1
|
Han T, Tong W, Xie J, Guo X, Zhang L. FOXF2 suppressed esophageal squamous cell carcinoma by reducing M2 TAMs via modulating RNF144A-FTO axis. Int Immunopharmacol 2024; 143:113422. [PMID: 39447407 DOI: 10.1016/j.intimp.2024.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its high invasiveness and low survival. Tumor-associated macrophages (TAMs) are closely associated with the tumor cell proliferation, metastasis and immunosuppression. As a member of the FOX family, forkhead box F2 (FOXF2) was down-regulated in ESCC. However, its role in ESCC and TAMs, as well as the underlying mechanism, remains unclear. We found that differentially expressed genes (DEGs) in ESCC were enriched in proliferation, migration, macrophage and cancer pathways. Among these DEGs, FOXF2 caught our eyes. FOXF2 was down-regulated in ESCC. Overexpression FOXF2 inhibited the proliferation of ESCC cells and the M2 polarization of TAMs, but silenced FOXF2 reversed these results. Notably, FOXF2 promoted the transcription of ring finger protein 144A (RNF144A), which is an E3 ubiquitin ligase, causing the ubiquitination and degradation of FTO Alpha-Ketoglutarate Dependent Dioxygenase (FTO), an N6-methyladenosine (m6A) demethylase. Furthermore, overexpression of FTO abolished the effects of FOXF2 on TAM polarization. In conclusion, FOXF2 alleviates ESCC via promoting the transcription of RNF144A which results in the ubiquitylation and degradation of FTO. Targeting FOXF2/RNF144A/FOT axis might be a possible strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Junwei Xie
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaoqi Guo
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Yang B, Shen M, Lu C, Wang Y, Zhao X, Zhang Q, Qin X, Pei J, Wang H, Wang J. RNF144A inhibits autophagy by targeting BECN1 for degradation during L. monocytogenes infection. Autophagy 2024:1-18. [PMID: 39608349 DOI: 10.1080/15548627.2024.2429380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Listeria monocytogenes (L. monocytogenes, Lm) is widely used in the laboratory as an infection model for the research on pathogenesis and host defense against gram-positive intracellular bacteria. Macroautophagy (called simply "autophagy" hereafter), is important in the host defense against pathogens, such as bacteria, viruses, and parasites. BECN1 plays a pivotal role in the initiation of autophagy and accumulating evidence indicates that post-translational modifications of BECN1 provide multiple strategies for autophagy regulation. In this study, we demonstrated that the RING1-IBR-RING2 (RBR) family member RNF144A (ring finger protein 144A), which was induced by Lm infection, promoted Lm infection in an autophagy-dependent but STING1-independent pattern. rnf144a deficiency in mice protected mice from Lm infection with inhibited innate immune responses. Interestingly, RNF144A decreased Lm-induced autophagosome accumulation. Mechanistic investigation indicated that RNF144A interacted with BECN1 and promoted its K48-linked ubiquitination, leading to the subsequent proteasome-dependent degradation of BECN1 and reduced autophagosome accumulation. Further study demonstrated that RNF144A promoted the ubiquitination of BECN1 at K117 and K427, and these two ubiquitination sites were essential to the role of BECN1 in autophagy and Lm infection. Thus, our findings suggested a new regulator in intracellular bacterial infection and autophagy, which may contribute to our understanding of host defense against intracellular bacterial infection via autophagy.Abbreviations: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG10: autophagy related 10; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; Baf A1: bafilomycin A1; BECN1: beclin 1; BMDC: bone marrow-derived dendritic cell; BMDM: bone marrow-derived macrophage; CFUs: colony-forming units; CHX: cycloheximide; CQ: chloroquine; CXCL10/IP-10: C-X-C motif chemokine ligand 10; EBSS: Earle's balanced salt solution; ELISA: enzyme-linked immunosorbent assay; IFIT1/ISG56: interferon induced protein with tetratricopeptide repeats 1; IFNB/IFN-β: interferon beta; IL6: interleukin 6; IRF3, interferon regulatory factor 3; Lm: L. monocytogenes; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; PLA: proximity ligation assay; PMA: phorbol myristate acetate; PMA-THP1, PMA-differentiated THP1; PMs: peritoneal macrophages; PTMs: posttranslational modifications; RBR: RING1-IBR-RING2; RNF144A: ring finger protein 144A; STING1, stimulator of interferon response cGAMP interactor 1; TBK1, TANK binding kinase 1; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Bo Yang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengyang Shen
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chen Lu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yi Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin Zhao
- Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qunmei Zhang
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Xiao Qin
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinyong Pei
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Trenkwalder T, Maj C, Al-Kassou B, Debiec R, Doppler SA, Musameh MD, Nelson CP, Dasmeh P, Grover S, Knoll K, Naamanka J, Mordi IR, Braund PS, Dreßen M, Lahm H, Wirth F, Baldus S, Kelm M, von Scheidt M, Krefting J, Ellinghaus D, Small AM, Peloso GM, Natarajan P, Thanassoulis G, Engert JC, Dufresne L, Franke A, Görg S, Laudes M, Nowak-Göttl U, Vaht M, Metspalu A, Stoll M, Berger K, Pellegrini C, Kastrati A, Hengstenberg C, Lang CC, Kessler T, Hovatta I, Nickenig G, Nöthen MM, Krane M, Schunkert H, Samani NJ, Schumacher J. Distinct Genetic Risk Profile in Aortic Stenosis Compared With Coronary Artery Disease. JAMA Cardiol 2024:2825839. [PMID: 39504041 PMCID: PMC11541746 DOI: 10.1001/jamacardio.2024.3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/11/2024] [Indexed: 11/09/2024]
Abstract
Importance Aortic stenosis (AS) and coronary artery disease (CAD) frequently coexist. However, it is unknown which genetic and cardiovascular risk factors might be AS-specific and which could be shared between AS and CAD. Objective To identify genetic risk loci and cardiovascular risk factors with AS-specific associations. Design, Setting, and Participants This was a genomewide association study (GWAS) of AS adjusted for CAD with participants from the European Consortium for the Genetics of Aortic Stenosis (EGAS) (recruited 2000-2020), UK Biobank (recruited 2006-2010), Estonian Biobank (recruited 1997-2019), and FinnGen (recruited 1964-2019). EGAS participants were collected from 7 sites across Europe. All participants were of European ancestry, and information on comorbid CAD was available for all participants. Follow-up analyses with GWAS data on cardiovascular traits and tissue transcriptome data were also performed. Data were analyzed from October 2022 to July 2023. Exposures Genetic variants. Main Outcomes and Measures Cardiovascular traits associated with AS adjusted for CAD. Replication was performed in 2 independent AS GWAS cohorts. Results A total of 18 792 participants with AS and 434 249 control participants were included in this GWAS adjusted for CAD. The analysis found 17 AS risk loci, including 5 loci with novel and independently replicated associations (RNF114A, AFAP1, PDGFRA, ADAMTS7, HAO1). Of all 17 associated loci, 11 were associated with risk specifically for AS and were not associated with CAD (ALPL, PALMD, PRRX1, RNF144A, MECOM, AFAP1, PDGFRA, IL6, TPCN2, NLRP6, HAO1). Concordantly, this study revealed only a moderate genetic correlation of 0.15 (SE, 0.05) between AS and CAD (P = 1.60 × 10-3). Mendelian randomization revealed that serum phosphate was an AS-specific risk factor that was absent in CAD (AS: odds ratio [OR], 1.20; 95% CI, 1.11-1.31; P = 1.27 × 10-5; CAD: OR, 0.97; 95% CI 0.94-1.00; P = .04). Mendelian randomization also found that blood pressure, body mass index, and cholesterol metabolism had substantially lesser associations with AS compared with CAD. Pathway and transcriptome enrichment analyses revealed biological processes and tissues relevant for AS development. Conclusions and Relevance This GWAS adjusted for CAD found a distinct genetic risk profile for AS at the single-marker and polygenic level. These findings provide new targets for future AS research.
Collapse
Affiliation(s)
- Teresa Trenkwalder
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Carlo Maj
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Baravan Al-Kassou
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stefanie A. Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Muntaser D. Musameh
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Pouria Dasmeh
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Sandeep Grover
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Katharina Knoll
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Joonas Naamanka
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Peter S. Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Felix Wirth
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Moritz von Scheidt
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johannes Krefting
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Aeron M. Small
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - James C. Engert
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute for Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ulrike Nowak-Göttl
- Thrombosis and Hemostasis Unit, Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany
| | - Mariliis Vaht
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Monika Stoll
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Munster, Germany
| | - Costanza Pellegrini
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Adnan Kastrati
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Thorsten Kessler
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Georg Nickenig
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Markus Krane
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Yale School of Medicine, Division of Cardiac Surgery, Department of Surgery, New Haven, Connecticut
| | - Heribert Schunkert
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Johannes Schumacher
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Wu Q, Geng Z, Lu J, Wang S, Yu Z, Wang S, Ren X, Guan S, Liu T, Zhu C. Neddylation of protein, a new strategy of protein post-translational modification for targeted treatment of central nervous system diseases. Front Neurosci 2024; 18:1467562. [PMID: 39564524 PMCID: PMC11573765 DOI: 10.3389/fnins.2024.1467562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Neddylation, a type of protein post-translational modification that links the ubiquitin-like protein NEDD8 to substrate proteins, can be involved in various significant cellular processes and generate multiple biological effects. Currently, the best-characterized substrates of neddylation are the Cullin protein family, which is the core subunit of the Cullin-RING E3 ubiquitin ligase complex and controls many important biological processes by promoting ubiquitination and subsequent degradation of various key regulatory proteins. The normal or abnormal process of protein neddylation in the central nervous system can lead to a series of occurrences of normal functions and the development of diseases, providing an attractive, reasonable, and effective targeted therapeutic strategy. Therefore, this study reviews the phenomenon of neddylation in the central nervous system and summarizes the corresponding substrates. Finally, we provide a detailed description of neddylation involved in CNS diseases and treatment methods that may be used to regulate neddylation for the treatment of related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Lu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shisong Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Ruan X, Wang N, Xie Q, Du Y. RNF144A as a potential risk gene for endometrial carcinoma: Insights from Mendelian randomization, bulk RNA sequencing, single-cell RNA, and experimental analysis. Medicine (Baltimore) 2024; 103:e39886. [PMID: 39465767 PMCID: PMC11460862 DOI: 10.1097/md.0000000000039886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 10/29/2024] Open
Abstract
Endometrial carcinoma (EC) is a prevalent gynecological malignancy that poses a significant threat to women's health worldwide. However, its pathogenesis and underlying mechanisms remains unclear. In this study, expression quantitative trait loci data, Mendelian randomization analysis, and differential expression analysis were performed to identify potential targets. A prognostic risk signature was subsequently constructed for EC patients based on the expression of these genes. Four bioinformatics algorithms, including generalized linear model, extreme gradient boosting, support vector machine, and random forest, were used to identify hub genes in EC. The expression of ring finger protein 144A (RNF144A) was validated using quantitative real-time polymerase chain reaction. Cellular proliferation and migration ability were evaluated using CCK-8 and Transwell assays, respectively. The genes RNF144A, ketohexokinase, and Rab interacting lysosomal protein like 2 were identified as potential targets for EC. Their differential expression was observed in EC patients, and Mendelian randomization analysis revealed a negative correlation between these genes and the development of EC. Mechanistic analyses suggested a strong association between these genes and the tumor immune microenvironment. The constructed risk signature was significantly associated with the prognosis, age, cancer stage, and grade of EC patients. Furthermore, based on interacted model algorithms, RNF144A was identified as a hub gene in EC. It was found to be significantly downregulated in EC samples, and its expression was positively correlated with the stage and grade of EC patients. In vitro experiments showed that overexpression of RNF144A significantly promoted cell growth and migration in EC cells. In conclusion, this study provides insights into the molecular mechanisms underlying EC progression and identifies preliminary candidate biomarkers for the development of EC treatment strategies.
Collapse
Affiliation(s)
- Xiqin Ruan
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Ni Wang
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Qingwen Xie
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Yi Du
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| |
Collapse
|
6
|
Camfield S, Chakraborty S, Dwivedi SKD, Pramanik PK, Mukherjee P, Bhattacharya R. Secrets of DNA-PKcs beyond DNA repair. NPJ Precis Oncol 2024; 8:154. [PMID: 39043779 PMCID: PMC11266574 DOI: 10.1038/s41698-024-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
The canonical role of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in repairing DNA double-strand breaks combined with its reported dysregulation in several malignancies has driven the development of DNA-PKcs inhibitors as therapeutics. However, until recently the relationship between DNA-PKcs and tumorigenesis has been primarily investigated with regard to its role in non-homologous end joining (NHEJ) repair. Emerging research has uncovered non-canonical DNA-PKcs functions involved with transcriptional regulation, telomere maintenance, metabolic regulation, and immune signaling all of which may also impinge on tumorigenesis. This review mainly discusses these non-canonical roles of DNA-PKcs in cellular biology and their potential contribution to tumorigenesis, as well as evaluating the implications of targeting DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Sydney Camfield
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sayan Chakraborty
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pijush Kanti Pramanik
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Sriramulu S, Thoidingjam S, Chen WM, Hassan O, Siddiqui F, Brown SL, Movsas B, Green MD, Davis AJ, Speers C, Walker E, Nyati S. BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:163. [PMID: 38863037 PMCID: PMC11167950 DOI: 10.1186/s13046-024-03086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX-75390, USA
| | - Oudai Hassan
- Department of Surgical Pathology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI-48202, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX-75390, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH-44106, USA
| | - Eleanor Walker
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA.
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA.
| |
Collapse
|
8
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Sriramulu S, Thoidingjam S, Chen WM, Hassan O, Siddiqui F, Brown SL, Movsas B, Green MD, Davis AJ, Speers C, Walker E, Nyati S. BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592812. [PMID: 38766122 PMCID: PMC11100764 DOI: 10.1101/2024.05.07.592812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. Methods Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC 50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. Results BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t 1/2 , ∼8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. Conclusions BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.
Collapse
|
10
|
Kim DY, Yun H, You JE, Lee JU, Kang DH, Ryu YS, Koh DI, Jin DH. Inactivation of VRK1 sensitizes ovarian cancer to PARP inhibition through regulating DNA-PK stability. Exp Cell Res 2024; 438:114036. [PMID: 38614421 DOI: 10.1016/j.yexcr.2024.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.
Collapse
Affiliation(s)
- Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyeseon Yun
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ji-Eun You
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ji-U Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hee Kang
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
11
|
Abad E, Sandoz J, Romero G, Zadra I, Urgel-Solas J, Borredat P, Kourtis S, Ortet L, Martínez CM, Weghorn D, Sdelci S, Janic A. The TP53-activated E3 ligase RNF144B is a tumour suppressor that prevents genomic instability. J Exp Clin Cancer Res 2024; 43:127. [PMID: 38685100 PMCID: PMC11057071 DOI: 10.1186/s13046-024-03045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND TP53, the most frequently mutated gene in human cancers, orchestrates a complex transcriptional program crucial for cancer prevention. While certain TP53-dependent genes have been extensively studied, others, like the recently identified RNF144B, remained poorly understood. This E3 ubiquitin ligase has shown potent tumor suppressor activity in murine Eμ Myc-driven lymphoma, emphasizing its significance in the TP53 network. However, little is known about its targets and its role in cancer development, requiring further exploration. In this work, we investigate RNF144B's impact on tumor suppression beyond the hematopoietic compartment in human cancers. METHODS Employing TP53 wild-type cells, we generated models lacking RNF144B in both non-transformed and cancerous cells of human and mouse origin. By using proteomics, transcriptomics, and functional analysis, we assessed RNF144B's impact in cellular proliferation and transformation. Through in vitro and in vivo experiments, we explored proliferation, DNA repair, cell cycle control, mitotic progression, and treatment resistance. Findings were contrasted with clinical datasets and bioinformatics analysis. RESULTS Our research underscores RNF144B's pivotal role as a tumor suppressor, particularly in lung adenocarcinoma. In both human and mouse oncogene-expressing cells, RNF144B deficiency heightened cellular proliferation and transformation. Proteomic and transcriptomic analysis revealed RNF144B's novel function in mediating protein degradation associated with cell cycle progression, DNA damage response and genomic stability. RNF144B deficiency induced chromosomal instability, mitotic defects, and correlated with elevated aneuploidy and worse prognosis in human tumors. Furthermore, RNF144B-deficient lung adenocarcinoma cells exhibited resistance to cell cycle inhibitors that induce chromosomal instability. CONCLUSIONS Supported by clinical data, our study suggests that RNF144B plays a pivotal role in maintaining genomic stability during tumor suppression.
Collapse
Affiliation(s)
- Etna Abad
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Jérémy Sandoz
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Gerard Romero
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Ivan Zadra
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Julia Urgel-Solas
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Pablo Borredat
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Laura Ortet
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Carlos M Martínez
- Pathology Platform, Instituto Murciano de Investigación Biosanitaria (IMIB-Pascual Parrilla), Murcia, 30120, Spain
| | - Donate Weghorn
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Ana Janic
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain.
| |
Collapse
|
12
|
Xiao S, Han X, Bai S, Chen R. Analysis of immune cell infiltration characteristics in severe acute pancreatitis through integrated bioinformatics. Sci Rep 2024; 14:8711. [PMID: 38622245 PMCID: PMC11018854 DOI: 10.1038/s41598-024-59205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
The etiopathogenesis of severe acute pancreatitis (SAP) remains poorly understood. We aim to investigate the role of immune cells Infiltration Characteristics during SAP progression. Gene expression profiles of the GSE194331 dataset were retrieved from the GEO. Lasso regression and random forest algorithms were employed to select feature genes from genes related to SAP progression and immune responses. CIBERSORT was utilized to estimate differences in immune cell types and proportions and the relationship between immune cells and gene expression. We performed pathway enrichment analysis using GSEA to examine disparities in KEGG signaling pathways when comparing the two groups. Additionally, CMap analysis was executed to identify prospective small molecular compounds. The three hub genes (CBLB, JADE2, RNF144A) were identified that can predict SAP progression. Analysis of CIBERSORT and TISIDB databases has shown that there are significant differences in immune cell expression levels between the normal and SAP groups, and three hub genes (CBLB, JADE2, RNF144A) were highly correlated with multiple immune cells, regulating the characteristics of immune cell infiltration in the microenvironment. Finally, drug prediction through the Connectivity Map database suggested that compounds such as Entecavir, KU-0063794, Y-27632, and Antipyrine have certain effects as potential targeted drugs for the treatment of SAP. CBLB, JADE2, and RNF144A are hub genes in SAP, potentially playing important roles in SAP progression. This finding further broadens the understanding of the etiopathogenesis of SAP and provides a feasible basis for future research on diagnostic and immunotherapeutic targets for SAP.
Collapse
Affiliation(s)
- Shuai Xiao
- Department of Intensive Care Medicine, Tengzhou Central People's Hospital, Tengzhou, China
| | - Xiao Han
- Department of Nutriology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuhui Bai
- Department of General Practice, Jining First People's Hospital, Jining, China
| | - Rui Chen
- Department of General Practice, The Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
13
|
Kaushik A, Parashar S, Ambasta RK, Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer. Ageing Res Rev 2024; 96:102279. [PMID: 38521359 DOI: 10.1016/j.arr.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
E3 ligases, essential components of the ubiquitin-proteasome-mediated protein degradation system, play a critical role in cellular regulation. By covalently attaching ubiquitin (Ub) molecules to target proteins, these ligases mark them for degradation, influencing various bioprocesses. With over 600 E3 ligases identified, there is a growing realization of their potential as therapeutic candidates for addressing proteinopathies in cancer and neurodegenerative disorders (NDDs). Recent research has highlighted the need to delve deeper into the intricate roles of E3 ligases as nexus points in the pathogenesis of both cancer and NDDs. Their dysregulation is emerging as a common thread linking these seemingly disparate diseases, necessitating a comprehensive understanding of their molecular intricacies. Herein, we have discussed (i) the fundamental mechanisms through which different types of E3 ligases actively participate in selective protein degradation in cancer and NDDs, followed by an examination of common E3 ligases playing pivotal roles in both situations, emphasising common players. Moving to, (ii) the functional domains and motifs of E3 ligases involved in ubiquitination, we have explored their interactions with specific substrates in NDDs and cancer. Additionally, (iii) we have explored techniques like PROTAC, molecular glues, and other state-of-the-art methods for hijacking neurotoxic and oncoproteins. Lastly, (iv) we have provided insights into ongoing clinical trials, offering a glimpse into the evolving landscape of E3-based therapeutics for cancer and NDDs. Unravelling the intricate network of E3 ligase-mediated regulation holds the key to unlocking targeted therapies that address the specific molecular signatures of individual patients, heralding a new era in personalized medicines.
Collapse
Affiliation(s)
- Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University-Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
14
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Ren JX, Chen L, Guo W, Feng KY, Cai YD, Huang T. Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Comb Chem High Throughput Screen 2024; 27:2921-2934. [PMID: 37957897 DOI: 10.2174/0113862073266300231026103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Collapse
Affiliation(s)
- Jing Xin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Kai Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
16
|
Wang M, Zhang Z, Li Z, Zhu Y, Xu C. E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and implications for immunotherapies. Front Immunol 2023; 14:1226057. [PMID: 37497216 PMCID: PMC10366618 DOI: 10.3389/fimmu.2023.1226057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
With the rapidly increasing incidence of bladder cancer in China and worldwide, great efforts have been made to understand the detailed mechanism of bladder cancer tumorigenesis. Recently, the introduction of immune checkpoint inhibitor-based immunotherapy has changed the treatment strategy for bladder cancer, especially for advanced bladder cancer, and has improved the survival of patients. The ubiquitin-proteasome system, which affects many biological processes, plays an important role in bladder cancer. Several E3 ubiquitin ligases and deubiquitinases target immune checkpoints, either directly or indirectly. In this review, we summarize the recent progress in E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further highlight the implications for bladder cancer immunotherapies.
Collapse
Affiliation(s)
- Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Liu X, Cen X, Wu R, Chen Z, Xie Y, Wang F, Shan B, Zeng L, Zhou J, Xie B, Cai Y, Huang J, Liang Y, Wu Y, Zhang C, Wang D, Xia H. ARIH1 activates STING-mediated T-cell activation and sensitizes tumors to immune checkpoint blockade. Nat Commun 2023; 14:4066. [PMID: 37429863 DOI: 10.1038/s41467-023-39920-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite advances in cancer treatment, immune checkpoint blockade (ICB) only achieves complete response in some patients, illustrating the need to identify resistance mechanisms. Using an ICB-insensitive tumor model, here we discover cisplatin enhances the anti-tumor effect of PD-L1 blockade and upregulates the expression of Ariadne RBR E3 ubiquitin-protein ligase 1 (ARIH1) in tumors. Arih1 overexpression promotes cytotoxic T cell infiltration, inhibits tumor growth, and potentiates PD-L1 blockade. ARIH1 mediates ubiquitination and degradation of DNA-PKcs to trigger activation of the STING pathway, which is blocked by the phospho-mimetic mutant T68E/S213D of cGAS protein. Using a high-throughput drug screen, we further identify that ACY738, less cytotoxic than cisplatin, effectively upregulates ARIH1 and activates STING signaling, sensitizing tumors to PD-L1 blockade. Our findings delineate a mechanism that tumors mediate ICB resistance through the loss of ARIH1 and ARIH1-DNA-PKcs-STING signaling and indicate that activating ARIH1 is an effective strategy to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaolan Liu
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Ronghai Wu
- Hangzhou PhecdaMed Co.Ltd, 2626 Yuhangtang Road, Hangzhou, 311121, China
| | - Ziyan Chen
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanqi Xie
- Department of Urology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fengqi Wang
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 50# Huzhou Rd., Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Bojian Xie
- Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 318000, China
| | - Yangjun Cai
- Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 318000, China
| | - Jinyan Huang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yingjiqiong Liang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Youqian Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Chao Zhang
- Department of Anatomy and Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dongrui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Hongguang Xia
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
19
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
20
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
21
|
Hayashida R, Kikuchi R, Imai K, Kojima W, Yamada T, Iijima M, Sesaki H, Tanaka K, Matsuda N, Yamano K. Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid-liquid phase separation-based method. J Biol Chem 2022; 299:102822. [PMID: 36563856 PMCID: PMC9860496 DOI: 10.1016/j.jbc.2022.102822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid-liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2-E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.
Collapse
Affiliation(s)
- Ryota Hayashida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Reika Kikuchi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
22
|
Dylgjeri E, Knudsen KE. DNA-PKcs: A Targetable Protumorigenic Protein Kinase. Cancer Res 2022; 82:523-533. [PMID: 34893509 PMCID: PMC9306356 DOI: 10.1158/0008-5472.can-21-1756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a pleiotropic protein kinase that plays critical roles in cellular processes fundamental to cancer. DNA-PKcs expression and activity are frequently deregulated in multiple hematologic and solid tumors and have been tightly linked to poor outcome. Given the potentially influential role of DNA-PKcs in cancer development and progression, therapeutic targeting of this kinase is being tested in preclinical and clinical settings. This review summarizes the latest advances in the field, providing a comprehensive discussion of DNA-PKcs functions in cancer and an update on the clinical assessment of DNA-PK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Corresponding Author: Karen E. Knudsen, Thomas Jefferson University, 233 South 10th Street, BLSB 1050, Philadelphia, PA 19107. Phone: 215-503-5692; E-mail:
| |
Collapse
|
23
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Kim A, Koo JH, Jin X, Kim W, Park SY, Park S, Rhee EP, Choi CS, Kim SG. Ablation of USP21 in skeletal muscle promotes oxidative fibre phenotype, inhibiting obesity and type 2 diabetes. J Cachexia Sarcopenia Muscle 2021; 12:1669-1689. [PMID: 34523817 PMCID: PMC8718070 DOI: 10.1002/jcsm.12777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Skeletal muscle as a metabolic consumer determines systemic energy homeostasis by regulating myofibre type conversion and muscle mass control. Perturbation of the skeletal muscle metabolism elevates the risk of a variety of diseases including metabolic disorders. However, the regulatory pathways and molecules are not completely understood. The discovery of relevant responsible molecules and the associated network could be an attractive strategy to overcome diseases associated with muscle problems. METHODS An initial screening using quantitative trait locus analysis enabled us to extract a set of genes including ubiquitin-specific proteases21 (USP21) (r = 0.738; P = 0.004) as potential targets associated with fasting blood glucose content. Given tight regulation of the ubiquitination status of proteins in muscle, we focused on USP21 and generated whole-body (KO) and skeletal muscle-specific USP21 knockout (MKO) mice. Transcriptomics, proteomics, and lipidomics assays in combination with various in vivo and in vitro experiments were performed to understand the functions of USP21 and underlying mechanisms. A high-fat diet (60%)-fed mouse model and diabetic patient-derived samples were utilized to assess the effects of USP21 on energy metabolism in skeletal muscle. RESULTS USP21 was highly expressed in both human and mouse skeletal muscle, and controlled skeletal muscle oxidative capacity and fuel consumption. USP21-KO or USP21-MKO significantly promoted oxidative fibre type changes (Δ36.6% or Δ47.2%), muscle mass increase (Δ13.8% to Δ22.8%), and energy expenditure through mitochondrial biogenesis, fatty acid oxidation, and UCP2/3 induction (P < 0.05 or P < 0.01). Consistently, cold exposure repressed USP21 expression in mouse skeletal muscle (Δ55.3%), whereas loss of USP21 increased thermogenesis (+1.37°C or +0.84°C; P < 0.01). Mechanistically, USP21 deubiquitinated DNA-PKcs and ACLY, which led to AMPK inhibition. Consequently, USP21 ablation diminished diet-induced obesity (WT vs. USP21-KO, Δ8.02 g, 17.1%, P < 0.01; litter vs. USP21-MKO, Δ3.48 g, 7.7%, P < 0.05) and insulin resistance. These findings were corroborated in a skeletal muscle-specific gene KO mouse model. USP21 was induced in skeletal muscle of a diabetic patient (1.94-fold), which was reciprocally changed to p-AMPK (0.30-fold). CONCLUSIONS The outcomes of this research provide novel information as to how USP21 in skeletal muscle contributes to systemic energy homeostasis, demonstrating USP21 as a key molecule in the regulation of myofibre type switch, muscle mass control, mitochondrial function, and heat generation and, thus, implicating the potential of this molecule and its downstream substrates network as targets for the treatment and/or prevention of muscle dysfunction and the associated metabolic diseases.
Collapse
Affiliation(s)
- Ayoung Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Xing Jin
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Wondong Kim
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA.,Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, South Korea
| | - Sunghyouk Park
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Eugene P Rhee
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, South Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-Do, South Korea
| |
Collapse
|
25
|
Ho SR, Lee YC, Ittmann MM, Lin FT, Chan KS, Lin WC. RNF144A deficiency promotes PD-L1 protein stabilization and carcinogen-induced bladder tumorigenesis. Cancer Lett 2021; 520:344-360. [PMID: 34400221 DOI: 10.1016/j.canlet.2021.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
RNF144A is a DNA damage-induced E3 ubiquitin ligase that targets proteins involved in genome instability for degradation, e.g., DNA-PKcs and BMI1. RNF144A is frequently mutated or epigenetically silenced in cancer, providing the rationale to evaluate RNF144A loss of function in tumorigenesis. Here we report that RNF144A-deficient mice are more prone to the development of bladder tumors upon carcinogen exposure. In addition to DNA-PKcs and BMI1, we identify the immune checkpoint protein PD-L1 as a novel degradation target of RNF144A, since these proteins are expressed at higher levels in Rnf144a KO tumors. RNF144A interacts with PD-L1 in the plasma membrane and intracellular vesicles and promotes poly-ubiquitination and degradation of PD-L1. Therefore, Rnf144a KO stabilizes PD-L1 and leads to a reduction of tumor-infiltrating CD8+ T cell populations in the BBN-induced bladder tumors. The bladder tumors developed in WT and Rnf144a KO mice primarily express CK5 and CK14, markers of basal cancer subtype, as expected in BBN-induced bladder tumors. Intriguingly, the Rnf144a KO tumors also express GATA3, a marker for the luminal subtype, suggesting that RNF144A loss of function promotes features of cellular differentiation. Such differentiation features in Rnf144a KO tumors likely result from a decrease of EGFR expression, consistent with the reported role of RNF144A in maintaining EGFR expression. In summary, for the first time our study demonstrates the in vivo tumor suppressor activity of RNF144A upon carcinogenic insult. Loss of RNF144A promotes the expression of DNA-PKcs, BMI1 and PD-L1, likely contributing to the carcinogen-induced bladder tumorigenesis.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keith Syson Chan
- Department of Pathology and Laboratory Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Jiang L, Wang J, Wang K, Wang H, Wu Q, Yang C, Yu Y, Ni P, Zhong Y, Song Z, Xie E, Hu R, Min J, Wang F. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021; 138:689-705. [PMID: 33895792 PMCID: PMC8394904 DOI: 10.1182/blood.2020008986] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroportin (FPN), the body's sole iron exporter, is essential for maintaining systemic iron homeostasis. In response to either increased iron or inflammation, hepatocyte-secreted hepcidin binds to FPN, inducing its internalization and subsequent degradation. However, the E3 ubiquitin ligase that underlies FPN degradation has not been identified. Here, we report the identification and characterization of a novel mechanism involving the RNF217-mediated degradation of FPN. A combination of 2 different E3 screens revealed that the Rnf217 gene is a target of Tet1, mediating the ubiquitination and subsequent degradation of FPN. Interestingly, loss of Tet1 expression causes an accumulation of FPN and an impaired response to iron overload, manifested by increased iron accumulation in the liver together with decreased iron in the spleen and duodenum. Moreover, we found that the degradation and ubiquitination of FPN could be attenuated by mutating RNF217. Finally, using 2 conditional knockout mouse lines, we found that knocking out Rnf217 in macrophages increases splenic iron export by stabilizing FPN, whereas knocking out Rnf217 in intestinal cells appears to increase iron absorption. These findings suggest that the Tet1-RNF217-FPN axis regulates iron homeostasis, revealing new therapeutic targets for FPN-related diseases.
Collapse
Affiliation(s)
- Li Jiang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Jiaming Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Qian Wu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Yu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Ni
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyang Zhong
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijun Song
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Enjun Xie
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| |
Collapse
|
27
|
Meng Y, Qiu L, Zhang S, Han J. The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:365-381. [PMID: 35582023 PMCID: PMC9019267 DOI: 10.20517/cdr.2020.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Meng
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Lei Qiu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Su Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Sultan M, Nearing JT, Brown JM, Huynh TT, Cruickshank BM, Lamoureaux E, Vidovic D, Dahn ML, Fernando W, Coyle KM, Giacomantonio CA, Langille MGI, Marcato P. An in vivo genome-wide shRNA screen identifies BCL6 as a targetable biomarker of paclitaxel resistance in breast cancer. Mol Oncol 2021; 15:2046-2064. [PMID: 33932086 PMCID: PMC8333778 DOI: 10.1002/1878-0261.12964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Paclitaxel is a common breast cancer drug; however, some tumors are resistant. The identification of biomarkers for paclitaxel resistance or sensitivity would enable the development of strategies to improve treatment efficacy. A genome-wide in vivo shRNA screen was performed on paclitaxel-treated mice with MDA-MB-231 tumors to identify genes associated with paclitaxel sensitivity or resistance. Gene expression of the top screen hits was associated with tumor response (resistance or sensitivity) among patients who received neoadjuvant chemotherapy containing paclitaxel. We focused our validation on screen hit B-cell lymphoma 6 (BCL6), which is a therapeutic target in cancer but for which no effects on drug response have been reported. Knockdown of BCL6 resulted in increased tumor regression in mice treated with paclitaxel. Similarly, inhibiting BCL6 using a small molecule inhibitor enhanced paclitaxel treatment efficacy both in vitro and in vivo in breast cancer models. Mechanism studies revealed that reduced BCL6 enhances the efficacy of paclitaxel by inducing sustained G1/S arrest, concurrent with increased apoptosis and expression of target gene cyclin-dependent kinase inhibitor 1A. In summary, the genome-wide shRNA knockdown screen has identified BCL6 as a potential targetable resistance biomarker of paclitaxel response in breast cancer.
Collapse
Affiliation(s)
- Mohammad Sultan
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Justin M Brown
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Thomas T Huynh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Emily Lamoureaux
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Dejan Vidovic
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | | | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
Li Y, Wang J, Wang F, Chen W, Gao C, Wang J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol Toxicol 2021; 38:809-824. [PMID: 33978933 DOI: 10.1007/s10565-021-09609-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Cancer stem cells (CSCs) are the main driving force of tumorigenesis, metastasis, recurrence, and drug resistance in epithelial ovarian cancer (EOC). The current study aimed to explore the regulatory effects of ring finger protein 144A (RNF144A), an E3 ubiquitin ligase, in the maintenance of CSC properties and tumor development in EOC. METHODS The expressions of RNF144A in EOC tissue samples and cells were examined. The knockdown or overexpression of a target gene was achieved by transfecting EOC cells with short hairpin RNA or adenoviral vectors. A mouse xenograft model was constructed by inoculating nude mice with EOC cells. Co-immunoprecipitation was used to determine the interaction between RNF144A and LIN28B. RESULTS Downregulated RNF144A expression was observed in ovarian tumor tissues and EOC cells. Low RNF144A expression was positively associated with poor survival of EOC patients. RNF144A knockdown significantly enhanced sphere formation and upregulated stem cell markers in EOC cells, while RNF144A overexpression prevented EOC cells from acquiring stem cell properties. Also, the upregulation of RNF144A inhibited ovarian tumor growth and aggressiveness in cell culture and mouse xenografts. Further analysis revealed that RNF144A induced LIN28B degradation through ubiquitination in EOC cells. LIN28B upregulation restored the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A. CONCLUSION Taken together, our findings highlight the therapeutic potential of restoring RNF144A expression and thereby suppressing LIN28B-associated oncogenic signaling for EOC treatment. • Ring finger protein 144A (RNF144A) is downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. • The overexpression of RNF144A prevents EOC cells from acquiring stem cell properties and inhibits ovarian tumor growth. • RNF144A induces LIN28B degradation through ubiquitination in EOC cells. • LIN28B upregulation restores the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wenyu Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Chengzhen Gao
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Jianhua Wang
- Department of Gastroenterology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 66, Renmin South Road, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
30
|
Dai ZT, Xiang Y, Wang Y, Bao LY, Wang J, Li JP, Zhang HM, Lu Z, Ponnambalam S, Liao XH. Prognostic value of members of NFAT family for pan-cancer and a prediction model based on NFAT2 in bladder cancer. Aging (Albany NY) 2021; 13:13876-13897. [PMID: 33962392 PMCID: PMC8202856 DOI: 10.18632/aging.202982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/26/2021] [Indexed: 04/23/2023]
Abstract
Bladder cancer (BLCA) is one of the common malignant tumors of the urinary system. The poor prognosis of BLCA patients is due to the lack of early diagnosis and disease recurrence after treatment. Increasing evidence suggests that gene products of the nuclear factor of activated T-cells (NFAT) family are involved in BLCA progression and subsequent interaction(s) with immune surveillance. In this study, we carried out a pan-cancer analysis of the NFAT family and found that NFAT2 is an independent prognostic factor for BLCA. We then screened for differentially expressed genes (DEGs) and further analyzed such candidate gene loci using gene ontology enrichment to curate the KEGG database. We then used Lasso and multivariate Cox regression to identify 4 gene loci (FER1L4, RNF128, EPHB6, and FN1) which were screened together with NFAT2 to construct a prognostic model based on using Kaplan-Meier analysis to predict the overall survival of BLCA patients. Moreover, the accuracy of our proposed model is supported by deposited datasets in the Gene Expression Omnibus (GEO) database. Finally, a nomogram of this prognosis model for BLCA was established which could help to provide better disease management and treatment.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, P.R. China
| | - Yundan Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, P.R. China
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| |
Collapse
|
31
|
Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, Liu HM. Targeting neddylation E2s: a novel therapeutic strategy in cancer. J Hematol Oncol 2021; 14:57. [PMID: 33827629 PMCID: PMC8028724 DOI: 10.1186/s13045-021-01070-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yan-Jia Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
32
|
Regulation of cardiomyocyte DNA damage and cell death by the type 2A protein phosphatase regulatory protein alpha4. Sci Rep 2021; 11:6293. [PMID: 33737606 PMCID: PMC7973735 DOI: 10.1038/s41598-021-85616-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/03/2021] [Indexed: 12/05/2022] Open
Abstract
The type 2A protein phosphatase regulatory protein alpha4 (α4) constitutes an anti-apoptotic protein in non-cardiac tissue, however it’s anti-apoptotic properties in the heart are poorly defined. To this end, we knocked down α4 protein expression (α4 KD) using siRNA in cultured H9c2 cardiomyocytes and confirmed the lack of DNA damage/cell death by TUNEL staining and MTT assay. However, α4 KD did increase the phosphorylation of p53 and ATM/ATR substrates, decreased the expression of poly ADP-ribose polymerase and associated fragments. Expression of anti-apoptotic proteins Bcl-2 and Bcl-xL was reduced, whereas expression of pro-apoptotic BAX protein did not change. Alpha4 KD reduced basal H2AX Ser139 phosphorylation, whereas adenoviral-mediated re-expression of α4 protein following α4 KD, restored basal H2AX phosphorylation at Ser139. The sensitivity of H9c2 cardiomyocytes to doxorubicin-induced DNA damage and cytotoxicity was augmented by α4 KD. Adenoviral-mediated overexpression of α4 protein in ARVM increased PP2AC expression and augmented H2AX Ser139 phosphorylation in response to doxorubicin. Furthermore, pressure overload-induced heart failure was associated with reduced α4 protein expression, increased ATM/ATR protein kinase activity, increased H2AX expression and Ser139 phosphorylation. Hence, this study describes the significance of altered α4 protein expression in the regulation of DNA damage, cardiomyocyte cell death and heart failure.
Collapse
|
33
|
Chung WC, Lee S, Kim Y, Seo JB, Song MJ. Kaposi's sarcoma-associated herpesvirus processivity factor (PF-8) recruits cellular E3 ubiquitin ligase CHFR to promote PARP1 degradation and lytic replication. PLoS Pathog 2021; 17:e1009261. [PMID: 33508027 PMCID: PMC7872283 DOI: 10.1371/journal.ppat.1009261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/09/2021] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Kaposi’s sarcoma–associated herpesvirus (KSHV), which belongs to the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) catalyzes the polymerization of ADP-ribose units on target proteins. In KSHV-infected cells, PARP1 inhibits replication and transcription activator (RTA), a molecular switch that initiates lytic replication, through direct interaction. Thus, for efficient replication, KSHV has to overcome the molecular barrier in the form of PARP1. Previously, we have demonstrated that KSHV downregulates the expression of PARP1 through PF-8, a viral processivity factor. PF-8 induces ubiquitin–proteasome system–mediated degradation of PARP1 via direct physical association and enhances RTA transactivation activity. Here, we showed that dimerization domains of PF-8 are crucial not only for PARP1 interaction and degradation but also for enhancement of the RTA transactivation activity. PF-8 recruited CHFR for the PARP1 degradation. A knockdown of CHFR attenuated the PF-8–induced PARP1 degradation and enhancement of the RTA transactivation activity, leading to reduced KSHV lytic replication. These findings reveal a mechanism by which KSHV PF-8 recruits a cellular E3 ligase to curtail the inhibitory effect of PARP1 on KSHV lytic replication. Kaposi’s sarcoma–associated herpesvirus (KSHV), a member of the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Poly(ADP-ribose) polymerase 1 (PARP1), which is involved in various cellular functions, restricts lytic replication of oncogenic gammaherpesviruses by inhibiting replication and transcription activator (RTA), a molecular switch that activates the viral lytic replication. To abrogate the inhibitory effect of PARP1, reactivated KSHV promotes PARP1 degradation via direct interaction between PARP1 and PF-8, a viral processivity factor. Dimerization domains of PF-8 were found to be critical for PARP1 interaction and degradation and for enhancing the RTA transactivation activity. Furthermore, we found that CHFR, an E3 ubiquitin ligase, is required for PF-8–induced PARP1 degradation and efficient lytic replication of KSHV. This is the first study to show the role of CHFR in viral replication or pathogenicity. This study revealed a molecular mechanism via which gammaherpesviruses overcome the PARP1-mediated inhibitory effect on viral replication: by means of PF-8, which recruits a cellular E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungrae Lee
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yejin Kim
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Bok Seo
- Metabolome Analysis Team, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Weidle UH, Birzele F, Nopora A. microRNAs Promoting Growth of Gastric Cancer Xenografts and Correlation to Clinical Prognosis. Cancer Genomics Proteomics 2021; 18:1-15. [PMID: 33419892 DOI: 10.21873/cgp.20237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The annual death toll for gastric cancer is in the range of 700,000 worldwide. Even in patients with early-stage gastric cancer recurrence within five years has been observed after surgical resection and following chemotherapy with therapy-resistant features. Therefore, the identification of new targets and treatment modalities for gastric cancer is of paramount importance. In this review we focus on the role of microRNAs with documented efficacy in preclinical xenograft models with respect to growth of human gastric cancer cells. We have identified 31 miRs (-10b, -19a, -19b, -20a, -23a/b, -25, -27a-3p, -92a, -93, -100, -106a, -130a, -135a, -135b-5p, -151-5p, -187, -199-3p, -215, -221-3p, -224, -340a, -382, -421, -425, -487a, -493, -532-3p, -575, -589, -664a-3p) covering 26 different targets which promote growth of gastric cancer cells in vitro and in vivo as xenografts. Five miRs (miRs -10b, 151-5p, -187, 532-3p and -589) additionally have an impact on metastasis. Thirteen of the identified miRs (-19b, -20a/b, -25, -92a, -106a, -135a, -187, -221-3p, -340a, -421, -493, -575 and -589) have clinical impact on worse prognosis in patients.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| |
Collapse
|
35
|
Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet 2020; 11:607428. [PMID: 33424929 PMCID: PMC7786053 DOI: 10.3389/fgene.2020.607428] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells' fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqiao Yue
- School of Public Health, University of South China, Hengyang, China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
36
|
Han SH, Kim KT. RNF144a induces ERK-dependent cell death under oxidative stress via downregulation of vaccinia-related kinase 3. J Cell Sci 2020; 133:jcs247304. [PMID: 33067254 DOI: 10.1242/jcs.247304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/17/2020] [Indexed: 08/31/2023] Open
Abstract
Vaccinia-related kinase 3 (VRK3) has been reported to be a negative regulator of ERK (ERK1 and ERK2; also known as MAPK3 and MAPK1, respectively) that protects cells from persistent ERK activation and inhibits ERK-dependent apoptosis. Here we report that the E3 ubiquitin-protein ligase RNF144a promotes the degradation of VRK3 via polyubiquitylation and thus affects VRK3-mediated ERK activity. Under oxidative stress, VRK3 migrates from the nucleus to the cytoplasm, which increases its chance of interacting with RNF144a, thereby promoting the degradation of VRK3. Overexpression of RNF144a increases ERK activity via downregulation of VRK3 and promotes ERK-dependent apoptosis. In contrast, depletion of RNF144a increases the protein level of VRK3 and protects cells from excessive ERK activity. These findings suggest that VRK3 protects cells by suppressing oxidative stress-induced ERK, and that RNF144a sensitively regulates this process.
Collapse
Affiliation(s)
- Seung Hyun Han
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
37
|
Sarfraz M, Afzal A, Khattak S, Saddozai UAK, Li HM, Zhang QQ, Madni A, Haleem KS, Duan SF, Wu DD, Ji SP, Ji XY. Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. J Cell Physiol 2020; 236:1658-1676. [PMID: 32841373 DOI: 10.1002/jcp.30011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023]
Abstract
The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) is a signal-transducing agent providing unique features to its substrate nuclear proteins (PEST-NPs). The PEST motif is responsible for particular posttranslational modifications (PTMs). These PTMs impart distinct properties to PEST-NPs that are responsible for their activation/inhibition, intracellular localization, and stability/degradation. PEST-NPs participate in cancer metabolism, immunity, and protein transcription as oncogenes or as tumor suppressors. Gene-based therapeutics are getting the attention of researchers because of their cell specificity. PEST-NPs are good targets to explore as cancer therapeutics. Insights into PTMs of PEST-NPs demonstrate that these proteins not only interact with each other but also recruit other proteins to/from their active site to promote/inhibit tumors. Thus, the role of PEST-NPs in cancer biology is multivariate. It is hard to obtain therapeutic objectives with single gene therapy. An especially designed combination gene therapy might be a promising strategy in cancer treatment. This review highlights the multifaceted behavior of PEST-NPs in cancer biology. We have summarized a number of studies to address the influence of structure and PEST-mediated PTMs on activation, localization, stability, and protein-protein interactions of PEST-NPs. We also recommend researchers to adopt a pragmatic approach in gene-based cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Umair A K Saddozai
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Hui-Min Li
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Department of Histology and Embryology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Bioinformatics Centre, Institute of Biomedical Informatics, Henan University, Kaifeng, Henan, China
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Asadullah Madni
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Kashif S Haleem
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, Henan, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Shao-Ping Ji
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| |
Collapse
|
38
|
Ihara M, Shichijo K, Ashizawa K, Matsuda K, Otsubo R, Horie I, Nakashima M, Kudo T. Relationship between thyroid tumor radiosensitivity and nuclear localization of DNA-dependent protein kinase catalytic subunit. JOURNAL OF RADIATION RESEARCH 2020; 61:511-516. [PMID: 32567663 PMCID: PMC7336817 DOI: 10.1093/jrr/rraa032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Thyroid tumors are the most common types of endocrine malignancies and are commonly treated with radioactive iodine (RAI) to destroy remaining cancer cells following surgical intervention. We previously reported that the expression levels of double-stranded DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which plays a key role in non-homologous end joining, are correlated with the radiosensitivity of cancer cells. Specifically, cells expressing high levels of DNA-PKcs exhibited radiation resistance, whereas cells expressing low levels were sensitive to radiation treatment. In this study, we observed full-length native DNA-PKcs (460 kDa) in radiation-resistant FRO and KTC-2 cells through western blot analysis using an antibody against the C-terminus of DNA-PKcs. In contrast, cleaved DNA-PKcs (175 kDa) were observed in radiation-sensitive TPC-1 and KTC-1 cells. Almost equal amounts of DNA-PKcs were observed in moderately radiation-sensitive WRO cells. We also describe a simple method for the prediction of radiation therapy efficacy in individual cases of thyroid cancers based on staining for DNA-PKcs in human cancer cell lines. Immunofluorescent staining showed that native DNA-PKcs was localized largely in the cytoplasm and only rarely localized in the nuclei of radiation-resistant thyroid cancer cells, whereas in radiation-sensitive cancer cells a 175-kDa cleaved C-terminal fragment of DNA-PKcs was localized mainly inside the nuclei. Therefore, DNA-PKcs moved to the nucleus after γ-ray irradiation. Our results suggest a new method for classifying human thyroid tumors based on their cellular distribution patterns of DNA-PKcs in combination with their radiosensitivity.
Collapse
Affiliation(s)
- Makoto Ihara
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kiyoto Ashizawa
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ryota Otsubo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takashi Kudo
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
39
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
40
|
Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front Cell Dev Biol 2020; 8:39. [PMID: 32117970 PMCID: PMC7010608 DOI: 10.3389/fcell.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.
Collapse
Affiliation(s)
- Cristina Garcia-Barcena
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
41
|
Afzal A, Sarfraz M, Li GL, Ji SP, Duan SF, Khan NH, Wu DD, Ji XY. Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology. Cancer Med 2019; 8:6335-6343. [PMID: 31487123 PMCID: PMC6797571 DOI: 10.1002/cam4.2465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polypeptide sequences enriched with proline (P), glutamic acid (E), aspartic acid (D) and serine (S)/ threonine (T) (PEST) have been reported to be the most abundant and frequently distributed at the cellular level. There is growing evidence that PEST sequences act as proteolytic recognition signals for degradation of residual proteins which is critical for activation or deactivation of regulatory proteins involved in cellular signaling pathways of cell growth, differentiation, stress responses and physiological death. A PEST containing nuclear protein (PCNP) was demonstrated as a tumor suppressor in a neuroblastoma cancer model and tumor promoter in lung adenocarcinoma cancer model. Its unique properties like ubiquitination by NIRF, co‐localization with NIRF in nucleus and tumor progression attract the attention of researchers. PCNP was reported to be ubiquitinated by ring finger protein NIRF in E3 ligase manner and as modulator of MAPK and PI3K/AKT/mTOR signaling pathways. In this review, we summarize PCNP linked DNA damage response, Post translational modifications, and transportation to address initiation, prognosis, and resistance of tumor cells in terms of cell cycle regulation, transcription and apoptosis. Hence, we demonstrate PCNP as a novel target in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.,Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Guang-Lei Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Ping Ji
- Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety (KLIBS), Henan University College of Medicine, Kaifeng, China
| |
Collapse
|
42
|
RNF144A functions as a tumor suppressor in breast cancer through ubiquitin ligase activity-dependent regulation of stability and oncogenic functions of HSPA2. Cell Death Differ 2019; 27:1105-1118. [PMID: 31406303 DOI: 10.1038/s41418-019-0400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 01/27/2023] Open
Abstract
Deregulation of E3 ubiquitin ligases is intimately implicated in breast cancer pathogenesis and progression, but the underlying mechanisms still remain elusive. Here we report that RING finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, functions as a tumor suppressor in breast cancer. RNF144A was downregulated in a subset of primary breast tumors and restoration of RNF144A suppressed breast cancer cell proliferation, colony formation, migration, invasion in vitro, tumor growth, and lung metastasis in vivo. In contrast, knockdown of RNF144A promoted malignant phenotypes of breast cancer cells. Quantitative proteomics and biochemical analysis revealed that RNF144A interacted with and targeted heat-shock protein family A member 2 (HSPA2), a putative oncoprotein that is frequently upregulated in human cancer and promotes tumor growth and progression, for ubiquitination and degradation. Notably, the ligase activity-defective mutants of RNF144A impaired its ability to induce ubiquitination and degradation of HSPA2, and to suppress breast cancer cell proliferation, migration, and invasion as compared with its wild-type counterpart. Moreover, RNF144A-mediated suppression of breast cancer cell proliferation, migration, and invasion was rescued by ectopic HSPA2 expression. Clinically, low RNF144A and high HSPA2 expression in breast cancer patients was correlated with aggressive clinicopathological characteristics and decreased overall and disease-free survival. Collectively, these findings reveal a previously unappreciated role for RNF144A in suppression of breast cancer growth and metastasis, and identify RNF144A as the first, to our knowledge, E3 ubiquitin ligase for HSPA2 in human cancer.
Collapse
|
43
|
Liu Y, Efimova EV, Ramamurthy A, Kron SJ. Repair-independent functions of DNA-PKcs protect irradiated cells from mitotic slippage and accelerated senescence. J Cell Sci 2019; 132:jcs229385. [PMID: 31189537 PMCID: PMC6633392 DOI: 10.1242/jcs.229385] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
The binding of DNA-dependent protein kinase catalytic subunit (DNA-PKcs, also known as PRKDC) to Ku proteins at DNA double-strand breaks (DSBs) has long been considered essential for non-homologous end joining (NHEJ) repair, providing a rationale for use of DNA-PKcs inhibitors as cancer therapeutics. Given lagging clinical translation, we reexamined mechanisms and observed instead that DSB repair can proceed independently of DNA-PKcs. While repair of radiation-induced DSBs was blocked in cells expressing shRNAs targeting Ku proteins or other NHEJ core factors, DSBs were repaired on schedule despite targeting DNA-PKcs. Although we failed to observe a DSB repair defect, the γH2AX foci that formed at sites of DNA damage persisted indefinitely after irradiation, leading to cytokinesis failure and accumulation of binucleated cells. Following this mitotic slippage, cells with decreased DNA-PKcs underwent accelerated cellular senescence. We identified downregulation of ataxia-telangiectasia mutated kinase (ATM) as the critical role of DNA-PKcs in recovery from DNA damage, insofar as targeting ATM restored γH2AX foci resolution and cytokinesis. Considering the lack of direct impact on DSB repair and emerging links between senescence and resistance to cancer therapy, these results suggest reassessing DNA-PKcs as a target for cancer treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Elena V Efimova
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Aishwarya Ramamurthy
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
44
|
Chen X, Hu L, Yang H, Ma H, Ye K, Zhao C, Zhao Z, Dai H, Wang H, Fang Z. DHHC protein family targets different subsets of glioma stem cells in specific niches. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:25. [PMID: 30658672 PMCID: PMC6339410 DOI: 10.1186/s13046-019-1033-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Background Glioblastomas (GBM) comprise different subsets that exhibit marked heterogeneity and plasticity, leading to a lack of success of genomic profiling in guiding the development of precision medicine approaches against these tumors. Accordingly, there is an urgent need to investigate the regulatory mechanisms for different GBM subsets and identify novel biomarkers and therapeutic targets relevant in the context of GBM-specific niches. The DHHC family of proteins is associated tightly with the malignant development and progression of gliomas. However, the role of these proteins in the plasticity of GBM subsets remains unclear. Methods This study utilized human glioma proneural or mesenchymal stem cells as indicated. The effects of DHHC proteins on different GBM subsets were investigated through in vitro and in vivo assays (i.e., colony formation assay, flow cytometry assay, double immunofluorescence, western blot, and xenograft model). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to detect the protein complexes of ZDHHC18 and ZDHHC23 in various GBM subtypes, and explore the mechanism of DHHC proteins in targeting different subsets of GSCs in specific niches. Results ZDHHC18 and ZDHHC23 could target the glioma stem cells of different GBM subsets in the context of their specific niches and regulate the cellular plasticity of these subtypes. Moreover, mechanistic investigations revealed that ZDHHC18 and ZDHHC23 competitively interact with a BMI1 E3 ligase, RNF144A, to regulate the polyubiquitination and accumulation of BMI1. These events contributed to the transition of glioma stem cells in GBM and cell survival under the stressful tumor microenvironment. Conclusions Our work highlights the role of DHHC proteins in the plasticity of GBM subsets and reveals that BMI1 represents a potential therapeutic target for human gliomas. Electronic supplementary material The online version of this article (10.1186/s13046-019-1033-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China.
| | - Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Huihui Ma
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 218, Jixi Road, Hefei, 230031, Anhui, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230031, Anhui, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, Hefei, 230031, Anhui, China.
| |
Collapse
|
45
|
Ho SR, Lin WC. RNF144A sustains EGFR signaling to promote EGF-dependent cell proliferation. J Biol Chem 2018; 293:16307-16323. [PMID: 30171075 DOI: 10.1074/jbc.ra118.002887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Indexed: 11/06/2022] Open
Abstract
RNF144A is a single-pass transmembrane RBR E3 ligase that interacts with and degrades cytoplasmic DNA-PKcs, which is an epidermal growth factor receptor (EGFR)-interacting partner. Interestingly, RNF144A expression is positively correlated with EGFR mRNA and protein levels in several types of cancer. However, the relationship between RNF144A and EGFR is poorly understood. This study reports an unexpected role for RNF144A in the regulation of EGF/EGFR signaling and EGF-dependent cell proliferation. EGFR ligands, but not DNA-damaging agents, induce a DNA-PKcs-independent interaction between RNF144A and EGFR. RNF144A promotes EGFR ubiquitination, maintains EGFR protein, and prolongs EGF/EGFR signaling during EGF stimulation. Moreover, depletion of RNF144A by multiple independent approaches results in a decrease in EGFR expression and EGF/EGFR signaling. RNF144A knockout cells also fail to mount an immediate response to EGF for activation of G1/S progression genes. Consequently, depletion of RNF144A reduces EGF-dependent cell proliferation. These defects may be at least in part due to a role for RNF144A in regulating EGFR transport in the intracellular vesicles during EGF treatment.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- From the Section of Hematology/Oncology, Department of Medicine
| | - Weei-Chin Lin
- From the Section of Hematology/Oncology, Department of Medicine, .,the Department of Molecular and Cellular Biology, and.,the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
46
|
Walden H, Rittinger K. RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns. Nat Struct Mol Biol 2018; 25:440-445. [PMID: 29735995 DOI: 10.1038/s41594-018-0063-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022]
Abstract
RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates.
Collapse
Affiliation(s)
- Helen Walden
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK.
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
47
|
Zhang Y, Yang Y, Zhang F, Liao X, Shao Z, Li D. Epigenetic silencing of RNF144A expression in breast cancer cells through promoter hypermethylation and MBD4. Cancer Med 2018; 7:1317-1325. [PMID: 29473320 PMCID: PMC5911569 DOI: 10.1002/cam4.1324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence shows that ring finger protein 144A (RNF144A), a poorly characterized member of the Ring-between-Ring (RBR) family of E3 ubiquitin ligases, is a potential tumor suppressor gene. However, its regulatory mechanism in breast cancer remains undefined. Here, we report that RNF144A promoter contains a putative CpG island and the methylation levels of RNF144A promoter are higher in primary breast tumors than those in normal breast tissues. Consistently, RNF144A promoter methylation levels are associated with its transcriptional silencing in breast cancer cells, and treatment with DNA methylation inhibitor 5-Aza-2-deoxycytidine (AZA) reactivates RNF144A expression in cells with RNF144A promoter hypermethylation. Furthermore, genetic knockdown or pharmacological inhibition of endogenous methyl-CpG-binding domain 4 (MBD4) results in increased RNF144A expression. These findings suggest that RNF144A is epigenetically silenced in breast cancer cells by promoter hypermethylation and MBD4.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yin‐Long Yang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Fang‐Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Hong Liao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Min Shao
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Da‐Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of OncologyShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Breast SurgeryShanghai Cancer CenterShanghai Medical CollegeFudan UniversityShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
48
|
Reiter KH, Klevit RE. Characterization of RING-Between-RING E3 Ubiquitin Transfer Mechanisms. Methods Mol Biol 2018; 1844:3-17. [PMID: 30242699 DOI: 10.1007/978-1-4939-8706-1_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein ubiquitination is an essential posttranslational modification that regulates nearly all cellular processes. E3 ligases catalyze the final transfer of ubiquitin (Ub) onto substrates and thus are important temporal regulators of ubiquitin modifications in the cell. E3s are classified by their distinct transfer mechanisms. RING E3s act as scaffolds to facilitate the transfer of Ub from E2-conjugating enzymes directly onto substrates, while HECT E3s form an E3~Ub thioester intermediate prior to Ub transfer. A third class, RING-Between-RING (RBR) E3s, are classified as RING/HECT hybrids based on their ability to engage the E2~Ub conjugate via a RING1 domain while subsequently forming an obligate E3~Ub intermediate prior to substrate modification. RBRs comprise the smallest class of E3s, consisting of only 14 family members in humans, yet their dysfunction has been associated with neurodegenerative diseases, susceptibility to infection, inflammation, and cancer. Additionally, their activity is suppressed by auto-inhibitory domains that block their catalytic activity, suggesting their regulation has important cellular consequences. Here, we identify technical hurdles faced in studying RBR E3s and provide protocols and guidelines to overcome these challenges.
Collapse
Affiliation(s)
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
49
|
Jin X, Kim LJY, Wu Q, Wallace LC, Prager BC, Sanvoranart T, Gimple RC, Wang X, Mack SC, Miller TE, Huang P, Valentim CL, Zhou QG, Barnholtz-Sloan JS, Bao S, Sloan AE, Rich JN. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med 2017; 23:1352-1361. [PMID: 29035367 PMCID: PMC5679732 DOI: 10.1038/nm.4415] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Glioblastomas are lethal cancers defined by angiogenesis and pseudopalisading necrosis. Here, we demonstrate that these histological features are associated with distinct transcriptional programs, with vascular regions showing a proneural profile, and hypoxic regions showing a mesenchymal pattern. As these regions harbor glioma stem cells (GSCs), we investigated the epigenetic regulation of these two niches. Proneural, perivascular GSCs activated EZH2, whereas mesenchymal GSCs in hypoxic regions expressed BMI1 protein, which promoted cellular survival under stress due to downregulation of the E3 ligase RNF144A. Using both genetic and pharmacologic inhibition, we found that proneural GSCs are preferentially sensitive to EZH2 disruption, whereas mesenchymal GSCs are more sensitive to BMI1 inhibition. Given that glioblastomas contain both proneural and mesenchymal GSCs, combined EZH2 and BMI1 targeting proved more effective than either agent alone both in culture and in vivo, suggesting that strategies that simultaneously target multiple epigenetic regulators within glioblastomas may be effective in overcoming therapy resistance caused by intratumoral heterogeneity.
Collapse
Affiliation(s)
- Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Leo J Y Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Medical Scientist Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Regenerative Medicine, Department of Medicine, University of San Diego, San Diego, California, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Division of Regenerative Medicine, Department of Medicine, University of San Diego, San Diego, California, USA
| | - Lisa C Wallace
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Medical Scientist Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Regenerative Medicine, Department of Medicine, University of San Diego, San Diego, California, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Tanwarat Sanvoranart
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ryan C Gimple
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Medical Scientist Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Regenerative Medicine, Department of Medicine, University of San Diego, San Diego, California, USA
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Division of Regenerative Medicine, Department of Medicine, University of San Diego, San Diego, California, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Tyler E Miller
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Medical Scientist Training Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ping Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Claudia L Valentim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qi-Gang Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals-Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Division of Regenerative Medicine, Department of Medicine, University of San Diego, San Diego, California, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
50
|
RBR-type E3 ubiquitin ligase RNF144A targets PARP1 for ubiquitin-dependent degradation and regulates PARP inhibitor sensitivity in breast cancer cells. Oncotarget 2017; 8:94505-94518. [PMID: 29212245 PMCID: PMC5706891 DOI: 10.18632/oncotarget.21784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/06/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1), a critical DNA repair protein, is frequently upregulated in breast tumors with a key role in breast cancer progression. Consequently, PARP inhibitors have emerged as promising therapeutics for breast cancers with DNA repair deficiencies. However, relatively little is known about the regulatory mechanism of PARP1 expression and the determinants of PARP inhibitor sensitivity in breast cancer cells. Here, we report that ring finger protein 144A (RNF144A), a RING-between-RING (RBR)-type E3 ubiquitin ligase with an unexplored functional role in human cancers, interacts with PARP1 through its carboxy-terminal region containing the transmembrane domain, and targets PARP1 for ubiquitination and subsequent proteasomal degradation. Moreover, induced expression of RNF144A decreases PARP1 protein levels and renders breast cancer cells resistant to the clinical-grade PARP inhibitor olaparib. Conversely, knockdown of endogenous RNF144A increases PARP1 protein levels and enhances cellular sensitivity to olaparib. Together, these findings define RNF144A as a novel regulator of PARP1 protein abundance and a potential determinant of PARP inhibitor sensitivity in breast cancer cells, which may eventually guide the optimal use of PARP inhibitors in the clinic.
Collapse
|