1
|
Jibrin MO, Sharma A, Mavian CN, Timilsina S, Kaur A, Iruegas-Bocardo F, Potnis N, Minsavage GV, Coutinho TA, Creswell TC, Egel DS, Francis DM, Kebede M, Miller SA, Montelongo MJ, Nikolaeva E, Pianzzola MJ, Pruvost O, Quezado-Duval AM, Ruhl GE, Shutt VM, Maynard E, Maeso DC, Siri MI, Trueman CL, Salemi M, Vallad GE, Roberts PD, Jones JB, Goss EM. Phylodynamic Insights into Global Emergence and Diversification of the Tomato Pathogen Xanthomonas hortorum pv. gardneri. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:712-720. [PMID: 38949619 DOI: 10.1094/mpmi-04-24-0035-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The emergence of plant pathogens is often associated with waves of unique evolutionary and epidemiological events. Xanthomonas hortorum pv. gardneri is one of the major pathogens causing bacterial spot disease of tomatoes. After its first report in the 1950s, there were no formal reports on this pathogen until the 1990s, despite active global research on the pathogens that cause tomato and pepper bacterial spot disease. Given the recently documented global distribution of X. hortorum pv. gardneri, our objective was to examine genomic diversification associated with its emergence. We sequenced the genomes of X. hortorum pv. gardneri strains collected in eight countries to examine global population structure and pathways of emergence using phylodynamic analysis. We found that strains isolated post-1990 group by region of collection and show minimal impact of recombination on genetic variation. A period of rapid geographic expansion in X. hortorum pv. gardneri is associated with acquisition of a large plasmid conferring copper tolerance by horizontal transfer and coincides with the burgeoning hybrid tomato seed industry through the 1980s. The ancestry of X. hortorum pv. gardneri is consistent with introduction to hybrid tomato seed production and dissemination during the rapid increase in trade of hybrid seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mustafa O Jibrin
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, U.S.A
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Anuj Sharma
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Carla N Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, U.S.A
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, U.S.A
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amandeep Kaur
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | | | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Gerald V Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Teresa A Coutinho
- Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Tom C Creswell
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Daniel S Egel
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, U.S.A
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Misrak Kebede
- Plant Pathology Department, School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, U.S.A
| | - María J Montelongo
- Molecular Microbiology Laboratory, Biosciences Department, School of Chemistry, Universidad de la República, Montevideo, CP1800, Uruguay
| | - Ekaterina Nikolaeva
- Bureau of Plant Industry, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, U.S.A
| | - María J Pianzzola
- Molecular Microbiology Laboratory, Biosciences Department, School of Chemistry, Universidad de la República, Montevideo, CP1800, Uruguay
| | | | | | - Gail E Ruhl
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Vou M Shutt
- Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Department of Plant Science and Biotechnology, University of Jos, Jos, 930105, Nigeria
| | - Elizabeth Maynard
- Department of Horticulture and Landscape Architecture, Purdue University, IN 46383, U.S.A
| | - Diego C Maeso
- Instituto Nacional de Investigacion Agropecuaria, INIA Las Brujas, Las Brujas, Canelones, Uruguay
| | - María I Siri
- Molecular Microbiology Laboratory, Biosciences Department, School of Chemistry, Universidad de la República, Montevideo, CP1800, Uruguay
| | - Cheryl L Trueman
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, Ridgetown, ON N0P 2C0, Canada
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, U.S.A
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Pamela D Roberts
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, U.S.A
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
2
|
Patarroyo C, Lucca F, Dupas S, Restrepo S. Reconstructing the Global Migration History of Phytophthora infestans Toward Colombia. PHYTOPATHOLOGY 2024; 114:2151-2161. [PMID: 38888504 DOI: 10.1094/phyto-05-24-0163-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The evolution of new variants of plant pathogens is one of the biggest challenges to controlling and managing plant diseases. Of the forces driving these evolutionary processes, global migration events are particularly important for widely distributed diseases such as potato late blight, caused by the oomycete Phytophthora infestans. However, little is known about its migration routes outside North America and Europe. This work used genotypic data from population studies to elucidate the migration history originating the Colombian P. infestans population. For this purpose, a dataset of 1,706 P. infestans genotypes was recollected, representing North and South America, Europe, and Asia. Descriptive analysis and historical records from North America and Europe were used to propose three global migration hypotheses, differing on the origin of the disease (Mexico or Peru) and the hypothesis that it returned to South America from Europe. These scenarios were tested using approximate Bayesian computation. According to this analysis, the most probable scenario (posterior probability = 0.631) was the one proposing a Peruvian origin for P. infestans, an initial migration toward Colombia and Mexico, and a later event from Mexico to the United States and then to Europe and Asia, with no return to northern South America. In Colombia, the scenario considering a single migration from Peru and posterior migrations within Colombia was the most probable, with a posterior probability of 0.640. The obtained results support the hypothesis of a Peruvian origin for P. infestans followed by rare colonization events worldwide.
Collapse
Affiliation(s)
- Camilo Patarroyo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Florencia Lucca
- National Institute of Agricultural Technology, Potato Research Group, Experimental Agricultural Station, Balcarce 7620, República Argentina
| | - Stéphane Dupas
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
| |
Collapse
|
3
|
Weng L, Tang Z, Sardar MF, Yu Y, Ai K, Liang S, Alkahtani J, Lyv D. Unveiling the frontiers of potato disease research through bibliometric analysis. Front Microbiol 2024; 15:1430066. [PMID: 39027102 PMCID: PMC11257026 DOI: 10.3389/fmicb.2024.1430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Research on potato diseases had been widely reported, but a systematic review of potato diseases was lacking. Here, bibliometrics was used to systematically analyze the progress of potato disease. The publications related to "potato" and "disease" were searched in the Web of Science (WOS) from 2014 to 2023. The results showed that a total of 2095 publications on potato diseases were retrieved, with the annual publication output increasing year by year at a growth rate of 8.52%. The main countries where publications were issued were the United States, China, and India. There was relatively close cooperation observed between China, the United States, and the United Kingdom in terms of international collaboration, while international cooperation by India was less extensive. Based on citation analysis and trending topics, potential future research directions include nanoparticles, which provides highly effective carriers for biologically active substances due to their small dimensions, extensive surface area, and numerous binding sites; machine learning, which facilitates rapid identification of relevant targets in extensive datasets, thereby accelerating the process of disease diagnosis and fungicide innovation; and synthetic communities composed of various functional microorganisms, which demonstrate more stable effects in disease prevention and control.
Collapse
Affiliation(s)
- Ling Weng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, China
| | - Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences (National Agricultural Experimental Station for Soil Quality, Taihe)/Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province, Hefei, China
| | - Keyu Ai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shurui Liang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dianqiu Lyv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
4
|
Jeewon R, Pudaruth SB, Bhoyroo V, Aullybux AA, Rajeshkumar KC, Alrefaei AF. Antioxidant and Antifungal Properties of Cinnamon, Cloves, Melia azedarach L. and Ocimum gratissimum L. Extracts against Fusarium oxysporum Isolated from Infected Vegetables in Mauritius. Pathogens 2024; 13:436. [PMID: 38921734 PMCID: PMC11206713 DOI: 10.3390/pathogens13060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Fusarium species, a group of economically destructive phytopathogens, are poorly studied in Mauritius where agriculture holds much significance. Furthermore, the increasing popularity of organic farming has prompted interest in alternatives to chemical fungicides. METHODS After gaining an overview of Fusarium prevalence in Mauritius fields through a survey, the pathogen was isolated from infected crops and identified based on morphological and molecular characteristics. Methanol and water extracts were then prepared from Melia azedarach, Ocimum gratissimum, cinnamon and cloves before determining their phytochemical profiles. Additionally, the antioxidant and antifungal effects of different concentrations of aqueous extracts were assessed. RESULTS The isolate was confirmed as Fusarium oxysporum, and cloves inhibited its growth by up to 100%, especially at 60 and 90 g/L, with the results being significantly higher than those of the synthetic fungicide mancozeb. Over 50% inhibition was also noted for cinnamon and Ocimum gratissimum, and these effects could be linked to the flavonoids, phenols and terpenoids in the extracts. CONCLUSION This study presented the aqueous extracts of cloves, cinnamon and Ocimum gratissimum as potential alternatives to chemical fungicides. It also confirmed the prevalence of Fusarium infection in Mauritius fields, thereby highlighting the need for additional studies on the pathogen.
Collapse
Affiliation(s)
- Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Shaan B. Pudaruth
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Vishwakalyan Bhoyroo
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Aadil Ahmad Aullybux
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., MACS Agharkar Research Institute, G. G. Agarkar Road, Pune 411 004, Maharashtra, India
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
5
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Saffer A, Tateosian L, Saville AC, Yang YP, Ristaino JB. Reconstructing historic and modern potato late blight outbreaks using text analytics. Sci Rep 2024; 14:2523. [PMID: 38360880 PMCID: PMC10869797 DOI: 10.1038/s41598-024-52870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known as Phytophthora infestans, still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843-1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics.
Collapse
Affiliation(s)
- Ariel Saffer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - Laura Tateosian
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Yi-Peng Yang
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
He T, Liang C, Cheng H, Shi S, Huang S. Cathodically Coupled Electrolysis to Access Biheteroaryls. Org Lett 2024; 26:607-612. [PMID: 38206057 DOI: 10.1021/acs.orglett.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An electrochemical approach to biheteroaryls through the coupling of diverse N-heteroarenes with heteroaryl phosphonium salts is reported. The reaction features pH and redox-neutral conditions and excellent regioselectivity, as well as exogenous air or moisture tolerance. Additionally, a one-pot, two-step protocol can be established to realize formal C-H/C-H coupling of heteroarenes, thereby greatly expanding the substrate availability. The utility of this method is demonstrated through late-stage functionalization, the total synthesis of nitraridine, and antifungal activity studies.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Haoyuan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
9
|
Song J, Lu H, Ma L, Zhu S, Yan D, Han J, Zhang Y. Molecular Characteristics of Enterovirus B83 Strain Isolated from a Patient with Acute Viral Myocarditis and Global Transmission Dynamics. Viruses 2023; 15:1360. [PMID: 37376658 DOI: 10.3390/v15061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This study determined the global genetic diversity and transmission dynamics of enterovirus B83 (EV-B83) and proposed future disease surveillance directions. Blood samples were collected from a patient with viral myocarditis, and viral isolation was performed. The complete genome sequence of the viral isolate was obtained using Sanger sequencing. A dataset of 15 sequences (from three continents) that had sufficient time signals for Bayesian phylogenetic analysis was set up, and the genetic diversity and transmission dynamics of global EV-B83 were analyzed using bioinformatics methods, including evolutionary dynamics, recombination event analysis, and phylogeographic analysis. Here, we report the complete genome sequence of an EV-B83 strain (S17/YN/CHN/2004) isolated from a patient with acute viral myocarditis in Yunnan Province, China. All 15 EV-B83 strains clustered together in a phylogenetic tree, confirming the classification of these isolates as a single EV type, and the predicted time for the most recent common ancestor appeared in 1998. Recombinant signals were detected in the 5'-untranslated region and 2A-3D coding regions of the S17 genome. The phylogeographic analysis revealed multiple intercontinental transmission routes of EV-B83. This study indicates that EV-B83 is globally distributed. Our findings add to the publicly available EV-B83 genomic sequence data and deepen our understanding of EV-B83 epidemiology.
Collapse
Affiliation(s)
- Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanhuan Lu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lin Ma
- Yunnan Institute of Endemic Diseases Control and Prevention, No.5, Wenhua Road, Dali 671000, China
| | - Shuangli Zhu
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dongmei Yan
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yong Zhang
- National Polio Laboratory and WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
10
|
Li JL, Yang JF, Zhou LM, Cai M, Huang ZQ, Liu XL, Zhu XL, Yang GF. Design and Synthesis of Novel Oxathiapiprolin Derivatives as Oxysterol Binding Protein Inhibitors and Their Application in Phytopathogenic Oomycetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37286337 DOI: 10.1021/acs.jafc.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oomycetes, particularly those from the genus Phytophthora, are significant threats to global food security and natural ecosystems. Oxathiapiprolin (OXA) is an effective oomycete fungicide that targets an oxysterol binding protein (OSBP), while the binding mechanism of OXA is still unclear, which limits the pesticide design, induced by the low sequence identity of Phytophthora and template models. Herein, we generated the OSBP model of the well-reported Phytophthora capsici using AlphaFold 2 and studied the binding mechanism of OXA. Based on it, a series of OXA analogues were designed. Then, compound 2l, the most potent candidate, was successfully designed and synthesized, showing a control efficiency comparable to that of OXA. Moreover, field trial experiments showed that 2l exhibited nearly the same activity (72.4%) as OXA against cucumber downy mildew at 25 g/ha. The present work indicated that 2l could be used as a leading compound for the discovery of new OSBP fungicides.
Collapse
Affiliation(s)
- Jian-Long Li
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing-Fang Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li-Ming Zhou
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Meng Cai
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhong-Qiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xi-Li Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiao-Lei Zhu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
11
|
Ortiz V, Chang HX, Sang H, Jacobs J, Malvick DK, Baird R, Mathew FM, Estévez de Jensen C, Wise KA, Mosquera GM, Chilvers MI. Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia. Front Genet 2023; 14:1103969. [PMID: 37351341 PMCID: PMC10282554 DOI: 10.3389/fgene.2023.1103969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.
Collapse
Affiliation(s)
- Viviana Ortiz
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Janette Jacobs
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Dean K. Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Richard Baird
- BCH-EPP Department, Mississippi State University, Mississippi State, MS, United States
| | - Febina M. Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | | - Kiersten A. Wise
- Department of Plant Pathology, College of Agriculture, Food and Environment, University of Kentucky, Princeton, KY, United States
| | - Gloria M. Mosquera
- Plant Pathology, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Palmira, Colombia
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Goudoudaki S, Kambouris ME, Siamoglou S, Gioula G, Kantzanou M, Manoussopoulou M, Patrinos GP, Manoussopoulos Y. Can Water-Only DNA Extraction Reduce the Logistical Footprint of Biosurveillance and Planetary Health Diagnostics? Toward a New Method. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:116-126. [PMID: 36809194 DOI: 10.1089/omi.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has raised the stakes for planetary health diagnostics. Because pandemics pose enormous burdens on biosurveillance and diagnostics, reduction of the logistical burdens of pandemics and ecological crises is essential. Moreover, the disruptive effects of catastrophic bioevents impact the supply chains in both highly populated urban centers and rural communities. One "upstream" focus of methodological innovation in biosurveillance is the footprint of Nucleic Acid Amplification Test (NAAT)-based assays. We report in this study a water-only DNA extraction, as an initial step in developing future protocols that may require few expendables, and with low environmental footprints, in terms of wet and solid laboratory waste. In the present work, boiling-hot distilled water was used as the main cell lysis agent for direct polymerase chain reactions (PCRs) on crude extracts. After evaluation (1) in blood and mouth swabs for human biomarker genotyping, and (2) in mouth swabs and plant tissue for generic bacterial or fungal detection, and using different combinations of extraction volume, mechanical assistance, and extract dilution, we found the method to be applicable in low-complexity samples, but not in high-complexity ones such as blood and plant tissue. In conclusion, this study examined the doability of a lean approach for template extraction in the case of NAAT-based diagnostics. Testing our approach with different biosamples, PCR settings, and instruments, including portable ones for COVID-19 or dispersed applications, warrant further research. Minimal resources analysis is a concept and practice, vital and timely for biosurveillance, integrative biology, and planetary health in the 21st century.
Collapse
Affiliation(s)
| | - Manousos E Kambouris
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Stavroula Siamoglou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Georgia Gioula
- Microbiology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Kantzanou
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Manoussopoulou
- ELGO-Demeter, Plant Protection Division of Patras, Patras, Greece.,Department of Agronomics, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Department of Genetics and Genomics, and Zayed Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | |
Collapse
|
13
|
Phylogeography and population structure of the global, wide host-range hybrid pathogen Phytophthora × cambivora. IMA Fungus 2023; 14:4. [PMID: 36823663 PMCID: PMC9951538 DOI: 10.1186/s43008-023-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.
Collapse
|
14
|
Xiao J, Wang J, Lu H, Song Y, Sun D, Han Z, Li J, Yang Q, Yan D, Zhu S, Pei Y, Wang X, Xu W, Zhang Y. Genomic Epidemiology and Transmission Dynamics of Global Coxsackievirus B4. Viruses 2023; 15:v15020569. [PMID: 36851788 PMCID: PMC9961479 DOI: 10.3390/v15020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The aim of this study was to determine the global genetic diversity and transmission dynamics of coxsackievirus B4 (CVB4) and to propose future directions for disease surveillance. Next-generation sequencing was performed to obtain the complete genome sequence of CVB4, and the genetic diversity and transmission dynamics of CVB4 worldwide were analyzed using bioinformatics methods such as phylogenetic analysis, evolutionary dynamics, and phylogeographic analysis. Forty complete genomes of CVB4 were identified from asymptomatic infected individuals and hand, foot, and mouth disease (HFMD) patients. Frequent recombination between CVB4 and EV-B multiple serotypes in the 3Dpol region was found and formed 12 recombinant patterns (A-L). Among these, the CVB4 isolated from asymptomatic infected persons and HFMD patients belonged to lineages H and I, respectively. Transmission dynamics analysis based on the VP1 region revealed that CVB4 epidemics in countries outside China were dominated by the D genotype, whereas the E genotype was dominant in China, and both genotypes evolved at a rate of > 6.50 × 10-3 substitutions/site/year. CVB4 spreads through the population unseen, with the risk of disease outbreaks persisting as susceptible individuals accumulate. Our findings add to publicly available CVB4 genomic sequence data and deepen our understanding of CVB4 molecular epidemiology.
Collapse
Affiliation(s)
- Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Zhenzhi Han
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 102206, China
| | - Jichen Li
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yaowen Pei
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis and National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
15
|
Abbou M, Chabbi M, Benicha M. Assessment of phytosanitary practices on the environment: case study potato of Loukkos (northwest Morocco). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:352. [PMID: 36723690 DOI: 10.1007/s10661-023-10949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Loukkos perimeter is among the most important irrigated agricultural areas in Morocco. It covers horticulture and market garden production, including potato. This crop is characterized by the intensive use of pesticides that could lead to health and ecological risks, via the food chain and contamination of natural resources, including groundwater. This study is aimed at assessing the use of pesticides in potato cultivation and their impacts on the environment and human health. Here, pesticide use was characterized by the number of treatments (NT), quantity of active substances indicator (QASI), and the treatment frequency indicator (TFI), through field surveys carried out on 50 Loukkos potato producers. The results showed that farmers use heavy pesticide treatments, mainly against late blight. We determined NT = 19 treatments, total TFI = 28.10, and QASI = 14.86 kg/ha. These values reflect a massive use of pesticides on this crop, which could therefore constitute a challenge and a major constraint for the development of sustainable agriculture in this zone, due to their negative environmental and health effects. It is, therefore, necessary to react quickly to make changes in phytosanitary practices with the aim to monitoring pesticide use via the agro-environmental indicators to reduce health and environmental impact of intensive pesticide use.
Collapse
Affiliation(s)
- Mohamed Abbou
- Laboratory of Pesticides Residues, UR Research On Nuclear Techniques, Environment and Quality, National Institute for Agricultural Research, Tangier, Morocco.
- Laboratory of Physical-Chemistry of Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Technics, Abdelmalek Essâadi University, Tangier, Morocco.
| | - Mohamed Chabbi
- Laboratory of Physical-Chemistry of Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Technics, Abdelmalek Essâadi University, Tangier, Morocco
| | - Mohamed Benicha
- Laboratory of Pesticides Residues, UR Research On Nuclear Techniques, Environment and Quality, National Institute for Agricultural Research, Tangier, Morocco
| |
Collapse
|
16
|
Sun Q, Liu J, Huang C, Liu X, Gao J, Li L, Luo Y, Ma Z. Clonal Expansion and Dispersal Pathways of Puccinia polysora in China. PHYTOPATHOLOGY 2023; 113:21-30. [PMID: 35918852 DOI: 10.1094/phyto-06-21-0256-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Southern corn rust (SCR) caused by Puccinia polysora is one of the most devastating diseases in the world. In recent years, SCR has been upgraded from a minor to a major disease around the world, including in China. However, little is known about its population genetics and structure in China. In this study, we analyzed 288 isolates collected from various localities during 2017 in seven Chinese provinces: Guangxi, Guangdong, Anhui, Hunan, Shandong, Henan, and Shaanxi. The isolates were analyzed using nine microsatellite markers. The population structure, genetic diversity, and reproduction mode of P. polysora were investigated based on genotype data. Strong genotypic diversity was detected and clonal reproduction was dominant. The populations collected from the pathogen's winter-reproductive regions harbored more genotypes than those collected from the pathogen's epidemic regions. The spatial differences in genotypic richness, and evenness among the populations were significant, and showed a decreasing trend from south to north. Most isolates were clustered into two clonal groups. Two high-frequency multilocus genotypes (MLGs), MLG1 and MLG2, were widely distributed in all populations. Our analyses confirmed that P. polysora employed clone dispersal from the pathogen's winter-reproductive regions to the pathogen's epidemic regions, and in addition to the sources from the pathogen's winter-reproductive regions, the pathogen in Anhui and Hunan might also have other sources from areas such as Taiwan, China, or/and Southeast Asia, and the pathogen went through a genetic bottleneck during its dispersal. These findings provide initial insights into the reproduction mode and dispersal pathways of P. polysora in China.
Collapse
Affiliation(s)
- Qiuyu Sun
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- National Agro-tech Extension and Service Center, Beijing 100125, China
| | - Chong Huang
- National Agro-tech Extension and Service Center, Beijing 100125, China
| | - Xiufeng Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crops Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jianmeng Gao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Leifu Li
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yong Luo
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhanhong Ma
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Shoaib M, Shah B, Hussain T, Ali A, Ullah A, Alenezi F, Gechev T, Ali F, Syed I. A deep learning-based model for plant lesion segmentation, subtype identification, and survival probability estimation. FRONTIERS IN PLANT SCIENCE 2022; 13:1095547. [PMID: 36589071 PMCID: PMC9798446 DOI: 10.3389/fpls.2022.1095547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 05/27/2023]
Abstract
Plants are the primary source of food for world's population. Diseases in plants can cause yield loss, which can be mitigated by continual monitoring. Monitoring plant diseases manually is difficult and prone to errors. Using computer vision and artificial intelligence (AI) for the early identification of plant illnesses can prevent the negative consequences of diseases at the very beginning and overcome the limitations of continuous manual monitoring. The research focuses on the development of an automatic system capable of performing the segmentation of leaf lesions and the detection of disease without requiring human intervention. To get lesion region segmentation, we propose a context-aware 3D Convolutional Neural Network (CNN) model based on CANet architecture that considers the ambiguity of plant lesion placement in the plant leaf image subregions. A Deep CNN is employed to recognize the subtype of leaf lesion using the segmented lesion area. Finally, the plant's survival is predicted using a hybrid method combining CNN and Linear Regression. To evaluate the efficacy and effectiveness of our proposed plant disease detection scheme and survival prediction, we utilized the Plant Village Benchmark Dataset, which is composed of several photos of plant leaves affected by a certain disease. Using the DICE and IoU matrices, the segmentation model performance for plant leaf lesion segmentation is evaluated. The proposed lesion segmentation model achieved an average accuracy of 92% with an IoU of 90%. In comparison, the lesion subtype recognition model achieves accuracies of 91.11%, 93.01 and 99.04 for pepper, potato and tomato plants. The higher accuracy of the proposed model indicates that it can be utilized for real-time disease detection in unmanned aerial vehicles and offline to offer crop health updates and reduce the risk of low yield.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department of Computer Science, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Babar Shah
- College of Technological Innovation, Zayed University, Dubai, United Arab Emirates
| | - Tariq Hussain
- High Performance Computing and Networking Institute, National Research Council (ICAR-CNR), Naples, Italy
| | - Akhtar Ali
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Asad Ullah
- Department of Computer Science and Information Technology, Sarhad University of Science & Information Technology, Peshawar, Pakistan
| | - Fayadh Alenezi
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Tsanko Gechev
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Farman Ali
- Department of Software, Sejong University, Seoul, Republic of Korea
| | - Ikram Syed
- School of Computing, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
18
|
Knorr D, Augustin MA. From Food to Gods to Food to Waste. Crit Rev Food Sci Nutr 2022; 64:5379-5397. [PMID: 36503306 DOI: 10.1080/10408398.2022.2153795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present global food waste problem threatens food systems sustainability and our planet. The generation of food waste stems from the interacting factors of the need for food production, food access and availability, motivations and ignorance around food purchase and consumption, and market constraints. Food waste has increased over time. This is related to the change in how humans value food through the generations and altered human food consumption and food discard behaviors. There is also a lack of understanding of the impacts of current food production, processing and consumption patterns on food waste creation. This review examines the cultural, religious, social and economic factors influencing attitudes to food and their effects on food waste generation. The lessons from history about how humans strove toward zero waste are covered. We review the important drivers of food waste: waste for profit, food diversion to feed, waste for convenience, labeling, food service waste and household food waste. We discuss strategies for food waste reduction: recovery of food and food ingredients, waste conversion to energy and food, reducing waste from production/processing and reducing consumer food waste, and emphasize the need for all stakeholders to work together to reduce food waste.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Gangurde SS, Xavier A, Naik YD, Jha UC, Rangari SK, Kumar R, Reddy MSS, Channale S, Elango D, Mir RR, Zwart R, Laxuman C, Sudini HK, Pandey MK, Punnuri S, Mendu V, Reddy UK, Guo B, Gangarao NVPR, Sharma VK, Wang X, Zhao C, Thudi M. Two decades of association mapping: Insights on disease resistance in major crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1064059. [PMID: 37082513 PMCID: PMC10112529 DOI: 10.3389/fpls.2022.1064059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR), Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | | | - Raj Kumar
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - M. S. Sai Reddy
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Sonal Channale
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Rebecca Zwart
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - C. Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Somashekhar Punnuri
- College of Agriculture, Family Sciences and Technology, Dr. Fort Valley State University, Fort Valley, GA, United States
| | - Venugopal Mendu
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, West Virginia, WV, United States
| | - Baozhu Guo
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
| | | | - Vinay K. Sharma
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Mahendar Thudi
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| |
Collapse
|
20
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
21
|
Genomic Epidemiology and Phylodynamic Analysis of Enterovirus A71 Reveal Its Transmission Dynamics in Asia. Microbiol Spectr 2022; 10:e0195822. [PMID: 36200890 PMCID: PMC9603238 DOI: 10.1128/spectrum.01958-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the main pathogens causing hand, foot, and mouth disease (HFMD) outbreaks in Asian children under 5 years of age. In severe cases, it can cause neurological complications and be life-threatening. In this study, 200 newly sequenced EV-A71 whole-genome sequences were combined with 772 EV-A71 sequences from GenBank for large-scale analysis to investigate global EV-A71 epidemiology, phylogeny, and Bayesian phylodynamic characteristics. Based on the phylogenetic analysis of the EV-A71 3Dpol region, six new evolutionary lineages (lineages B, J, K, O, P, and Q) were found in this study, and the number of evolutionary lineages was expanded from 11 to 17. Temporal dynamics and recombination breakpoint analyses based on genotype C revealed that recombination of nonstructural protein-coding regions, including 3Dpol, is an important reason for the emergence of new lineages. The EV-A71 epidemic in the Asia-Pacific region is complex, and phylogeographic analysis found that Vietnam played a key role in the spread of subgenotypes B5 and C4. The origin of EV-A71 subgenotype C4 in China is East China, which is closely related to the prevalence of subgenotype C4 in the south and throughout China. Selection pressure analysis revealed that, in addition to VP1 amino acid residues VP1-98 and VP1-145, which are associated with EV-A71 pathogenicity, amino acid residues VP1-184 and VP1-249 were also positively selected, and their functions still need to be determined by biology and immunology. This study aimed to provide a solid theoretical basis for EV-A71-related disease surveillance and prevention, antiviral research, and vaccine development through a comprehensive analysis. IMPORTANCE EV-A71 is one of the most important pathogens causing HFMD outbreaks; however, large-scale studies of EV-A71 genomic epidemiology are currently lacking. In this study, 200 new EV-A71 whole-genome sequences were determined. Combining these with 772 EV-A71 whole-genome sequences in the GenBank database, the evolutionary and transmission characteristics of global and Asian EV-A71 were analyzed. Six new evolutionary lineages were identified in this study. We also found that recombination in nonstructural protein-coding regions, including 3Dpol, is an important cause for the emergence of new lineages. The results provided a solid theoretical basis for EV-A71-related disease surveillance and prevention, antiviral research, and vaccine development.
Collapse
|
22
|
Defending Earth's terrestrial microbiome. Nat Microbiol 2022; 7:1717-1725. [PMID: 36192539 DOI: 10.1038/s41564-022-01228-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Microbial life represents the majority of Earth's biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth's microbial biodiversity is under threat. Here we advocate for the conservation and restoration of soil microbial life, as well as active incorporation of microbial biodiversity into managed food and forest landscapes, with an emphasis on soil fungi. We analyse 80 experiments to show that native soil microbiome restoration can accelerate plant biomass production by 64% on average, across ecosystems. Enormous potential also exists within managed landscapes, as agriculture and forestry are the dominant uses of land on Earth. Along with improving and stabilizing yields, enhancing microbial biodiversity in managed landscapes is a critical and underappreciated opportunity to build reservoirs, rather than deserts, of microbial life across our planet. As markets emerge to engineer the ecosystem microbiome, we can avert the mistakes of aboveground ecosystem management and avoid microbial monocultures of single high-performing microbial strains, which can exacerbate ecosystem vulnerability to pathogens and extreme events. Harnessing the planet's breadth of microbial life has the potential to transform ecosystem management, but it requires that we understand how to monitor and conserve the Earth's microbiome.
Collapse
|
23
|
Seo JH, Choi JG, Park HJ, Cho JH, Park YE, Im JS, Hong SY, Cho KS. Complete Mitochondrial Genome Sequences of Korean Phytophthora infestans Isolates and Comparative Analysis of Mitochondrial Haplotypes. THE PLANT PATHOLOGY JOURNAL 2022; 38:541-549. [PMID: 36221926 PMCID: PMC9561156 DOI: 10.5423/ppj.oa.07.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Potato late blight caused by Phytophthora infestans is a destructive disease in Korea. To elucidate the genomic variation of the mitochondrial (mt) genome, we assembled its complete mt genome and compared its sequence among different haplotypes. The mt genome sequences of four Korean P. infestans isolates were revealed by Illumina HiSeq. The size of the circular mt genome of the four major genotypes, KR_1_A1, KR_2_A2, SIB-1, and US-11, was 39,872, 39,836, 39,872, and 39,840 bp, respectively. All genotypes contained the same 61 genes in the same order, comprising two RNA-encoding genes, 16 ribosomal genes, 25 transfer RNA, 17 genes encoding electron transport and ATP synthesis, 11 open reading frames of unknown function, and one protein import-related gene, tatC. The coding region comprised 91% of the genome, and GC content was 22.3%. The haplotypes were further analyzed based on sequence polymorphism at two hypervariable regions (HVRi), carrying a 2 kb insertion/deletion sequence, and HVRii, carrying 36 bp variable number tandem repeats (VNTRs). All four genotypes carried the 2 kb insertion/deletion sequence in HVRi, whereas HVRii had two VNTRs in KR_1_A1 and SIB-1 but three VNTRs in US-11 and KR_2_A2. Minimal spanning network and phylogenetic analysis based on 5,814 bp of mtDNA sequences from five loci, KR_1_A1 and SIB-1 were classified as IIa-6 haplotype, and isolates KR_1_A2 and US-11 as haplotypes IIa-5 and IIb-2, respectively. mtDNA sequences of KR_1_A1 and SIB-1 shared 100% sequence identity, and both were 99.9% similar to those of KR_2_A2 and US-11.
Collapse
Affiliation(s)
- Jin-Hee Seo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424,
Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Hyun-Jin Park
- Department of Central Area Science, National Institute of Crop Science, Rural Development Administration, Suwon 16613,
Korea
| | - Ji-Hong Cho
- Rural Development Administration, Jeonju 54875,
Korea
| | - Young-Eun Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Ju-Sung Im
- National Institute of Crop Science, Rural Development Administration, Wanju 55365,
Korea
| | - Su-Young Hong
- Department of Agriculture Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 55365,
Korea
| | - Kwang-Soo Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424,
Korea
| |
Collapse
|
24
|
Gangwar OP, Kumar S, Bhardwaj SC, Prasad P, Lata C, Adhikari S, Singh GP. Elucidating the Population Structure and Genetic Diversity of Indian Puccinia striiformis f. sp. tritici Pathotypes Based on Microsatellite Markers. PHYTOPATHOLOGY 2022; 112:1444-1453. [PMID: 35050682 DOI: 10.1094/phyto-10-21-0422-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In India, systematic wheat yellow rust survey and pathotype (race) analysis work began in 1930. However, information on population structure and genetic diversity of yellow rust pathogen has not been available. To address this, we conducted studies on population structure and genetic diversity of Puccinia striiformis f. sp. tritici (Pst) pathotypes using 38 simple sequence repeat primer-pairs. Bayesian assignment and discriminant analysis of principal components indicated the presence of two distinct Pst subpopulations (Pop1 and Pop2) along with 37.9% admixed pathotypes. The unweighted pair-group method with arithmetic mean also categorized these pathotypes into two major clusters. Principal coordinates analysis explained 20.06 and 12.50% variance in horizontal and vertical coordinates, respectively. Index of association (IA) and the standardized index of association ([Formula: see text]) values showed that Pst subpopulations reproduced asexually (clonally). In total, 102 alleles were detected, with the expected heterozygosity (Hexp) per locus ranging from 0.13 to 0.73, with a mean of 0.47. The average polymorphic information content value of 0.40 indicated high genetic diversity among pathotypes. Analysis of molecular variance revealed 12% of the total variance between subpopulations, 11% among the pathotypes of each subpopulation, and 77% within pathotypes. A significant moderate level of genetic differentiation (FST = 0.122, P < 0.001) and gene flow (Nm = 1.80) were observed between subpopulations. The Pst virulence phenotypes showed a weak positive correlation (R2 = 0.027, P < 0.02) with molecular genotypes.
Collapse
Affiliation(s)
- Om Prakash Gangwar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Subodh Kumar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Subhash Chander Bhardwaj
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Pramod Prasad
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Charu Lata
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Sneha Adhikari
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pradesh, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
25
|
Olarte RA, Hall R, Tabima JF, Malvick D, Bushley K. Genetic Diversity and Aggressiveness of Fusarium virguliforme Isolates Across the Midwestern United States. PHYTOPATHOLOGY 2022; 112:1273-1283. [PMID: 34907789 DOI: 10.1094/phyto-05-21-0191-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sudden death syndrome (SDS) of soybean is a damaging disease caused by the fungus Fusarium virguliforme. Since this pathogen was first reported in the southern U.S. state of Arkansas in 1971, it has spread throughout the midwestern United States. The SDS pathogen primarily colonizes roots but also produces toxins that translocate to and damage leaves. Previous studies have detected little to no genetic differentiation among isolates, suggesting F. virguliforme in North America has limited genetic diversity and a clonal population structure. Yet, isolates vary in virulence to roots and leaves. We characterized a set of F. virguliforme isolates from the midwestern United States, representing a south to north latitudinal gradient from Arkansas to Minnesota. Ten previously tested microsatellite loci were used to genotype isolates, and plant assays were conducted to assess virulence. Three distinct population clusters were differentiated across isolates. Although isolates ranged in virulence classes from low to very high, little correlation was found between virulence phenotype and cluster membership. Similarly, population structure and geographic location were not highly correlated. However, the earliest diverging cluster had the lowest genetic diversity and was detected only in southern states, whereas the two other clusters were distributed across the Midwest and were predominant in Minnesota. One of the midwestern clusters had the greatest genetic diversity and was found along the northern edge of the known distribution. The results support three genetically distinct population clusters of F. virguliforme in the United States, with two clusters contributing most to spread of this fungus across the Midwest.
Collapse
Affiliation(s)
- Rodrigo A Olarte
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Rebecca Hall
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | | | - Dean Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
26
|
Hamelin RC, Bilodeau GJ, Heinzelmann R, Hrywkiw K, Capron A, Dort E, Dale AL, Giroux E, Kus S, Carleson NC, Grünwald NJ, Feau N. Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Commun Biol 2022; 5:477. [PMID: 35589982 PMCID: PMC9120034 DOI: 10.1038/s42003-022-03394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.
Collapse
Affiliation(s)
- Richard C Hamelin
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | - Renate Heinzelmann
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kelly Hrywkiw
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud Capron
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Erika Dort
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Angela L Dale
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Emilie Giroux
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Stacey Kus
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Nick C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Horticultural Crops Research Unit, USDA ARS, Corvallis, OR, USA
| | - Nicolas Feau
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Parveen S, Singh N, Adit A, Kumaria S, Tandon R, Agarwal M, Jagannath A, Goel S. Contrasting Reproductive Strategies of Two Nymphaea Species Affect Existing Natural Genetic Diversity as Assessed by Microsatellite Markers: Implications for Conservation and Wetlands Restoration. FRONTIERS IN PLANT SCIENCE 2022; 13:773572. [PMID: 35371128 PMCID: PMC8965595 DOI: 10.3389/fpls.2022.773572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Nymphaea, commonly known as water lily, is the largest and most widely distributed genus in the order Nymphaeales. The importance of Nymphaea in wetland ecosystems and their increased vulnerability make them a great choice for conservation and management. In this work, we studied genetic diversity in a collection of 90 N. micrantha and 92 N. nouchali individuals from six different states of India, i.e., Assam, Manipur, Meghalaya, Maharashtra, Goa, and Kerala, using simple sequence repeat (SSR) markers developed by low throughput Illumina sequencing (10X coverage of genome) of N. micrantha. Nymphaea nouchali is native to India, whereas N. micrantha is suggested to be introduced to the country for its aesthetic and cultural values. The study revealed extensive polymorphism in N. nouchali, while in N. micrantha, no apparent genetic divergence was detected prompting us to investigate the reason(s) by studying the reproductive biology of the two species. The study revealed that N. micrantha predominantly reproduces asexually which has impacted the genetic diversity of the species to a great extent. This observation is of immense importance for a successful re-establishment of Nymphaea species during restoration programs of wetlands. The information generated on reproductive behaviors and their association with genotypic richness can help in strategizing genetic resource conservation, especially for species with limited distribution. The study has also generated 22,268 non-redundant microsatellite loci, out of which, 143 microsatellites were tested for polymorphism and polymorphic markers were tested for transferability in five other Nymphaea species, providing genomic resources for further studies on this important genus.
Collapse
Affiliation(s)
- Seema Parveen
- Department of Botany, University of Delhi, New Delhi, India
| | - Nutan Singh
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Arjun Adit
- Department of Botany, University of Delhi, New Delhi, India
| | - Suman Kumaria
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, New Delhi, India
| | - Arun Jagannath
- Department of Botany, University of Delhi, New Delhi, India
| | | |
Collapse
|
28
|
Hebb LM, Bradley CA, Mideros SX, Telenko DEP, Wise K, Dorrance AE. Pathotype Complexity and Genetic Characterization of Phytophthora sojae Populations in Illinois, Indiana, Kentucky, and Ohio. PHYTOPATHOLOGY 2022; 112:663-681. [PMID: 34289716 DOI: 10.1094/phyto-12-20-0561-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora sojae, the causal agent of Phytophthora root and stem rot of soybean, has been managed with single Rps genes since the 1960s but has subsequently adapted to many of these resistance genes, rendering them ineffective. The objective of this study was to examine the pathotype and genetic diversity of P. sojae from soil samples across Illinois, Indiana, Kentucky, and Ohio by assessing which Rps genes were still effective and identifying possible population clusters. There were 218 pathotypes identified from 473 P. sojae isolates with an average of 6.7 out of 15 differential soybean lines exhibiting a susceptible response for each isolate. Genetic characterization of 103 P. sojae isolates from across Illinois, Indiana, Kentucky, and Ohio with 19 simple sequence repeat markers identified 92 multilocus genotypes. There was a moderate level of population differentiation between these four states, with pairwise FST values ranging from 0.026 to 0.246. There were also moderate to high levels of differentiation between fields, with pairwise FST values ranging from 0.071 to 0.537. Additionally, cluster analysis detected the presence of P. sojae population structure across neighboring states. The level of pathotype and genetic diversity, in addition to the identification of population clusters, supports the hypothesis of occasional outcrossing events that allow an increase in diversity and the potential to select for a loss in avirulence to specific resistance genes within regions. The trend of suspected gene flow among neighboring fields is expected to be an ongoing issue with current agricultural practices.
Collapse
Affiliation(s)
- Linda M Hebb
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Center for Soybean Research, Wooster, OH 44691
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky Research and Education Center, Grain and Forage Center of Excellence, Princeton, KY 40546
| | | | - Darcy E P Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Kiersten Wise
- Department of Plant Pathology, University of Kentucky Research and Education Center, Grain and Forage Center of Excellence, Princeton, KY 40546
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Center for Soybean Research, Wooster, OH 44691
| |
Collapse
|
29
|
Van der Heyden H, Dutilleul P, Duceppe M, Bilodeau GJ, Charron J, Carisse O. Genotyping by sequencing suggests overwintering of Peronospora destructor in southwestern Québec, Canada. MOLECULAR PLANT PATHOLOGY 2022; 23:339-354. [PMID: 34921486 PMCID: PMC8828460 DOI: 10.1111/mpp.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/19/2023]
Abstract
Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec-Les Jardins de Napierville-to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.
Collapse
Affiliation(s)
- Hervé Van der Heyden
- Cie de Recherche PhytodataSherringtonQuébecCanada
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | - Pierre Dutilleul
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | | | | | | | - Odile Carisse
- Agriculture and Agri‐Food CanadaSt‐Jean‐sur‐RichelieuQuébecCanada
| |
Collapse
|
30
|
Wang P, Yang L, Sun J, Yang Y, Qu Y, Wang C, Liu D, Huang L, Cui X, Liu Y. Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 12:752683. [PMID: 35069616 PMCID: PMC8766989 DOI: 10.3389/fpls.2021.752683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.
Collapse
Affiliation(s)
- Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jialing Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| |
Collapse
|
31
|
Guo Y, Sakalidis ML, Torres-Londono GA, Hausbeck MK. Population Structure of a Worldwide Phytophthora palmivora Collection Suggests Lack of Host Specificity and Reduced Genetic Diversity in South America and the Caribbean. PLANT DISEASE 2021; 105:4031-4041. [PMID: 33983798 DOI: 10.1094/pdis-05-20-1055-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytophthora palmivora (Butler) is a highly destructive plant pathogen that infects tropical hosts worldwide, many of which are economically important crops. Despite the broad host range and wide distribution, the pathogen has displayed a considerable amount of variation in morphological characters, including virulence. However, the genetic variability at a global level, which is critical to understand the center of origin and the potential pathway(s) of introduction, was unclear. Here, we mapped the genetic variation of P. palmivora using isolates representing four regions, 15 countries, and 14 host species. We designed a large set of simple sequence repeat markers from the P. palmivora genome and picked 17 selectively neutral markers to screen 98 P. palmivora isolates. We found that P. palmivora populations from our collection generally did not cluster according to host; rather, some isolates from North America were generally distinct from all other populations. Isolates from South America and the Caribbean clustered and appeared to share ancestry with isolates from Asia. Populations from North America and Asia were the most genetically diverse, while the South American and Caribbean populations exhibited similar reduced genetic diversity. The isolates collected in various plantations in Colombia did not show host or geographic specificity. Our study brought a further understanding of this important plant pathogen, although the determination for hypothesized source of origin, spread, and evolution would need further sampling. The genomic resources developed in this study would facilitate further studies on P. palmivora diagnostics and management.
Collapse
Affiliation(s)
- Yufang Guo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Monique L Sakalidis
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
- Department of Forestry, Michigan State University, East Lansing, MI 48824
| | | | - Mary K Hausbeck
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
32
|
Zhao P, Crous P, Hou L, Duan W, Cai L, Ma Z, Liu F. Fungi of quarantine concern for China I: Dothideomycetes. PERSOONIA 2021; 47:45-105. [PMID: 37693796 PMCID: PMC10486631 DOI: 10.3767/persoonia.2021.47.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
The current list of Chinese quarantine pests includes 130 fungal species. However, recent changes in the taxonomy of fungi following the one fungus = one name initiative and the implementation of DNA phylogeny in taxonomic revisions, resulted in many changes of these species names, necessitating an update of the current list. In addition, many quarantine fungi lack modern morphological descriptions and authentic DNA sequences, posing significant challenges for the development of diagnostic protocols. The aim of the present study was to review the taxonomy and names of the 33 Chinese quarantine fungi in Dothideomycetes, and provide reliable DNA barcodes to facilitate rapid identification. Of these, 23 names were updated according to the single name nomenclature system, including one new combination, namely Cophinforma tumefaciens comb. nov. (syn. Sphaeropsis tumefaciens). On the basis of phylogenetic analyses and morphological comparisons, a new genus Xenosphaeropsis is introduced to accommodate the monotypic species Xenosphaeropsis pyriputrescens comb. nov. (syn. Sphaeropsis pyriputrescens), the causal agent of a post-harvest disease of pears. Furthermore, four lectotypes (Ascochyta petroselini, Mycosphaerella ligulicola, Physalospora laricina, Sphaeria lingam), three epitypes (Ascochyta petroselini, Phoma lycopersici, Sphaeria lingam), and two neotypes (Ascochyta pinodella, Deuterophoma tracheiphila) are designated to stabilise the use of these names. A further four reference strains are introduced for Cophinforma tumefaciens, Helminthosporium solani, Mycocentrospora acerina, and Septoria linicola. In addition, to assist future studies on these important pathogens, we sequenced and assembled whole genomes for 17 species, including Alternaria triticina, Boeremia foveata, B. lycopersici, Cladosporium cucumerinum, Didymella glomerata, Didymella pinodella, Diplodia mutila, Helminthosporium solani, Mycocentrospora acerina, Neofusicoccum laricinum, Parastagonospora pseudonodorum, Plenodomus libanotidis, Plenodomus lingam, Plenodomus tracheiphilus, Septoria petroselini, Stagonosporopsis chrysanthemi, and Xenosphaeropsis pyriputrescens. Citation: Zhao P, Crous PW, Hou LW, et al. 2021. Fungi of quarantine concern for China I: Dothideomycetes. Persoonia 47: 45-105. https://doi.org/10.3767/persoonia.2021.47.02.
Collapse
Affiliation(s)
- P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - L.W. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - W.J. Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo 315012, China
- Ningbo Customs District P. R. China, Ningbo 315012, China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Z.Y. Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F. Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Wang W, Liu Y, Xue Z, Li J, Wang Z, Liu X. Activity of the Novel Fungicide SYP-34773 against Plant Pathogens and Its Mode of Action on Phytophthora infestans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11794-11803. [PMID: 34605240 DOI: 10.1021/acs.jafc.1c02679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SYP-34773 is a pyrimidinamine derivative and a novel fungicide modified from diflumetorim. This study determined the antimicrobial spectrum of SYP-34773, which showed it could strongly inhibit the growth of some important plant pathogens including fungi and oomycetes. In particular, Phytophthora infestans is an oomycete sensitive to SYP-34773, and the mycelium growth stage was found to be the most sensitive stage, with an EC50 value of 0.2030 μg/mL. At a concentration of 200 μg/mL, SYP-34773 displayed an excellent control efficacy of 69.55% and 81.48% against potato and tomato blight disease caused by P. infestans under field conditions, respectively. Mode of action investigations showed that this fungicide could cause severe ultrastructure damage to the mycelia of P. infestans, inhibit its respiration, and increase the cell membrane permeability of this pathogen. The results of this study could provide useful information for the fungicide registration and application of SYP-34773 as a novel fungicide.
Collapse
Affiliation(s)
- Weizhen Wang
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Ying Liu
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhaolin Xue
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Jingru Li
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhiwen Wang
- China Agricultural University, Beijing 100193, People's Republic of China
| | - Xili Liu
- China Agricultural University, Beijing 100193, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
34
|
Xu B, Wang J, Yan B, Xu C, Yin Q, Yang D. Global spatiotemporal transmission patterns of human enterovirus 71 from 1963 to 2019. Virus Evol 2021; 7:veab071. [PMID: 36819972 PMCID: PMC9927877 DOI: 10.1093/ve/veab071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) can cause large outbreaks of hand, foot, and mouth disease (HFMD) and severe neurological diseases, which is regarded as a major threat to public health, especially in Asia-Pacific regions. However, the global spatiotemporal spread of this virus has not been identified. In this study, we used large sequence datasets and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of different EV71 subgroups globally. The study found that subgroups of HFMD presented global spatiotemporal variation, subgroups B0, B1, and B2 have caused early infections in Europe and America, and then subgroups C1, C2, C3, and C4 replaced B0-B2 as the predominant genotypes, especially in Asia-Pacific countries. The dispersal patterns of genotype B and subgroup C4 showed the complicated routes in Asia and the source might in some Asian countries, while subgroups C1 and C2 displayed more strongly supported pathways globally, especially in Europe. This study found the predominant subgroup of EV71 and its global spatiotemporal transmission patterns, which may be beneficial to reveal the long-term global spatiotemporal transmission patterns of human EV71 and carry out the HFMD vaccine development.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, 277, Yanta West Road, Xi’an, 710061, China
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
- Key Clinical Discipline by National Health Commission, 277, Yanta West Road, Xi’an, 710061, China
| | - Jinfeng Wang
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Bin Yan
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Chengdong Xu
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Deyan Yang
- College of Oceanography and Space Informatics, China University of Petroleum, 66 Changjiangxi Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
35
|
Weisberg AJ, Grünwald NJ, Savory EA, Putnam ML, Chang JH. Genomic Approaches to Plant-Pathogen Epidemiology and Diagnostics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:311-332. [PMID: 34030448 DOI: 10.1146/annurev-phyto-020620-121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diseases have a significant cost to agriculture. Findings from analyses of whole-genome sequences show great promise for informing strategies to mitigate risks from diseases caused by phytopathogens. Genomic approaches can be used to dramatically shorten response times to outbreaks and inform disease management in novel ways. However, the use of these approaches requires expertise in working with big, complex data sets and an understanding of their pitfalls and limitations to infer well-supported conclusions. We suggest using an evolutionary framework to guide the use of genomic approaches in epidemiology and diagnostics of plant pathogens. We also describe steps that are necessary for realizing these as standard approaches in disease surveillance.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon 97331, USA
| | | | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
36
|
Shakya SK, Grünwald NJ, Fieland VJ, Knaus BJ, Weiland JE, Maia C, Drenth A, Guest DI, Liew ECY, Crane C, Chang TT, Fu CH, Minh Chi N, Quang Thu P, Scanu B, von Stowasser ES, Durán Á, Horta Jung M, Jung T. Phylogeography of the wide-host range panglobal plant pathogen Phytophthora cinnamomi. Mol Ecol 2021; 30:5164-5178. [PMID: 34398981 DOI: 10.1111/mec.16109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Various hypotheses have been proposed regarding the origin of the plant pathogen Phytophthora cinnamomi. P. cinnamomi is a devastating, highly invasive soilborne pathogen associated with epidemics of agricultural, horticultural and forest plantations and native ecosystems worldwide. We conducted a phylogeographic analysis of populations of this pathogen sampled in Asia, Australia, Europe, southern and northern Africa, South America, and North America. Based on genotyping-by-sequencing, we observed the highest genotypic diversity in Taiwan and Vietnam, followed by Australia and South Africa. Mating type ratios were in equal proportions in Asia as expected for a sexual population. Simulations based on the index of association suggest a partially sexual, semi-clonal mode of reproduction for the Taiwanese and Vietnamese populations while populations outside of Asia are clonal. Ancestral area reconstruction provides new evidence supporting Taiwan as the ancestral area, given our sample, indicating that this region might be near or at the centre of origin for this pathogen as speculated previously. The Australian and South African populations appear to be a secondary centre of diversity following migration from Taiwan or Vietnam. Our work also identified two panglobal, clonal lineages PcG1-A2 and PcG2-A2 of A2 mating type found on all continents. Further surveys of natural forests across Southeast Asia are needed to definitively locate the actual centre of origin of this important plant pathogen.
Collapse
Affiliation(s)
- Shankar K Shakya
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Valerie J Fieland
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Brian J Knaus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jerry E Weiland
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Cristiana Maia
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - André Drenth
- Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, Brisbane, Queensland, Australia
| | - David I Guest
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Edward C Y Liew
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Colin Crane
- Vegetation Health Service, Kensington, Washington, Australia
| | - Tun-Tschu Chang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Chuen-Hsu Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Nguyen Minh Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Pham Quang Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Bruno Scanu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Eugenio Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Álvaro Durán
- Bioforest S.A., Casilla 70-C, Concepción, Chile.,Research and Development, Asia Pacific Resources International Limited, Pangkalan Kerinci, Indonesia
| | - Marilia Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
37
|
Zhao P, Crous P, Hou L, Duan W, Cai L, Ma Z, Liu F. Fungi of quarantine concern for China I: Dothideomycetes. PERSOONIA 2021; 47:45-105. [PMID: 38352971 PMCID: PMC10784663 DOI: 10.3767/persoonia.2023.47.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 02/16/2024]
Abstract
The current list of Chinese quarantine pests includes 130 fungal species. However, recent changes in the taxonomy of fungi following the one fungus = one name initiative and the implementation of DNA phylogeny in taxonomic revisions, resulted in many changes of these species names, necessitating an update of the current list. In addition, many quarantine fungi lack modern morphological descriptions and authentic DNA sequences, posing significant challenges for the development of diagnostic protocols. The aim of the present study was to review the taxonomy and names of the 33 Chinese quarantine fungi in Dothideomycetes, and provide reliable DNA barcodes to facilitate rapid identification. Of these, 23 names were updated according to the single name nomenclature system, including one new combination, namely Cophinforma tumefaciens comb. nov. (syn. Sphaeropsis tumefaciens). On the basis of phylogenetic analyses and morphological comparisons, a new genus Xenosphaeropsis is introduced to accommodate the monotypic species Xenosphaeropsis pyriputrescens comb. nov. (syn. Sphaeropsis pyriputrescens), the causal agent of a post-harvest disease of pears. Furthermore, four lectotypes (Ascochyta petroselini, Mycosphaerella ligulicola, Physalospora laricina, Sphaeria lingam), three epitypes (Ascochyta petroselini, Phoma lycopersici, Sphaeria lingam), and two neotypes (Ascochyta pinodella, Deuterophoma tracheiphila) are designated to stabilise the use of these names. A further four reference strains are introduced for Cophinforma tumefaciens, Helminthosporium solani, Mycocentrospora acerina, and Septoria linicola. In addition, to assist future studies on these important pathogens, we sequenced and assembled whole genomes for 17 species, including Alternaria triticina, Boeremia foveata, B. lycopersici, Cladosporium cucumerinum, Didymella glomerata, Didymella pinodella, Diplodia mutila, Helminthosporium solani, Mycocentrospora acerina, Neofusicoccum laricinum, Parastagonospora pseudonodorum, Plenodomus libanotidis, Plenodomus lingam, Plenodomus tracheiphilus, Septoria petroselini, Stagonosporopsis chrysanthemi, and Xenosphaeropsis pyriputrescens. Citation: Zhao P, Crous PW, Hou LW, et al. 2021. Fungi of quarantine concern for China I: Dothideomycetes. Persoonia 47: 45-105. https://doi.org/10.3767/persoonia.2021.47.02.
Collapse
Affiliation(s)
- P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - L.W. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - W.J. Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo 315012, China
- Ningbo Customs District P. R. China, Ningbo 315012, China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Z.Y. Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F. Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Bai Q, Wan A, Wang M, See DR, Chen X. Population Diversity, Dynamics, and Differentiation of Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici From 2010 to 2017 and Comparison With 1968 to 2009 in the United States. Front Microbiol 2021; 12:696835. [PMID: 34367096 PMCID: PMC8339480 DOI: 10.3389/fmicb.2021.696835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease on wheat in the United States, especially after 2000. In the present study, 2,247 Pst isolates collected over all stripe rust epidemiological regions in the United States from 2010 to 2017 were genotyped at 14 simple sequence repeat (SSR) loci to investigate the population diversity, dynamics, and differentiation. A total of 1,454 multilocus genotypes (MLGs) were detected. In general, the populations in the west (regions 1-6) had more MLGs and higher diversities than the populations in the east (regions 7-12). The populations of 2010 and 2011 were more different from the other years. Genetic variation was higher among years than among regions, indicating the fast changes of the population. The divergence (Gst) was bigger between the west population and east population than among regions within either the west or east population. Gene flow was stronger among the regional populations in the east than in the west. Clustering analyses revealed 3 major molecular groups (MGs) and 10 sub-MGs by combining the genotypic data of 2010-2017 isolates with those of 1968-2009. MG1 contained both 1968-2009 isolates (23.1%) and 2010-2017 isolates (76.9%). MG2 had 99.4% of isolates from 1968-2009. MG3, which was the most recent and distinct group, had 99.1% of isolates from 2010-2017. Of the 10 sub-MGs, 5 (MG1-3, MG1-5, MG3-2, MG3-3, and MG3-4) were detected only from 2011 to 2017. The SSR genotypes had a moderate, but significant correlation (r = 0.325; p < 0.0001) with the virulence phenotype data. The standard index values of association (rbarD = 0.11) based on either regional or yearly populations suggest clonal reproduction. This study indicated high diversity, fast dynamics, and various levels of differentiation of the Pst population over the years and among epidemiological regions, and the results should be useful for managing wheat stripe rust.
Collapse
Affiliation(s)
- Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
39
|
Nowicki M, Hadziabdic D, Trigiano RN, Boggess SL, Kanetis L, Wadl PA, Ojiambo PS, Cubeta MA, Spring O, Thines M, Runge F, Scheffler BE. "Jumping Jack": Genomic Microsatellites Underscore the Distinctiveness of Closely Related Pseudoperonospora cubensis and Pseudoperonospora humuli and Provide New Insights Into Their Evolutionary Past. Front Microbiol 2021; 12:686759. [PMID: 34335513 PMCID: PMC8317435 DOI: 10.3389/fmicb.2021.686759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Downy mildews caused by obligate biotrophic oomycetes result in severe crop losses worldwide. Among these pathogens, Pseudoperonospora cubensis and P. humuli, two closely related oomycetes, adversely affect cucurbits and hop, respectively. Discordant hypotheses concerning their taxonomic relationships have been proposed based on host-pathogen interactions and specificity evidence and gene sequences of a few individuals, but population genetics evidence supporting these scenarios is missing. Furthermore, nuclear and mitochondrial regions of both pathogens have been analyzed using microsatellites and phylogenetically informative molecular markers, but extensive comparative population genetics research has not been done. Here, we genotyped 138 current and historical herbarium specimens of those two taxa using microsatellites (SSRs). Our goals were to assess genetic diversity and spatial distribution, to infer the evolutionary history of P. cubensis and P. humuli, and to visualize genome-scale organizational relationship between both pathogens. High genetic diversity, modest gene flow, and presence of population structure, particularly in P. cubensis, were observed. When tested for cross-amplification, 20 out of 27 P. cubensis-derived gSSRs cross-amplified DNA of P. humuli individuals, but few amplified DNA of downy mildew pathogens from related genera. Collectively, our analyses provided a definite argument for the hypothesis that both pathogens are distinct species, and suggested further speciation in the P. cubensis complex.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sarah L. Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Loukas Kanetis
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus
| | | | - Peter S. Ojiambo
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Marc A. Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Otmar Spring
- Institute of Botany 210, University of Hohenheim, Stuttgart, Germany
| | - Marco Thines
- Department of Biological Sciences, Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung and Evolution and Diversity, Institute of Ecology, Goethe University, Frankfurt am Main, Germany
| | | | - Brian E. Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Stoneville, MS, United States
| |
Collapse
|
40
|
Abstract
Although cannabis is legalized and accepted as an agricultural commodity in many places around the world, a significant lack of public germplasm repositories remains an unresolved problem in the cannabis industry. The acquisition, preservation, and evaluation of germplasm, including landraces and ancestral populations, is key to unleashing the full potential of cannabis in the global marketplace. We argue here that accessible germplasm resources are crucial for long-term economic viability, preserving genetic diversity, breeding, innovation, and long-term sustainability of the crop. We believe that cannabis restrictions require a second look to allow genebanks to play a fuller and more effective role in conservation, sustainable use, and exchange of cannabis genetic resources.
Collapse
|
41
|
Xiao J, Wang J, Zhang Y, Sun D, Lu H, Han Z, Song Y, Yan D, Zhu S, Pei Y, Xu W, Wang X. Coxsackievirus B4: an underestimated pathogen associated with a hand, foot, and mouth disease outbreak. Arch Virol 2021; 166:2225-2234. [PMID: 34091782 DOI: 10.1007/s00705-021-05128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023]
Abstract
In order to discover the causes of a coxsackievirus B4 (CV-B4)-associated hand, foot, and mouth disease (HFMD) outbreak and to study the evolutionary characteristics of the virus, we sequenced isolates obtained during an outbreak for comparative analysis with previously sequenced strains. Phylogenetic and evolutionary dynamics analysis was performed to examine the genetic characteristics of CV-B4 in China and worldwide. Phylogenetic analysis showed that CV-B4 originated from a common ancestor in Shandong. CV-B4 strains isolated worldwide could be classified into genotypes A-E based on the sequence of the VP1 region. All CV-B4 strains in China belonged to genotype E. The global population diversity of CV-B4 fluctuated substantially over time, and CV-B4 isolated in China accounted for a significant increase in the diversity of CV-B4. The average nucleotide substitution rate in VP1 of Chinese CV-B4 (5.20 × 10-3 substitutions/site/year) was slightly higher than that of global CV-B4 (4.82 × 10-3 substitutions/site/year). This study is the first to investigate the evolutionary dynamics of CV-B4 and its association with an HFMD outbreak. These findings explain both the 2011 outbreak and the global increase in CV-B4 diversity. In addition to improving our understanding of a major outbreak, these findings provide a basis for the development of surveillance strategies.
Collapse
Affiliation(s)
- Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China
| | - Yaowen Pei
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
42
|
Kahlon PS, Verin M, Hückelhoven R, Stam R. Quantitative resistance differences between and within natural populations of Solanum chilense against the oomycete pathogen Phytophthora infestans. Ecol Evol 2021; 11:7768-7778. [PMID: 34188850 PMCID: PMC8216925 DOI: 10.1002/ece3.7610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate-unspecific.
Collapse
Affiliation(s)
| | - Melissa Verin
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ralph Hückelhoven
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Remco Stam
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
43
|
Fontana DC, de Paula S, Torres AG, de Souza VHM, Pascholati SF, Schmidt D, Dourado Neto D. Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses. Pathogens 2021; 10:570. [PMID: 34066672 PMCID: PMC8151296 DOI: 10.3390/pathogens10050570] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
Plant diseases cause losses of approximately 16% globally. Thus, management measures must be implemented to mitigate losses and guarantee food production. In addition to traditional management measures, induced resistance and biological control have gained ground in agriculture due to their enormous potential. Endophytic fungi internally colonize plant tissues and have the potential to act as control agents, such as biological agents or elicitors in the process of induced resistance and in attenuating abiotic stresses. In this review, we list the mode of action of this group of microorganisms which can act in controlling plant diseases and describe several examples in which endophytes were able to reduce the damage caused by pathogens and adverse conditions. This is due to their arsenal of molecules generated during the interaction by which they form a kind of biological shield in the plant. Furthermore, considering that endophytic fungi can be an important tool in managing for biotic and abiotic stresses due to the large amount of biologically active substances produced, bioprospecting this class of microorganisms is tending to increase and generate valuable products for agriculture.
Collapse
Affiliation(s)
- Daniele Cristina Fontana
- Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; (D.C.F.); (D.D.N.)
| | - Samuel de Paula
- Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; (A.G.T.); (V.H.M.d.S.); (S.F.P.)
| | - Abel Galon Torres
- Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; (A.G.T.); (V.H.M.d.S.); (S.F.P.)
| | - Victor Hugo Moura de Souza
- Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; (A.G.T.); (V.H.M.d.S.); (S.F.P.)
| | - Sérgio Florentino Pascholati
- Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; (A.G.T.); (V.H.M.d.S.); (S.F.P.)
| | - Denise Schmidt
- Department of Agronomy and Environmental Science, Frederico Westphalen Campus, Federal University of Santa Maria, Frederico Westphalen 98400000, Brazil;
| | - Durval Dourado Neto
- Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; (D.C.F.); (D.D.N.)
| |
Collapse
|
44
|
Carleson NC, Daniels HA, Reeser PW, Kanaskie A, Navarro SM, LeBoldus JM, Grünwald NJ. Novel Introductions and Epidemic Dynamics of the Sudden Oak Death Pathogen Phytophthora ramorum in Oregon Forests. PHYTOPATHOLOGY 2021; 111:731-740. [PMID: 33021878 DOI: 10.1094/phyto-05-20-0164-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sudden oak death caused by Phytophthora ramorum has been actively managed in Oregon since the early 2000s. To date, this epidemic has been driven mostly by the NA1 clonal lineage of P. ramorum, but an outbreak of the EU1 lineage has recently emerged. Here, we contrast the population dynamics of the NA1 outbreak first reported in 2001 to the outbreak of the EU1 lineage first detected in 2015. We performed tests to determine whether any of the lineages were introduced more than once. Infested regions of the forest were sampled between 2013 and 2018 (n = 903), and strains were genotyped at 15 microsatellite loci. Most genotypes observed were transient, with 272 of 358 unique genotypes emerging during one year and disappearing the next year. The diversity of EU1 was very low and isolates were spatially clustered (less than 8 km apart), suggesting a single EU1 introduction. Some forest isolates are genetically similar to isolates collected from a local nursery in 2012, suggesting the introduction of EU1 from this nursery or simultaneous introduction to both the nursery and latently into the forest. In contrast, the older NA1 populations were more polymorphic and spread more than 30 km2. A principal component analysis supported two to four independent NA1 introductions. The NA1 and EU1 epidemics infest the same area but show disparate demographics because of the initial introductions of the lineages spaced 10 years apart. Comparing these epidemics provides novel insight regarding patterns of emergence of clonal pathogens in forest ecosystems.
Collapse
Affiliation(s)
- Nicholas C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Hazel A Daniels
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Paul W Reeser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | | | | | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
- Forest Engineering, Resources and Management Department, Oregon State University, Corvallis, OR
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR
| |
Collapse
|
45
|
Serfraz S, Sharma V, Maumus F, Aubriot X, Geering ADW, Teycheney PY. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant ( Solanum melongena). FRONTIERS IN PLANT SCIENCE 2021; 12:683681. [PMID: 34367211 PMCID: PMC8346255 DOI: 10.3389/fpls.2021.683681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/30/2021] [Indexed: 05/20/2023]
Abstract
Endogenous viral elements (EVEs) are widespread in plant genomes. They result from the random integration of viral sequences into host plant genomes by horizontal DNA transfer and have the potential to alter host gene expression. We performed a large-scale search for co-transcripts including caulimovirid and plant sequences in 1,678 plant and 230 algal species and characterized 50 co-transcripts in 45 distinct plant species belonging to lycophytes, ferns, gymnosperms and angiosperms. We found that insertion of badnavirus EVEs along with Ty-1 copia mobile elements occurred into a late blight resistance gene (R1) of brinjal eggplant (Solanum melongena) and wild relatives in genus Solanum and disrupted R1 orthologs. EVEs of two previously unreported badnaviruses were identified in the genome of S. melongena, whereas EVEs from an additional novel badnavirus were identified in the genome of S. aethiopicum, the cultivated scarlet eggplant. Insertion of these viruses in the ancestral lineages of the direct wild relatives of the eggplant would have occurred during the last 3 Myr, further supporting the distinctiveness of the group of the eggplant within the giant genus Solanum.
Collapse
Affiliation(s)
- Saad Serfraz
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Vikas Sharma
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Andrew D. W. Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- *Correspondence: Pierre-Yves Teycheney,
| |
Collapse
|
46
|
Rasmussen DA, Grünwald NJ. Phylogeographic Approaches to Characterize the Emergence of Plant Pathogens. PHYTOPATHOLOGY 2021; 111:68-77. [PMID: 33021879 DOI: 10.1094/phyto-07-20-0319-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phylogeography combines geographic information with phylogenetic and population genomic approaches to infer the evolutionary history of a species or population in a geographic context. This approach has been instrumental in understanding the emergence, spread, and evolution of a range of plant pathogens. In particular, phylogeography can address questions about where a pathogen originated, whether it is native or introduced, and when and how often introductions occurred. We review the theory, methods, and approaches underpinning phylogeographic inference and highlight applications providing novel insights into the emergence and spread of select pathogens. We hope that this review will be useful in assessing the power, pitfalls, and opportunities presented by various phylogeographic approaches.
Collapse
Affiliation(s)
- David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | - Niklaus J Grünwald
- Horticultural Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR
| |
Collapse
|
47
|
Tabima JF, Gonen L, Gómez-Gallego M, Panda P, Grünwald NJ, Hansen EM, McDougal R, LeBoldus JM, Williams NM. Molecular Phylogenomics and Population Structure of Phytophthora pluvialis. PHYTOPATHOLOGY 2021; 111:108-115. [PMID: 33048632 DOI: 10.1094/phyto-06-20-0232-fi] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora pluvialis is an oomycete that was first isolated from soil, water, and tree foliage in mixed Douglas-fir-tanoak forests of the U.S. Pacific Northwest (PNW). It was then identified as the causal agent of red needle cast of radiata pine (Pinus radiata) in New Zealand (NZ). Genotyping-by-sequencing was used to obtain 1,543 single nucleotide polymorphisms across 145 P. pluvialis isolates to characterize the population structure in the PNW and NZ. We tested the hypothesis that P. pluvialis was introduced to NZ from the PNW using genetic distance measurements and population structure analyses among locations between countries. The low genetic distance, population heterozygosity, and lack of geographic structure in NZ suggest a single colonization event from the United States followed by clonal expansion in NZ. The PNW Coast Range was proposed as a presumptive center of origin of the currently known distribution of P. pluvialis based on its geographic range and position as the central cluster in a minimum spanning network. The Coastal cluster of isolates were located at the root of every U.S. cluster and emerged earlier than all NZ clusters. The Coastal cluster had the highest degree of heterozygosity (Hs = 0.254) and median pairwise genetic distance (0.093) relative to any other cluster. Finally, the rapid host diversification between closely related isolates of P. pluvialis in NZ indicate that this pathogen has the potential to infect a broader range of hosts than is currently recognized.
Collapse
Affiliation(s)
- Javier F Tabima
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, U.S.A
- Department of Biology, Clark University, The Lasry Center for Bioscience, Worcester, MA 01610, U.S.A
| | - Lilah Gonen
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, U.S.A
| | - Mireia Gómez-Gallego
- New Zealand Forest Research Institute (Scion), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua 3046, New Zealand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
- UMR IAM-Interactions Arbres-Microorganismes, Université de Lorraine, INRAE, Nancy 54000, France
| | - Preeti Panda
- New Zealand Forest Research Institute (Scion), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua 3046, New Zealand
- Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North 4130, New Zealand
| | - Niklaus J Grünwald
- USDA Agricultural Research Service, Horticultural Research Unit, 3420 NW Orchard Ave., Corvallis, OR 97331, U.S.A
| | - Everett M Hansen
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, U.S.A
| | - Rebecca McDougal
- New Zealand Forest Research Institute (Scion), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua 3046, New Zealand
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331, U.S.A
- Department of Forest Engineering, Resources and Management, Oregon State University, Peavy Forest Science Center, Corvallis, OR 97331, U.S.A
| | - Nari M Williams
- New Zealand Forest Research Institute (Scion), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua 3046, New Zealand
- Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North 4130, New Zealand
| |
Collapse
|
48
|
Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Curr Biol 2020; 30:R1215-R1231. [PMID: 33022266 PMCID: PMC7534838 DOI: 10.1016/j.cub.2020.08.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L9, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
49
|
Hieno A, Li M, Afandi A, Otsubo K, Suga H, Kageyama K. Detection of the Genus Phytophthora and the Species Phytophthora nicotianae by LAMP with a QProbe. PLANT DISEASE 2020; 104:2469-2480. [PMID: 32628090 DOI: 10.1094/pdis-12-19-2523-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora is an oomycete genus with worldwide distribution, and many of its species cause destructive diseases. In Japan, Phytophthora species are listed as quarantine organisms with the exception of Phytophthora nicotianae. For effective quarantine control, we designed a Phytophthora genus-specific loop-mediated isothermal amplification (LAMP) primer set and a P. nicotianae species-specific quenching probe (QProbe) to establish a simultaneous LAMP-based detection method. We confirmed the specificity of the genus-specific primers, and all 161 taxa were detected. No other species in the closely related genera Pythium and Phytopythium gave positive results with the exception of two species, Phytopythium delawarense and Phytopythium fagopyri. These two species gave inconsistent results. We used annealing curve analysis with the QProbe to demonstrate that P. nicotianae could be distinguished from other species. DNA from inoculated and naturally infected plants was extracted using a time-saving extraction kit and subjected to the simultaneous detection method. We confirmed that all Phytophthora DNAs in the plant samples were detected, and P. nicotianae was specifically identified. This simultaneous detection method will make quarantine inspections faster and easier.
Collapse
Affiliation(s)
- Ayaka Hieno
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| | - Mingzhu Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Auliana Afandi
- Biotechnology Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kayoko Otsubo
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1193, Japan
| |
Collapse
|
50
|
Kruse S, Kolmogorov AI, Pestryakova LA, Herzschuh U. Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia. Ecol Evol 2020; 10:10017-10030. [PMID: 33005360 PMCID: PMC7520212 DOI: 10.1002/ece3.6660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an ~1.8 km2 area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures.
Collapse
Affiliation(s)
- Stefan Kruse
- Polar Terrestrial Environmental SystemsAlfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
| | - Aleksey I. Kolmogorov
- Institute of Natural SciencesNorth‐Eastern Federal University of YakutskYakutskRussia
| | | | - Ulrike Herzschuh
- Polar Terrestrial Environmental SystemsAlfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
- Institute of Environmental Sciences and GeographyUniversity of PotsdamPotsdamGermany
- Institute of Biology and BiochemistryUniversity of PotsdamPotsdamGermany
| |
Collapse
|