1
|
Goss K, Horwitz EM. Single-cell multiomics to advance cell therapy. Cytotherapy 2025; 27:137-145. [PMID: 39530970 DOI: 10.1016/j.jcyt.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Single-cell RNA-sequencing (scRNAseq) was first introduced in 2009 and has evolved with many technological advancements over the last decade. Not only are there several scRNAseq platforms differing in many aspects, but there are also a large number of computational pipelines available for downstream analyses which are being developed at an exponential rate. Such computational data appear in many scientific publications in virtually every field of study; thus, investigators should be able to understand and interpret data in this rapidly evolving field. Here, we discuss key differences in scRNAseq platforms, crucial steps in scRNAseq experiments, standard downstream analyses and introduce newly developed multimodal approaches. We then discuss how single-cell omics has been applied to advance the field of cell therapy.
Collapse
Affiliation(s)
- Kyndal Goss
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Edwin M Horwitz
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Stasek S, Zaucke F, Hoyer-Kuhn H, Etich J, Reincke S, Arndt I, Rehberg M, Semler O. Osteogenesis imperfecta: shifting paradigms in pathophysiology and care in children. J Pediatr Endocrinol Metab 2025; 38:1-15. [PMID: 39670712 DOI: 10.1515/jpem-2024-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
The formation of functional bone requires a delicate interplay between osteogenesis and osteolysis. Disturbances in this subtle balance result in an increased risk for fractures. Besides its mechanical function, bone tissue represents a key player in the regulation of calcium homeostasis. Impaired bone formation results in bone fragility, which is especially pronounced in osteogenesis imperfecta (OI). This rare genetic disorder is characterized by frequent fractures as well as extraskeletal manifestations. The current classification of OI includes 23 distinct types. In recent years, several new mutations in different genes have been identified, although the exact pathomechanisms leading to the clinical presentation of OI often remain unclear. While bisphosphonates are still the standard of care, novel therapeutic approaches are emerging. Especially, targeted antibody therapies, originally developed for osteoporosis, are increasingly being investigated in children with OI and represent a promising approach to alleviate the consequences of impaired osteogenesis and improve quality of life in OI patients. This review aims to provide insight into the pathophysiology of OI and the consequences of distinct disease-causing mutations affecting the regulation of bone homeostasis. In this context, we describe the four most recently identified OI-causing genes and provide an update on current approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Stefanie Stasek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Heike Hoyer-Kuhn
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanna Reincke
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isabell Arndt
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
4
|
Wu C, Huang Z, Chen J, Li N, Cai Y, Chen J, Ruan G, Han W, Ding C, Lu Y. Efficiently directing differentiation and homing of mesenchymal stem cells to boost cartilage repair in osteoarthritis via a nanoparticle and peptide dual-engineering strategy. Biomaterials 2025; 312:122720. [PMID: 39084098 DOI: 10.1016/j.biomaterials.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Collapse
Affiliation(s)
- Cuixi Wu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenwen Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Cai
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jieli Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Yao Lu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Arundel P, Bishop N. Medical Management for Fracture Prevention in Children with Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:812-827. [PMID: 38553634 PMCID: PMC11606989 DOI: 10.1007/s00223-024-01202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 11/30/2024]
Abstract
There are no licensed treatments for children with osteogenesis imperfecta. Children currently receive off-label treatment with bisphosphonates, without any consistent approach to dose, drug or route of administration. Meta-analyses suggest that anti-fracture efficacy of such interventions is equivocal. New therapies are undergoing clinical trials, and it is likely that one or more will receive marketing authorisation within the next three to five years. The long-term outcome from such interventions will need to be studied carefully well beyond the period over which the clinical trials are conducted, and a consistent approach to the collection of data in this regard will be needed as a major collaborative effort.
Collapse
Affiliation(s)
| | - Nick Bishop
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK.
| |
Collapse
|
6
|
Sagar R, David AL. Fetal therapies - (Stem cell transplantation; enzyme replacement therapy; in utero genetic therapies). Best Pract Res Clin Obstet Gynaecol 2024; 97:102542. [PMID: 39298891 DOI: 10.1016/j.bpobgyn.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Advances in ultrasound and prenatal diagnosis are leading an expansion in the options for parents whose fetus is identified with a congenital disease. Obstetric diseases such as pre-eclampsia and fetal growth restriction may also be amenable to intervention to improve maternal and neonatal outcomes. Advanced Medicinal Therapeutic Products such as stem cell, gene, enzyme and protein therapies are most commonly being investigated as the trajectory of treatment for severe genetic diseases moves toward earlier intervention. Theoretical benefits include prevention of in utero damage, smaller treatment doses compared to postnatal intervention, use of fetal circulatory shunts and induction of immune tolerance. New systematic terminology can capture adverse maternal and fetal adverse events to improve safe trial conduct. First-in-human clinical trials are now beginning to generate results with a focus on safety first and efficacy second. If successful, these trials will transform the care of fetuses with severe early-onset congenital disease.
Collapse
Affiliation(s)
- Rachel Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK.
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6AU, UK; National Institute for Health and Care Research, University College London Hospitals NHS Foundation Trust Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK.
| |
Collapse
|
7
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Yan L, Li D, Li S, Jiao Li J, Du G, Liu H, Zhang J, Li X, Fan Z, Jiu J, Li R, Kong N, Liu W, Du Y, Wang B. Exosomes derived from 3D-cultured MSCs alleviate knee osteoarthritis by promoting M2 macrophage polarization through miR-365a-5p and inhibiting TLR2/Myd88/NF-κB pathway. CHEMICAL ENGINEERING JOURNAL 2024; 497:154432. [DOI: 10.1016/j.cej.2024.154432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
10
|
Kato Y, Ohno Y, Ito R, Taketani T, Matsuzaki Y, Miyagi S. Engraftment of human mesenchymal stem cells in a severely immunodeficient mouse. Inflamm Regen 2024; 44:40. [PMID: 39327616 PMCID: PMC11426203 DOI: 10.1186/s41232-024-00353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
The transplantation of human mesenchymal stromal/stem cells (hMSCs) has potential as a curative and permanent therapy for congenital skeletal diseases. However, the self-renewal and differentiation capacities of hMSCs markedly vary. Therefore, cell proliferation and trilineage differentiation capacities were tested in vitro to characterize hMSCs before their clinical use. However, it remains unclear whether the ability of hMSCs in vitro accurately predicts that in living animals. The xenograft model is an alternative method for validating clinical MSCs. Nevertheless, the protocol still needs refinement, and it has yet to be established whether hMSCs, which are expanded in culture for clinical use, retain the ability to engraft and differentiate into adipogenic, osteogenic, and chondrogenic lineage cells in transplantation settings. In the present study, to establish a robust xenograft model of MSCs, we examined the delivery routes of hMSCs and the immunological state of recipients. The intra-arterial injection of hMSCs into X-ray-irradiated (IR) NOG, a severely immunodeficient mouse, achieved the highest engraftment but failed to sustain long-term engraftment. We demonstrated that graft cells localized to a collagenase-released fraction (CR), in which endogenous colony-forming cells reside. We also showed that Pdgfrα+Sca1+ MSCs (PαS), which reside in the CR fraction, resisted IR. These results show that our protocol enables hMSCs to fulfill a high level of engraftment in mouse bone marrow in the short term. In contrast, long-term reconstitution was restricted, at least partially, because of IR-resistant endogenous MSCs.
Collapse
Affiliation(s)
- Yuko Kato
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo City, Shimane, 693-8501, Japan
| | - Yusuke Ohno
- Human Disease Model Laboratory, Central Institute for Experimental Medicine and Life Science (CIEM), 3-25-12 Tonomachi, Kawasaki-Ku, Kawasaki, 210-0821, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Central Institute for Experimental Medicine and Life Science (CIEM), 3-25-12 Tonomachi, Kawasaki-Ku, Kawasaki, 210-0821, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo City, Shimane, 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo City, Shimane, 693-8501, Japan.
- PuREC Co., Ltd., 89-1 Enya, Izumo City, 693-8501, Japan.
| | - Satoru Miyagi
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo City, Shimane, 693-8501, Japan.
| |
Collapse
|
11
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
12
|
Liu H, Liu H, Yang Q, Fan Z. LncRNA SNHG1 enhances cartilage regeneration by modulating chondrogenic differentiation and angiogenesis potentials of JBMMSCs via mitochondrial function regulation. Stem Cell Res Ther 2024; 15:177. [PMID: 38886785 PMCID: PMC11184886 DOI: 10.1186/s13287-024-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Cartilage is a kind of avascular tissue, and it is difficult to repair itself when it is damaged. In this study, we investigated the regulation of chondrogenic differentiation and vascular formation in human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) by the long-chain noncoding RNA small nucleolar RNA host gene 1 (SNHG1) during cartilage tissue regeneration. METHODS JBMMSCs were isolated from the jaws via the adherent method. The effects of lncRNA SNHG1 on the chondrogenic differentiation of JBMMSCs in vitro were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Pellet experiment, Alcian blue staining, Masson's trichrome staining, and modified Sirius red staining. RT-qPCR, matrix gel tube formation, and coculture experiments were used to determine the effect of lncRNA SNHG1 on the angiogenesis in JBMMSCs in vitro. A model of knee cartilage defects in New Zealand rabbits and a model of subcutaneous matrix rubber suppositories in nude mice were constructed for in vivo experiments. Changes in mitochondrial function were detected via RT-qPCR, dihydroethidium (DHE) staining, MitoSOX staining, tetramethyl rhodamine methyl ester (TMRM) staining, and adenosine triphosphate (ATP) detection. Western blotting was used to detect the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). RESULTS Alcian blue staining, Masson's trichrome staining, and modified Sirius Red staining showed that lncRNA SNHG1 promoted chondrogenic differentiation. The lncRNA SNHG1 promoted angiogenesis in vitro and the formation of microvessels in vivo. The lncRNA SNHG1 promoted the repair and regeneration of rabbit knee cartilage tissue. Western blot and alcian blue staining showed that the JAK inhibitor reduced the increase of STAT3 phosphorylation level and staining deepening caused by SNHG1. Mitochondrial correlation analysis revealed that the lncRNA SNHG1 led to a decrease in reactive oxygen species (ROS) levels, an increase in mitochondrial membrane potential and an increase in ATP levels. Alcian blue staining showed that the ROS inhibitor significantly alleviated the decrease in blue fluorescence caused by SNHG1 knockdown. CONCLUSIONS The lncRNA SNHG1 promotes chondrogenic differentiation and angiogenesis of JBMMSCs. The lncRNA SNHG1 regulates the phosphorylation of STAT3, reduces the level of ROS, regulates mitochondrial energy metabolism, and ultimately promotes cartilage regeneration.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Qiubo Yang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Sagar RL, Åström E, Chitty LS, Crowe B, David AL, DeVile C, Forsmark A, Franzen V, Hermeren G, Hill M, Johansson M, Lindemans C, Lindgren P, Nijhuis W, Oepkes D, Rehberg M, Sahlin NE, Sakkers R, Semler O, Sundin M, Walther-Jallow L, Verweij EJTJ, Westgren M, Götherström C. An exploratory open-label multicentre phase I/II trial evaluating the safety and efficacy of postnatal or prenatal and postnatal administration of allogeneic expanded fetal mesenchymal stem cells for the treatment of severe osteogenesis imperfecta in infants and fetuses: the BOOSTB4 trial protocol. BMJ Open 2024; 14:e079767. [PMID: 38834319 PMCID: PMC11163617 DOI: 10.1136/bmjopen-2023-079767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION Severe osteogenesis imperfecta (OI) is a debilitating disease with no cure or sufficiently effective treatment. Mesenchymal stem cells (MSCs) have good safety profile, show promising effects and can form bone. The Boost Brittle Bones Before Birth (BOOSTB4) trial evaluates administration of allogeneic expanded human first trimester fetal liver MSCs (BOOST cells) for OI type 3 or severe type 4. METHODS AND ANALYSIS BOOSTB4 is an exploratory, open-label, multiple dose, phase I/II clinical trial evaluating safety and efficacy of postnatal (n=15) or prenatal and postnatal (n=3, originally n=15) administration of BOOST cells for the treatment of severe OI compared with a combination of historical (1-5/subject) and untreated prospective controls (≤30). Infants<18 months of age (originally<12 months) and singleton pregnant women whose fetus has severe OI with confirmed glycine substitution in COL1A1 or COL1A2 can be included in the trial.Each subject receives four intravenous doses of 3×106/kg BOOST cells at 4 month intervals, with 48 (doses 1-2) or 24 (doses 3-4) hours in-patient follow-up, primary follow-up at 6 and 12 months after the last dose and long-term follow-up yearly until 10 years after the first dose. Prenatal subjects receive the first dose via ultrasound-guided injection into the umbilical vein within the fetal liver (16+0 to 35+6 weeks), and three doses postnatally.The primary outcome measures are safety and tolerability of repeated BOOST cell administration. The secondary outcome measures are number of fractures from baseline to primary and long-term follow-up, growth, change in bone mineral density, clinical OI status and biochemical bone turnover. ETHICS AND DISSEMINATION The trial is approved by Competent Authorities in Sweden, the UK and the Netherlands (postnatal only). Results from the trial will be disseminated via CTIS, ClinicalTrials.gov and in scientific open-access scientific journals. TRIAL REGISTRATION NUMBERS EudraCT 2015-003699-60, EUCT: 2023-504593-38-00, NCT03706482.
Collapse
Affiliation(s)
- Rachel L Sagar
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Belinda Crowe
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Catherine DeVile
- Department of Neurosciences, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Göran Hermeren
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mats Johansson
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Caroline Lindemans
- Department of Pediatrics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter Lindgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Wouter Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirko Rehberg
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Nils-Eric Sahlin
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Ralph Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - O Semler
- Department of Pediatrics, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Section of Pediatic Hematology, Immunology and HCT, Karolinska University Hospital, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - E J T Joanne Verweij
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Kumar A, Ramesh S, Walther-Jallow L, Goos A, Kumar V, Ekblad Å, Madhuri V, Götherström C. Successful transport across continents of GMP-manufactured and cryopreserved culture-expanded human fetal liver-derived mesenchymal stem cells for use in a clinical trial. Regen Ther 2024; 26:324-333. [PMID: 39027723 PMCID: PMC11255121 DOI: 10.1016/j.reth.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Cell therapy has been increasingly considered to treat diseases, but it has been proven difficult to manufacture the same product at multiple manufacturing sites. Thus, for a wider implementation an alternative is to have one manufacturing site with a wide distribution to clinical sites. To ensure administration of a good quality cell therapy product with maintained functional characteristics, several obstacles must be overcome, which includes for example transfer of knowledge, protocols and procedures, site assessment, transportation and preparation of the product. Methods As the preparatory work for a clinical trial in India using fetal mesenchymal stem cells (fMSCs) developed and manufactured in Sweden, we performed a site assessment of the receiving clinical site, transferred methods, developed procedures and provided training of operators for handling of the cell therapy product. We further developed a Pharmacy Manual to cover the management of the product, from ordering it from the manufacturer, through transport, reconstitution, testing and administration at the clinical site. Lastly, the effect of long-distance transport on survival and function of, as well as the correct handling of the cell therapy product, was evaluated according to the pre-determined and approved Product Specification. Results Four batches of cryopreserved human fetal liver-derived fMSCs manufactured according to Good Manufacturing Practice and tested according to predetermined release criteria in Sweden, were certified and transported in a dry shipper at -150 °C to the clinical site in India. The transport was temperature monitored and took three-seven days to complete. The thawed and reconstituted cells showed more than 80% viability up to 3 h post-thawing, the cell recovery was more than 94%, the cells displayed the same surface protein expression pattern, differentiated into bone, had stable chromosomes and were sterile, which conformed with the data from the manufacturing site in Sweden. Conclusions Our study shows the feasibility of transferring necessary knowledge and technology to be able to carry out a clinical trial with a cell therapy product in distant country. It also shows that it is possible to transport a cryopreserved cell therapy product over long distances and borders with retained quality. This extends the use of cryopreserved cell therapy products in the future.
Collapse
Affiliation(s)
- Ashis Kumar
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Sowmya Ramesh
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
| | - Lilian Walther-Jallow
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Goos
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vignesh Kumar
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
| | - Åsa Ekblad
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore 632 004, Tamil Nadu, India
- Center for Stem Cell Research, a Unit of in Stem Bengaluru, Christian Medical College, Vellore 632 002, Tamil Nadu, India
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Cecilia Götherström
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Wang X, Li F, Wu S, Xing W, Fu J, Wang R, He Y. Research progress on optimization of in vitro isolation, cultivation and preservation methods of dental pulp stem cells for clinical application. Front Bioeng Biotechnol 2024; 12:1305614. [PMID: 38633667 PMCID: PMC11021638 DOI: 10.3389/fbioe.2024.1305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fenyao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shuting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Castro Nava A, Doolaar IC, Labude-Weber N, Malyaran H, Babu S, Chandorkar Y, Di Russo J, Neuss S, De Laporte L. Actuation of Soft Thermoresponsive Hydrogels Mechanically Stimulates Osteogenesis in Human Mesenchymal Stem Cells without Biochemical Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30-43. [PMID: 38150508 PMCID: PMC10789260 DOI: 10.1021/acsami.3c11808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation. Recently, our group developed a thermoresponsive N-ethyl acrylamide/N-isopropylacrylamide (NIPAM/NEAM) hydrogel supplemented with gold nanorods that are able to convert near-infrared light into heat. Using light pulses allows for local hydrogel collapse and swelling with physiologically relevant force and frequency. In this study, MSCs are cultured on this hydrogel system with a patterned surface and exposed to intermittent or continuous actuation of the hydrogel for 3 days to study the effect of actuation on MSC differentiation. First, cells are harvested from the bone marrow of three donors and tested for their MSC phenotype, meeting the following criteria: the harvested cells are adherent and demonstrate a fibroblast-like bipolar morphology. They lack the expression of CD34 and CD45 but do express CD73, CD90, and CD105. Additionally, their differentiation potential into adipogenic, chondrogenic, and osteogenic lineages is validated by the addition of standardized differentiation media. Next, MSCs are exposed to intermittent or continuous actuation, which leads to a significantly enhanced cell spreading compared to nonactuated cells. Moreover, actuation results in nuclear translocation of Runt-related transcription factor 2 and the Yes-associated protein. Together, these results indicate that cyclic mechanical stimulation on a soft, ridged substrate modulates the MSC fate commitment in the direction of osteogenesis.
Collapse
Affiliation(s)
- Arturo Castro Nava
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Iris C. Doolaar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Norina Labude-Weber
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
| | - Hanna Malyaran
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Susan Babu
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Yashoda Chandorkar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
| | - Jacopo Di Russo
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
- Institute
of Molecular and Cellular Anatomy, RWTH
Aachen University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Sabine Neuss
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Institute
of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen D-52074, Germany
| | - Laura De Laporte
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
- Institute
of Applied Medical Engineering, Department of Advanced Materials for
Biomedicine, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| |
Collapse
|
18
|
Soltani L, Varmira K, Nazari M. Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds. Sci Rep 2024; 14:161. [PMID: 38168144 PMCID: PMC10762099 DOI: 10.1038/s41598-023-50664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study, the creation of a chitosan/alginate scaffold hydrogel with and without FeO-NPs or CuO-NPs was studied. From fetal ovine bone marrow mesenchymal stem cells (BM-MSCs) were isolated and cultivated. Their differentiation into osteocyte and adipose cells was investigated. Also, on the scaffolds, cytotoxicity and apoptosis were studied. To investigate the differentiation, treatment groups include: (1) BM-MSCs were plated in DMEM culture medium with high glucose containing 10% FBS and antibiotics (negative control); (2) BM-MSCs were plated in osteogenic differentiation medium (positive control); (3) positive control group + FeO-NPs, (4) positive control group + CuO-NPs; (5) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold; (6) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/FeO-NPs scaffold; and (7) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/CuO-NPs scaffold. Alkaline phosphatase enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were evaluated after 21 days of culture. In addition, qRT-PCR was used to assess the expression of the ALP, ColA, and Runx2 genes. When compared to other treatment groups, the addition of CuO-NPs in the chitosan/alginate hydrogel significantly increased the expression of the ColA and Runx2 genes (p < 0.05). However, there was no significant difference between the chitosan/alginate hydrogel groups containing FeO-NPs and CuO-NPs in the expression of the ALP gene. It appears that the addition of nanoparticles, in particular CuO-NPs, has made the chitosan/alginate scaffold more effective in supporting osteocyte differentiation.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, 67144-14971, Iran.
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Nazari
- Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
19
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
20
|
Fitzgerald JC, Shaw G, Murphy JM, Barry F. Media matters: culture medium-dependent hypervariable phenotype of mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:363. [PMID: 38087388 PMCID: PMC10717324 DOI: 10.1186/s13287-023-03589-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Despite a long history of investigation and sustained efforts in clinical testing, the number of market authorisations for mesenchymal stromal cell (MSC) therapies remains limited, with none approved by the United States Food and Drug Administration. Several barriers are impeding the clinical progression of MSC therapies, to the forefront of these is a lack of standardised manufacturing protocols which is further compounded by an absence of biologically meaningful characterisation and release assays. A look at clinical trial registries demonstrates the diversity of MSC expansion protocols with variabilities in cell source, isolation method and expansion medium, among other culture variables, making it extraordinarily difficult to compare study outcomes. Current identification and characterisation standards are insufficient; they are not specific to MSCs and do not indicate cell function or therapeutic action. METHODS This work analysed the influence of five widely used culture media formulations on the colony-forming potential, proliferation kinetics, trilineage differentiation potential and immunomodulatory potential of human bone marrow-derived MSCs (BM-MSCs). The surface marker expression profiles were also characterised using a high-content flow cytometry screening panel of 243 markers. RESULTS Significant differences in the biological attributes of BM-MSCs including clonogenicity, proliferation, differentiation propensity and immunomodulatory capacity were revealed in response to the composition of the culture medium. Despite their biological differences, all cell preparations uniformly and strongly expressed the standard positive markers proposed for BM-MSCs: CD73, CD90 and CD105. Immunophenotypic profiling revealed that the culture medium also had a significant influence on the surface proteome, with one-third of tested markers exhibiting variable expression profiles. Principal component analysis demonstrated that BM-MSCs isolated and expanded in a proprietary xeno- and serum-free medium displayed the most consistent cell phenotypes with little variability between donors compared to platelet lysate and foetal bovine serum-containing media. CONCLUSIONS These data suggest that media composition has a highly significant impact on the biological attributes of MSCs, but standard surface marker tests conceal these differences. The results indicate a need for (1) standardised approaches to manufacturing, with an essential focus on defined media and (2) new biologically relevant tests for MSC characterisation and product release.
Collapse
Affiliation(s)
- Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland.
| |
Collapse
|
21
|
Wu X, Ma Z, Yang Y, Mu Y, Wu D. Umbilical cord mesenchymal stromal cells in serum-free defined medium display an improved safety profile. Stem Cell Res Ther 2023; 14:360. [PMID: 38087382 PMCID: PMC10717764 DOI: 10.1186/s13287-023-03604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Safety evaluations in preclinical studies are needed to confirm before translating a cell-based product into clinical application. We previously developed a serum-free, xeno-free, and chemically defined media (S&XFM-CD) for the derivation of clinical-grade umbilical cord-derived MSCs (UCMSCs), and demonstrated that intraperitoneal administration of UCMSCs in S&XFM-CD (UCMSCS&XFM-CD) exhibited better therapeutic effects than UCMSCs in serum-containing media (SCM, UCMSCSCM). However, a comprehensive investigation of the safety of intraperitoneal UCMSCS&XFM-CD treatment should be performed before clinical applications. METHODS In this study, the toxicity, immunogenicity and biodistribution of intraperitoneally transplanted UCMSCS&XFM-CD were compared with UCMSCSCM in rats via general vital signs, blood routine, blood biochemistry, subsets of T cells, serum cytokines, pathology of vital organs, antibody production and the expression of human-specific gene. The tumorigenicity and tumor-promoting effect of UCMSCS&XFM-CD were compared with UCMSCSCM in nude mice. RESULTS We confirmed that intraperitoneally transplanted UCMSCS&XFM-CD or UCMSCSCM did not cause significant changes in body weight, temperature, systolic blood pressure, diastolic blood pressure, heart rate, blood routine, T lymphocyte subsets, and serum cytokines, and had no obvious histopathology change on experimental rats. UCMSCS&XFM-CD did not produce antibodies, while UCMSCSCM had very high chance of antibody production to bovine serum albumin (80%) and apolipoprotein B-100 (60%). Furthermore, intraperitoneally injected UCMSCS&XFM-CD were less likely to be blocked by the lungs and migrated more easily to the kidneys and colon tissue than UCMSCSCM. In addition, UCMSCS&XFM-CD or UCMSCSCM showed no obvious tumorigenic activity. Finally, UCMSCS&XFM-CD extended the time of tumor formation of KM12SM cells, and decreased tumor incidence than that of UCMSCSCM. CONCLUSIONS Taken together, our data indicate that UCMSCS&XFM-CD display an improved safety performance and are encouraged to use in future clinical trials.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
- Department of Technology, Beijing Stem Cell (ProterCell) Biotechnology Co., Ltd., Beijing, People's Republic of China
- Department of Technology, Inner Mongolia Stem Cell (ProterCell) Biotechnology Co., Ltd., Hohhot, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuxiao Yang
- Department of Technology, Beijing Stem Cell (ProterCell) Biotechnology Co., Ltd., Beijing, People's Republic of China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
| | - Yongxu Mu
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
22
|
Burnham AJ, Foppiani EM, Goss KL, Jang-Milligan F, Kamalakar A, Bradley H, Goudy SL, Trochez CM, Dominici M, Daley-Bauer L, Gibson G, Horwitz EM. Differential response of mesenchymal stromal cells (MSCs) to type 1 ex vivo cytokine priming: implications for MSC therapy. Cytotherapy 2023; 25:1277-1284. [PMID: 37815775 DOI: 10.1016/j.jcyt.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are polymorphic, adherent cells with the capability to stimulate tissue regeneration and modulate immunity. MSCs have been broadly investigated for potential therapeutic applications, particularly immunomodulatory properties, wound healing and tissue regeneration. The exact physiologic role of MSCs, however, remains poorly understood, and this gap in knowledge significantly impedes the rational development of therapeutic cells. Here, we considered interferon γ (IFN-γ) and tumor necrosis factor alpha (TNF-α), two cytokines likely encountered physiologically and commonly used in cell manufacturing. For comparison, we studied interleukin-10 (IL-10) (anti-inflammatory) and interleukin-4 (IL-4) (type 2 cytokine). METHODS We directly assessed the effects of these cytokines on bone marrow MSCs by comparing RNA Seq transcriptional profiles. Western blotting and flow cytometry were also used to evaluate effects of cytokine priming. RESULTS The type 1 cytokines (IFN-γ and TNF-α) induced striking changes in gene expression and remarkably different profiles from one another. Importantly, priming MSCs with either of these cytokines did not increase variability among multiple donors beyond what is intrinsic to non-primed MSCs from different donors. IFN-γ-primed MSCs expressed IDO1 and chemokines that recruit activated T cells. In contrast, TNF-α-primed MSCs expressed genes in alternate pathways, namely PGE2 and matrix metalloproteinases synthesis, and chemokines that recruit neutrophils. IL-10 and IL-4 priming had little to no effect. CONCLUSIONS Our data suggest that IFN-γ-primed MSCs may be a more efficacious immunosuppressive therapy aimed at diseases that target T cells (ie, graft-versus-host disease) compared with TNF-α-primed or non-primed MSCs, which may be better suited for therapies in other disease settings. These results contribute to our understanding of MSC bioactivity and suggest rational ex vivo cytokine priming approaches for MSC manufacturing and therapeutic applications.
Collapse
Affiliation(s)
- Andre J Burnham
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Elisabetta M Foppiani
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kyndal L Goss
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Biologic and Biomedical Sciences, Laney Graduate School, Emory University Atlanta, Georgia, USA
| | - Fraser Jang-Milligan
- Department of Pediatrics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Archana Kamalakar
- Department of Otolaryngology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Heath Bradley
- Department of Otolaryngology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven L Goudy
- Department of Otolaryngology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Lisa Daley-Bauer
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Edwin M Horwitz
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Biologic and Biomedical Sciences, Laney Graduate School, Emory University Atlanta, Georgia, USA.
| |
Collapse
|
23
|
da Rocha LR, Dias RB, Fernandes MBC, Prinz R, Eirado TP, Costa IDS, Monteiro MJ, da Silva CER, Dos Santos CT, Fogagnolo F. A new option for bone regeneration: a rapid methodology for cellularization of allograft with human bone marrow stromal cells with in vivo bone-forming potential. Injury 2023; 54 Suppl 6:110777. [PMID: 38143129 DOI: 10.1016/j.injury.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 12/26/2023]
Abstract
The treatment of severe musculoskeletal injuries, such as loss of bone tissue and consolidation disorders, requires bone transplantation, and the success of this bone reconstruction depends on the grafts transplant's osteogenic, osteoconductive, and osteoinductive properties. Although the gold standard is autograft, it is limited by availability, morbidity, and infection risk. Despite their low capacity for osteoinduction and osteogenesis, decellularized bone allografts have been used in the search for alternative therapeutic strategies to improve bone regeneration. Considering that bone marrow stromal cells (BMSCs) are responsible for the maintenance of bone turnover throughout life, we believe that associating BMSCs with allograft could produce a material that is biologically similar to autologous bone graft. For this reason, this study evaluated the osteogenic potential of bone allograft cellularized with BMSCs. First, BMSC was characterized and allograft decellularization was confirmed by histology, scanning electron microscopy, and DNA quantification. Subsequently, the BMSCs and allografts were associated and evaluated for adhesion, proliferation, and in vitro and in vivo osteogenic potential. We demonstrated that, after 2 hours, BMSCs had already adhered to the surface of allografts and remained viable for 14 days. In vitro osteogenic assays indicated increased osteogenic potential of allografts compared with beta-tricalcium phosphate (β-TCP). In vivo transplantation assays in immunodeficient mice confirmed the allograft's potential to induce bone formation, with significantly better results than β-TCP. Finally, our results indicate that allograft can provide structural support for BMSC adhesion, offering a favorable microenvironment for cell survival and differentiation and inducing new bone formation. Taken together, our data indicate that this rapid methodology for cellularization of allograft with BMSCs might be a new therapeutic alternative in regenerative medicine and bone bioengineering.
Collapse
Affiliation(s)
- Leonardo Rosa da Rocha
- Teaching and Research Division, Instituto Nacional de Traumatologia e Ortopedia Jamil Haddad (INTO), Av. Brasil, 500, Rio de Janeiro, RJ 20940-070, Brazil.
| | - Rhayra Braga Dias
- Teaching and Research Division, INTO, Av. Brasil, 500, Rio de Janeiro, RJ 20940-070, Brazil
| | | | - Rafael Prinz
- Teaching and Research Division, INTO, Av. Brasil, 500, Rio de Janeiro, RJ 20940-070, Brazil
| | - Thiago Penna Eirado
- Teaching and Research Division, INTO, Av. Brasil, 500, Rio de Janeiro, RJ 20940-070, Brazil
| | - Isabela de Souza Costa
- Teaching and Research Division, INTO, Av. Brasil, 500, Rio de Janeiro, RJ 20940-070, Brazil
| | - Mauricio J Monteiro
- Materials Division, Instituto Nacional de Tecnologia (INT), Av. Venezuela 82, Rio de Janeiro, RJ 20081-312, Brazil.
| | | | | | - Fabricio Fogagnolo
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Av. Bandeirantes, 3900, São Paulo, SP 14049900, Brazil
| |
Collapse
|
24
|
Zhou AK, Jou E, Lu V, Zhang J, Chabra S, Abishek J, Wong E, Zeng X, Guo B. Using Pre-Clinical Studies to Explore the Potential Clinical Uses of Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem cells. Tissue Eng Regen Med 2023; 20:793-809. [PMID: 37651091 PMCID: PMC10519927 DOI: 10.1007/s13770-023-00557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine.
Collapse
Affiliation(s)
- Andrew Kailin Zhou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- Watford General Hospital, London, UK
| | - Eric Jou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Victor Lu
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - James Zhang
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Shirom Chabra
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | | | | | - Xianwei Zeng
- Beijing Rehabilitation Hospital Affiliated to National Research Centre for Rehabilitation Technical Aids, Ministry of Civil Affairs of China, Beijing, China.
- Weifang People's Hospital, Weifang City, Shandong Province, China.
| | - Baoqiang Guo
- Department of Life Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
25
|
Mohammadi TC, Jazi K, Bolouriyan A, Soleymanitabar A. Stem cells in treatment of crohn's disease: Recent advances and future directions. Transpl Immunol 2023; 80:101903. [PMID: 37541629 DOI: 10.1016/j.trim.2023.101903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIM Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the intestine. There is currently no recognized cure for CD because its cause is unknown. One of the modern approaches that have been suggested for the treatment of CD and other inflammatory-based disorders is cell therapy. METHODS Search terms were stem cell therapy, CD, adipose-derived stem cells, mesenchymal stem cells, and fistula. Of 302 related studies, we removed duplicate and irrelevant papers and identified the ones with proper information related to our scope of the research by reviewing all the abstracts and categorizing each study into the proper section. RESULTS AND CONCLUSION Nowadays, stem cell therapy is widely implied in treating CD. Although mesenchymal and adipose-derived tissue stem cells proved to be safe in treating Crohn's-associated fistula, there are still debates on an optimal protocol to use. Additionally, there is still a lack of evidence on the efficacy of stem cell therapy for intestinal involvement of CD. Future investigations should focus on preparing a standard protocol as well as luminal stem cell therapy in patients.
Collapse
Affiliation(s)
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Alireza Bolouriyan
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
26
|
Fernandes-Platzgummer A, Cunha R, Morini S, Carvalho M, Moreno-Cid J, García C, Cabral JMS, da Silva CL. Optimized operation of a controlled stirred tank reactor system for the production of mesenchymal stromal cells and their extracellular vesicles. Biotechnol Bioeng 2023; 120:2742-2755. [PMID: 37318000 DOI: 10.1002/bit.28449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
The therapeutic effects of human mesenchymal stromal cells (MSC) have been attributed mostly to their paracrine activity, exerted through small-secreted extracellular vesicles (EVs) rather than their engraftment into injured tissues. Currently, the production of MSC-derived EVs (MSC-EVs) is performed in laborious static culture systems with limited manufacturing capacity using serum-containing media. In this work, a serum-/xenogeneic-free microcarrier-based culture system was successfully established for bone marrow-derived MSC cultivation and MSC-EV production using a 2 l-scale controlled stirred tank reactor (STR) operated under fed-batch (FB) or fed-batch combined with continuous perfusion (FB/CP). Overall, maximal cell numbers of (3.0 ± 0.12) × 108 and (5.3 ± 0.32) × 108 were attained at Days 8 and 12 for FB and FB/CP cultures, respectively, and MSC(M) expanded under both conditions retained their immunophenotype. MSC-EVs were identified in the conditioned medium collected from all STR cultures by transmission electron microscopy, and EV protein markers were successfully identified by Western blot analysis. Overall, no significant differences were observed between EVs isolated from MSC expanded in STR operated under the two feeding approaches. EV mean sizes of 163 ± 5.27 nm and 162 ± 4.44 nm (p > 0.05) and concentrations of (2.4 ± 0.35) × 1011 EVs/mL and (3.0 ± 0.48) × 1011 EVs/mL (p > 0.05) were estimated by nanoparticle tracking analysis for FB and FB/CP cultures, respectively. The STR-based platform optimized herein represents a major contribution toward the development of human MSC- and MSC-EV-based products as promising therapeutic agents for Regenerative Medicine settings.
Collapse
Affiliation(s)
- Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Cunha
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Morini
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Carvalho
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Juan Moreno-Cid
- Bionet Servicios Técnicos S.L., Avenida Azul, parcela 2.11.2, 30320 Parque Tecnológico de Fuente Álamo, Murcia, Spain
| | - Carmen García
- Bionet Servicios Técnicos S.L., Avenida Azul, parcela 2.11.2, 30320 Parque Tecnológico de Fuente Álamo, Murcia, Spain
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int J Mol Sci 2023; 24:10857. [PMID: 37446034 PMCID: PMC10342101 DOI: 10.3390/ijms241310857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, 2353 Guntramsdorf, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
28
|
Katzerke C, Schaffrath J, Lützkendorf J, Janssen M, Merbach AK, Nerger K, Binder M, Baum C, Lauer K, Rohde C, Willscher E, Müller-Tidow C, Müller LP. Reduced proliferation of bone marrow MSC after allogeneic stem cell transplantation is associated with clinical outcome. Blood Adv 2023; 7:2811-2824. [PMID: 36763527 PMCID: PMC10279553 DOI: 10.1182/bloodadvances.2022008510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Engraftment and differentiation of donor hematopoietic stem cells is decisive for the clinical success of allogeneic stem cell transplantation (alloSCT) and depends on the recipient's bone marrow (BM) niche. A damaged niche contributes to poor graft function after alloSCT; however, the underlying mechanisms and the role of BM multipotent mesenchymal stromal cells (MSC) are ill-defined. Upon multivariate analysis in 732 individuals, we observed a reduced presence of proliferation-capable MSC in BM aspirates from patients (N = 196) who had undergone alloSCT. This was confirmed by paired analysis in 30 patients showing a higher frequency of samples with a lack of MSC presence post-alloSCT compared with pre-alloSCT. This reduced MSC presence was associated with reduced survival of patients after alloSCT and specifically with impaired graft function. Post-alloSCT MSC showed diminished in vitro proliferation along with a transcriptional antiproliferative signature, upregulation of epithelial-mesenchymal transition and extracellular matrix pathways, and altered impact on cytokine release upon contact with hematopoietic cells. To avoid in vitro culture bias, we isolated the CD146+/CD45-/HLA-DR- BM cell fraction, which comprised the entire MSC population. The post-alloSCT isolated native CD146+MSC showed a similar reduction in proliferation capacity and shared the same antiproliferative transcriptomic signature as for post-alloSCT colony-forming unit fibroblast-derived MSC. Taken together, our data show that alloSCT confers damage to the proliferative capacity of native MSC, which is associated with reduced patient survival after alloSCT and impaired engraftment of allogeneic hematopoiesis. These data represent the basis to elucidate mechanisms of BM niche reconstitution after alloSCT and its therapeutic manipulation.
Collapse
Affiliation(s)
- Christiane Katzerke
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Judith Schaffrath
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Jana Lützkendorf
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Maike Janssen
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Anne-Kathrin Merbach
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Katrin Nerger
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Mascha Binder
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Cornelia Baum
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Kirstin Lauer
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Christian Rohde
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Edith Willscher
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Carsten Müller-Tidow
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Lutz P. Müller
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| |
Collapse
|
29
|
Tian Y, Hu M, Liu X, Wang X, Lu D, Li Z, Liu Y, Zhang P, Zhou Y. ZIM1 Combined with Hydrogel Inhibits Senescence of Primary PαS Cells during In Vitro Expansion. Int J Mol Sci 2023; 24:ijms24119766. [PMID: 37298717 DOI: 10.3390/ijms24119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging. We sorted PαS (PDGFR-α+SCA-1+CD45-TER119-) cells as BMSCs by flow cytometry analysis. The changes in cellular senescence phenotype (Counting Kit-8 (CCK-8) assay, reactive oxygen species (ROS) test, senescence-associated β-galactosidase (SA-β-Gal) activity staining, expression of aging-related genes, telomere-related changes and in vivo differentiation potential) and associated transcriptional alterations during three important cell culture processes (in vivo, first adherence in vitro, first passage, and serial passage in vitro) were studied. Overexpression plasmids of potential target genes were made and examed. Gelatin methacryloyl (GelMA) was applied to explore the anti-aging effects combined with the target gene. Aging-related genes and ROS levels increased, telomerase activity and average telomere length decreased, and SA-β-Gal activities increased as cells were passaged. RNA-seq offered that imprinted zinc-finger gene 1 (Zim1) played a critical role in anti-aging during cell culture. Further, Zim1 combined with GelMA reduced the expression of P16/P53 and ROS levels with doubled telomerase activities. Few SA-β-Gal positive cells were found in the above state. These effects are achieved at least by the activation of Wnt/β-catenin signaling through the regulation of Wnt2. The combined application of Zim1 and hydrogel could inhibit the senescence of BMSCs during in vitro expansion, which may benefit clinical application.
Collapse
Affiliation(s)
- Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
30
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
31
|
Valsecchi C, Croce S, Lenta E, Acquafredda G, Comoli P, Avanzini MA. TITLE: New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res 2023; 192:106796. [PMID: 37207738 DOI: 10.1016/j.phrs.2023.106796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Mesenchymal Stromal Cell (MSC) clinical applications have been widely reported and their therapeutic potential has been documented in several diseases. MSCs can be isolated from several human tissues and easily expanded in vitro, they are able to differentiate in a variety of cell lineages, and they are known to interact with most immunological cells, showing immunosuppressive and tissue repair properties. Their therapeutic efficacy is closely associated with the release of bioactive molecules, namely Extracellular Vesicles (EVs), effective as their parental cells. EVs isolated from MSCs act by fusing with target cell membrane and releasing their content, showing a great potential for the treatment of injured tissues and organs, and for the modulation of the host immune system. EV-based therapies provide, as major advantages, the possibility to cross the epithelium and blood barrier and their activity is not influenced by the surrounding environment. In the present review, we deal with pre-clinical reports and clinical trials to provide data in support of MSC and EV clinical efficacy with particular focus on neonatal and pediatric diseases. Considering pre-clinical and clinical data so far available, it is likely that cell-based and cell-free therapies could become an important therapeutic approach for the treatment of several pediatric diseases.
Collapse
Affiliation(s)
- Chiara Valsecchi
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Elisa Lenta
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Gloria Acquafredda
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Patrizia Comoli
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| |
Collapse
|
32
|
Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, Maarof M, Lokanathan Y, Fauzi MB. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:ph16050701. [PMID: 37242483 DOI: 10.3390/ph16050701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Burns are a widespread global public health traumatic injury affecting many people worldwide. Non-fatal burn injuries are a leading cause of morbidity, resulting in prolonged hospitalization, disfigurement, and disability, often with resulting stigma and rejection. The treatment of burns is aimed at controlling pain, removing dead tissue, preventing infection, reducing scarring risk, and tissue regeneration. Traditional burn wound treatment methods include the use of synthetic materials such as petroleum-based ointments and plastic films. However, these materials can be associated with negative environmental impacts and may not be biocompatible with the human body. Tissue engineering has emerged as a promising approach to treating burns, and sustainable biomaterials have been developed as an alternative treatment option. Green biomaterials such as collagen, cellulose, chitosan, and others are biocompatible, biodegradable, environment-friendly, and cost-effective, which reduces the environmental impact of their production and disposal. They are effective in promoting wound healing and reducing the risk of infection and have other benefits such as reducing inflammation and promoting angiogenesis. This comprehensive review focuses on the use of multifunctional green biomaterials that have the potential to revolutionize the way we treat skin burns, promoting faster and more efficient healing while minimizing scarring and tissue damage.
Collapse
Affiliation(s)
- Loai A Elfawy
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
33
|
Ren H, Liu M, Jihu Y, Zeng H, Yao C, Yan H. Hypoxia activates the PI3K/AKT/HIF-1α pathway to promote the anti-inflammatory effect of adipose mesenchymal stem cells. Acta Histochem 2023; 125:152042. [PMID: 37137202 DOI: 10.1016/j.acthis.2023.152042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
This study aimed to investigate the effect of hypoxia on the anti-inflammatory effect of adipose-derived mesenchymal stem cells (AMSCs) in vitro and its possible mechanism. AMSCs were cultured in vitro in a hypoxic environment with 3% O2, and a normoxic (21% O2) environment was used as the control. The cells were identified by in vitro adipogenic and osteogenic differentiation and cell surface antigen detection, and the cell viability were detected. The effect of hypoxic AMSCs on macrophage inflammation was analyzed by co-culture. The results showed that under hypoxia, AMSCs had better viability, significantly downregulated the expression of inflammatory factors, alleviated macrophage inflammation, and activated the PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Hongjing Ren
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Mengchang Liu
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Yueda Jihu
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Huizhen Zeng
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Chong Yao
- Southwest Medical University, NO.1 Section 1, Xianglin Road, Luzhou City, Sichuan Province 646000, China
| | - Hong Yan
- Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, NO.25 Taiping Street, Jiangyang District, Luzhou 646000 Sichuan Province, China.
| |
Collapse
|
34
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
35
|
Fu Y, He Y, Wu D, Sui B, Jin Y, Hu X, Shi S. Apoptotic vesicles: emerging concepts and research progress in physiology and therapy. LIFE MEDICINE 2023; 2:lnad013. [PMID: 39872110 PMCID: PMC11749838 DOI: 10.1093/lifemedi/lnad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/25/2022] [Indexed: 01/29/2025]
Abstract
Apoptosis represents the dominant form of programmed cell death and plays critical roles in maintaining tissue and organ homeostasis. A notable population of extracellular vesicles (EVs) is generated during apoptosis, known as apoptotic vesicles (apoVs). These apoVs are increasingly the subject of studies concerning their identity and mechanisms of production, which have been revealed unique biological and functional characteristics that are emerging as crucial regulators for diverse processes. Furthermore, apoVs have been gradually noticed for their essential role in regulating the physiology of various organ systems in vivo, and growing evidence suggests that apoV dysregulation contributes to age- and pathology-associated tissue alterations. Importantly, apoVs can be therapeutically harnessed to unleash their potential in treating several diseases such as immune disorders, osteoporosis, cutaneous wound and acute liver failure; these vesicles, mainly derived from cultured mesenchymal stem cells, hold great translational promise. Here we review the current landscape of scientific knowledge about apoVs, with emphasis on mechanistic insights into how apoVs contribute to organismal health and disease, which also provide novel cell-free strategies for EV-based regenerative therapeutics.
Collapse
Affiliation(s)
- Yu Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Fujian Key Laboratory of Developmental and Neural Biology and Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bingdong Sui
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology and Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
36
|
Fujii Y, Hatori A, Chikazu D, Ogasawara T. Application of Dental Pulp Stem Cells for Bone and Neural Tissue Regeneration in Oral and Maxillofacial Region. Stem Cells Int 2023; 2023:2026572. [PMID: 37035445 PMCID: PMC10076122 DOI: 10.1155/2023/2026572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/21/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023] Open
Abstract
In the oral and maxillofacial region, the treatment of severe bone defects, caused by fractures, cancers, congenital abnormalities, etc., remains a great challenge. In addition, neurological disorders are frequently accompanied by these bone defects or the treatments for them. Therefore, novel bone regenerative techniques and methods to repair nerve injury are eagerly sought. Among them, strategies using dental pulp stem cells (DPSCs) are promising options. Human DPSCs can be collected easily from extracted teeth and are now considered a type of mesenchymal stem cell with higher clonogenic and proliferative potential. DPSCs have been getting attention as a cell source for bone and nerve regeneration. In this article, we reviewed the latest studies on osteogenic or neural differentiation of DPSCs as well as bone or neural regeneration methods using DPSCs and discussed the potential of DPSCs for bone and nerve tissue regeneration.
Collapse
|
37
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
38
|
Fujiwara Y, Kusakabe KT, Baba K, Sasaki N. Effect of platelet lysate on Schwann-like cell differentiation of equine bone marrow-derived mesenchymal stem cells. Res Vet Sci 2023; 159:11-18. [PMID: 37060838 DOI: 10.1016/j.rvsc.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Currently, treatment for peripheral nerve injuries in horses primarily relies upon physical therapy and anti-inflammatory drugs. In humans, various treatments using mesenchymal stem cells (MSCs) are being attempted. Therefore, in this study, Schwann-like cell differentiation cultures of equine MSCs were prepared using fetal bovine serum (FBS) and equine platelet lysate (ePL). ePL increased the platelet count to 1 × 106/μl, the optimal concentration for culture. In both groups, an elongated morphology at both ends, characteristic of Schwann cells, was observed under the microscope. Real-time PCR analysis of the expression levels of neuronal markers showed that the ePL group tended to express higher levels of Nestin, Musashi1, and Pax3 than the FBS group. p75 was expressed at low levels in both groups. Immunostaining results showed localization of Nestin in both groups of differentiated cells, but the positive cell rate was significantly higher in the ePL group than in the FBS group. Overall, the ePL gro showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease. This knowledge could be applied translationaly in the treatment of amyotrophic lateral sclerosis in humans.Overall, the ePL group showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease and in the treatment of amyotrophic lateral sclerosis in humans.
Collapse
|
39
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
40
|
Slaven JE, Wilkerson M, Soltis AR, Rittase WB, Bradfield DT, Bylicky M, Cary L, Tsioplaya A, Bouten R, Dalgard C, Day RM. Transcriptomic Profiling and Pathway Analysis of Mesenchymal Stem Cells Following Low Dose-Rate Radiation Exposure. Antioxidants (Basel) 2023; 12:antiox12020241. [PMID: 36829800 PMCID: PMC9951969 DOI: 10.3390/antiox12020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Low dose-rate radiation exposure can occur in medical imaging, as background from environmental or industrial radiation, and is a hazard of space travel. In contrast with high dose-rate radiation exposure that can induce acute life-threatening syndromes, chronic low-dose radiation is associated with Chronic Radiation Syndrome (CRS), which can alter environmental sensitivity. Secondary effects of chronic low dose-rate radiation exposure include circulatory, digestive, cardiovascular, and neurological diseases, as well as cancer. Here, we investigated 1-2 Gy, 0.66 cGy/h, 60Co radiation effects on primary human mesenchymal stem cells (hMSC). There was no significant induction of apoptosis or DNA damage, and cells continued to proliferate. Gene ontology (GO) analysis of transcriptome changes revealed alterations in pathways related to cellular metabolism (cholesterol, fatty acid, and glucose metabolism), extracellular matrix modification and cell adhesion/migration, and regulation of vasoconstriction and inflammation. Interestingly, there was increased hypoxia signaling and increased activation of pathways regulated by iron deficiency, but Nrf2 and related genes were reduced. The data were validated in hMSC and human lung microvascular endothelial cells using targeted qPCR and Western blotting. Notably absent in the GO analysis were alteration pathways for DNA damage response, cell cycle inhibition, senescence, and pro-inflammatory response that we previously observed for high dose-rate radiation exposure. Our findings suggest that cellular gene transcription response to low dose-rate ionizing radiation is fundamentally different compared to high-dose-rate exposure. We hypothesize that cellular response to hypoxia and iron deficiency are driving processes, upstream of the other pathway regulation.
Collapse
Affiliation(s)
- John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Matthew Wilkerson
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anthony R. Soltis
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Michelle Bylicky
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Lynnette Cary
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena Tsioplaya
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Clifton Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
41
|
Bowles-Welch AC, Jimenez AC, Stevens HY, Frey Rubio DA, Kippner LE, Yeago C, Roy K. Mesenchymal stromal cells for bone trauma, defects, and disease: Considerations for manufacturing, clinical translation, and effective treatments. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
42
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
43
|
Aydin SM. Blood Products. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Korntner SH, Di Nubila A, Gaspar D, Zeugolis DI. Macromolecular crowding in animal component-free, xeno-free and foetal bovine serum media for human bone marrow mesenchymal stromal cell expansion and differentiation. Front Bioeng Biotechnol 2023; 11:1136827. [PMID: 36949882 PMCID: PMC10025396 DOI: 10.3389/fbioe.2023.1136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Cell culture media containing undefined animal-derived components and prolonged in vitro culture periods in the absence of native extracellular matrix result in phenotypic drift of human bone marrow stromal cells (hBMSCs). Methods: Herein, we assessed whether animal component-free (ACF) or xeno-free (XF) media formulations maintain hBMSC phenotypic characteristics more effectively than foetal bovine serum (FBS)-based media. In addition, we assessed whether tissue-specific extracellular matrix, induced via macromolecular crowding (MMC) during expansion and/or differentiation, can more tightly control hBMSC fate. Results: Cells expanded in animal component-free media showed overall the highest phenotype maintenance, as judged by cluster of differentiation expression analysis. Contrary to FBS media, ACF and XF media increased cellularity over time in culture, as measured by total DNA concentration. While MMC with Ficoll™ increased collagen deposition of cells in FBS media, FBS media induced significantly lower collagen synthesis and/or deposition than the ACF and XF media. Cells expanded in FBS media showed higher adipogenic differentiation than ACF and XF media, which was augmented by MMC with Ficoll™ during expansion. Similarly, Ficoll™ crowding also increased chondrogenic differentiation. Of note, donor-to-donor variability was observed for collagen type I deposition and trilineage differentiation capacity of hBMSCs. Conclusion: Collectively, our data indicate that appropriate screening of donors, media and supplements, in this case MMC agent, should be conducted for the development of clinically relevant hBMSC medicines.
Collapse
Affiliation(s)
- Stefanie H. Korntner
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Alessia Di Nubila
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- *Correspondence: Dimitrios I. Zeugolis,
| |
Collapse
|
45
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
46
|
Mishra PJ, Banerjee D. Visualizing Activated Myofibroblasts Resulting from Differentiation of Mesenchymal Stem Cells. Methods Mol Biol 2022; 2593:83-92. [PMID: 36513925 DOI: 10.1007/978-1-0716-2811-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that exhibit two main characteristics which define stem cells: self-renewal and differentiation. MSCs can migrate to sites of injury, inflammation, and tumor. Moreover, MSCs undergo myofibroblast-like differentiation, including increased production of α-SMA in response to transforming growth factor-β (TGF-β), a growth factor commonly secreted by tumor cells to evade immune surveillance. Based on our previous findings, hMSCs become activated and resemble carcinoma-associated myofibroblasts upon prolonged exposure to a conditioned medium from MDAMB231 human breast cancer cells. In this section, we show using immunofluorescence that keratinocyte-conditioned medium (KCM) induces differentiation of MSCs to resemble dermal myofibroblast-like cells with punctate vinculin staining and F-actin filaments.
Collapse
Affiliation(s)
- Pravin J Mishra
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Debabrata Banerjee
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
47
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
48
|
Kihara Y, Tanaka Y, Ikeda M, Homma J, Takagi R, Ishigaki K, Yamanouchi K, Honda H, Nagata S, Yamato M. In utero transplantation of myoblasts and adipose-derived mesenchymal stem cells to murine models of Duchenne muscular dystrophy does not lead to engraftment and frequently results in fetal death. Regen Ther 2022; 21:486-493. [PMID: 36313392 PMCID: PMC9596598 DOI: 10.1016/j.reth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell transplantation that might facilitate allogenic transplantation is worth considering to treat this disease. Methods We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals were examined at 4-weeks old by immunofluorescence staining and RT-qPCR. Results No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived stem cell (ASC) transplantation produced a higher mortality rate. Conclusions In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to engraftment and, in ASC transplantation primarily, frequently results in fetal death.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yukie Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masanari Ikeda
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Honda
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Corresponding author. Fax: +81 3-3359-6046.
| |
Collapse
|
49
|
Jalili Z, Emamgolizadeh B, Abbaszadeh H, Jalili S, Derakhshani M, Yousefi M, Talebi M, Shams Asenjan K, Movassaghpour AA. Effect of Replacement of Wharton Acellular Jelly With FBS on the Expression of Megakaryocyte Linear Markers in Hematopoietic Stem Cells CD34. Asian Pac J Cancer Prev 2022; 23:3281-3286. [PMID: 36308350 PMCID: PMC9924313 DOI: 10.31557/apjcp.2022.23.10.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Animal environments for the growth of stem cells cause the transmission of some diseases and immune problems for the recipient. Accordingly, replacing these environments with healthy environments, at least with human resources, is essential. One of the media that can be used as an alternative to animal serums is Wharton acellular jelly (AWJ). Therefore, in this study, we intend to replace FBS with Wharton jelly and investigate its effect on the expression of megakaryocyte-related genes and markers in stem cells. MATERIALS AND METHODS In this study, cord blood-derived CD34 positive HSCs were cultured and expanded in the presence of cytokines including SCF, TPO, and FLT3-L. Then, the culture of expanded CD34 positive HSCs was performed in two groups: 1) IMDM culture medium containing 10% FBS and 100 ng / ml thrombopoietin cytokine 2) IMDM culture medium containing 10% AWJ, 100 ng / ml thrombopoietin cytokine. Finally, CD41 expressing cells were analyzed with the flow cytometry method. The genes related to megakaryocyte lineage including FLI1 and GATA2 were also evaluated using the RT-PCR technique. Results: The expression of CD41, a specific marker of megakaryocyte lineage in culture medium containing Wharton acellular jelly was increased compared to the FBS group. Additionally, the expression of GATA2 and FLI1 genes was significantly increased related to the control group. CONCLUSION This study provided evidence of differentiation of CD34 positive hematopoietic stem cells from umbilical cord blood to megakaryocytes in a culture medium containing AWJ.<br />.
Collapse
Affiliation(s)
- Zahra Jalili
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behnam Emamgolizadeh
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran. ,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ,Urmia University of Medical Sciences, Imam Khomeini Hospital of Urmia, Urmia, Iran.
| | - Hossein Abbaszadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahla Jalili
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Derakhshani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Karim Shams Asenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. ,For Correspondence: ,
| | - Ali Akbar Movassaghpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. ,For Correspondence: ,
| |
Collapse
|
50
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|