1
|
Kapetanaki SM, Coquelle N, von Stetten D, Byrdin M, Rios-Santacruz R, Bean R, Bielecki J, Boudjelida M, Fekete Z, Grime GW, Han H, Hatton C, Kantamneni S, Kharitonov K, Kim C, Kloos M, Koua FHM, de Diego Martinez I, Melo D, Rane L, Round A, Round E, Sarma A, Schubert R, Schulz J, Sikorski M, Vakili M, Valerio J, Vitas J, de Wijn R, Wrona A, Zala N, Pearson A, Dörner K, Schirò G, Garman EF, Lukács A, Weik M. Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCRJ 2024; 11:991-1006. [PMID: 39470573 PMCID: PMC11533990 DOI: 10.1107/s2052252524010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond-millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied picosecond-millisecond spectroscopic intermediates.
Collapse
Affiliation(s)
- Sofia M. Kapetanaki
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Nicolas Coquelle
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL)Hamburg Unit c/o DESYNotkestrasse 8522607HamburgGermany
| | - Martin Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Ronald Rios-Santacruz
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Mohamed Boudjelida
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Zsuzsana Fekete
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Geoffrey W. Grime
- Surrey Ion Beam CentreUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Huijong Han
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Caitlin Hatton
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | | | - Chan Kim
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Marco Kloos
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | - Diogo Melo
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Lukas Rane
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Adam Round
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | | | | | | | | | | | - Jovana Vitas
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Ninon Zala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Arwen Pearson
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Elspeth F. Garman
- Department of BiochemistryUniversity of OxfordDorothy Crowfoot Hodgkin Building, South Parks RoadOxfordOX1 3QUUnited Kingdom
| | - András Lukács
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
2
|
Chen Z, Stoukides DM, Tzanakakis ES. Light-Mediated Enhancement of Glucose-Stimulated Insulin Release of Optogenetically Engineered Human Pancreatic Beta-Cells. ACS Synth Biol 2024; 13:825-836. [PMID: 38377949 PMCID: PMC10949932 DOI: 10.1021/acssynbio.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic β-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of β-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human β-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-βH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in β-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs β-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered β-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the β-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.
Collapse
Affiliation(s)
- Zijing Chen
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Demetrios M. Stoukides
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Emmanuel S. Tzanakakis
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department
of Developmental, Molecular and Cell Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- Graduate
Program in Pharmacology and Experimental Therapeutics and Pharmacology
and Drug Development, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
- Clinical
and Translational Science Institute, Tufts
Medical Center, Boston, Massachusetts 02111, United States
| |
Collapse
|
3
|
Xu Q, Vogt A, Frechen F, Yi C, Küçükerden M, Ngum N, Sitjà-Roqueta L, Greiner A, Parri R, Masana M, Wenger N, Wachten D, Möglich A. Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation. J Mol Biol 2024; 436:168257. [PMID: 37657609 DOI: 10.1016/j.jmb.2023.168257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.
Collapse
Affiliation(s)
- Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Arend Vogt
- Charité - University Medicine Berlin, Department of Neurology with Experimental Neurology, 10117 Berlin, Germany. https://twitter.com/ArendVogt
| | - Fabian Frechen
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Chengwei Yi
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Melike Küçükerden
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Neville Ngum
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Laia Sitjà-Roqueta
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany
| | - Rhein Parri
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Mercè Masana
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain. https://twitter.com/mercemasana
| | - Nikolaus Wenger
- Charité - University Medicine Berlin, Department of Neurology with Experimental Neurology, 10117 Berlin, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany. https://twitter.com/DagmarWachten
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
4
|
Leemann S, Schneider-Warme F, Kleinlogel S. Cardiac optogenetics: shining light on signaling pathways. Pflugers Arch 2023; 475:1421-1437. [PMID: 38097805 PMCID: PMC10730638 DOI: 10.1007/s00424-023-02892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
Collapse
Affiliation(s)
- Siri Leemann
- Institute of Physiology, University of Bern, Bern, Switzerland.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bern, Switzerland
- F. Hoffmann-La Roche, Translational Medicine Neuroscience, Basel, Switzerland
| |
Collapse
|
5
|
Xu Y, Wu Y, Hu Y, Xu M, Liu Y, Ding Y, Chen J, Huang X, Wen L, Li J, Zhu C. Bacteria-based multiplex system eradicates recurrent infections with drug-resistant bacteria via photothermal killing and protective immunity elicitation. Biomater Res 2023; 27:27. [PMID: 37024953 PMCID: PMC10080897 DOI: 10.1186/s40824-023-00363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The high mortality associated with drug-resistant bacterial infections is an intractable clinical problem resulting from the low susceptibility of these bacteria to antibiotics and the high incidence of recurrent infections. METHODS Herein, a photosynthetic bacteria-based multiplex system (Rp@Al) composed of natural Rhodopseudomonas palustris (Rp) and Food and Drug Administration-approved aluminum (Al) adjuvant, was developed to combat drug-resistant bacterial infections and prevent their recurrence. We examined its photothermal performance and in vitro and in vivo antibacterial ability; revealed its protective immunomodulatory effect; verified its preventative effect on recurrent infections; and demonstrated the system's safety. RESULTS Rp@Al exhibits excellent photothermal properties with an effective elimination of methicillin-resistant Staphylococcus aureus (MRSA). In addition, Rp@Al enhances dendritic cell activation and further triggers a T helper 1 (TH1)/TH2 immune response, resulting in pathogen-specific immunological memory against recurrent MRSA infection. Upon second infection, Rp@Al-treated mice show significantly lower bacterial burden, faster abscess recovery, and higher survival under near-lethal infection doses than control mice. CONCLUSIONS This innovative multiplex system, with superior photothermal and immunomodulatory effects, presents great potential for the treatment and prevention of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Youcui Xu
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yi Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yuting Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Chen
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Xiaowan Huang
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Longping Wen
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Chen Zhu
- Department of Orthopaedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
6
|
Wahlgren WY, Claesson E, Tuure I, Trillo-Muyo S, Bódizs S, Ihalainen JA, Takala H, Westenhoff S. Structural mechanism of signal transduction in a phytochrome histidine kinase. Nat Commun 2022; 13:7673. [PMID: 36509762 PMCID: PMC9744887 DOI: 10.1038/s41467-022-34893-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Phytochrome proteins detect red/far-red light to guide the growth, motion, development and reproduction in plants, fungi, and bacteria. Bacterial phytochromes commonly function as an entrance signal in two-component sensory systems. Despite the availability of three-dimensional structures of phytochromes and other two-component proteins, the conformational changes, which lead to activation of the protein, are not understood. We reveal cryo electron microscopy structures of the complete phytochrome from Deinoccocus radiodurans in its resting and photoactivated states at 3.6 Å and 3.5 Å resolution, respectively. Upon photoactivation, the photosensory core module hardly changes its tertiary domain arrangement, but the connector helices between the photosensory and the histidine kinase modules open up like a zipper, causing asymmetry and disorder in the effector domains. The structures provide a framework for atom-scale understanding of signaling in phytochromes, visualize allosteric communication over several nanometers, and suggest that disorder in the dimeric arrangement of the effector domains is important for phosphatase activity in a two-component system. The results have implications for the development of optogenetic applications.
Collapse
Affiliation(s)
- Weixiao Yuan Wahlgren
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Elin Claesson
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Iida Tuure
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sergio Trillo-Muyo
- grid.8761.80000 0000 9919 9582Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Szabolcs Bódizs
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A. Ihalainen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Heikki Takala
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland ,grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Sebastian Westenhoff
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden ,grid.8993.b0000 0004 1936 9457Department of Chemistry—BMC, Biochemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Multamäki E, García de Fuentes A, Sieryi O, Bykov A, Gerken U, Ranzani A, Köhler J, Meglinski I, Möglich A, Takala H. Optogenetic Control of Bacterial Expression by Red Light. ACS Synth Biol 2022; 11:3354-3367. [PMID: 35998606 PMCID: PMC9594775 DOI: 10.1021/acssynbio.2c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/24/2023]
Abstract
In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.
Collapse
Affiliation(s)
- Elina Multamäki
- Department
of Anatomy, University of Helsinki, Helsinki 00014, Finland
| | | | - Oleksii Sieryi
- Optoelectronics
and Measurement Techniques, University of
Oulu, Oulu 90014, Finland
| | - Alexander Bykov
- Optoelectronics
and Measurement Techniques, University of
Oulu, Oulu 90014, Finland
| | - Uwe Gerken
- Lehrstuhl
für Spektroskopie weicher Materie, Universität Bayreuth, Bayreuth 95447, Germany
| | | | - Jürgen Köhler
- Lehrstuhl
für Spektroskopie weicher Materie, Universität Bayreuth, Bayreuth 95447, Germany
| | - Igor Meglinski
- Optoelectronics
and Measurement Techniques, University of
Oulu, Oulu 90014, Finland
- College
of Engineering and Physical Sciences, Aston
University, Birmingham B4 7ET, U.K.
| | - Andreas Möglich
- Lehrstuhl
für Biochemie, Photobiochemie, Universität
Bayreuth, Bayreuth 95447, Germany
| | - Heikki Takala
- Department
of Anatomy, University of Helsinki, Helsinki 00014, Finland
- Department
of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla 40014, Finland
| |
Collapse
|
8
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
9
|
Emerging molecular technologies for light-mediated modulation of pancreatic beta-cell function. Mol Metab 2022; 64:101552. [PMID: 35863638 PMCID: PMC9352964 DOI: 10.1016/j.molmet.2022.101552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the photomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing β-cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K+ and Ca2+ and signaling intermediates such as cyclic adenosine monophosphate (cAMP), renders β-cells and their glucose-stimulated insulin secretion (GSIS) amenable to optoengineering for drug-free control of blood sugar. Scope of review The molecular circuit of the GSIS in β-cells is described with emphasis on intermediates which are targetable for optical intervention. Various pharmacological agents modifying the release of insulin are reviewed along with their documented side effects. These are contrasted with optical approaches, which have already been employed for engineering β-cell function or are considered for future such applications. Principal obstacles are also discussed as the implementation of optogenetics is pondered for tissue engineering and biology applications of the pancreas. Major Conclusions Notable advances in optogenetic, optochemical and photopharmacological tools are rendering feasible the smart engineering of pancreatic cells and tissues with light-regulated function paving the way for novel solutions for addressing pancreatic pathologies including diabetes.
Collapse
|
10
|
Li Y, Zhao M, Wei D, Zhang J, Ren Y. Photocontrol of Itaconic Acid Synthesis in Escherichia coli. ACS Synth Biol 2022; 11:2080-2088. [PMID: 35638258 DOI: 10.1021/acssynbio.2c00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering aims to control cellular metabolic flow and maximize the production of a product of interest. Photocontrol of the activities of proteins is an effective method for accurately regulating metabolic pathways. In this study, we inserted the photosensor light-oxygen-voltage-sensing domain 2 of Avena sativa (AsLOV2) into selected sites of isocitrate dehydrogenase (IDH), the key enzyme in the competitive pathway of itaconic acid (ITA) synthesis, to construct photoswitchable IDH-AsLOV2 (ILOVs). These engineered light-sensitive proteins were used to regulate the metabolic flux of the tricarboxylic acid (TCA) cycle in Escherichia coli to improve ITA production. The engineered fusion proteins ILOV2, ILOV3, ILOV6, and ILOV7 exhibited effective reversibility under the oscillation of darkness and blue light illumination in vitro. The efficacies of the intracellular photoswitches were evaluated, and an optimal photocontrol strategy was established in vivo. The ITA titer was significantly enhanced to 3.30 g/L for strain ITAΔ43, which displayed superior photoswitchable potency for ITA production compared with the strains that completely deleted the icd gene. The photocontrol strategy developed here can be extended for process optimization and titer improvement of other high-value bioengineering chemicals.
Collapse
Affiliation(s)
- Yuting Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Zhang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhong Ren
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
12
|
Henss T, Schneider M, Vettkötter D, Costa WS, Liewald JF, Gottschalk A. Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2483:61-76. [PMID: 35286669 DOI: 10.1007/978-1-0716-2245-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the past 15 years, optogenetic methods became invaluable tools in neurobiological research but also in general cell biology. Most prominently, optogenetic methods utilize microbial rhodopsins to elicit neuronal de- or hyperpolarization. However, other optogenetic tools have emerged that allow influencing neuronal function by different approaches. In this chapter we describe the use of photoactivated adenylyl cyclases (PACs) as modulators of neuronal activity. Using Caenorhabditis elegans as a model organism, this chapter shows how to measure the effect of PAC photoactivation by behavioral assays in different tissues (neurons and muscles), as well as their significance to neurobiology. Further, this chapter describes in vitro cyclic nucleoside-3',5'-monophosphate measurements (cNMP) to characterize new PACs in C. elegans.
Collapse
Affiliation(s)
- Thilo Henss
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Martin Schneider
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Dennis Vettkötter
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Wagner Steuer Costa
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Jana F Liewald
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Alexander Gottschalk
- Institute of Biophysical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| |
Collapse
|
13
|
Zhao E, Liu H, Jia Y, Xiao T, Li J, Zhou G, Wang J, Zhou X, Liang XJ, Zhang J, Li Z. Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomater 2022; 140:302-313. [PMID: 34954107 DOI: 10.1016/j.actbio.2021.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Treating wounds with multidrug-resistant bacterial infections remains a huge and arduous challenge. In this work, we prepared a "live-drug"-encapsulated hydrogel dressing for the treatment of multidrug-resistant bacterial infections and full-thickness skin incision repair. Our live dressing was comprised of photosynthetic bacteria (PSB) and extracellular matrix (ECM) gel with photothermal, antibacterial and antioxidant properties, as well as good cytocompatibility and blood compatibility. More interestingly, live PSB could be regarded as not only photothermal agents but also as anti-inflammatory agents to promote wound healing owing to their antioxidant metabolites. In vitro and in vivo studies showed that the PSB hydrogel not only had a high killing rate against methicillin-resistant Staphylococcus aureus (MRSA) but it also accelerated collagen deposition and granulation tissue formation by promoting cell proliferation and migration, which significantly promoted skin tissue regeneration and wound healing. We believe that the large-scale production of PSB Gel-based therapeutic dressings has the advantages of easy use and promising clinical applications. STATEMENT OF SIGNIFICANCE: Rapid wound healing and the treatment of bacterial infections have always been the two biggest challenges in the field of wound care. We prepared a "live drug" dressing by encapsulating photosynthetic bacteria into an extracellular matrix hydrogel to sterilize the wound and promote wound healing. First, photosynthetic bacteria are not only a photothermal agent for photothermal wound sterilization, but also possess the anti-inflammatory capacity to enhance wound healing due to their antioxidant metabolites. Second, the extracellular matrix hydrogel is rich in a variety of growth factors and nutrients to promote cell migration and accelerate wound healing. Third, photosynthetic bacteria are not only green and non-toxic, but also can be obtained on a large scale, which facilitates manufacturing and clinical transformation.
Collapse
Affiliation(s)
- Erman Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| | - Yaru Jia
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - June Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xiaohan Zhou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China.
| |
Collapse
|
14
|
Hongdusit A, Liechty ET, Fox JM. Analysis of Three Architectures for Controlling PTP1B with Light. ACS Synth Biol 2022; 11:61-68. [PMID: 34898189 DOI: 10.1021/acssynbio.1c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Evan T. Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
15
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Directed evolution approaches for optogenetic tool development. Biochem Soc Trans 2021; 49:2737-2748. [PMID: 34783342 DOI: 10.1042/bst20210700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022]
Abstract
Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
Collapse
|
17
|
Zheng G, Cui Y, Zhou Y, Jiang Z, Wang Q, Zhou M, Wang P, Yu Y. Photoenzymatic Activity of Artificial-Natural Bienzyme Applied in Biodegradation of Methylene Blue and Accelerating Polymerization of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56191-56204. [PMID: 34787400 DOI: 10.1021/acsami.1c17098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzymes as biocatalysts have attracted extensive attention. In addition to immobilizing or encapsulating various enzymes for combating the easy loss of enzymatic activity, strengthening the enzymatic activity upon light irradiation is a challenge. To the best of our knowledge, the work of spatiotemporally modulating the catalytic activity of artificial-natural bienzymes with a near-infrared light irradiation has not been reported. Inspired by immobilized enzymes and nanozymes, herein a platinum nanozyme was synthesized; subsequently, the platinum nanozyme was grafted on the body of laccase, thus successfully obtaining the artificial-natural bienzyme. The three-dimensional structure of the artificial-natural bienzyme was greatly different from that of the immobilized enzyme or the encapsulated enzyme. The platinum nanozyme possessed excellent laccase-like activity, which was 3.7 times higher than that of laccase. Meanwhile, the coordination between the platinum nanozyme and laccase was proved. Besides, the cascaded catalysis of artificial-natural bienzyme was verified with hydrogen peroxide as a mediator. The enzymatic activities of artificial-natural bienzyme with and without near-infrared light irradiation were, respectively, 46.2 and 29.5% higher than that of free laccase. Moreover, the reversible catalytic activity of the coupled enzyme could be manipulated with and without a near-infrared light at 808 nm. As a result, the degradation rates of methylene blue catalyzed by the coupled enzyme and the platinum nanozyme were higher than that of laccase. Furthermore, accelerating polymerization of the dopamine was also demonstrated. Briefly, this facile strategy may provide a universal approach to control the catalytic activity of other natural enzymes.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Yu Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Jiangsu Province, Wuxi 214122, P. R. China
| |
Collapse
|
18
|
Lindner F, Diepold A. Optogenetics in bacteria - applications and opportunities. FEMS Microbiol Rev 2021; 46:6427354. [PMID: 34791201 PMCID: PMC8892541 DOI: 10.1093/femsre/fuab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
Collapse
Affiliation(s)
- Florian Lindner
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.,SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
19
|
Blain-Hartung M, Rockwell NC, Lagarias JC. Natural diversity provides a broad spectrum of cyanobacteriochrome-based diguanylate cyclases. PLANT PHYSIOLOGY 2021; 187:632-645. [PMID: 34608946 PMCID: PMC8491021 DOI: 10.1093/plphys/kiab240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/02/2021] [Indexed: 05/03/2023]
Abstract
Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized. Cyclic di-guanosine monophosphate (c-di-GMP) is a widespread small-molecule regulator of bacterial motility, developmental transitions, and biofilm formation whose biosynthesis is regulated by CBCRs coupled to GGDEF (diguanylate cyclase) output domains. In this study, we compare the properties of diverse CBCR-GGDEF proteins with those of synthetic CBCR-GGDEF chimeras. Our investigation shows that natural diversity generates promising candidates for robust, broad spectrum optogenetic applications in live cells. Since light quality is constantly changing during plant development as upper leaves begin to shade lower leaves-affecting elongation growth, initiation of flowering, and responses to pathogens, these studies presage application of CBCR-GGDEF sensors to regulate orthogonal, c-di-GMP-regulated circuits in agronomically important plants for robust mitigation of such deleterious responses under natural growing conditions in the field.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
- Author for communication:
| |
Collapse
|
20
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
22
|
Xia A, Qian M, Wang C, Huang Y, Liu Z, Ni L, Jin F. Optogenetic Modification of Pseudomonas aeruginosa Enables Controllable Twitching Motility and Host Infection. ACS Synth Biol 2021; 10:531-541. [PMID: 33667080 DOI: 10.1021/acssynbio.0c00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important secondary messenger that controls carbon metabolism, type IVa pili biogenesis, and virulence in Pseudomonas aeruginosa. Precise manipulation of bacterial intracellular cAMP levels may enable tunable control of twitching motility or virulence, and optogenetic tools are attractive because they afford excellent spatiotemporal resolution and are easy to operate. Here, we developed an engineered P. aeruginosa strain (termed pactm) with light-dependent intracellular cAMP levels through introducing a photoactivated adenylate cyclase gene (bPAC) into bacteria. On blue light illumination, pactm displayed a 15-fold increase in the expression of the cAMP responsive promoter and an 8-fold increase in its twitching activity. The skin lesion area of nude mouse in a subcutaneous infection model after 2-day pactm inoculation was increased 14-fold by blue light, making pactm suitable for applications in controllable bacterial host infection. In addition, we achieved directional twitching motility of pactm colonies through localized light illumination, which will facilitate the studies of contact-dependent interactions between microbial species.
Collapse
Affiliation(s)
- Aiguo Xia
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Mingjie Qian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Congcong Wang
- Department of Chemical Physics, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, PR China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lei Ni
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, PR China
| |
Collapse
|
23
|
Henß T, Nagpal J, Gao S, Scheib U, Pieragnolo A, Hirschhäuser A, Schneider-Warme F, Hegemann P, Nagel G, Gottschalk A. Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotide-gated channels. Br J Pharmacol 2021; 179:2519-2537. [PMID: 33733470 DOI: 10.1111/bph.15445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/10/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers regulating numerous biological processes. Malfunctional cNMP signalling is linked to diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in Caenorhabditis elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarizing rhodopsins; yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarizers based on K+ currents. EXPERIMENTAL APPROACH For the characterization of photoactivatable nucleotidyl cyclases, we expressed the proteins alone or in combination with cyclic nucleotide-gated channels in muscle cells and cholinergic motor neurons. To investigate the extent of optogenetic cNMP production and the ability of the systems to depolarize or hyperpolarize cells, we performed behavioural analyses, measured cNMP content in vitro, and compared in vivo expression levels. KEY RESULTS We implemented Catenaria CyclOp as a new tool for cGMP production, allowing fine-control of cGMP levels. We established photoactivatable membrane-bound adenylyl cyclases, based on mutated versions ("A-2x") of Blastocladiella and Catenaria ("Be," "Ca") CyclOp, as N-terminal YFP fusions, enabling more efficient and specific cAMP signalling compared to soluble bPAC, despite lower overall cAMP production. For hyperpolarization of excitable cells by two-component optogenetics, we introduced the cAMP-gated K+ -channel SthK from Spirochaeta thermophila and combined it with bPAC, BeCyclOp(A-2x), or YFP-BeCyclOp(A-2x). As an alternative, we implemented the B. emersonii cGMP-gated K+ -channel BeCNG1 together with BeCyclOp. CONCLUSION AND IMPLICATIONS We established a comprehensive suite of optogenetic tools for cNMP manipulation, applicable in many cell types, including sensory neurons, and for potent hyperpolarization.
Collapse
Affiliation(s)
- Thilo Henß
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocentre, Julius-Maximilians-University, Würzburg, Germany
| | - Ulrike Scheib
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.,Lead Discovery, Protein Technology, NUVISAN ICB GmbH, Berlin, Germany
| | | | - Alexander Hirschhäuser
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Franziska Schneider-Warme
- University Heart Center, Medical Center - University of Freiburg and Faculty of Medicine, Institute for Experimental Cardiovascular Medicine, Freiburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocentre, Julius-Maximilians-University, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
24
|
An SQ, Lopes BS, Connolly JPR, Sharp C, Nguyen TKL, Kirkpatrick CL. Going virtual: a report from the sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis'. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 33529149 DOI: 10.1099/mic.0.001024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis' was scheduled to be held at the University of Southampton, UK, in late August 2020. However, due to the health and safety guidelines and travel restrictions as a response to the COVID-19 pandemic, the symposium was transitioned to a virtual format, a change embraced enthusiastically as the meeting attracted over 200 microbiologists from 40 countries. The event allowed junior scientists to present their work to a broad audience and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society, the Microbiology Society and the National Biofilms Innovation Centre. Sessions covered recent advances in all areas of microbiology including: Secretion and transport across membranes, Gene regulation and signalling, Host-microbe interactions, and Microbial communities and biofilm formation. This report focuses on several of the highlights and exciting developments communicated during the talks and poster presentations.
Collapse
Affiliation(s)
- Shi-Qi An
- School of Biological Sciences, National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | | | | | - Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Clare Louise Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Sokolovski SG, Zherebtsov EA, Kar RK, Golonka D, Stabel R, Chichkov NB, Gorodetsky A, Schapiro I, Möglich A, Rafailov EU. Two-photon conversion of a bacterial phytochrome. Biophys J 2021; 120:964-974. [PMID: 33545103 DOI: 10.1016/j.bpj.2021.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.
Collapse
Affiliation(s)
- Serge G Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Evgeny A Zherebtsov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland; Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Golonka
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Robert Stabel
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Nikolai B Chichkov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Andrei Gorodetsky
- ITMO University, St. Petersburg, Russia; Department of Chemistry, Imperial College London, London, United Kingdom; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andreas Möglich
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Edik U Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
26
|
Zheng P, Fan M, Liu H, Zhang Y, Dai X, Li H, Zhou X, Hu S, Yang X, Jin Y, Yu N, Guo S, Zhang J, Liang XJ, Cheng K, Li Z. Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS NANO 2021; 15:1100-1110. [PMID: 33236885 DOI: 10.1021/acsnano.0c08068] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypoxia can increase the resistance of tumor cells to radiotherapy and chemotherapy. However, the dense extracellular matrix, high interstitial fluid pressure, and irregular blood supply often serve as physical barriers to inhibit penetration of drugs or nanodrugs across tumor blood microvessels into hypoxic regions. Therefore, it is of great significance and highly desirable to improve the efficiency of hypoxia-targeted therapy. In this work, living photosynthetic bacteria (PSB) are utilized as hypoxia-targeted carriers for hypoxic tumor therapy due to their near-infrared (NIR) chemotaxis and their physiological characteristics as facultative aerobes. More interestingly, we discovered that PSB can serve as a kind of photothermal agent to generate heat through nonradiative relaxation pathways due to their strong photoabsorption in the NIR region. Therefore, PSB integrate the properties of hypoxia targeting and photothermal therapeutic agents in an "all-in-one" manner, and no postmodification is needed to achieve hypoxia-targeted cancer therapy. Moreover, as natural bacteria, noncytotoxic PSB were found to enhance immune response that induced the infiltration of cytotoxicity T lymphocyte. Our results indicate PSB specifically accumulate in hypoxic tumor regions, and they show a high efficiency in the elimination of cancer cells. This proof of concept may provide a smart therapeutic system in the field of hypoxia-targeted photothermal therapeutic platforms.
Collapse
Affiliation(s)
- Pengli Zheng
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
| | - Miao Fan
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Huifang Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, P.R. China
| | - Yinghua Zhang
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
| | - Xinyue Dai
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Hang Li
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
| | - Xiaohan Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhenhua Li
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
27
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
28
|
Mathony J, Niopek D. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion. Adv Biol (Weinh) 2020; 5:e2000181. [PMID: 33107225 DOI: 10.1002/adbi.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.
Collapse
Affiliation(s)
- Jan Mathony
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany.,BZH graduate school, Heidelberg University, Im Neuheimer Feld 328, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany
| |
Collapse
|
29
|
Hongdusit A, Liechty ET, Fox JM. Optogenetic interrogation and control of cell signaling. Curr Opin Biotechnol 2020; 66:195-206. [PMID: 33053496 DOI: 10.1016/j.copbio.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023]
Abstract
Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA.
| |
Collapse
|
30
|
Jenkins AJ, Gottlieb SM, Chang CW, Kim PW, Hayer RJ, Hanke SJ, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Reverse Photodynamics of the Canonical Red/Green Cyanobacteriochrome Family. Biochemistry 2020; 59:4015-4028. [PMID: 33021375 DOI: 10.1021/acs.biochem.0c00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15EPg → 15ZPr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15ZPr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.
Collapse
Affiliation(s)
- Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sean Marc Gottlieb
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W Kim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J Hayer
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J Hanke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
31
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
32
|
Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors. Biochem Soc Trans 2020; 47:1733-1747. [PMID: 31724693 DOI: 10.1042/bst20190246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022]
Abstract
The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
Collapse
|
33
|
Hepp S, Trauth J, Hasenjäger S, Bezold F, Essen LO, Taxis C. An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light-Oxygen-Voltage Domain. J Mol Biol 2020; 432:1880-1900. [PMID: 32105734 DOI: 10.1016/j.jmb.2020.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Control of cellular events by optogenetic tools is a powerful approach to manipulate cellular functions in a minimally invasive manner. A common problem posed by the application of optogenetic tools is to tune the activity range to be physiologically relevant. Here, we characterized a photoreceptor of the light-oxygen-voltage (LOV) domain family of Phaeodactylum tricornutum aureochrome 1a (AuLOV) as a tool for increasing protein stability under blue light conditions in budding yeast. Structural studies of AuLOVwt, the variants AuLOVM254, and AuLOVW349 revealed alternative dimer association modes for the dark state, which differ from previously reported AuLOV dark-state structures. Rational design of AuLOV-dimer interface mutations resulted in an optimized optogenetic tool that we fused to the photoactivatable adenylyl cyclase from Beggiatoa sp. This synergistic light-regulation approach using two photoreceptors resulted in an optimized, photoactivatable adenylyl cyclase with a cyclic adenosine monophosphate production activity that matches the physiological range of Saccharomyces cerevisiae. Overall, we enlarged the optogenetic toolbox for yeast and demonstrated the importance of fine-tuning the optogenetic tool activity for successful application in cells.
Collapse
Affiliation(s)
- Sebastian Hepp
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany; Center of Synthetic Microbiology, Philipps Universität Marburg, Hans-Meerwein- Strasse 4, 35032 Marburg, Germany
| | - Jonathan Trauth
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany; Center of Synthetic Microbiology, Philipps Universität Marburg, Hans-Meerwein- Strasse 4, 35032 Marburg, Germany; Molecular Genetics, Department of Biology, Philipps Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Sophia Hasenjäger
- Molecular Genetics, Department of Biology, Philipps Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Filipp Bezold
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany; Center of Synthetic Microbiology, Philipps Universität Marburg, Hans-Meerwein- Strasse 4, 35032 Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany; Center of Synthetic Microbiology, Philipps Universität Marburg, Hans-Meerwein- Strasse 4, 35032 Marburg, Germany.
| | - Christof Taxis
- Molecular Genetics, Department of Biology, Philipps Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| |
Collapse
|
34
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
35
|
Banerjee S, Mitra D. Structural Basis of Design and Engineering for Advanced Plant Optogenetics. TRENDS IN PLANT SCIENCE 2020; 25:35-65. [PMID: 31699521 DOI: 10.1016/j.tplants.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
Collapse
Affiliation(s)
- Sudakshina Banerjee
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
36
|
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol 2019; 2:448. [PMID: 31815202 PMCID: PMC6888877 DOI: 10.1038/s42003-019-0687-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 01/30/2023] Open
Abstract
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants. David Golonka et al. report the epitopes in Arabidopsis phytochrome-interacting factors (PIF) that underlie light-dependent interactions with phytochrome B. They identify compact PIF variants that enable light-activated gene expression and membrane recruitment with reduced basal activity and enhanced regulatory response.
Collapse
|
37
|
Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci 2019; 28:1923-1946. [PMID: 31397927 PMCID: PMC6798134 DOI: 10.1002/pro.3705] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
Collapse
Affiliation(s)
- Andreas Möglich
- Department of BiochemistryUniversität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular BiologyUniversität BayreuthBayreuthGermany
- North‐Bavarian NMR CenterUniversität BayreuthBayreuthGermany
| |
Collapse
|
38
|
Zhang F, Tzanakakis ES. Amelioration of Diabetes in a Murine Model upon Transplantation of Pancreatic β-Cells with Optogenetic Control of Cyclic Adenosine Monophosphate. ACS Synth Biol 2019; 8:2248-2255. [PMID: 31518106 DOI: 10.1021/acssynbio.9b00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pharmacological augmentation of glucose-stimulated insulin secretion (GSIS), for example, to overcome insulin resistance in type 2 diabetes is linked to suboptimal regulation of blood sugar. Cultured β-cells and islets expressing a photoactivatable adenylyl cyclase (PAC) are amenable to GSIS potentiation with light. However, whether PAC-mediated enhancement of GSIS can improve the diabetic state remains unknown. To this end, β-cells were engineered with stable PAC expression that led to over 2-fold greater GSIS upon exposure to blue light while there were no changes in the absence of glucose. Moreover, the rate of oxygen consumption was unaltered despite the photoinduced elevation of GSIS. Transplantation of these cells into streptozotocin-treated mice resulted in improved glucose tolerance, lower hyperglycemia, and higher plasma insulin when subjected to illumination. Embedding optogenetic networks in β-cells for physiologically relevant control of GSIS will enable novel solutions potentially overcoming the shortcomings of current treatments for diabetes.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| |
Collapse
|
39
|
Cianciulli A, Yoslov L, Buscemi K, Sullivan N, Vance RT, Janton F, Szurgot MR, Buerkert T, Li E, Nelson MD. Interneurons Regulate Locomotion Quiescence via Cyclic Adenosine Monophosphate Signaling During Stress-Induced Sleep in Caenorhabditis elegans. Genetics 2019; 213:267-279. [PMID: 31292211 PMCID: PMC6727807 DOI: 10.1534/genetics.119.302293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Sleep is evolutionarily conserved, thus studying simple invertebrates such as Caenorhabditis elegans can provide mechanistic insight into sleep with single cell resolution. A conserved pathway regulating sleep across phylogeny involves cyclic adenosine monophosphate (cAMP), a ubiquitous second messenger that functions in neurons by activating protein kinase A. C. elegans sleep in response to cellular stress caused by environmental insults [stress-induced sleep (SIS)], a model for studying sleep during sickness. SIS is controlled by simple neural circuitry, thus allowing for cellular dissection of cAMP signaling during sleep. We employed a red-light activated adenylyl cyclase, IlaC22, to identify cells involved in SIS regulation. We found that pan-neuronal activation of IlaC22 disrupts SIS through mechanisms independent of the cAMP response element binding protein. Activating IlaC22 in the single DVA interneuron, the paired RIF interneurons, and in the CEPsh glia identified these cells as wake-promoting. Using a cAMP biosensor, epac1-camps, we found that cAMP is decreased in the RIF and DVA interneurons by neuropeptidergic signaling from the ALA neuron. Ectopic overexpression of sleep-promoting neuropeptides coded by flp-13 and flp-24, released from the ALA, reduced cAMP in the DVA and RIFs, respectively. Overexpression of the wake-promoting neuropeptides coded by pdf-1 increased cAMP levels in the RIFs. Using a combination of optogenetic manipulation and in vivo imaging of cAMP we have identified wake-promoting neurons downstream of the neuropeptidergic output of the ALA. Our data suggest that sleep- and wake-promoting neuropeptides signal to reduce and heighten cAMP levels during sleep, respectively.
Collapse
Affiliation(s)
- Alana Cianciulli
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Lauren Yoslov
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Nicole Sullivan
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Ryan T Vance
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Francis Janton
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Mary R Szurgot
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Thomas Buerkert
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| |
Collapse
|
40
|
Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol 2019; 57:72-83. [PMID: 30878713 PMCID: PMC6625962 DOI: 10.1016/j.sbi.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
41
|
Stabel R, Stüven B, Hansen JN, Körschen HG, Wachten D, Möglich A. Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases. J Mol Biol 2019; 431:3029-3045. [PMID: 31301407 DOI: 10.1016/j.jmb.2019.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.
Collapse
Affiliation(s)
- Robert Stabel
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Birthe Stüven
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany; Institute of Innate Immunity, Universität Bonn, 53127 Bonn, Germany
| | | | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Universität Bonn, 53127 Bonn, Germany; Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany; Research Center for Bio-Macromolecules, Universität Bayreuth, Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
42
|
Studying β 1 and β 2 adrenergic receptor signals in cardiac cells using FRET-based sensors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:30-38. [PMID: 31266653 DOI: 10.1016/j.pbiomolbio.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Cyclic 3'-5' adenosine monophosphate (cAMP) is a key modulator of cardiac function. Thanks to the sophisticated organization of its pathway in distinct functional units called microdomains, cAMP is involved in the regulation of both inotropy and chronotropy as well as transcription and cardiac death. While visualization of cAMP microdomains can be achieved thanks to cAMP-sensitive FRET-based sensors, the molecular mechanisms through which cAMP-generating stimuli are coupled to distinct functional outcomes are not well understood. One possibility is that each stimulus activates multiple microdomains in order to generate a spatiotemporal code that translates into function. To test this hypothesis here we propose a series of experimental protocols that allow to simultaneously follow cAMP or Protein Kinase A (PKA)-dependent phosphorylation in different subcellular compartments of living cells. We investigate the responses of β Adrenergic receptors (β1AR and β2AR) challenged with selective drugs that enabled us to measure the actions of each receptor independently. At the whole cell level, we used a combination of co-culture with selective βAR stimulation and were able to molecularly separate cardiac fibroblasts from neonatal rat ventricular myocytes based on their cAMP responses. On the other hand, at the subcellular level, these experimental protocols allowed us to dissect the relative weight of β1 and β2 adrenergic receptors on cAMP signalling at the cytosol and outer mitochondrial membrane of NRVMs. We propose that experimental procedures that allow the collection of multiparametric data are necessary in order to understand the molecular mechanisms underlying the coupling between extracellular signals and cellular responses.
Collapse
|
43
|
Fomicheva A, Zhou C, Sun QQ, Gomelsky M. Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications. ACS Synth Biol 2019; 8:1314-1324. [PMID: 31145854 DOI: 10.1021/acssynbio.8b00528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
Collapse
Affiliation(s)
- Anastasia Fomicheva
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
44
|
Dietler J, Stabel R, Möglich A. Pulsatile illumination for photobiology and optogenetics. Methods Enzymol 2019; 624:227-248. [PMID: 31370931 DOI: 10.1016/bs.mie.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Living organisms exhibit a wide range of intrinsic adaptive responses to incident light. Likewise, in optogenetics, biological systems are tailored to initiate predetermined cellular processes upon light exposure. As genetically encoded, light-gated actuators, sensory photoreceptors are at the heart of these responses in both the natural and engineered scenarios. Upon light absorption, photoreceptors enter a series of generally rapid photochemical reactions leading to population of the light-adapted signaling state of the receptor. Notably, this state persists for a while before thermally reverting to the original dark-adapted resting state. As a corollary, the inactivation of photosensitive biological circuits upon light withdrawal can exhibit substantial inertia. Intermittent illumination of suitable pulse frequency can hence maintain the photoreceptor in its light-adapted state while greatly reducing overall light dose, thereby mitigating adverse side effects. Moreover, several photoreceptor systems may be actuated sequentially with a single light color if they sufficiently differ in their inactivation kinetics. Here, we detail the construction of programmable illumination devices for the rapid and parallelized testing of biological responses to diverse lighting regimes. As the technology is based on open electronics and readily available, inexpensive components, it can be adopted by most laboratories at moderate expenditure. As we exemplify for two use cases, the programmable devices enable the facile interrogation of diverse illumination paradigms and their application in optogenetics and photobiology.
Collapse
Affiliation(s)
- Julia Dietler
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Robert Stabel
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany; Research Center for Bio-Macromolecules, Universität Bayreuth, Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany.
| |
Collapse
|
45
|
Mukherjee S, Hegemann P, Broser M. Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr Opin Struct Biol 2019; 57:118-126. [PMID: 30954887 DOI: 10.1016/j.sbi.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Enzymerhodopsins are a recently discovered class of natural rhodopsin-based photoreceptors with light-regulated enzyme activity. Currently, three different types of these fusion proteins with an N-terminal type-1 rhodopsin and a C-terminal enzyme domain have been identified, but their physiological relevance is mostly unknown. Among these, histidine kinase rhodopsins (HKR) are photo-regulated two-component-like signaling systems that trigger a phosphorylation cascade, whereas rhodopsin phosphodiesterase (RhoPDE) or rhodopsin guanylyl cyclase (RhGC) show either light-activated hydrolysis or production of cyclic nucleotides. RhGC, the best characterized enzymerhodopsin, is involved in the phototaxis of fungal zoospores and allows for optically controlled production of cyclic nucleotides in different cell-types. These photoreceptors have great optogenetic potential and possess several advantages over the hitherto existing tools to manipulate cyclic-nucleotide dynamics in living cells.
Collapse
Affiliation(s)
- Shatanik Mukherjee
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Germany.
| |
Collapse
|
46
|
Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin. Proc Natl Acad Sci U S A 2019; 116:8301-8309. [PMID: 30948637 DOI: 10.1073/pnas.1818836116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because cyanobacteriochrome photoreceptors need only a single compact domain for chromophore incorporation and for absorption of visible spectra including the long-wavelength far-red region, these molecules have been paid much attention for application to bioimaging and optogenetics. Most cyanobacteriochromes, however, have a drawback to incorporate phycocyanobilin that is not available in the mammalian cells. In this study, we focused on biliverdin (BV) that is a mammalian intrinsic chromophore and absorbs the far-red region and revealed that replacement of only four residues was enough for conversion from BV-rejective cyanobacteriochromes into BV-acceptable molecules. We succeeded in determining the crystal structure of one of such engineered molecules, AnPixJg2_BV4, at 1.6 Å resolution. This structure identified unusual covalent bond linkage, which resulted in deep BV insertion into the protein pocket. The four mutated residues contributed to reducing steric hindrances derived from the deeper insertion. We introduced these residues into other domains, and one of them, NpF2164g5_BV4, produced bright near-infrared fluorescence from mammalian liver in vivo. Collectively, this study provides not only molecular basis to incorporate BV by the cyanobacteriochromes but also rational strategy to open the door for application of cyanobacteriochromes to visualization and regulation of deep mammalian tissues.
Collapse
|
47
|
Leopold AV, Chernov KG, Shemetov AA, Verkhusha VV. Neurotrophin receptor tyrosine kinases regulated with near-infrared light. Nat Commun 2019; 10:1129. [PMID: 30850602 PMCID: PMC6408446 DOI: 10.1038/s41467-019-08988-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | | | - Anton A Shemetov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
48
|
Gourinchas G, Vide U, Winkler A. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. J Biol Chem 2019; 294:4498-4510. [PMID: 30683693 PMCID: PMC6433076 DOI: 10.1074/jbc.ra118.007260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light–sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances—from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor–effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Uršula Vide
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
49
|
Stüven B, Stabel R, Ohlendorf R, Beck J, Schubert R, Möglich A. Characterization and engineering of photoactivated adenylyl cyclases. Biol Chem 2019; 400:429-441. [DOI: 10.1515/hsz-2018-0375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Abstract
Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3′, 5′-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.
Collapse
Affiliation(s)
- Birthe Stüven
- Lehrstuhl für Biochemie , Universität Bayreuth , D-95447 Bayreuth , Germany
| | - Robert Stabel
- Lehrstuhl für Biochemie , Universität Bayreuth , D-95447 Bayreuth , Germany
| | - Robert Ohlendorf
- Institut für Biologie , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Julian Beck
- Lehrstuhl für Biochemie , Universität Bayreuth , D-95447 Bayreuth , Germany
| | - Roman Schubert
- Institut für Biologie , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , D-95447 Bayreuth , Germany
- Institut für Biologie , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Research Center for Bio-Macromolecules , Universität Bayreuth , D-95447 Bayreuth , Germany
- Bayreuth Center for Biochemistry and Molecular Biology , Universität Bayreuth , D-95447 Bayreuth , Germany
- North-Bavarian NMR Center , Universität Bayreuth , D-95447 Bayreuth , Germany
| |
Collapse
|
50
|
Naim N, White AD, Reece JM, Wankhede M, Zhang X, Vilardaga JP, Altschuler DL. Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis. J Biol Chem 2018; 294:1095-1103. [PMID: 30559293 DOI: 10.1074/jbc.ac118.004905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fine-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
Collapse
Affiliation(s)
- Nyla Naim
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Alex D White
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeff M Reece
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | | | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|