
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Chandra Joshi
- ICAR-Vivekananda Institute of Hill Agriculture (Vivekananda Parvatiya Krishi Anusandhan Sansthan), Uttarakhand, Almora, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Nrisingha Dey
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
25
|
Favate JS, Liang S, Cope AL, Yadavalli SS, Shah P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 2022; 11:e81979. [PMID: 36214449 PMCID: PMC9645810 DOI: 10.7554/elife.81979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here, we use the Escherichia coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Shun Liang
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Alexander L Cope
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Robert Wood Johnson Medical School, Rutgers UniversityNew BrunswickUnited States
| | - Srujana S Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New Jersey, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
26
|
Li YX, Lu J, He C, Wu X, Cui Y, Chen L, Zhang J, Xie Y, An Y, Liu X, Zhen S, Liu Y, Li C, Zhang D, Shi YS, Song Y, Wang J, Li Y, Wang G, Fu J, Wang T. cis-Regulatory variation affecting gene expression contributes to the improvement of maize kernel size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1595-1608. [PMID: 35860955 DOI: 10.1111/tpj.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
cis-Regulatory variations contribute to trait evolution and adaptation during crop domestication and improvement. As the most important harvested organ in maize (Zea mays L.), kernel size has undergone intensive selection for size. However, the associations between maize kernel size and cis-regulatory variations remain unclear. We chose two independent association populations to dissect the genetic architecture of maize kernel size together with transcriptomic and genotypic data. The resulting phenotypes reflected a strong influence of population structure on kernel size. Compared with genome-wide association studies (GWASs), which accounted for population structure and relatedness, GWAS based on a naïve or simple linear model revealed additional associated single-nucleotide polymorphisms significantly involved in the conserved pathways controlling seed size in plants. Regulation analyses through expression quantitative trait locus mapping revealed that cis-regulatory variations likely control kernel size by fine-tuning the expression of proximal genes, among which ZmKL1 (GRMZM2G098305) was transgenically validated. We also proved that the pyramiding of the favorable cis-regulatory variations has contributed to the improvement of maize kernel size. Collectively, our results demonstrate that cis-regulatory variations, together with their regulatory genes, provide excellent targets for future maize improvement.
Collapse
Affiliation(s)
- Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Xun Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yixin An
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuyang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun-Su Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
27
|
Keren-Keiserman A, Shtern A, Levy M, Chalupowicz D, Furumizu C, Alvarez JP, Amsalem Z, Arazi T, Alkalai-Tuvia S, Efroni I, Ori N, Bowman JL, Fallik E, Goldshmidt A. CLASS-II KNOX genes coordinate spatial and temporal ripening in tomato. PLANT PHYSIOLOGY 2022; 190:657-668. [PMID: 35703985 PMCID: PMC9434150 DOI: 10.1093/plphys/kiac290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 05/13/2023]
Abstract
Fruits can be divided into dry and fleshy types. Dry fruits mature through senescence and fleshy fruits through ripening. Previous studies have indicated that partially common molecular networks could govern fruit maturation in these different fruit types. However, the nature of such networks remains obscure. CLASS-II KNOX genes were shown to regulate the senescence of the Arabidopsis (Arabidopsis thaliana) dry fruits, the siliques, but their roles in fleshy-fruit development are unknown. Here, we investigated the roles of the tomato (Solanum lycopersicum) CLASS-II KNOX (TKN-II) genes in fleshy fruit ripening using knockout alleles of individual genes and an artificial microRNA line (35S:amiR-TKN-II) simultaneously targeting all genes. 35S:amiR-TKN-II plants, as well as a subset of tkn-II single and double mutants, have smaller fruits. Strikingly, the 35S:amiR-TKN-II and tknII3 tknII7/+ fruits showed early ripening of the locular domain while their pericarp ripening was stalled. Further examination of the ripening marker-gene RIPENING INHIBITOR (RIN) expression and 35S:amiR-TKN-II rin-1 mutant fruits suggested that TKN-II genes arrest RIN activity at the locular domain and promote it in the pericarp. These findings imply that CLASS-II KNOX genes redundantly coordinate maturation in both dry and fleshy fruits. In tomato, these genes also control spatial patterns of fruit ripening, utilizing differential regulation of RIN activity at different fruit domains.
Collapse
Affiliation(s)
- Alexandra Keren-Keiserman
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Amit Shtern
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Matan Levy
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel
| | - Daniel Chalupowicz
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | | | - John Paul Alvarez
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Ziva Amsalem
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Sharon Alkalai-Tuvia
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Idan Efroni
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel
| | - Naomi Ori
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel
| | - John L Bowman
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Elazar Fallik
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | | |
Collapse
|
28
|
Comparative transcriptome analysis on the mangrove Acanthus ilicifolius and its two terrestrial relatives provides insights into adaptation to intertidal habitats. Gene 2022; 839:146730. [PMID: 35840004 DOI: 10.1016/j.gene.2022.146730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Acanthus is a unique genus covering both mangroves and terrestrial species, and thus is an ideal system to comparatively analyze the mechanisms of mangrove adaptation to intertidal habitats. We performed RNA sequencing of the mangrove plant Acanthus ilicifolius and its two terrestrial relatives, Acanthus leucostachyus and Acanthus mollis. A total of 91,125, 118,290, and 141,640 unigenes were obtained. Simple sequence repeats (SSR) analysis showed that A. ilicifolius had more SSRs, the highest frequency of distribution, and higher in polymorphism potential compared to the two terrestrial relatives. Phylogenetic analyses suggested a relatively recent split between A. ilicifolius and A. leucostachyus, i.e., about 16.76 million years ago (Mya), after their ancestor divergence with A. mollis (32.11 Mya), indicating that speciation of three Acanthus species occurred in the Early to Middle Miocene. Gene Ontology (GO) enrichment revealed that the unique unigenes in A. ilicifolius are predominantly related to rhythmic process, reproductive process and response to stimuli. The accelerated evolution and positive selection analyses indicated that the genus Acanthus migrated from terrestrial to intertidal habitats, where 311 pairs may be under positive selection. Functional enrichment analysis revealed that these genes associated with essential metabolism and biosynthetic pathways such as oxidative phosphorylation, plant hormone signal transduction, photosynthetic carbon fixation and arginine and proline metabolism, are related to the adaptation of A. ilicifolius to intertidal habitats, which are characterized by high salinity and hypoxia. Our results indicate the evolutionary processes and the mechanisms underlying the adaptability of Acanthus to various harsh environments from the arid terrestrial to intertidal habitats.
Collapse
|
29
|
Yanagui K, Camargo ELO, Abreu LGFD, Nagamatsu ST, Fiamenghi MB, Silva NV, Carazzolle MF, Nascimento LC, Franco SF, Bressiani JA, Mieczkowski PA, Grassi MCB, Pereira GAG. Internode elongation in energy cane shows remarkable clues on lignocellulosic biomass biosynthesis in Saccharum hybrids. Gene 2022; 828:146476. [PMID: 35413393 DOI: 10.1016/j.gene.2022.146476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.
Collapse
Affiliation(s)
- Karina Yanagui
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Eduardo L O Camargo
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Luís Guilherme F de Abreu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Sheila T Nagamatsu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Mateus B Fiamenghi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Nicholas V Silva
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Leandro C Nascimento
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - Sulamita F Franco
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil
| | - José A Bressiani
- GranBio Investimentos SA, AV. Brigadeiro Faria Lima, 2777, cj. 1503, Alto de Pinheiros, São Paulo 01452-000, SP, Brazil
| | - Piotr A Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Carolina B Grassi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil; Roundtable on Sustainable Biomaterials (RSB), Impact Hub Geneva, Rue Fendt 1, 1201, Geneva, Switzerland
| | - Gonçalo Amarante G Pereira
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), 13083-864 Campinas, SP, Brazil.
| |
Collapse
|
30
|
Zheng H, Yu MY, Han Y, Tai B, Ni SF, Ji RF, Pu CJ, Chen K, Li FQ, Xiao H, Shen Y, Zhou XT, Huang LQ. Comparative Transcriptomics and Metabolites Analysis of Two Closely Related Euphorbia Species Reveal Environmental Adaptation Mechanism and Active Ingredients Difference. FRONTIERS IN PLANT SCIENCE 2022; 13:905275. [PMID: 35712557 PMCID: PMC9194899 DOI: 10.3389/fpls.2022.905275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Roots of Euphorbia fischeriana and Euphorbia ebracteolata are recorded as the source plant of traditional Chinese medicine "Langdu," containing active ingredients with anticancer and anti-AIDS activity. However, the two species have specific patterns in the graphic distribution. Compared with E. ehracteolata, E. fischeriana distributes in higher latitude and lower temperature areas and might have experienced cold stress adaptation. To reveal the molecular mechanism of environmental adaptation, RNA-seq was performed toward the roots, stems, and leaves of E. fischeriana and E. ehracteolata. A total of 6,830 pairs of putative orthologs between the two species were identified. Estimations of non-synonymous or synonymous substitution rate ratios for these orthologs indicated that 533 of the pairs may be under positive selection (Ka/Ks > 0.5). Functional enrichment analysis revealed that significant proportions of the orthologs were in the TCA cycle, fructose and mannose metabolism, starch and sucrose metabolism, fatty acid biosynthesis, and terpenoid biosynthesis providing insights into how the two closely related Euphorbia species adapted differentially to extreme environments. Consistent with the transcriptome, a higher content of soluble sugars and proline was obtained in E. fischeriana, reflecting the adaptation of plants to different environments. Additionally, 5 primary or secondary metabolites were screened as the biomarkers to distinguish the two species. Determination of 4 diterpenoids was established and performed, showing jolkinolide B as a representative component in E. fischeriana, whereas ingenol endemic to E. ebracteolate. To better study population genetics, EST-SSR markers were generated and tested in 9 species of Euphorbia. A total of 33 of the 68 pairs were screened out for producing clear fragments in at least four species, which will furthermore facilitate the studies on the genetic improvement and phylogenetics of this rapidly adapting taxon. In this study, transcriptome and metabolome analyses revealed the evolution of genes related to cold stress tolerance, biosynthesis of TCA cycle, soluble sugars, fatty acids, and amino acids, consistent with the molecular strategy that genotypes adapting to environment. The key active ingredients of the two species were quantitatively analyzed to reveal the difference in pharmacodynamic substance basis and molecular mechanism, providing insights into rational crude drug use.
Collapse
Affiliation(s)
- Han Zheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mu-Yao Yu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Han
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Badalahu Tai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Mongolian Medicine College, Inner Mongolia Minzu University, Tongliao, China
| | - Sheng-Fa Ni
- Anhui University of Science and Technology, Huainan Xinhua Hospital, Huainan, China
| | - Rui-Feng Ji
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Juan Pu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kang Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu-Quan Li
- Hulunbeier Mongolian Medical Hospital, Hulunbeier, China
| | - Hua Xiao
- Hulunbeier Mongolian Medical Hospital, Hulunbeier, China
| | - Ye Shen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiu-Teng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Zhang N, Berman SR, Joubert D, Vialet-Chabrand S, Marcelis LFM, Kaiser E. Variation of Photosynthetic Induction in Major Horticultural Crops Is Mostly Driven by Differences in Stomatal Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:860229. [PMID: 35574072 PMCID: PMC9094112 DOI: 10.3389/fpls.2022.860229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Under natural conditions, irradiance frequently fluctuates, causing net photosynthesis rate (A) to respond slowly and reducing the yields. We quantified the genotypic variation of photosynthetic induction in 19 genotypes among the following six horticultural crops: basil, chrysanthemum, cucumber, lettuce, tomato, and rose. Kinetics of photosynthetic induction and the stomatal opening were measured by exposing shade-adapted leaves (50 μmol m-2 s-1) to a high irradiance (1000 μmol m-2 s-1) until A reached a steady state. Rubisco activation rate was estimated by the kinetics of carboxylation capacity, which was quantified using dynamic A vs. [CO2] curves. Generally, variations in photosynthetic induction kinetics were larger between crops and smaller between cultivars of the same crop. Time until reaching 20-90% of full A induction varied by 40-60% across genotypes, and this was driven by a variation in the stomatal opening rather than Rubisco activation kinetics. Stomatal conductance kinetics were partly determined by differences in the stomatal size and density; species with densely packed, smaller stomata (e.g., cucumber) tended to open their stomata faster, adapting stomatal conductance more rapidly and efficiently than species with larger but fewer stomata (e.g., chrysanthemum). We conclude that manipulating stomatal traits may speed up photosynthetic induction and growth of horticultural crops under natural irradiance fluctuations.
Collapse
Affiliation(s)
- Ningyi Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Sarah R. Berman
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Dominique Joubert
- Biometris, Department of Mathematical and Statistical Methods, Wageningen University & Research, Wageningen, Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
32
|
De-la-Cruz IM, Batsleer F, Bonte D, Diller C, Hytönen T, Muola A, Osorio S, Posé D, Vandegehuchte ML, Stenberg JA. Evolutionary Ecology of Plant-Arthropod Interactions in Light of the "Omics" Sciences: A Broad Guide. FRONTIERS IN PLANT SCIENCE 2022; 13:808427. [PMID: 35548276 PMCID: PMC9084618 DOI: 10.3389/fpls.2022.808427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities' genetic background and evolution, such knowledge can also help address many current global environmental challenges.
Collapse
Affiliation(s)
- Ivan M. De-la-Cruz
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Femke Batsleer
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Carolina Diller
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- NIAB EMR, West Malling, United Kingdom
| | - Anne Muola
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Biodiversity Unit, University of Turku, Finland
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - David Posé
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan A. Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
33
|
Transcriptome Analysis of Populus euphratica under Salt Treatment and PeERF1 Gene Enhances Salt Tolerance in Transgenic Populus alba × Populus glandulosa. Int J Mol Sci 2022; 23:ijms23073727. [PMID: 35409087 PMCID: PMC8998595 DOI: 10.3390/ijms23073727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Populus euphratica is mainly distributed in desert environments with dry and hot climate in summer and cold in winter. Compared with other poplars, P. euphratica is more resistant to salt stress. It is critical to investigate the transcriptome and molecular basis of salt tolerance in order to uncover stress-related genes. In this study, salt-tolerant treatment of P. euphratica resulted in an increase in osmo-regulatory substances and recovery of antioxidant enzymes. To improve the mining efficiency of candidate genes, the analysis combining both the transcriptome WGCNA and the former GWAS results was selected, and a range of key regulatory factors with salt resistance were found. The PeERF1 gene was highly connected in the turquoise modules with significant differences in salt stress traits, and the expression levels were significantly different in each treatment. For further functional verification of PeERF1, we obtained stable overexpression and dominant suppression transgenic lines by transforming into Populus alba × Populusglandulosa. The growth and physiological characteristics of the PeERF1 overexpressed plants were better than that of the wild type under salt stress. Transcriptome analysis of leaves of transgenic lines and WT revealed that highly enriched GO terms in DEGs were associated with stress responses, including abiotic stimuli responses, chemical responses, and oxidative stress responses. The result is helpful for in-depth analysis of the salt tolerance mechanism of poplar. This work provides important genes for poplar breeding with salt tolerance.
Collapse
|
34
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
35
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
36
|
Lu Y, Xu Y, Li N. Early Domestication History of Asian Rice Revealed by Mutations and Genome-Wide Analysis of Gene Genealogies. RICE (NEW YORK, N.Y.) 2022; 15:11. [PMID: 35166949 PMCID: PMC8847465 DOI: 10.1186/s12284-022-00556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/22/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Asian rice (Oryza sativa L.) has been a model plant but its cultivation history is inadequately understood, and its origin still under debate. Several enigmas remain, including how this annual crop shifted its growth habit from its perennial ancestor, O. rufipogon, why genetic divergence between indica and japonica appears older than the history of human domestication, and why some domestication genes do not show signals of introgression between subgroups. Addressing these issues may benefit both basic research and rice breeding. RESULTS Gene genealogy-based mutation (GGM) analysis shows that history of Asian rice is divided into two phases (Phase I and II) of about equal lengths. Mutations occurred earlier than the partition of indica and japonica to Os genome mark Phase-I period. We diagnosed 91 such mutations among 101 genes sampled across 12 chromosomes of Asian rice and its wild relatives. Positive selection, detected more at 5' regions than at coding regions of some of the genes, involved 22 loci (e.g., An-1, SH4, Rc, Hd3a, GL3.2, OsMYB3, OsDFR, and OsMYB15), which affected traits from easy harvesting, grain color, flowering time, productivity, to likely taste and tolerance. Phase-I mutations of OsMYB3, OsHd3a and OsDFR were experimentally tested and all caused enhanced functions of the genes in vivo. Phase-II period features separate cultivations, lineage-specific selection, and expanded domestication to more genes. Further genomic analysis, along with phenotypic comparisons, indicates that O. sativa is hybrid progeny of O. rufipogon and O. nivara, inherited slightly more genes of O. rufipogon. Congruently, modern alleles of the sampled genes are approximately 6% ancient, 38% uni-specific, 40% bi-specific (mixed), and 15% new after accumulating significant mutations. Results of sequencing surveys across modern cultivars/landraces indicate locus-specific usages of various alleles while confirming the associated mutations. CONCLUSIONS Asian rice was initially domesticated as one crop and later separate selection mediated by human resulted in its major subgroups. This history and the hybrid origin well explain previous puzzles. Positive selection, particularly in 5' regions, was the major force underlying trait domestication. Locus-specific domestication can be characterized and the result may facilitate breeders in developing better rice varieties in future.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Present Address: College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
37
|
Zhu M, Cheng Y, Wu S, Huang X, Qiu J. Deleterious mutations are characterized by higher genomic heterozygosity than other genic variants in plant genomes. Genomics 2022; 114:110290. [DOI: 10.1016/j.ygeno.2022.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
38
|
Liu L, Zhang K, Bai J, Lu J, Lu X, Hu J, Pan C, He S, Yuan J, Zhang Y, Zhang M, Guo Y, Wang X, Huang Z, Du Y, Cheng F, Li J. All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:123-138. [PMID: 34490889 PMCID: PMC8730696 DOI: 10.1093/jxb/erab401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The formation of locule gel is an important process in tomato and is a typical characteristic of berry fruit. In this study, we examined a natural tomato mutant that produces all-flesh fruit (AFF) in which the locule tissue remains in a solid state during fruit development. We constructed different genetic populations to fine-map the causal gene for this trait and identified SlMBP3 as the locus conferring the locule gel formation, which we rename as AFF. We determined the causal mutation as a 416-bp deletion in the promoter region of AFF, which reduces its expression dosage. Generally, this sequence is highly conserved among Solanaceae, as well as within the tomato germplasm. Using BC6 near-isogenic lines, we determined that the reduced expression dosage of AFF did not affect the normal development of seeds, whilst producing unique, non-liquefied locule tissue that was distinct from that of normal tomatoes in terms of metabolic components. Combined analysis using mRNA-seq and metabolomics indicated the importance of AFF in locule tissue liquefaction. Our findings provide insights into fruit-type differentiation in Solanaceae crops and also present the basis for future applications of AFF in tomato breeding programs.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kang Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinrui Bai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinghua Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxiao Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junling Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyang Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shumin He
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiale Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiyue Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
39
|
Kohlhase DR, McCabe CE, Singh AK, O’Rourke JA, Graham MA. Comparing Early Transcriptomic Responses of 18 Soybean ( Glycine max) Genotypes to Iron Stress. Int J Mol Sci 2021; 22:11643. [PMID: 34769077 PMCID: PMC8583884 DOI: 10.3390/ijms222111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association studies (GWAS) performed in soybean suggest that stress response differences exist between model and crop species. Our current understanding of the molecular response to IDC in soybeans is largely derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve iron efficiency in soybeans and other crops, we need to expand gene expression studies to include the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples (18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient], three replicates) and used RNA sequencing to examine the expression differences of 18 diverse soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific differentially expressed genes, and comparisons of gene ontology terms and transcription factor families suggest the utilization of different pathways in the stress response. These initial findings suggest an untapped genetic potential within the soybean germplasm collection that could be used for the continued improvement of iron efficiency in soybean.
Collapse
Affiliation(s)
- Daniel R. Kohlhase
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Chantal E. McCabe
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Jamie A. O’Rourke
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Michelle A. Graham
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| |
Collapse
|
40
|
Deleterious protein-coding variants in diverse cattle breeds of the world. Genet Sel Evol 2021; 53:80. [PMID: 34654372 PMCID: PMC8518297 DOI: 10.1186/s12711-021-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The domestication of wild animals has resulted in a reduction in effective population sizes, which can affect the deleterious mutation load of domesticated breeds. In addition, artificial selection contributes to the accumulation of deleterious mutations because of an increased rate of inbreeding among domesticated animals. Since founder population sizes and artificial selection differ between cattle breeds, their deleterious mutation load can vary. We investigated this question by using whole-genome data from 432 animals belonging to 54 worldwide cattle breeds. Our analysis revealed a negative correlation between genomic heterozygosity and nonsynonymous-to-silent diversity ratio, which suggests a higher proportion of single nucleotide variants (SNVs) affecting proteins in low-diversity breeds. Our results also showed that low-diversity breeds had a larger number of high-frequency (derived allele frequency (DAF) > 0.51) deleterious SNVs than high-diversity breeds. An opposite trend was observed for the low-frequency (DAF ≤ 0.51) deleterious SNVs. Overall, the number of high-frequency deleterious SNVs was larger in the genomes of taurine cattle breeds than of indicine breeds, whereas the number of low-frequency deleterious SNVs was larger in the genomes of indicine cattle than in those of taurine cattle. Furthermore, we observed significant variation in the counts of deleterious SNVs within taurine breeds. The variations in deleterious mutation load between taurine and indicine breeds could be attributed to the population sizes of the wild progenitors before domestication, whereas the variations observed within taurine breeds could be due to differences in inbreeding level, strength of artificial selection, and/or founding population size. Our findings imply that the incidence of genetic diseases can vary between cattle breeds.
Collapse
|
41
|
Li Q, Qiao X, Jia L, Zhang Y, Zhang S. Transcriptome and Resequencing Analyses Provide Insight into Differences in Organic Acid Accumulation in Two Pear Varieties. Int J Mol Sci 2021; 22:ijms22179622. [PMID: 34502530 PMCID: PMC8456318 DOI: 10.3390/ijms22179622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fruit acidity is one of the main determinants of fruit flavor and a target trait in fruit breeding. However, the genomic mechanisms governing acidity variation among different pear varieties remain poorly understood. In this study, two pear varieties with contrasting organic acid levels, ‘Dangshansuli’ (low-acidity) and ‘Amute’ (high-acidity), were selected, and a combination of transcriptome and population genomics analyses were applied to characterize their patterns of gene expression and genetic variation. Based on RNA-seq data analysis, differentially expressed genes (DEGs) involved in organic acid metabolism and accumulation were identified. Weighted correlation network analysis (WGCNA) revealed that nine candidate TCA (tricarboxylic acid)-related DEGs and three acid transporter-related DEGs were located in three key modules. The regulatory networks of the above candidate genes were also predicted. By integrating pear resequencing data, two domestication-related genes were found to be upregulated in ‘Amute’, and this trend was further validated for other pear varieties with high levels of organic acid, suggesting distinct selective sweeps during pear dissemination and domestication. Collectively, this study provides insight into organic acid differences related to expression divergence and domestication in two pear varieties, pinpointing several candidate genes for the genetic manipulation of acidity in pears.
Collapse
|
42
|
Winkelmüller TM, Entila F, Anver S, Piasecka A, Song B, Dahms E, Sakakibara H, Gan X, Kułak K, Sawikowska A, Krajewski P, Tsiantis M, Garrido-Oter R, Fukushima K, Schulze-Lefert P, Laurent S, Bednarek P, Tsuda K. Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. THE PLANT CELL 2021; 33:1863-1887. [PMID: 33751107 PMCID: PMC8290292 DOI: 10.1093/plcell/koab073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.
Collapse
Affiliation(s)
- Thomas M Winkelmüller
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Frederickson Entila
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shajahan Anver
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Eik Dahms
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 230-0045 Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-628 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Paul Schulze-Lefert
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, 430070 Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, China
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Author for correspondence:
| |
Collapse
|
43
|
Fernie AR, Alseekh S, Liu J, Yan J. Using precision phenotyping to inform de novo domestication. PLANT PHYSIOLOGY 2021; 186:1397-1411. [PMID: 33848336 PMCID: PMC8260140 DOI: 10.1093/plphys/kiab160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 05/09/2023]
Abstract
An update on the use of precision phenotyping to assess the potential of lesser cultivated species as candidates for de novo domestication or similar development for future agriculture.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
44
|
Wang MS, Zhang JJ, Guo X, Li M, Meyer R, Ashari H, Zheng ZQ, Wang S, Peng MS, Jiang Y, Thakur M, Suwannapoom C, Esmailizadeh A, Hirimuthugoda NY, Zein MSA, Kusza S, Kharrati-Koopaee H, Zeng L, Wang YM, Yin TT, Yang MM, Li ML, Lu XM, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasig TM, Feng SH, Zhang H, Bhuiyan AKFH, Khan MS, Silva GLLP, Thuy LT, Mwai OA, Ibrahim MNM, Zhang G, Qu KX, Hanotte O, Shapiro B, Bosse M, Wu DD, Han JL, Zhang YP. Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biol 2021; 19:118. [PMID: 34130700 PMCID: PMC8207802 DOI: 10.1186/s12915-021-01052-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/19/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rachel Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hidayat Ashari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Zhu-Qing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, The Cooperative Innovation Center for Sustainable Pig Production, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Chatmongkon Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand.,Unit of Excellence on Biodiversity and Natural Resources Management, University of Phayao, Phayao, 56000, Thailand
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran
| | - Nalini Yasoda Hirimuthugoda
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - Moch Syamsul Arifin Zein
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia
| | - Szilvia Kusza
- Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, H-4032, Hungary
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, P.O. Box 1585, Shiraz, Iran
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yun-Mei Wang
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, 06123, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, 06123, Perugia, Italy
| | | | | | - Shao-Hong Feng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Hao Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture of China, Beijing, 100193, China
| | | | | | | | - Le Thi Thuy
- National Institute of Animal Husbandry, Hanoi, Vietnam
| | - Okeyo A Mwai
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
| | | | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-1870, Copenhagen, Denmark
| | - Kai-Xing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Livestock Genetics Program, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mirte Bosse
- Wageningen University & Research - Animal Breeding and Genomics, 6708 PB, Wageningen, The Netherlands.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. .,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China. .,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
45
|
Page AML, Chapman MA. Identifying genomic regions targeted during eggplant domestication using transcriptome data. J Hered 2021; 112:519-525. [PMID: 34130314 PMCID: PMC8634079 DOI: 10.1093/jhered/esab035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
Identifying genes and traits that have diverged during domestication provides key information of importance for maintaining and even increasing yield and nutrients in existing crops. A “bottom-up” population genetics approach was used to identify signatures of selection across the eggplant genome, to better understand the process of domestication. RNA-seq data were obtained for 4 wild eggplants (Solanum insanum L.) and 16 domesticated eggplants (S. melongena L.) and mapped to the eggplant genome. Single-nucleotide polymorphism (SNPs) exhibiting signatures of selection in domesticates were identified as those exhibiting high FST between the 2 populations (evidence of significant divergence) and low π for the domesticated population (indicative of a selective sweep). Some of these regions appear to overlap with previously identified quantitative trait loci for domestication traits. Genes in regions of linkage disequilibrium surrounding these SNPs were searched against the Arabidopsis thaliana and tomato genomes to find orthologs. Subsequent gene ontology (GO) enrichment analysis identified over-representation of GO terms related to photosynthesis and response to the environment. This work reveals genomic changes involved in eggplant domestication and improvement, and how this compares to observed changes in the tomato genome, revealing shared chromosomal regions involved in the domestication of both species.
Collapse
Affiliation(s)
- Anna M L Page
- Biological Sciences, University of Southampton, Southampton, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
46
|
Alseekh S, Scossa F, Wen W, Luo J, Yan J, Beleggia R, Klee HJ, Huang S, Papa R, Fernie AR. Domestication of Crop Metabolomes: Desired and Unintended Consequences. TRENDS IN PLANT SCIENCE 2021; 26:650-661. [PMID: 33653662 DOI: 10.1016/j.tplants.2021.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 05/02/2023]
Abstract
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the contents of a handful of metabolites have been altered during human selection, but we are only beginning to unravel the true extent of the metabolic consequences of breeding. We highlight how crop metabolomes have been wittingly or unwittingly shaped by the processes of domestication, and highlight how we can identify new targets for metabolite engineering for the purpose of de novo domestication of crop wild relatives.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178 Rome, Italy
| | - Weiwei Wen
- Key laboratory of Horticultural Plant Biology (MOE),College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Hubei, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-, CI), 71122 Foggia, Italy
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture - Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| |
Collapse
|
47
|
Gómez-Maqueo X, Figueroa-Corona L, Martínez-Villegas JA, Soriano D, Gamboa-deBuen A. The Relevance of a Physiological-Stage Approach Study of the Molecular and Environmental Factors Regulating Seed Germination in Wild Plants. PLANTS 2021; 10:plants10061084. [PMID: 34071163 PMCID: PMC8226667 DOI: 10.3390/plants10061084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Germination represents the culmination of the seed developmental program and is affected by the conditions prevailing during seed maturation in the mother plant. During maturation, the dormancy condition and tolerance to dehydration are established. These characteristics are modulated by the environment to which they are subjected, having an important impact on wild species. In this work, a review was made of the molecular bases of the maturation, the processes of dormancy imposition and loss, as well as the germination process in different wild species with different life histories, and from diverse habitats. It is also specified which of these species present a certain type of management. The impact that the domestication process has had on certain characteristics of the seed is discussed, as well as the importance of determining physiological stages based on morphological characteristics, to face the complexities of the study of these species and preserve their genetic diversity and physiological responses.
Collapse
Affiliation(s)
- Ximena Gómez-Maqueo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Laura Figueroa-Corona
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Jorge Arturo Martínez-Villegas
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Diana Soriano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alicia Gamboa-deBuen
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
- Correspondence:
| |
Collapse
|
48
|
Lim H, Hwang H, Kim T, Kim S, Chung H, Lee D, Kim S, Park S, Cho W, Ji H, Lee G. Transcriptomic Analysis of Rice Plants Overexpressing PsGAPDH in Response to Salinity Stress. Genes (Basel) 2021; 12:genes12050641. [PMID: 33923067 PMCID: PMC8146104 DOI: 10.3390/genes12050641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a main enzyme in the glycolytic pathway. It plays an essential role in glycerolipid metabolism and response to various stresses. To examine the function of PsGAPDH (Pleurotus sajor-caju GAPDH) in response to abiotic stress, we generated transgenic rice plants with single-copy/intergenic/homozygous overexpression PsGAPDH (PsGAPDH-OX) and investigated their responses to salinity stress. Seedling growth and germination rates of PsGAPDH-OX were significantly increased under salt stress conditions compared to those of the wild type. To elucidate the role of PsGAPDH-OX in salt stress tolerance of rice, an Illumina HiSeq 2000 platform was used to analyze transcriptome profiles of leaves under salt stress. Analysis results of sequencing data showed that 1124 transcripts were differentially expressed. Using the list of differentially expressed genes (DEGs), functional enrichment analyses of DEGs such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed. KEGG pathway enrichment analysis revealed that unigenes exhibiting differential expression were involved in starch and sucrose metabolism. Interestingly, trehalose-6-phosphate synthase (TPS) genes, of which expression was enhanced by abiotic stress, showed a significant difference in PsGAPDH-OX. Findings of this study suggest that PsGAPDH plays a role in the adaptation of rice plants to salt stress.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Korea; (H.L.); (T.K.)
| | - Hyunju Hwang
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Taelim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Korea; (H.L.); (T.K.)
| | - Soyoung Kim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Hoyong Chung
- 3BIGS CO. LTD., 156 Gwanggyo-ro, Suwon 16429, Korea;
| | - Daewoo Lee
- National Institute of Crop Science, Rural Development Administration, Suwon 16430, Korea;
| | - Soorin Kim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Soochul Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Woosuk Cho
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Hyeonso Ji
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Gangseob Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
- Correspondence:
| |
Collapse
|
49
|
Pang H, Chen Q, Li Y, Wang Z, Wu L, Yang Q, Zheng X. Comparative analysis of the transcriptomes of two rice subspecies during domestication. Sci Rep 2021; 11:3660. [PMID: 33574456 PMCID: PMC7878495 DOI: 10.1038/s41598-021-83162-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022] Open
Abstract
Two subspecies of rice, Oryza sativa ssp. indica and O. sativa ssp. japonica, with reproductive isolation and differences in morphology and phenotypic differences, were established during the process of rice domestication. To understand how domestication has changed the transcriptomes of the two rice subspecies and given rise to the phenotypic differences, we obtained approximately 700 Gb RNA-Seq data from 26 indica and 25 japonica accessions, and identified 97,005 transcribed fragments and 4579 novel transcriptionally active regions. The two rice subspecies had significantly different gene expression profiles, we identified 1,357 (3.3% in all genes) differentially expressed genes (DEGs) between indica and japonica rice. Combining existing gene function studies, it is found that some of these differential genes are related to the differentiation of the two subspecies, such as grain shape and cold tolerance, etc. Functional annotation of these DEGs indicates that they are involved in cell wall biosynthesis and reproductive processes. Furthermore, compared with the non-DEGs, the DEGs from both subspecies had more 5'flanking regions with low polymorphism to divergence ratios, indicating a stronger positive selection pressure on the regulation of the DEGs. This study improves our understanding of the rice genome by comparatively analyzing the transcriptomes of indica and japonica rice and identifies DEGs those may be responsible for the reproductive isolation and phenotypic differences between the two rice subspecies.
Collapse
Affiliation(s)
- Hongbo Pang
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Qiang Chen
- Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Yueying Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Ze Wang
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Longkun Wu
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Qingwen Yang
- Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoming Zheng
- Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
50
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|