1
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Viswanathan P, Bersonda JR, Gill J, Navarro A, Farrar AC, Dunham D, Boehme KW, Manzano M. The Mitochondrial Ubiquitin Ligase MARCHF5 Cooperates with MCL1 to Inhibit Apoptosis in KSHV-Transformed Primary Effusion Lymphoma Cell Lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614413. [PMID: 39386614 PMCID: PMC11463487 DOI: 10.1101/2024.09.23.614413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several malignancies in people with HIV including Kaposi's sarcoma and primary effusion lymphoma (PEL). We have previously shown that PEL cell lines require myeloid cell leukemia-1 (MCL1) to inhibit apoptosis. MCL1 is an oncogene that is amplified in cancers and causes resistance to chemotherapy regimens. MCL1 is thus an attractive target for drug development. The emerging clinical relevance and therapeutic potential of MCL1 motivated us to study the roles of this oncogene in PEL in depth. Using a systems biology approach, we uncovered an unexpected genetic interaction between MCL1 and MARCHF5 indicating that they function in the same pathway. MARCHF5 is an E3 ubiquitin ligase most known for regulating mitochondrial homeostasis and antiviral signaling, but not apoptosis. We thus investigated how MCL1 and MARCHF5 cooperate to promote PEL cell survival. CRISPR knockout (KO) of MARCHF5 in PEL cell lines resulted in a significant increase in apoptosis despite the presence of MCL1. The anti-apoptotic function of MARCHF5 was dependent on its E3 ligase and dimerization activities. Loss of MARCHF5 or inhibition of the 26S proteasome furthermore stabilized the MCL1 antagonist NOXA without affecting levels of MCL1. Interestingly, NOXA KO provides a fitness advantage to PEL cells suggesting that NOXA is the pro-apoptotic signal that necessitates the anti-apoptotic activities of MCL1 and MARCHF5. Finally, endogenous reciprocal co-immunoprecipitation experiments show that MARCHF5 and NOXA are found in the same protein complex. Our findings thus provide the mechanistic link that underlies the genetic interaction between MCL1 and MARCHF5. We propose that MARCHF5 induces the degradation of the MCL1 antagonist NOXA thus reinforcing the pro-survival role of MCL1 in these tumor cells. This newly appreciated interaction of the MCL1 and MARCHF5 oncogenes may be useful to improve the design of combination therapies for KSHV malignancies.
Collapse
Affiliation(s)
- Prasanth Viswanathan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
| | - Justine R. Bersonda
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
| | - Jackson Gill
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
| | - Alyssandra Navarro
- Program in Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Allison C. Farrar
- Program in Health Sciences and Interdisciplinary Studies, Hendrix College, Conway, Arkansas, USA
| | - Daniel Dunham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
| | - Karl W. Boehme
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark Manzano
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Kim KM, Hwang NH, Hyun JS, Shin D. Recent Advances in IRAK1: Pharmacological and Therapeutic Aspects. Molecules 2024; 29:2226. [PMID: 38792088 PMCID: PMC11123835 DOI: 10.3390/molecules29102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin receptor-associated kinase (IRAK) proteins are pivotal in interleukin-1 and Toll-like receptor-mediated signaling pathways. They play essential roles in innate immunity and inflammation. This review analyzes and discusses the physiological functions of IRAK1 and its associated diseases. IRAK1 is involved in a wide range of diseases such as dry eye, which highlights its potential as a therapeutic target under various conditions. Various IRAK1 inhibitors, including Pacritinib and Rosoxacin, show therapeutic potential against malignancies and inflammatory diseases. The covalent IRAK1 inhibitor JH-X-119-01 shows promise in B-cell lymphomas, emphasizing the significance of covalent bonds in its activity. Additionally, the emergence of selective IRAK1 degraders, such as JNJ-101, provides a novel strategy by targeting the scaffolding function of IRAK1. Thus, the evolving landscape of IRAK1-targeted approaches provides promising avenues for increasingly safe and effective therapeutic interventions for various diseases.
Collapse
Affiliation(s)
| | | | - Ja-Shil Hyun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| |
Collapse
|
4
|
Rogges E, Pelliccia S, Savio C, Lopez G, Della Starza I, La Verde G, Di Napoli A. Molecular Features of HHV8 Monoclonal Microlymphoma Associated with Kaposi Sarcoma and Multicentric Castleman Disease in an HIV-Negative Patient. Int J Mol Sci 2024; 25:3775. [PMID: 38612584 PMCID: PMC11011749 DOI: 10.3390/ijms25073775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Human herpesvirus 8 (HHV8)-associated diseases include Kaposi sarcoma (KS), multicentric Castleman disease (MCD), germinotropic lymphoproliferative disorder (GLPD), Kaposi sarcoma inflammatory cytokine syndrome (KICS), HHV8-positive diffuse large B-cell lymphoma (HHV8+ DLBCL), primary effusion lymphoma (PEL), and extra-cavitary PEL (ECPEL). We report the case of a human immunodeficiency virus (HIV)-negative male treated for cutaneous KS, who developed generalized lymphadenopathy, hepatosplenomegaly, pleural and abdominal effusions, renal insufficiency, and pancytopenia. The excised lymph node showed features of concomitant involvement by micro-KS and MCD, with aggregates of HHV8+, Epstein Barr virus (EBV)-negative, IgM+, and lambda+ plasmablasts reminiscent of microlymphoma. Molecular investigations revealed a somatically hypermutated (SHM) monoclonal rearrangement of the immunoglobulin heavy chain (IGH), accounting for 4% of the B-cell population of the lymph node. Mutational analyses identified a pathogenic variant of KMT2D and variants of unknown significance in KMT2D, FOXO1, ARID1A, and KMT2A. The patient died shortly after surgery. The histological features (HHV8+, EBV-, IgM+, Lambda+, MCD+), integrated with the molecular findings (monoclonal IGH, SHM+, KMT2D mutated), supported the diagnosis of a monoclonal HHV8+ microlymphoma, with features intermediate between an incipient HHV8+ DLBCL and an EBV-negative ECPEL highlighting the challenges in the accurate classification of HHV8-driven lymphoid proliferations.
Collapse
Affiliation(s)
- Evelina Rogges
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, PhD School in Translational Medicine and Oncology, Sapienza University of Rome, 00189 Rome, Italy;
| | - Sabrina Pelliccia
- Hematology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (S.P.); (G.L.V.)
| | - Camilla Savio
- Medical Genetics Unit, Department of Diagnostic Sciences, Sant’Andrea University Hospital, 00189 Rome, Italy;
| | - Gianluca Lopez
- Pathology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giacinto La Verde
- Hematology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (S.P.); (G.L.V.)
| | - Arianna Di Napoli
- Pathology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
5
|
Wu Y, Wang V, Yarchoan R. Pacritinib inhibits proliferation of primary effusion lymphoma cells and production of viral interleukin-6 induced cytokines. Sci Rep 2024; 14:4125. [PMID: 38374336 PMCID: PMC10876599 DOI: 10.1038/s41598-024-54453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Primary effusion lymphoma (PEL) and a form of multicentric Castleman's disease (MCD) are both caused by Kaposi sarcoma herpesvirus (KSHV). There is a critical need for improved therapies for these disorders. The IL-6/JAK/STAT3 pathway plays an important role in the pathogenesis of both PEL and KSHV-MCD. We explored the potential of JAK inhibitors for use in PEL and KSHV-MCD, and found that pacritinib was superior to others in inhibiting the growth of PEL cell lines. Pacritinib induced apoptosis in PEL cells and inhibited STAT3 and NF-κB activity as evidenced by reduced amount of phosphorylated moieties. Pacritinib also inhibits FLT3, IRAK1, and ROS1; studies utilizing other inhibitors of these targets revealed that only FLT3 inhibitors exhibited similar cell growth inhibitory effects. FLT3's likely contribution to pacritinib's cell growth inhibition was further demonstrated by siRNA knockdown of FLT3. RNA sequencing and RT-PCR showed that many key host genes including cyclins and IL-6 were downregulated by pacritinib, while KSHV genes were variably altered. Finally, pacritinib suppressed KSHV viral IL-6-induced human IL-6 and IL-10 production in peripheral blood mononuclear cells, which may model an important step in KSHV-MCD pathogenesis. These results suggest that pacritinib warrants testing for the treatment of KSHV-MCD and PEL.
Collapse
Affiliation(s)
- Yiquan Wu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Building 10, Rm. 6N106, MSC 1868, Bethesda, MD, 20892-1868, USA
| | - Victoria Wang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Building 10, Rm. 6N106, MSC 1868, Bethesda, MD, 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Building 10, Rm. 6N106, MSC 1868, Bethesda, MD, 20892-1868, USA.
| |
Collapse
|
6
|
Damania B, Dittmer DP. Today's Kaposi sarcoma is not the same as it was 40 years ago, or is it? J Med Virol 2023; 95:e28773. [PMID: 37212317 PMCID: PMC10266714 DOI: 10.1002/jmv.28773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
This review will provide an overview of the notion that Kaposi sarcoma (KS) is a disease that manifests under diverse and divergent circumstances. We begin with a historical introduction of KS and KS-associated herpesvirus (KSHV), highlight the diversity of clinical presentations of KS, summarize what we know about the cell of origin for this tumor, explore KSHV viral load as a potential biomarker for acute KSHV infections and KS-associated complications, and discuss immune modulators that impact KSHV infection, KSHV persistence, and KS disease.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 450 West Drive CB#7295, Rm 12-048, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Pereira M, Gazzinelli RT. Regulation of innate immune signaling by IRAK proteins. Front Immunol 2023; 14:1133354. [PMID: 36865541 PMCID: PMC9972678 DOI: 10.3389/fimmu.2023.1133354] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of paramount importance in coordinating the early immune response to pathogens. Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid differentiation primary-response protein 88 (MyD88). This signaling adaptor forms the scaffold of the myddosome, a molecular platform that employs IL-1R-associated kinase (IRAK) proteins as main players for transducing signals. These kinases are essential in controlling gene transcription by regulating myddosome assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in other biologically relevant responses such as inflammasome formation and immunometabolism. Here, we summarize some of the key aspects of IRAK biology in innate immunity.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| |
Collapse
|
8
|
Li X, Wang F, Zhang X, Sun Q, Kuang E. Suppression of KSHV lytic replication and primary effusion lymphoma by selective RNF5 inhibition. PLoS Pathog 2023; 19:e1011103. [PMID: 36656913 PMCID: PMC9888681 DOI: 10.1371/journal.ppat.1011103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Primary effusion lymphoma (PEL), a rare aggressive B-cell lymphoma in immunosuppressed patients, is etiologically associated with oncogenic γ-herpesvirus infection. Chemotherapy is commonly used to treat PEL but usually results in poor prognosis and survival; thus, novel therapies and drug development are urgently needed for PEL treatment. Here, we demonstrated that inhibition of Ring finger protein 5 (RNF5), an ER-localized E3 ligase, suppresses multiple cellular pathways and lytic replication of Kaposi sarcoma-associated herpesvirus (KSHV) in PEL cells. RNF5 interacts with and induces Ephrin receptors A3 (EphA3) and EphA4 ubiquitination and degradation. RNF5 inhibition increases the levels of EphA3 and EphA4, thereby reducing ERK and Akt activation and KSHV lytic replication. RNF5 inhibition decreased PEL xenograft tumor growth and downregulated viral gene expression, cell cycle gene expression, and hedgehog signaling in xenograft tumors. Our study suggests that RNF5 plays the critical roles in KSHV lytic infection and tumorigenesis of primary effusion lymphoma.
Collapse
Affiliation(s)
- Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
- * E-mail:
| |
Collapse
|
9
|
Chen J, Song J, James J, Plaisance-Bonstaff K, Post SR, Qin Z, Dai L. Activation of IL1 signaling molecules by Kaposi's sarcoma-associated herpesvirus. Front Cell Infect Microbiol 2022; 12:1049624. [PMID: 36457850 PMCID: PMC9705745 DOI: 10.3389/fcimb.2022.1049624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Kaposi's Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi's sarcoma (KS) and Primary effusion lymphoma (PEL), which are usually seen in immunocompromised patients while lack of effective therapeutic options. Interleukin1 (IL1) family is a major mediator for inflammation response and has functional role in both innate and adaptive immunity. In contrast to the well-studied IL1 molecules, the activation and functional role of IL1 receptor/co-receptor and other related ligands, such as the IL1 receptor accessory protein (IL1RAP), in KSHV pathogenesis and tumorigenesis remain almost unknown. Methods In the current study, a series of KSHV negative and positive primary or tumor cells, as well as AIDS-KS tumor samples from cohort HIV+ patients were used to compare and determine the activation status of IL1 signaling molecules, and their functional roles in KSHV pathogenesis. Results We reported the high activation of multiple IL1 signaling molecules, including IL1, IL36, IL1R1, IL1RAP and IRAKs, during KSHV latent and lytic stages, as well as in clinical samples from patients with KSHV-related malignancies. Directly targeting these molecules especially IL1R1 and IL1RAP significantly impaired the survival and growth of KSHV+ tumor cells, as well as their colony formation on 3-D culture. Conclusion Our data indicate the importance of IL1 signaling molecules in KSHV pathogenesis and tumorigenesis, which may represent attractive therapeutic targets against these virus-associated diseases.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jiao Song
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jennifer James
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Steven R. Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States,*Correspondence: Lu Dai, ; Zhiqiang Qin,
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States,*Correspondence: Lu Dai, ; Zhiqiang Qin,
| |
Collapse
|
10
|
Calvani J, Gérard L, Fadlallah J, Poullot E, Galicier L, Robe C, Garzaro M, Bertinchamp R, Boutboul D, Cuccuini W, Cayuela JM, Gaulard P, Oksenhendler É, Meignin V. A Comprehensive Clinicopathologic and Molecular Study of 19 Primary Effusion Lymphomas in HIV-infected Patients. Am J Surg Pathol 2022; 46:353-362. [PMID: 34560683 DOI: 10.1097/pas.0000000000001813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary effusion lymphoma (PEL) is associated with human herpesvirus 8 and frequently with Epstein-Barr virus (EBV). We report here a single-center series of 19 human immunodeficiency virus-associated PELs, including 14 EBV+ and 5 EBV- PELs. The objectives were to describe the clinicopathologic features of PELs, with a focus on programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) expression, to search for genetic alterations by targeted deep sequencing analysis, and to compare the features between EBV+ and EBV- cases. All the patients were male, and the median age at diagnosis was 47 years old (interquartile range: 40 to 56 y). Reflecting the terminal B-cell differentiation, immunophenotypic profiles showed low expression levels of B-cell markers, including CD19 (0/19), CD20 (1/19), CD79a (0/19), PAX5 (1/19), BOB1 (3/19), and OCT2 (4/19), contrasting with a common expression of CD38 (10/19), CD138 (7/19), and IRF4/MUM1 (18/19). We observed a frequent aberrant expression of T-cell markers, especially CD3 (10/19), and less frequently CD2 (2/19), CD4 (3/19), CD5 (1/19), and CD8 (0/19). Only 2 cases were PD-L1 positive on tumor cells and none PD-1 positive. With respect to immune cells, 3 samples tested positive for PD-L1 and 5 for PD-1. Our 36-gene lymphopanel revealed 7 distinct variants in 5/10 PELs, with either a single or 2 mutations per sample: B2M (n=2), CD58 (n=1), EP300 (n=1), TNFAIP3 (n=1), ARID1A (n=1), and TP53 (n=1). Finally, we did not observe any major clinical, pathologic, or immunohistochemical differences between EBV+ and EBV- PELs and the outcome was similar (2-y overall survival probability of 61.9% [95% confidence interval, 31.2-82.1] vs. 60.0% [95% confidence interval, 12.6-88.2], respectively, P=0.62).
Collapse
Affiliation(s)
| | | | | | - Elsa Poullot
- Department of Pathology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- INSERM U955, University Paris-Est Créteil, Créteil, France
| | | | - Cyrielle Robe
- Department of Pathology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- INSERM U955, University Paris-Est Créteil, Créteil, France
| | | | | | | | | | - Jean-Michel Cayuela
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- University of Paris, Paris
| | - Philippe Gaulard
- Department of Pathology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP)
- INSERM U955, University Paris-Est Créteil, Créteil, France
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021; 18:218. [PMID: 34749760 PMCID: PMC8576898 DOI: 10.1186/s12985-021-01678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Barrett L, Chen J, Dai L, Plaisance-Bonstaff K, Del Valle L, Qin Z. Role of Interleukin-1 Family Members and Signaling Pathways in KSHV Pathogenesis. Front Cell Infect Microbiol 2020; 10:587929. [PMID: 33194830 PMCID: PMC7662392 DOI: 10.3389/fcimb.2020.587929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) represents the etiological agent for several human malignancies, including Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), which are mostly seen in immunocompromised patients. In fact, KSHV has developed many strategies to hijack host immune response, including the regulation of inflammatory cytokine production. Interleukin-1 (IL-1) family represents a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Furthermore, a broadening list of diseases has revealed the pathologic role of IL-1 mediated inflammation. In the current mini-review, we have summarized recent findings about how this oncogenic virus is able to manipulate the activities of IL-1 signaling pathway to facilitate disease progression. We also discuss the therapeutic potential of IL-1 blockade against KSHV-related diseases and several unsolved questions in this interesting field.
Collapse
Affiliation(s)
- Lindsey Barrett
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
14
|
Sallah N, Miley W, Labo N, Carstensen T, Fatumo S, Gurdasani D, Pollard MO, Dilthey AT, Mentzer AJ, Marshall V, Cornejo Castro EM, Pomilla C, Young EH, Asiki G, Hibberd ML, Sandhu M, Kellam P, Newton R, Whitby D, Barroso I. Distinct genetic architectures and environmental factors associate with host response to the γ2-herpesvirus infections. Nat Commun 2020; 11:3849. [PMID: 32737300 PMCID: PMC7395761 DOI: 10.1038/s41467-020-17696-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr Virus (EBV) establish life-long infections and are associated with malignancies. Striking geographic variation in incidence and the fact that virus alone is insufficient to cause disease, suggests other co-factors are involved. Here we present epidemiological analysis and genome-wide association study (GWAS) in 4365 individuals from an African population cohort, to assess the influence of host genetic and non-genetic factors on virus antibody responses. EBV/KSHV co-infection (OR = 5.71(1.58-7.12)), HIV positivity (OR = 2.22(1.32-3.73)) and living in a more rural area (OR = 1.38(1.01-1.89)) are strongly associated with immunogenicity. GWAS reveals associations with KSHV antibody response in the HLA-B/C region (p = 6.64 × 10-09). For EBV, associations are identified for VCA (rs71542439, p = 1.15 × 10-12). Human leucocyte antigen (HLA) and trans-ancestry fine-mapping substantiate that distinct variants in HLA-DQA1 (p = 5.24 × 10-44) are driving associations for EBNA-1 in Africa. This study highlights complex interactions between KSHV and EBV, in addition to distinct genetic architectures resulting in important differences in pathogenesis and transmission.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Coinfection
- Disease Resistance/genetics
- Epstein-Barr Virus Infections/epidemiology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/immunology
- Female
- Gene Expression
- Genome-Wide Association Study
- HIV/genetics
- HIV/immunology
- HIV/pathogenicity
- HLA-DQ alpha-Chains/genetics
- HLA-DQ alpha-Chains/immunology
- Henipavirus Infections/epidemiology
- Henipavirus Infections/genetics
- Henipavirus Infections/immunology
- Henipavirus Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/pathogenicity
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Incidence
- Male
- Middle Aged
- Rural Population
- Sarcoma, Kaposi/epidemiology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Uganda/epidemiology
- Urban Population
Collapse
Affiliation(s)
- Neneh Sallah
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- London School of Hygiene & Tropical Medicine, London, UK.
- London School of Hygiene & Tropical Medicine, London, UK.
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Tommy Carstensen
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Segun Fatumo
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- London School of Hygiene & Tropical Medicine, London, UK
- MRC/UVRI at the London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Deepti Gurdasani
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Queen Mary University London, London, UK
| | - Martin O Pollard
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alexander T Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Elena M Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Cristina Pomilla
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elizabeth H Young
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
| | | | | | - Paul Kellam
- Department of Infectious Diseases, Imperial College London, London, UK
- Kymab Ltd, Babraham Research Complex, Cambridge, UK
| | - Robert Newton
- MRC/UVRI at the London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Inês Barroso
- The Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- Exeter Centre of ExcEllence in Diabetes (ExCEED), University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
15
|
Seltzer J, Moorad R, Schifano JM, Landis JT, Dittmer DP. Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma. J Virol 2020; 94:e02123-19. [PMID: 32161170 PMCID: PMC7199399 DOI: 10.1128/jvi.02123-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for primary effusion lymphoma (PEL) development. Alterations in cellular signaling pathways are also a characteristic of PEL. Other B cell lymphomas have acquired an oncogenic mutation in the myeloid differentiation primary response 88 (MYD88) gene. The MYD88 L265P mutant results in the activation of interleukin-1 receptor associated kinase (IRAK). To probe IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable deletion clones in BCBL-1Cas9 and BC-1Cas9 cells. To look for off-target effects, we determined the complete exome of the BCBL-1Cas9 and BC-1Cas9 cells. Deletion of either MYD88, IRAK4, or IRAK1 abolished interleukin-1 beta (IL-1β) signaling; however, we were able to grow stable subclones from each population. Transcriptome sequencing (RNA-seq) analysis of IRAK4 knockout cell lines (IRAK4 KOs) showed that the IRAK pathway induced cellular signals constitutively, independent of IL-1β stimulation, which was abrogated by deletion of IRAK4. Transient complementation with IRAK1 increased NF-κB activity in MYD88 KO, IRAK1 KO, and IRAK4 KO cells even in the absence of IL-1β. IL-10, a hallmark of PEL, was dependent on the IRAK pathway, as IRAK4 KOs showed reduced IL-10 levels. We surmise that, unlike B cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in PEL, but that under cell culture conditions, PEL rapidly became independent of this pathway.IMPORTANCE One hundred percent of primary effusion lymphoma (PEL) cases are associated with Kaposi sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse for understanding this human oncovirus and the host pathways that KSHV dysregulates. Understanding their function is important for developing new therapies as well as identifying high-risk patient groups. The myeloid differentiation primary response 88 (MYD88)/interleukin-1 receptor associated kinase (IRAK) pathway, which has progrowth functions in other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 knockout (KO) studies targeting the IRAK pathway in PEL, we were able to determine that established PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the deletion clones are deficient in interleukin-10 (IL-10) production. Since IL-10 suppresses T cell function, this suggests that the IRAK pathway may serve a function in vivo and during early-stage development of PEL.
Collapse
Affiliation(s)
- Jedediah Seltzer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Razia Moorad
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason M Schifano
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin T Landis
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Center for AIDS Research, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
DeFelice MM, Clark HR, Hughey JJ, Maayan I, Kudo T, Gutschow MV, Covert MW, Regot S. NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop. Sci Signal 2019; 12:12/579/eaau3568. [PMID: 31040261 DOI: 10.1126/scisignal.aau3568] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, multiple studies have shown that signaling proteins activated in different temporal patterns, such as oscillatory, transient, and sustained, can result in distinct gene expression patterns or cell fates. However, the molecular events that ensure appropriate stimulus- and dose-dependent dynamics are not often understood and are difficult to investigate. Here, we used single-cell analysis to dissect the mechanisms underlying the stimulus- and dose-encoding patterns in the innate immune signaling network. We found that Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling dynamics relied on a dose-dependent, autoinhibitory loop that rendered cells refractory to further stimulation. Using inducible gene expression and optogenetics to perturb the network at different levels, we identified IL-1R-associated kinase 1 (IRAK1) as the dose-sensing node responsible for limiting signal flow during the innate immune response. Although the kinase activity of IRAK1 was not required for signal propagation, it played a critical role in inhibiting the nucleocytoplasmic oscillations of the transcription factor NF-κB. Thus, protein activities that may be "dispensable" from a topological perspective can nevertheless be essential in shaping the dynamic response to the external environment.
Collapse
Affiliation(s)
- Mialy M DeFelice
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Helen R Clark
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jacob J Hughey
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Inbal Maayan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Miriam V Gutschow
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Ni H, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I, Wang H, Jones RJ, Berkova Z, Hitoshi Y, Ansell SM, Treon SP, Thomas SK, Lee HC, Wang Z, Davis RE, Orlowski RZ. Targeting Myddosome Signaling in Waldenström's Macroglobulinemia with the Interleukin-1 Receptor-Associated Kinase 1/4 Inhibitor R191. Clin Cancer Res 2018; 24:6408-6420. [PMID: 30126942 PMCID: PMC6295253 DOI: 10.1158/1078-0432.ccr-17-3265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Waldenström's macroglobulinemia is an incurable lymphoproliferative disorder driven by an L265P mutation in the myeloid differentiation primary response gene 88 (MYD88), which activates downstream NF-κB signaling through the Myddosome. As this pathway depends in part on activity of interleukin-1 receptor-associated kinases (IRAKs)-1 and -4, we sought to evaluate the potential of the IRAK1/4 inhibitor R191 in preclinical models. EXPERIMENTAL DESIGN Patient-derived cell lines and primary samples were used in both in vitro and in vivo experiments to model Waldenström's macroglobulinemia and its response to IRAK1/4 inhibitors. RESULTS R191 induced a dose- and time-dependent reduction in viability of BCWM.1 and MWCL-1 Waldenström's cell lines, and suppressed activation of IRAK1/4. This was associated with cell-cycle arrest at G0-G1, reduced levels of cyclin-dependent kinases 4 and 6, and induction of apoptosis in cell lines and primary patient samples. Further downstream, R191 exposure led to reduced activation of NF-κB, and of protein kinase B/Akt/mammalian target of rapamycin signaling, whereas expression of a constitutively active Akt mutant induced R191 resistance. Gene expression profiling and gene set enrichment analysis revealed a signature consistent with inhibition of c-Myc and activation of the endoplasmic reticulum stress response. In both subcutaneous and systemic murine models of Waldenström's, R191 showed antitumor activity. Finally, the activity of R191 was enhanced when it was combined with novel chemotherapeutics such as bortezomib, afuresertib, and ibrutinib. CONCLUSIONS Taken together, these data support the translation of R191 as an approach to target IRAK1/4 to the clinic for patients with Waldenström's macroglobulinemia.
Collapse
Affiliation(s)
- Haiwen Ni
- Department of Hematology, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, JangSu, China
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fazal Shirazi
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isere Kuiatse
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Steven P Treon
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
Xu Y, Liu H, Liu S, Wang Y, Xie J, Stinchcombe TE, Su L, Zhang R, Christiani DC, Li W, Wei Q. Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer 2018; 143:2400-2408. [PMID: 29978465 PMCID: PMC6205899 DOI: 10.1002/ijc.31660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
The toll-like receptor (TLR) signaling pathway plays an important role in the innate immune responses and antigen-specific acquired immunity. Aberrant activation of the TLR pathway has a significant impact on carcinogenesis or tumor progression. Therefore, we hypothesize that genetic variants in the TLR signaling pathway genes are associated with overall survival (OS) of patients with non-small cell lung cancer (NSCLC). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate associations between genetic variants of 165 TLR signaling pathway genes and NSCLC OS using the genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). The results were further validated by the Harvard Lung Cancer Susceptibility GWAS dataset. Specifically, we identified IRAK2 rs779901 C > T as a predictor of NSCLC OS, with a variant-allele (T) attributed hazards ratio (HR) of 0.78 [95% confidence interval (CI) = 0.67-0.91, P = 0.001] in the PLCO dataset, 0.84 (0.72-0.98, 0.031) in the Harvard dataset, and 0.81 (0.73-0.90, 1.08x10-4 ) in the meta-analysis of these two GWAS datasets. In addition, the T allele was significantly associated with an increased mRNA expression level of IRAK2. Our findings suggest that IRAK2 rs779901 C > T may be a promising prognostic biomarker for NSCLC OS.
Collapse
Affiliation(s)
- Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shun Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jichun Xie
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas E. Stinchcombe
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, MA02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA02115, USA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA02115, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA02115, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA02115, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Biology and management of primary effusion lymphoma. Blood 2018; 132:1879-1888. [DOI: 10.1182/blood-2018-03-791426] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract
Primary effusion lymphoma (PEL) is a rare B-cell malignancy that most often occurs in immunocompromised patients, such as HIV-infected individuals and patients receiving organ transplantation. The main characteristic of PEL is neoplastic effusions in body cavities without detectable tumor masses. The onset of the disease is associated with latent infection of human herpes virus 8/Kaposi sarcoma–associated herpes virus, and the normal counterpart of tumor cells is B cells with plasmablastic differentiation. A condition of immunodeficiency and a usual absence of CD20 expression lead to the expectation of the lack of efficacy of anti-CD20 monoclonal antibody; clinical outcomes of the disease remain extremely poor, with an overall survival at 1 year of ∼30%. Although recent progress in antiretroviral therapy has improved outcomes of HIV-infected patients, its benefit is still limited in patients with PEL. Furthermore, the usual high expression of programmed death ligand 1 in tumor cells, one of the most important immune-checkpoint molecules, results in the immune escape of tumor cells from the host immune defense, which could be the underlying mechanism of poor treatment efficacy. Molecular-targeted therapies for the activating pathways in PEL, including NF-κB, JAK/STAT, and phosphatidylinositol 3-kinase/AKT, have emerged to treat this intractable disease. A combination of immunological recovery from immune deficiency, overcoming the immune escape, and the development of more effective drugs will be vital for improving the outcomes of PEL patients in the future.
Collapse
|
20
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
21
|
Abstract
Primary effusion lymphoma (PEL) is a rare and aggressive disease, affecting a unique population of patients who are often elderly or immunocompromised. PEL is associated with human herpesvirus type-8 infection and most commonly presents as malignant effusions of the body cavities. Patients diagnosed with PEL often have a compromised immune system from secondary conditions such as HIV. Chemotherapy has traditionally been the cornerstone of treatment for patients with a good performance status and no significant comorbidities. However, an optimal regimen does not exist. Most patients with PEL experience a relapse after frontline therapy within 6-8 months and subsequently require further treatment. In recent years, our understanding of the molecular drivers and environmental factors affecting the pathogenesis of PEL has expanded. This review will discuss the pathogenesis of PEL and various management approaches available in the frontline and relapsed setting as well as targeted agents that have shown promise in this disease.
Collapse
Affiliation(s)
- Mayur Narkhede
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA,
| | - Shagun Arora
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Chaitra Ujjani
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA,
| |
Collapse
|
22
|
Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia 2018; 32:2374-2387. [PMID: 29743719 DOI: 10.1038/s41375-018-0112-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1), an essential mediator of innate immunity and inflammatory responses, is constitutively active in multiple cancers. We evaluated the role of IRAK1 in acute myeloid leukemia (AML) and assessed the inhibitory activity of multikinase inhibitor pacritinib on IRAK1 in AML. We demonstrated that IRAK1 is overexpressed in AML and provides a survival signal to AML cells. Genetic knockdown of IRAK1 in primary AML samples and xenograft model showed a significant reduction in leukemia burden. Kinase profiling indicated pacritinib has potent inhibitory activity against IRAK1. Computational modeling combined with site-directed mutagenesis demonstrated high-affinity binding of pacritinib to the IRAK1 kinase domain. Pacritinib exposure reduced IRAK1 phosphorylation in AML cells. A higher percentage of primary AML samples showed robust sensitivity to pacritinib, which inhibits FLT3, JAK2, and IRAK1, relative to FLT3 inhibitor quizartinib or JAK1/2 inhibitor ruxolitinib, demonstrating the importance of IRAK1 inhibition. Pacritinib inhibited the growth of AML cells harboring a variety of genetic abnormalities not limited to FLT3 and JAK2. Pacritinib treatment reduced AML progenitors in vitro and the leukemia burden in AML xenograft model. Overall, IRAK1 contributes to the survival of leukemic cells, and the suppression of IRAK1 may be beneficial among heterogeneous AML subtypes.
Collapse
|
23
|
Role of Pattern Recognition Receptors in KSHV Infection. Cancers (Basel) 2018; 10:cancers10030085. [PMID: 29558453 PMCID: PMC5876660 DOI: 10.3390/cancers10030085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus or Human herpesvirus-8 (KSHV/HHV-8), an oncogenic human herpesvirus and the leading cause of cancer in HIV-infected individuals, is a major public health concern with recurring reports of epidemics on a global level. The early detection of KSHV virus and subsequent activation of the antiviral immune response by the host’s immune system are crucial to prevent KSHV infection. The host’s immune system is an evolutionary conserved system that provides the most important line of defense against invading microbial pathogens, including viruses. Viruses are initially detected by the cells of the host innate immune system, which evoke concerted antiviral responses via the secretion of interferons (IFNs) and inflammatory cytokines/chemokines for elimination of the invaders. Type I IFN and cytokine gene expression are regulated by multiple intracellular signaling pathways that are activated by germline-encoded host sensors, i.e., pattern recognition receptors (PRRs) that recognize a conserved set of ligands, known as ‘pathogen-associated molecular patterns (PAMPs)’. On the contrary, persistent and dysregulated signaling of PRRs promotes numerous tumor-causing inflammatory events in various human cancers. Being an integral component of the mammalian innate immune response and due to their constitutive activation in tumor cells, targeting PRRs appears to be an effective strategy for tumor prevention and/or treatment. Cellular PRRs are known to respond to KSHV infection, and KSHV has been shown to be armed with an array of strategies to selectively inhibit cellular PRR-based immune sensing to its benefit. In particular, KSHV has acquired specific immunomodulatory genes to effectively subvert PRR responses during the early stages of primary infection, lytic reactivation and latency, for a successful establishment of a life-long persistent infection. The current review aims to comprehensively summarize the latest advances in our knowledge of role of PRRs in KSHV infections.
Collapse
|
24
|
Kaymaz Y, Oduor CI, Yu H, Otieno JA, Ong'echa JM, Moormann AM, Bailey JA. Comprehensive Transcriptome and Mutational Profiling of Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences. Mol Cancer Res 2017; 15:563-576. [PMID: 28465297 PMCID: PMC5471630 DOI: 10.1158/1541-7786.mcr-16-0305] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is the most common pediatric cancer in malaria-endemic equatorial Africa and nearly always contains Epstein-Barr virus (EBV), unlike sporadic Burkitt lymphoma (sBL) that occurs with a lower incidence in developed countries. Given these differences and the variable clinical presentation and outcomes, we sought to further understand pathogenesis by investigating transcriptomes using RNA sequencing (RNAseq) from multiple primary eBL tumors compared with sBL tumors. Within eBL tumors, minimal expression differences were found based on: anatomical presentation site, in-hospital survival rates, and EBV genome type, suggesting that eBL tumors are homogeneous without marked subtypes. The outstanding difference detected using surrogate variable analysis was the significantly decreased expression of key genes in the immunoproteasome complex (PSMB9/β1i, PSMB10/β2i, PSMB8/β5i, and PSME2/PA28β) in eBL tumors carrying type 2 EBV compared with type 1 EBV. Second, in comparison with previously published pediatric sBL specimens, the majority of the expression and pathway differences was related to the PTEN/PI3K/mTOR signaling pathway and was correlated most strongly with EBV status rather than geographic designation. Third, common mutations were observed significantly less frequently in eBL tumors harboring EBV type 1, with mutation frequencies similar between tumors with EBV type 2 and without EBV. In addition to the previously reported genes, a set of new genes mutated in BL, including TFAP4, MSH6, PRRC2C, BCL7A, FOXO1, PLCG2, PRKDC, RAD50, and RPRD2, were identified. Overall, these data establish that EBV, particularly EBV type 1, supports BL oncogenesis, alleviating the need for certain driver mutations in the human genome. IMPLICATIONS Genomic and mutational analyses of Burkitt lymphoma tumors identify key differences based on viral content and clinical outcomes suggesting new avenues for the development of prognostic molecular biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Cliff I Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Hongbo Yu
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Juliana A Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Health, Kisumu, Kenya
| | | | - Ann M Moormann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
25
|
Kaymaz Y, Oduor CI, Yu H, Otieno JA, Ong'echa JM, Moormann AM, Bailey JA. Comprehensive Transcriptome and Mutational Profiling of Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences. Mol Cancer Res 2017; 15:563-576. [PMID: 28465297 PMCID: PMC5471630 DOI: 10.1158/1541-7786.mcr-16-0305-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 07/23/2023]
Abstract
UNLABELLED Endemic Burkitt lymphoma (eBL) is the most common pediatric cancer in malaria-endemic equatorial Africa and nearly always contains Epstein-Barr virus (EBV), unlike sporadic Burkitt lymphoma (sBL) that occurs with a lower incidence in developed countries. Given these differences and the variable clinical presentation and outcomes, we sought to further understand pathogenesis by investigating transcriptomes using RNA sequencing (RNAseq) from multiple primary eBL tumors compared with sBL tumors. Within eBL tumors, minimal expression differences were found based on: anatomical presentation site, in-hospital survival rates, and EBV genome type, suggesting that eBL tumors are homogeneous without marked subtypes. The outstanding difference detected using surrogate variable analysis was the significantly decreased expression of key genes in the immunoproteasome complex (PSMB9/β1i, PSMB10/β2i, PSMB8/β5i, and PSME2/PA28β) in eBL tumors carrying type 2 EBV compared with type 1 EBV. Second, in comparison with previously published pediatric sBL specimens, the majority of the expression and pathway differences was related to the PTEN/PI3K/mTOR signaling pathway and was correlated most strongly with EBV status rather than geographic designation. Third, common mutations were observed significantly less frequently in eBL tumors harboring EBV type 1, with mutation frequencies similar between tumors with EBV type 2 and without EBV. In addition to the previously reported genes, a set of new genes mutated in BL, including TFAP4, MSH6, PRRC2C, BCL7A, FOXO1, PLCG2, PRKDC, RAD50, and RPRD2, were identified. Overall, these data establish that EBV, particularly EBV type 1, supports BL oncogenesis, alleviating the need for certain driver mutations in the human genome. IMPLICATIONS Genomic and mutational analyses of Burkitt lymphoma tumors identify key differences based on viral content and clinical outcomes suggesting new avenues for the development of prognostic molecular biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Cliff I Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Hongbo Yu
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Juliana A Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Health, Kisumu, Kenya
| | | | - Ann M Moormann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
26
|
Ye ZH, Gao L, Wen DY, He Y, Pang YY, Chen G. Diagnostic and prognostic roles of IRAK1 in hepatocellular carcinoma tissues: an analysis of immunohistochemistry and RNA-sequencing data from the cancer genome atlas. Onco Targets Ther 2017; 10:1711-1723. [PMID: 28356759 PMCID: PMC5367901 DOI: 10.2147/ott.s132120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND IRAK1 has been repoted to play an essential role in the development of multiple cancers. However, the clinical significance of IRAK1 in hepatocellular carcinoma (HCC) and the underlying molecular mechanism remain unclear. Therefore, we aimed to investigate the role of IRAK1 in the pathogenesis of HCC in this study. MATERIALS AND METHODS HCC tissues and para-carcinoma tissues were collected for immunohistochemistry (IHC) analysis to evaluate IRAK1 expression. Data of IRAK1 expression were downloaded from the cancer genome atlas (TCGA) for analyzing the clinical significance of IRAK1. Receiver operating characteristic (ROC) curve and survival analyses were carried out to assess the diagnostic and prognostic significance of IRAK1 in IHC and TCGA data. Additionally, we investigated the alteration of IRAK1 gene in HCC from cBioPortal to generate a network of the interaction between IRAK1 and the neighboring genes. The influence of IRAK1 gene alteration on the prognosis of HCC patients was evaluated by survival analysis. RESULTS Analysis of both IHC and TCGA data revealed a significant upregulation of IRAK1 in HCC tissues. The IHC analysis revealed there was an increasing trend in IRAK1 expression among normal liver tissues, liver cirrhosis tissues, para-carcinoma tissues and HCC tissues. The ROC curves for IHC and TCGA data demonstrated that IRAK1 exhibited a significant diagnostic value for HCC. Moreover, IRAK1 expression was observed to be associated with tumor size, metastasis and T-stage. The survival analysis indicated that the upregulation of IRAK1 predicted a worse overall survival of HCC. Additionally, data from cBioPortal confirmed that 29% of HCC tissues possessed an alteration of the IRAK1 gene. CONCLUSION IRAK1 may act as an oncogene in the development of HCC with its overexpression in HCC. Moreover, IRAK1 might serve as a promising diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
| | | | - Dong-yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | | | | |
Collapse
|
27
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
28
|
Lee HR, Choi UY, Hwang SW, Kim S, Jung JU. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies. Mol Cells 2016; 39:777-782. [PMID: 27871174 PMCID: PMC5125932 DOI: 10.14348/molcells.2016.0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019,
Korea
| | - Un Yung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| | - Sung-Woo Hwang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019,
Korea
| | - Stephanie Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, California 90033,
USA
| |
Collapse
|
29
|
Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest 2016; 126:3165-75. [PMID: 27584730 DOI: 10.1172/jci84418] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.
Collapse
|
30
|
Dussiau C, Trinquand A, Lhermitte L, Latiri M, Simonin M, Cieslak A, Bedjaoui N, Villarèse P, Verhoeyen E, Dombret H, Ifrah N, Macintyre E, Asnafi V. Targeting IRAK1 in T-cell acute lymphoblastic leukemia. Oncotarget 2016; 6:18956-65. [PMID: 26068967 PMCID: PMC4662467 DOI: 10.18632/oncotarget.4150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors.
Collapse
Affiliation(s)
- Charles Dussiau
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Amélie Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Mehdi Latiri
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Mathieu Simonin
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Agata Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Nawel Bedjaoui
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Patrick Villarèse
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Els Verhoeyen
- CIRI, EVIR Team, INSERM, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France.,INSERM, U1065, C3M, Equipe "Contrôle Métabolique des Morts Cellulaires", Nice, France
| | - Hervé Dombret
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, EA, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service des Maladies du Sang et INSERM U892, Angers, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
31
|
Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016; 8:92. [PMID: 27043613 PMCID: PMC4848587 DOI: 10.3390/v8040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.
Collapse
Affiliation(s)
- Roxanne Strahan
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
32
|
Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia. PLoS Pathog 2015; 11:e1005209. [PMID: 26485648 PMCID: PMC4618121 DOI: 10.1371/journal.ppat.1005209] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023] Open
Abstract
Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world.
Collapse
|
33
|
Sin SH, Kim Y, Eason A, Dittmer DP. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog 2015; 11:e1005135. [PMID: 26327622 PMCID: PMC4556645 DOI: 10.1371/journal.ppat.1005135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however, in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, suggesting that cooperative oncogenic events were missing. Myc was chosen as a possible candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV latency locus transgenic (latency) mice to Cα Myc transgenic (Myc) mice. By itself these Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lymphoma at a higher rate than single transgenic latency or Myc mice. These data indicate that the KSHV latency locus cooperates with the deregulated Myc pathways to further lymphoma progression. Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed in latent infection of B cells. We already showed that KSHV latency locus transgenic mice consistently develop B cell hyperplasia. To find out possible host contributions to lymphomagenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc mice developed plasmacytosis exemplified by increased frequency of plasma cells in the spleen, a high accelerated lymphoma development, and severe extramedullary hematopoiesis. These data show that the KSHV latency locus can cooperate with Myc activation in viral lymphomagenesis.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongbaek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anthony Eason
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Shan SJ, Liu DZ, Wang L, Zhu YY, Zhang FM, Li T, An LG, Yang GW. Identification and expression analysis of irak1 gene in common carp Cyprinus carpio L.: indications for a role of antibacterial and antiviral immunity. JOURNAL OF FISH BIOLOGY 2015; 87:241-255. [PMID: 26099328 DOI: 10.1111/jfb.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
In this study, the full-length complementary (c)DNA of interleukin-1 receptor-associated kinase 1 gene (irak1) was cloned from common carp Cyprinus carpio. The complete open reading frame of irak1 contained 2109 bp encoding a protein of 702 amino acid residues that comprised a death domain, a ProST region, a serine-threonine-specific protein kinase catalytic domain and a C-terminal domain. The amino-acid sequence of C. carpio Irak1 protein shared sequence homology with grass carp Ctenopharyngodon idellus (84.5%). The phylogenetic tree of IRAKs separated the polypeptides into four clades, comprising IRAK1s, IRAK2s, IRAK3s and IRAK4s. Cyprinus carpio Irak1 fell into the cluster with previously reported IRAK1s including teleost Irak1s. The irak1 gene was highly expressed in gills, followed by brain, skin, hindgut, buccal epithelium, spleen, foregut, head kidney and liver, and was expressed at lowest levels in gonad and muscle. The irak1 messenger (m)RNA expression was up-regulated in liver, spleen, head kidney, foregut, hindgut, gills and skin after stimulation with Vibrio anguillarum and poly(I:C), and significantly high up-regulated expression was observed in liver and spleen. These results implied that irak1 might participate in antibacterial and antiviral innate immunity. These findings gave the indications that irak1 may participate in antibacterial and antiviral immunity.
Collapse
Affiliation(s)
- S J Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - D Z Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - L Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Y Y Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - F M Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - T Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - L G An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - G W Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
35
|
Spina V, Martuscelli L, Rossi D. Molecular deregulation of signaling in lymphoid tumors. Eur J Haematol 2015; 95:257-69. [PMID: 25881749 DOI: 10.1111/ejh.12567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/01/2022]
Abstract
Genomic studies have led to a significant impact both on the pace and the nature of understanding the molecular and biological bases of a variety of lymphoid tumors. An increasingly emerging aspect from genomic studies is that malignant lymphoid cells manipulate signaling pathways that are central to the homeostasis of their normal counterpart, including B- and T-cell receptor signaling, NF-κB signaling, Toll-like receptor signaling, cytokine signaling, MAP kinase signaling, and NOTCH signaling. This review aims at covering the signaling pathways that are affected by mutations in lymphoid tumors, and how genetic alteration of these pathways may contribute to disease pathogenesis and management.
Collapse
Affiliation(s)
- Valeria Spina
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Lavinia Martuscelli
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
36
|
Fernandes J. The study of homology between tumor progression genes and members of retroviridae as a tool to predict target-directed therapy failure. Front Pharmacol 2015; 6:92. [PMID: 25983693 PMCID: PMC4416442 DOI: 10.3389/fphar.2015.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Oncogenes are the primary candidates for target-directed therapy, given that they are involved directly in the progression and resistance of tumors. However, the appearance of point mutations can hinder the treatment of patients with these new molecules, raising costs and the need to development new analogs that target the novel mutations. Based on an analysis of homologies, the present study discusses the possibility of predicting the failure of a protein as a pharmacological target, due to its similarities with retrovirus sequences, which have extremely high mutation rates. This analysis was based on the molecular evidence available in the literature, and widely-used and well-established PSI-BLAST, with two iterations and maximum of 500 aligned sequences. The possibility of predicting which newly-discovered genes involved in tumor progression would likely result in the failure of targeted therapy, using free, simple and automated bioinformatics tools, could provide substantial savings in the time and financial resources needed for long-term drug development.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Federal University of Rio de Janeiro, Duque de Caxias , Rio de Janeiro, Brazil ; Institute for Translational Research on Health and Environment in the Amazon Region - INPeTAm, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|