1
|
Yang X, Wang Y, Qiao Y, Lin J, Lau JKY, Fu WY, Fu AKY, Ip NY. Astrocytic EphA4 signaling is important for the elimination of excitatory synapses in Alzheimer's disease. Proc Natl Acad Sci U S A 2025; 122:e2420324122. [PMID: 39928878 DOI: 10.1073/pnas.2420324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 02/12/2025] Open
Abstract
Cell surface receptors, including erythropoietin-producing hepatocellular A4 (EphA4), are important in regulating hippocampal synapse loss, which is the key driver of memory decline in Alzheimer's disease (AD). However, the cell-specific roles and mechanisms of EphA4 are unclear. Here, we show that EphA4 expression is elevated in hippocampal CA1 astrocytes in AD conditions. Specific knockout of astrocytic EphA4 ameliorates excitatory synapse loss in the hippocampus in AD transgenic mouse models. Single-nucleus RNA sequencing analysis revealed that EphA4 inhibition specifically decreases a reactive astrocyte subpopulation with enriched complement signaling, which is associated with synapse elimination by astrocytes in AD. Importantly, astrocytic EphA4 knockout in an AD transgenic mouse model decreases complement tagging on excitatory synapses and excitatory synapses within astrocytes. These findings suggest an important role of EphA4 in the astrocyte-mediated elimination of excitatory synapses in AD and highlight the crucial role of astrocytes in hippocampal synapse maintenance in AD.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Ye Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Yi Qiao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Jingwen Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Jackie K Y Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
2
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
3
|
Zhang J, Zhang Y, Liu L, Zhang M, Zhang X, Deng J, Zhao F, Lin Q, Zheng X, Fu B, Zhao Y, Wang X. Chemerin-9 is neuroprotective in APP/PS1 transgenic mice by inhibiting NLRP3 inflammasome and promoting microglial clearance of Aβ. J Neuroinflammation 2025; 22:5. [PMID: 39780188 PMCID: PMC11716275 DOI: 10.1186/s12974-024-03325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder worldwide, and microglia are thought to play a central role in neuroinflammatory events occurring in AD. Chemerin, an adipokine, has been implicated in inflammatory diseases and central nervous system disorders, yet its precise function on microglial response in AD remains unknown. METHODS The APP/PS1 mice were treated with different dosages of chemerin-9 (30 and 60 µg/kg), a bioactive nonapeptide derived from chemerin, every other day for 8 weeks consecutively. The primary mouse microglia were stimulated by amyloid beta 42 (Aβ42) oligomers followed by treatment with chemerin-9 in vitro. ChemR23 inhibitor α-NETA was further used to investigate whether the effects of chemerin-9 were ChemR23-dependent. RESULTS We found that the expression of chemerin and ChemR23 was increased in AD. Intriguingly, treatment with chemerin-9 significantly ameliorated Aβ deposition and cognitive impairment of the APP/PS1 mice, with decreased microglial proinflammatory activity and increased phagocytic activity. Similarly, chemerin-9-treated primary microglia showed increased phagocytic ability and decreased NLRP3 inflammasome activation. However, the ChemR23 inhibitor α-NETA abolished the neuroprotective microglial response of chemerin-9. CONCLUSIONS Collectively, our data demonstrate that chemerin-9 ameliorates cognitive deficits in APP/PS1 transgenic mice by boosting a neuroprotective microglial phenotype.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Lan Liu
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Mengyuan Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Fei Zhao
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xue Zheng
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Bing Fu
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China.
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China.
| |
Collapse
|
4
|
Prentiss AM, Baggio C, Pagett J, Kulinich AO, Ethell IM, Muzzarelli K, Assar Z, Pellecchia M. Constrained β-Hairpins Targeting the EphA4 Ligand Binding Domain. J Med Chem 2024; 67:22245-22253. [PMID: 39656022 DOI: 10.1021/acs.jmedchem.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The activity of the receptor tyrosine kinase EphA4 has been implicated in several pathologies including oncology (gastric and pancreatic cancers) and neurodegenerative diseases (amyotrophic lateral sclerosis and Alzheimer's disease). However, advances in validating EphA4 as a possible drug target have been limited by the lack of suitable pharmacological inhibitors. Recently, we reported on the design of potent EphA4 agonistic agents targeting its ligand binding domain (LBD). Based on previous studies with a phage display cyclic peptide inhibitor, we designed a β-hairpin mimetic with high affinity for EphA4-LBD. These agents hold great promise for further validation and development of EphA4-based therapeutics. Moreover, our studies introduce a possible strategy for the design of constrained β-hairpin peptides.
Collapse
Affiliation(s)
- Anne Marie Prentiss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - James Pagett
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Anna O Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kendall Muzzarelli
- Cayman Chemical Co., 1180 E. Ellsworth Road, Ann Arbor, Michigan 48108, United States
| | - Zahra Assar
- Cayman Chemical Co., 1180 E. Ellsworth Road, Ann Arbor, Michigan 48108, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
5
|
Matsumoto M, Gomez-Soler M, Lombardi S, Lechtenberg BC, Pasquale EB. Missense mutations of the ephrin receptor EPHA1 associated with Alzheimer's disease disrupt receptor signaling functions. J Biol Chem 2024; 301:108099. [PMID: 39706267 PMCID: PMC11773478 DOI: 10.1016/j.jbc.2024.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Missense mutations in the EPHA1 receptor tyrosine kinase have been identified in Alzheimer's patients. To gain insight into their potential role in disease pathogenesis, we investigated the effects of four of these mutations. We show that the P460L mutation in the second fibronectin type III (FN2) domain drastically reduces EPHA1 cell surface localization while increasing tyrosine phosphorylation of the cell surface-localized receptor. The R791H mutation in the kinase domain abolishes EPHA1 tyrosine phosphorylation, indicating abrogation of kinase-dependent signaling. Furthermore, both mutations decrease EPHA1 phosphorylation on S906 in the kinase-SAM linker region, suggesting impairment of a noncanonical form of signaling regulated by serine/threonine kinases. The R492Q mutation, also in the FN2 domain, has milder effects than the P460L mutation while the R926C mutation in the SAM domain increases S906 phosphorylation. We also found that EPHA1 undergoes constitutive proteolytic cleavage in the FN2 domain, generating a soluble 55 kDa N-terminal fragment containing the ligand-binding domain and a transmembrane 60 kDa C-terminal fragment. The 60 kDa WT fragment is phosphorylated on both tyrosine residues and S906, suggesting signaling functions. The P460L mutant 60 kDa fragment undergoes proteasomal degradation and the R791H mutant fragment lacks tyrosine phosphorylation and has decreased S906 phosphorylation. These findings advance our understanding of EPHA1 signaling mechanisms and support the notion that alterations in EPHA1 signaling due to missense mutations contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Mike Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sara Lombardi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
6
|
Cheng A, Wang J, Li J, Wang J, Xu M, Chen H, Zhang P. S-Nitrosylation of p39 promotes its degradation and contributes to synaptic dysfunction induced by β-amyloid peptide. Commun Biol 2024; 7:1113. [PMID: 39256547 PMCID: PMC11387606 DOI: 10.1038/s42003-024-06832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-β oligomers (Aβ), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-β (Aβ) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jingyi Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufan Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emotions and Affective Disorders(LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Chen L, Liu Y, Xie J. The beneficial pharmacological effects of Uncaria rhynchophylla in neurodegenerative diseases: focus on alkaloids. Front Pharmacol 2024; 15:1436481. [PMID: 39170707 PMCID: PMC11336414 DOI: 10.3389/fphar.2024.1436481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
With the intensification of aging population, the prevention or treatment of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, has drawn more and more attention. As a long used traditional Chinese medicine, Uncaria rhynchophylla (Miq.) Jacks., named Gouteng in Chinese, has been reported to have an effective neuroprotective role in neurodegenerative diseases. In this review, the beneficial pharmacological effects and signaling pathways of herbal formulas containing U. rhynchophylla, especially major compounds identified from U. rhynchophylla, such as corynoxine B, corynoxine, rhynchophylline, and isorhynchophylline, in neurodegenerative diseases, were summarized, which not only provide an overview of U. rhynchophylla for the prevention or treatment of neurodegenerative diseases but also give some perspective to the development of new drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
9
|
Zhong M, Xu QQ, Hu Z, Yang W, Lin ZX, Xian YF. Tianma-Gouteng pair ameliorates the cognitive deficits on two transgenic mouse models of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118113. [PMID: 38548119 DOI: 10.1016/j.jep.2024.118113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aβ) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aβ production enzymes such as β- and γ-secretases and activating Aβ degrading enzyme to reduce Aβ accumulation. In addition, TGP reduced the Aβ42 level, the ratio of Aβ42/Αβ40, Aβ accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aβ aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.
Collapse
Affiliation(s)
- Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| |
Collapse
|
10
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
11
|
Cao R, Wang Y, Zhou Y, Zhu J, Zhang K, Liu W, Feng F, Qu W. Advanced researches of traditional uses, phytochemistry, pharmacology, and toxicology of medical Uncariae Ramulus Cum Uncis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117848. [PMID: 38336181 DOI: 10.1016/j.jep.2024.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medical Uncariae Ramulus Cum Uncis consists of Uncaria rhynchophylla (Miq.) Miq. ex Havil, Uncaria macrophylla Wall, Uncaria sinensis (Oliv.) Havil, Uncaria hirsuta Havil, and Uncaria sessilifructus Roxb, which belongs to the species widely used in the genus Uncaria. These species resource widely distributed in China and abroad, and the hook-bearing stem is the primary constituent enrichment site. There are many different forms and architectures of chemicals, depending on the extraction site. Traditional remedies employing URCU had been used widely in antiquity and were first compiled in renowned ancient masterpiece 'Mingyi Bielu ()' written by Hongjing Tao. In modern pharmacological studies, both the total extracts and the phytoconstituents isolated from URCU have been shown to have neuroprotective, antioxidant, anti-inflammatory, anticancer, antibacterial, and autophagy-enhancer properties. AIM OF THE STUDY This review concentrates on the traditional uses, phytochemistry, pharmacology, toxicology, and nanomaterials studies of URCU, with a perspective to assist with further research and advance. MATERIAL AND METHODS The Chinese and English literature studies of this review are based on these database searches including Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Medalink, Google scholar, Elsevier, ACS Publications, iPlant, Missouri Botanical Garden, Plant of the World Online. The pertinent data on URCU was gathered. RESULTS Based on the examination of the genus Uncaria, 107 newly marked chemical compositions have been identified from URCU from 2015 to present, including alkaloids, terpenoids, flavonoids, steroids, and others. Pharmacological studies have demonstrated that URCU has a variety of benefits in diseases such as neurodegenerative diseases, cancer, cardiovascular diseases, diabetes, and migraine, due to its neuroprotective, anti-inflammatory, antioxidant, anti-tumor, anti-bacterial and anti-viral properties. According to metabolic and toxicological studies, the dosage, frequency, and interactions of the drugs that occur in vivo are of great significance for determining whether the organic bodies can perform efficacy or produce toxicity. The research on URCU-mediated nanomaterials is expanding and increasing in order to address the inadequacies of conventional Chinese medicine. The alkaloids in URCU have the capability to self-assemble with other classes of components in addition to being biologically active. CONCLUSION URCU plants are widely distributed, abundant in chemical constituents, and widely used in both traditional and modern medicine for a variety of pharmacological effects. The utilization of herbal medicines can be raised by assessing the pharmacological distinctions among several species within the same genus and may accelerate the modernization of traditional Chinese medicine. Controlling the concentration of drug administration, monitoring metabolic markers, and inventing novel nanotechnologies are effective strategies for synergistic influence and detoxification to alleviate the main obstacles that toxicity, low bioavailability, and poor permeability. This review can assist further research and advances.
Collapse
Affiliation(s)
- Ruolian Cao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Ya Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Nanjing Medical University, Nanjing, 211198, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
13
|
Ren J, Ding SH, Li XN, Zhao QS. Unified Strategy Enables the Collective Syntheses of Structurally Diverse Indole Alkaloids. J Am Chem Soc 2024; 146:7616-7627. [PMID: 38446772 DOI: 10.1021/jacs.3c13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Natural products and their analogues are significant sources of therapeutic lead compounds. However, synthetic strategies for generating large collections of these molecules remain a significant challenge. The most difficult step in their synthesis is the design of a common intermediate that can be easily transformed into natural products belonging to different families. This study demonstrates the evolution of synthetic tactics designed to assemble the functionalized piperidines present in indole alkaloids from a common intermediate. More importantly, we also report a previously unknown Ir- and Er-catalyzed dehydrogenative spirocyclization reaction that enables direct access to spirocyclic oxindole alkaloids. As a practical application, the asymmetric total syntheses of 29 natural alkaloids belonging to different families were accomplished by following a uniform synthetic route. The proposed methodology extends the capability of the iridium-catalyzed dehydrogenative coupling reaction to the realm of indole-alkaloid synthesis and provides new opportunities for the efficient preparation of natural product-like molecules.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shi-Hua Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
14
|
Huang HY, Salinas S, Cornell J, Udoh IB, Shen Y, Zhou M. CCR5 regulates Aβ 1-42-induced learning and memory deficits in mice. Neurobiol Learn Mem 2024; 208:107890. [PMID: 38215963 DOI: 10.1016/j.nlm.2024.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
C-C chemokine receptor 5 (CCR5) is a chemokine receptor involved in immune responses and a co-receptor for HIV infection. Recently, CCR5 has also been reported to play a role in synaptic plasticity, learning and memory, and cognitive deficits associated with normal aging, traumatic brain injury (TBI), and HIV-associated neurocognitive disorder (HAND). In contrast, the role of CCR5 in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), is much less understood. Studies have reported an increase in expression of CCR5 or its ligands in both AD patients and AD rodent models, suggesting a correlation between AD and CCR5 expression. However, whether blocking CCR5 in specific brain regions, such as the hippocampus, could improve memory deficits in AD mouse models is unknown. To study the potential causal role of CCR5 in cognitive deficits in AD, we injected soluble Aβ1-42 or a control (Aβ42-1) oligomers in the dorsal CA1 region of the hippocampus and found that Aβ1-42 injection resulted in severe memory impairment in the object place recognition (OPR) and novel object recognition (NOR) tests. Aβ1-42 injection caused an increase in Ccr5, Ccl3, and Ccl4 in the dorsal hippocampus, and the expression levels of CCR5 and its ligands remained elevated at 2 weeks after Aβ1-42 injection. Knocking down Ccr5 in the CA1 region of dorsal hippocampus reversed the increase in microglia number and size in dorsal CA1 and rescued memory deficits. These results indicate that CCR5 plays an important role in modulating Aβ1-42-induced learning and memory deficits, and suggest that CCR5 antagonists may serve as a potential treatment to improve cognitive deficits associated with AD.
Collapse
Affiliation(s)
- Hou-Yuan Huang
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Shelbi Salinas
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Jessica Cornell
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Iquo-Bella Udoh
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
15
|
Zhang R, Tao X, Sun R, Dai T, Xi X, Sun W, Song L, Gong W. Cognitive-exercise dual-task promotes cognitive function recovery in chronic cerebral ischemia male rats through regulating PI3K/Akt signaling pathway via inhibition of EphrinA3/EphA4. J Neurosci Res 2024; 102. [PMID: 38284844 DOI: 10.1002/jnr.25275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Chronic cerebral ischemia (CCI) can lead to vascular cognitive impairment, but therapeutic options are limited. Cognitive-exercise dual-task (CEDT), as a potential rehabilitation intervention, can attenuate cognitive impairment. However, the related mechanisms remain unclear. In this study, 2-vessel occlusion (2-VO) in male SD rats was performed to establish the CCI model. The rats were treated with cognitive, exercise, or CEDT intervention for 21 days. The Morris water maze (MWM) test was used to assess cognitive ability. TUNEL staining was used to detect the neuronal apoptosis. Immunofluorescence, RT-qPCR and Western blot were used to detect the protein or mRNA levels of EphrinA3, EphA4, p-PI3K, and p-Akt. The results showed that CEDT could improve performance in the MWM test, reverse the increased expression of EphrinA3 and EphA4, and the reduced expression of p-PI3K and p-Akt in CCI rats, which was superior to exercise and cognitive interventions. In vitro, oxygenglucose deprivation (OGD) challenge of astrocytes and neuronal cells were used to mimic cerebral ischemia. Immunofluorescence assay revealed that the levels of MAP-2, p-PI3K, and p-Akt were reduced in EphrinA3 overexpressed cells after OGD stimulation. Finally, the knock-down of EphrinA3 by shRNA significantly promoted the recovery of cognitive function and activation of PI3K/Akt after CEDT treatment in CCI rats. In conclusion, our study suggests that CEDT promotes cognitive function recovery after CCI by regulating the signaling axis of EphrinA3/EphA4/PI3K/Akt.
Collapse
Affiliation(s)
- Rong Zhang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Tengteng Dai
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - XiaoShuang Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weishuang Sun
- Rehabilitation Medicine Academy, Weifang Medical University, Weifang, China
| | - Li Song
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Gomez-Soler M, Olson EJ, de la Torre ER, Zhao C, Lamberto I, Flood DT, Danho W, Lechtenberg BC, Riedl SJ, Dawson PE, Pasquale EB. Lipidation and PEGylation Strategies to Prolong the in Vivo Half-Life of a Nanomolar EphA4 Receptor Antagonist. Eur J Med Chem 2023; 262:115876. [PMID: 38523699 PMCID: PMC10959496 DOI: 10.1016/j.ejmech.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 03/26/2024]
Abstract
The EphA4 receptor tyrosine kinase plays a role in neurodegenerative diseases, inhibition of nerve regeneration, cancer progression and other diseases. Therefore, EphA4 inhibition has potential therapeutic value. Selective EphA4 kinase inhibitors are not available, but we identified peptide antagonists that inhibit ephrin ligand binding to EphA4 with high specificity. One of these peptides is the cyclic APY-d3 (βAPYCVYRβASWSC-NH2), which inhibits ephrin-A5 ligand binding to EphA4 with low nanomolar binding affinity and is highly protease resistant. Here we describe modifications of APY-d3 that yield two different key derivatives with greatly increased half-lives in the mouse circulation, the lipidated APY-d3-laur8 and the PEGylated APY-d3-PEG4. These two derivatives inhibit ligand induced EphA4 activation in cells with sub-micromolar potency. Since they retain high potency and specificity for EphA4, lipidated and PEGylated APY-d3 derivatives represent new tools for discriminating EphA4 activities in vivo and for preclinical testing of EphA4 inhibition in animal disease models.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Erika J. Olson
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Elena Rubio de la Torre
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Chunxia Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Waleed Danho
- Del Mar, California 92014, United States
- Deceased
| | - Bernhard C. Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan J. Riedl
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer's disease: Focus on microRNAs. Ageing Res Rev 2023; 92:102123. [PMID: 37967653 DOI: 10.1016/j.arr.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease characterized by the loss of cognitive function, confusion, and memory deficit. Accumulation of abnormal proteins, amyloid beta (Aß), and phosphorylated Tau (p-tau) forms plaques and tangles that deteriorate synapse function, resulting in neurodegeneration and cognitive decline in AD. The human brain is composed of different types of neurons and/or synapses that are functionally defective in AD. The GABAergic synapse, the most abundant inhibitory neuron in the human brain was found to be dysfunctional in AD and contributes to disrupting neurological function. This study explored the types of GABA receptors associated with neurological dysfunction and various biological and environmental factors that cause GABAergic neuron dysfunction in AD, such as Aβ, p-tau, aging, sex, astrocytes, microglia, APOE, mental disorder, diet, physical activity, and sleep. Furthermore, we explored the role of microRNAs (miRNAs) in the regulation of GABAergic synapse function in neurological disorders and AD states. We also discuss the molecular mechanisms underlying GABAergic synapse dysfunction with a focus on miR-27b, miR-30a, miR-190a/b, miR-33, miR-51, miR-129-5p, miR-376-3p, miR-376c, miR-30b and miR-502-3p. The purpose of our article is to highlight the recent research on miRNAs affecting the regulation of GABAergic synapse function and factors that contribute to the progression of AD.
Collapse
Affiliation(s)
- Jazmin Rivera
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
18
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of multiple Eph receptors on neuronal membranes correlates with the onset of optic neuropathy. EYE AND VISION (LONDON, ENGLAND) 2023; 10:42. [PMID: 37779186 PMCID: PMC10544557 DOI: 10.1186/s40662-023-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA
| | - Juan Esquivel
- Department of Physics, University of Florida College of Liberal Arts and Sciences, Gainesville, FL, USA
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Paul J Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA.
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
19
|
Verma M, Chopra M, Kumar H. Unraveling the Potential of EphA4: A Breakthrough Target and Beacon of Hope for Neurological Diseases. Cell Mol Neurobiol 2023; 43:3375-3391. [PMID: 37477786 DOI: 10.1007/s10571-023-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Erythropoietin-producing hepatocellular carcinoma A4 (EphA4) is a transmembrane receptor protein which is a part of the most prominent family of receptor tyrosine kinases (RTKs). It serves a crucial role in both physiological, biological, and functional states binding with their ligand like Ephrins. Its abundance in the majority of the body's systems has been reported. Moreover, it draws much attention in the CNS since it influences axonal and vascular guidance. Also, it has a widespread role at the pathological state of various CNS disorders. Reports suggest it obstructs axonal regeneration in various neurodegenerative diseases and neurological disorders. Although, neuro-regeneration is still an open challenge to the modern drug discovery community. Hence, in this review, we will provide information about the role of EphA4 in neurological diseases by which it may emerge as a therapeutic target for CNS disease. We will also provide a glance at numerous signaling pathways that activate or inhibit the EphA4-associated biological processes contributing to the course of neurodegenerative diseases. Thus, this work might serve as a basis for futuristic studies that are related to the target-based drug discovery in the field of neuro-regeneration. Pathological and physiological events associated with EphA4 and Ephrin upregulation and interaction.
Collapse
Affiliation(s)
- Meenal Verma
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Manjeet Chopra
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
20
|
Ballester Roig MN, Mongrain V. Sleep-inducing effect of Rhynchophylline in EphA4 knockout mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad037. [PMID: 37840649 PMCID: PMC10572089 DOI: 10.1093/sleepadvances/zpad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 10/17/2023]
Abstract
We have recently demonstrated that the alkaloid rhynchophylline (RHY; purified from Uncaria plants) induces sleep and modifies electrocorticographic (ECoG) activity throughout the 24-h day in a vigilance state-dependent manner in wild-type mice. We here asked whether this alkaloid impacts wake/sleep variables in the absence of the cell adhesion protein EPHA4, via ECoG recording in EphA4 knockout (KO) mice submitted to the same RHY treatment contemporaneously to the wild-type mice (littermates). We uncover that RHY decreases time spent awake and increases time spent in slow wave sleep in EphA4 KO mice and alters the 24-h time course of ECoG activity during wakefulness and sleep states. These observations are similar to the reported effects of RHY in wild-type littermate animals, which strongly supports that RHY-driven sleep alterations are not dependent on the presence of EPHA4.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
21
|
Ballester Roig MN, Roy PG, Hannou L, Delignat-Lavaud B, Sully Guerrier TA, Bélanger-Nelson E, Dufort-Gervais J, Mongrain V. Transcriptional regulation of the mouse EphA4, Ephrin-B2 and Ephrin-A3 genes by the circadian clock machinery. Chronobiol Int 2023; 40:983-1003. [PMID: 37551686 DOI: 10.1080/07420528.2023.2237580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3β (GSK3β; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Recherche CIUSSS-NIM, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Wei HX, Guan YN, Chen PP, Rao ZZ, Yang JS. Upregulation of EphA4 deteriorate brain damage by shifting microglia M1-polarization via NF-κB signaling after focal cerebral ischemia in rats. Heliyon 2023; 9:e18429. [PMID: 37519758 PMCID: PMC10375859 DOI: 10.1016/j.heliyon.2023.e18429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Ischemic stroke is the main reason of disability and mortality in many countries, and currently has limited treatments. The post-stroke inflammation characterized with microglia activation and polarization has been regarded as a promising therapeutic target for ischemic stroke. After ischemia, the activated microglia polarize to classical (M1) phenotype or alternative (M2) phenotype and exhibit biphasic function. Promoting microglia phenotype shift from deleterious M1 phenotype to neuroprotective M2 phenotype will be promising in stroke treatment. Increasing evidence indicates that the erythropoietin-producing human hepatocellular (Eph) receptor A4 (EphA4), a kind of abundant Eph receptor, distributes mainly in neuron and participates in multiple links of pathological changes after ischemia. This paper discussed the hypothesis that EphA4 receptor could affect ischemic brain injury through EphA4/ephrin bidirectional signaling between neuron and microglia, and then explored its underlying mechanisms. We manipulated EphA4/ephrin signaling with either EphA4 overexpression lentiviral vectors or the short hairpin RNA (shRNA) to upregulate or knock down neuronal EphA4 expression. NF-κB inhibitor pyrrolidine dithiocarbamate ammonium salt (PDTC) was applied to block NF-κB pathway. According to the experimental results, upregulated neuronal EphA4 induced by ischemia deteriorated neurological function as well as brain damage by shifting microglia M1-polarization via promoting NF-κB signaling.
Collapse
Affiliation(s)
- Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, PR China
| | - Yun-Ni Guan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
| | - Ping-Ping Chen
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, PR China
| | - Zhao-Zeng Rao
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
- Department of Neurology, Longyan People's Hospital, Longyan, PR China
| | - Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, PR China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, PR China
| |
Collapse
|
23
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of Multiple Eph Receptors on Neuronal Membranes Correlates with The Onset of Traumatic Optic Neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543735. [PMID: 37333178 PMCID: PMC10274644 DOI: 10.1101/2023.06.05.543735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Optic neuropathy (ON) is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of ON with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling played in the post-natal visual system and its correlation with the onset of optic neuropathy. Methods Postnatal mouse retinas were collected for mass spectrometry analysis for Eph receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. Results Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 hours after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors in the inner retinal layers. STORM super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal processes, compared to uninjured neuronal and/or injured glial cells, 48 hours post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects after 6 days of ONC injury. Conclusions Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in ONs, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed neuroprotective effects upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A. Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine
| | - Juan Esquivel
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Paul J. Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
24
|
Shi CS, Hu Q, Fang SL, Sun CX, Shao DH. MicroRNA-204-5p Ameliorates Neurological Injury via the EphA4/PI3K/AKT Signaling Pathway in Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37196241 DOI: 10.1021/acschemneuro.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Ischemic stroke has extremely high mortality and disability rates worldwide. miR-204-5p has been reported to be associated with neurological diseases. However, the relationship linking miR-204-5p to ischemic stroke and its molecular mechanism remain unclear. Herein, we found that expression of miR-204-5p was significantly decreased while EphA4 increased in vivo and vitro, which reached the peak at 24 h after cerebral ischemia/reperfusion. Then, we altered miR-204-5p expression in rats by cerebroventricular injection. Our study showed that miR-204-5p overexpression obviously reduced the brain infarction area and neurological score. We successfully cultured neurons to investigate the downstream mechanism. Upregulation of miR-204-5p increased cell viability and suppressed the release of LDH. Moreover, the proportion of apoptotic cells tested by TUNEL and flow cytometry and protein expression of Cleaved Caspase3 and Bax were inhibited. The relative expression of IL-6, TNF-α, and IL-1β was repressed. In contrary, knockdown of miR-204-5p showed the opposite results. Bioinformatics and a dual luciferase assay illustrated that EphA4 was a target gene. Further research studies demonstrated that the neuroprotective effects of miR-204-5p could be partially mitigated by upregulating EphA4. Next, we proved that the miR-204-5p/EphA4 axis furtherly activated the PI3K/AKT pathway. We thoroughly illustrated the role of neuroinflammation and apoptosis. However, whether there are other mechanisms associated with the EphA4/PI3K/AKT pathway needs further investigation. Altogether, the miR-204-5p axis ameliorates neurological injury via the EphA4/PI3K/AKT pathway, which is expected to serve as an effective treatment for ischemic stroke.
Collapse
Affiliation(s)
- Chang-Sheng Shi
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
- Department of Medicine, The University of Jiangsu, No.301 Xue Fu Road, Zhenjiang, Jiangsu 212000, China
| | - Qi Hu
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| | - Shi-Lei Fang
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| | - Cai-Xia Sun
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| | - Dong-Hua Shao
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, No.8 Dian Li Road, Zhenjiang, Jiangsu 212000, China
| |
Collapse
|
25
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
26
|
Ballester Roig MN, Leduc T, Dufort-Gervais J, Maghmoul Y, Tastet O, Mongrain V. Probing pathways by which rhynchophylline modifies sleep using spatial transcriptomics. Biol Direct 2023; 18:21. [PMID: 37143153 PMCID: PMC10161643 DOI: 10.1186/s13062-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Rhynchophylline (RHY) is an alkaloid component of Uncaria, which are plants extensively used in traditional Asian medicines. Uncaria treatments increase sleep time and quality in humans, and RHY induces sleep in rats. However, like many traditional natural treatments, the mechanisms of action of RHY and Uncaria remain evasive. Moreover, it is unknown whether RHY modifies key brain oscillations during sleep. We thus aimed at defining the effects of RHY on sleep architecture and oscillations throughout a 24-h cycle, as well as identifying the underlying molecular mechanisms. Mice received systemic RHY injections at two times of the day (beginning and end of the light period), and vigilance states were studied by electrocorticographic recordings. RESULTS RHY enhanced slow wave sleep (SWS) after both injections, suppressed paradoxical sleep (PS) in the light but enhanced PS in the dark period. Furthermore, RHY modified brain oscillations during both wakefulness and SWS (including delta activity dynamics) in a time-dependent manner. Interestingly, most effects were larger in females. A brain spatial transcriptomic analysis showed that RHY modifies the expression of genes linked to cell movement, apoptosis/necrosis, and transcription/translation in a brain region-independent manner, and changes those linked to sleep regulation (e.g., Hcrt, Pmch) in a brain region-specific manner (e.g., in the hypothalamus). CONCLUSIONS The findings provide support to the sleep-inducing effect of RHY, expose the relevance to shape wake/sleep oscillations, and highlight its effects on the transcriptome with a high spatial resolution. The exposed molecular mechanisms underlying the effect of a natural compound should benefit sleep- and brain-related medicine.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
| | - Tanya Leduc
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
| | - Julien Dufort-Gervais
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
| | - Yousra Maghmoul
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Olivier Tastet
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, 900 rue St-Denis, Tour Viger, Montréal, QC, H2X 0A9, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada.
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, 900 rue St-Denis, Tour Viger, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
27
|
Kina S, Kawabata-Iwakawa R, Miyamoto S, Kato T, Kina-Tanada M, Arasaki A. EphA4 signaling is involved in the phenotype of well-differentiated oral squamous cell arcinoma with decreased tumor immunity. Eur J Pharmacol 2023; 945:175611. [PMID: 36804938 DOI: 10.1016/j.ejphar.2023.175611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Metronomic chemotherapy is defined as a high-frequency low-dose schedule of chemotherapy drug administration. Although metronomic chemotherapy is widely used, the mechanisms underlying resistance to metronomic chemotherapy remain unclear. Therefore, we herein conducted a single institutional phase I/II trial to assess the efficacy and safety of metronomic chemotherapy with bleomycin plus S-1, an oral 5-FU prodrug, in the neoadjuvant setting for patients with oral squamous cell carcinoma (OSCC). The response rate of well-differentiated OSCC to metronomic chemotherapy was significantly lower. We investigated differences in molecular profiles between poorly or moderately differentiated head and neck squamous cell carcinoma (HNSCC) and well-differentiated HNSCC from patients with HNSCC TCGA data. EphA4 expression positively correlated with histological differentiation. An upstream regulator analysis correlated with EphA4 expression identified pathways associated with decreased mTORC1 signaling and T cell activation, including TCR, CD3, CD28, and CD40LG. An EphA4 blocking peptide (KYL) induced mTOR activation in well-differentiated OSCC cell lines. Plasmacytoid dendritic cell and CD8+ T cell numbers were higher in the microenvironment of poorly or moderately differentiated HNSCC than in that of well-differentiated HNSCC. Well-differentiated HNSCC had the characteristics of "cold tumors" (immune-excluded tumors). Moreover, KYL used with chemotherapeutic drugs synergistically increased cancer cell death. Well-differentiated OSCC is depleted of immune cells, which may be partly explained by the receptor tyrosine kinase EphA4.
Collapse
Affiliation(s)
- Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan; Center for Medical Education, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Japan
| | - Sho Miyamoto
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Tomoki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mika Kina-Tanada
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan; Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
28
|
Fu WY, Ip NY. The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Semin Cell Dev Biol 2023; 139:3-12. [PMID: 35918217 DOI: 10.1016/j.semcdb.2022.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
29
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
31
|
Zhang ZL, Li YZ, Wu GQ, Li YM, Zhang DD, Wang R. A comprehensive review of phytochemistry, pharmacology and clinical applications of Uncariae Ramulus Cum Uncis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
32
|
Huang Z. A Function of Amyloid-β in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles in Brain Physiology and Pathology. J Alzheimers Dis 2023; 92:29-57. [PMID: 36710681 PMCID: PMC10023438 DOI: 10.3233/jad-221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyloid-β protein precursor (AβPP) gives rise to amyloid-β (Aβ), a peptide at the center of Alzheimer's disease (AD). AβPP, however, is also an ancient molecule dating back in evolution to some of the earliest forms of metazoans. This suggests a possible ancestral function that may have been obscured by those that evolve later. Based on literature from the functions of Aβ/AβPP in nervous system development, plasticity, and disease, to those of anti-microbial peptides (AMPs) in bacterial competition as well as mechanisms of cell competition uncovered first by Drosophila genetics, I propose that Aβ/AβPP may be part of an ancient mechanism employed in cell competition, which is subsequently co-opted during evolution for the regulation of activity-dependent neural circuit development and plasticity. This hypothesis is supported by foremost the high similarities of Aβ to AMPs, both of which possess unique, opposite (i.e., trophic versus toxic) activities as monomers and oligomers. A large body of data further suggests that the different Aβ oligomeric isoforms may serve as the protective and punishment signals long predicted to mediate activity-dependent axonal/synaptic competition in the developing nervous system and that the imbalance in their opposite regulation of innate immune and glial cells in the brain may ultimately underpin AD pathogenesis. This hypothesis can not only explain the diverse roles observed of Aβ and AβPP family molecules, but also provide a conceptual framework that can unify current hypotheses on AD. Furthermore, it may explain major clinical observations not accounted for and identify approaches for overcoming shortfalls in AD animal modeling.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
33
|
Mansour HM, El-Khatib AS. Repositioning of receptor tyrosine kinase inhibitors. RECEPTOR TYROSINE KINASES IN NEURODEGENERATIVE AND PSYCHIATRIC DISORDERS 2023:353-401. [DOI: 10.1016/b978-0-443-18677-6.00010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
35
|
Ganguly D, Thomas JA, Ali A, Kumar R. Mechanistic and therapeutic implications of EphA-4 receptor tyrosine kinase in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5532-5546. [PMID: 34989046 DOI: 10.1111/ejn.15591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors belong to a family of tyrosine kinase receptors that plays a pivotal role in the development of the brain. Eph can be divided broadly into two groups, namely, EphA and EphB, comprising nine and five members, respectively. In recent years, the role of EphA-4 has become increasingly apparent in the onset of Alzheimer's disease (AD). Emerging evidence suggests that EphA-4 results in synaptic dysfunction, which in turn promotes the progression of AD. Moreover, pharmacological or genetic ablation of EphA-4 in the murine model of AD can alleviate the symptoms. The current review summarizes different pathways by which EphA-4 can influence pathogenesis. Since, majority of the studies had reported the protective effect of EphA-4 inhibition during AD, designing therapeutics based on decreasing its enzymatic activity might be necessary for introducing the novel interventions. Therefore, the review described peptide and nanobodies inhibitors of EphA-4 that exhibit the potential to modulate EphA-4 and could be used as lead molecules for the targeted therapy of AD.
Collapse
Affiliation(s)
- Devargya Ganguly
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Joshua Abby Thomas
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Abid Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| |
Collapse
|
36
|
Ng XW, Chung YH, Asadi F, Kong C, Ustione A, Piston DW. RhoA as a Signaling Hub Controlling Glucagon Secretion From Pancreatic α-Cells. Diabetes 2022; 71:2384-2394. [PMID: 35904939 PMCID: PMC9630081 DOI: 10.2337/db21-1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/26/2022] [Indexed: 11/13/2022]
Abstract
Glucagon hypersecretion from pancreatic islet α-cells exacerbates hyperglycemia in type 1 diabetes (T1D) and type 2 diabetes. Still, the underlying mechanistic pathways that regulate glucagon secretion remain controversial. Among the three complementary main mechanisms (intrinsic, paracrine, and juxtacrine) proposed to regulate glucagon release from α-cells, juxtacrine interactions are the least studied. It is known that tonic stimulation of α-cell EphA receptors by ephrin-A ligands (EphA forward signaling) inhibits glucagon secretion in mouse and human islets and restores glucose inhibition of glucagon secretion in sorted mouse α-cells, and these effects correlate with increased F-actin density. Here, we elucidate the downstream target of EphA signaling in α-cells. We demonstrate that RhoA, a Rho family GTPase, plays a key role in this pathway. Pharmacological inhibition of RhoA disrupts glucose inhibition of glucagon secretion in islets and decreases cortical F-actin density in dispersed α-cells and α-cells in intact islets. Quantitative FRET biosensor imaging shows that increased RhoA activity follows directly from EphA stimulation. We show that in addition to modulating F-actin density, EphA forward signaling and RhoA activity affect α-cell Ca2+ activity in a novel mechanistic pathway. Finally, we show that stimulating EphA forward signaling restores glucose inhibition of glucagon secretion from human T1D donor islets.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
37
|
Martinez B, Peplow PV. Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration. Neural Regen Res 2022; 17:2108-2116. [PMID: 35259816 PMCID: PMC9083174 DOI: 10.4103/1673-5374.336132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The incidence of neurodegenerative diseases is increasing due to changing age demographics and the incidence of sports-related traumatic brain injury is tending to increase over time. Currently approved medicines for neurodegenerative diseases only temporarily reduce the symptoms but cannot cure or delay disease progression. Cell transplantation strategies offer an alternative approach to facilitating central nervous system repair, but efficacy is limited by low in vivo survival rates of cells that are injected in suspension. Transplanting cells that are attached to or encapsulated within a suitable biomaterial construct has the advantage of enhancing cell survival in vivo. A variety of biomaterials have been used to make constructs in different types that included nanoparticles, nanotubes, microspheres, microscale fibrous scaffolds, as well as scaffolds made of gels and in the form of micro-columns. Among these, Tween 80-methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles loaded with rhynchophylline had higher transport across a blood-brain barrier model and decreased cell death in an in vitro model of Alzheimer’s disease than rhynchophylline or untreated nanoparticles with rhynchophylline. In an in vitro model of Parkinson’s disease, trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin had a similar protective ability as free non-Fe hemin. A positive effect on neuron survival in several in vivo models of Parkinson’s disease was associated with the use of biomaterial constructs such as trans-activating transcriptor bioconjugated with zwitterionic polymer poly(2-methacryoyloxyethyl phosphorylcholine) and protein-based nanoparticles loaded with non-Fe hemin, carbon nanotubes with olfactory bulb stem cells, poly(lactic-co-glycolic acid) microspheres with attached DI-MIAMI cells, ventral midbrain neurons mixed with short fibers of poly-(L-lactic acid) scaffolds and reacted with xyloglucan with/without glial-derived neurotrophic factor, ventral midbrain neurons mixed with Fmoc-DIKVAV hydrogel with/without glial-derived neurotrophic factor. Further studies with in vivo models of Alzheimer’s disease and Parkinson’s disease are warranted especially using transplantation of cells in agarose micro-columns with an inner lumen filled with an appropriate extracellular matrix material.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Otero-Garcia M, Mahajani SU, Wakhloo D, Tang W, Xue YQ, Morabito S, Pan J, Oberhauser J, Madira AE, Shakouri T, Deng Y, Allison T, He Z, Lowry WE, Kawaguchi R, Swarup V, Cobos I. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease. Neuron 2022; 110:2929-2948.e8. [PMID: 35882228 PMCID: PMC9509477 DOI: 10.1016/j.neuron.2022.06.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the molecular signatures that distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We developed methods for the high-throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmission-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Marcos Otero-Garcia
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Debia Wakhloo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yue-Qiang Xue
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Morabito
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jane Oberhauser
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela E Madira
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tamara Shakouri
- Department of Pathology, University of California, Los Angeles, CA 90095, USA
| | - Yongning Deng
- Department of Pathology, University of California, Los Angeles, CA 90095, USA; Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Thomas Allison
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Zihuai He
- Department Neurology and Neurological Sciences and Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, Broad Center for Regenerative Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Downey J, Lam JC, Li VO, Gozes I. Somatic Mutations and Alzheimer’s Disease. J Alzheimers Dis 2022; 90:475-493. [DOI: 10.3233/jad-220643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-β plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer’s disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerative studies, with the aim to bring hope for the vulnerable aging population.
Collapse
Affiliation(s)
- Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- Department of Computer Science and Technology, University of Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Kowalski EA, Soliman E, Kelly C, Basso EKG, Leonard J, Pridham KJ, Ju J, Cash A, Hazy A, de Jager C, Kaloss AM, Ding H, Hernandez RD, Coleman G, Wang X, Olsen ML, Pickrell AM, Theus MH. Monocyte proinflammatory phenotypic control by ephrin type A receptor 4 mediates neural tissue damage. JCI Insight 2022; 7:e156319. [PMID: 35737458 PMCID: PMC9462496 DOI: 10.1172/jci.insight.156319] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.
Collapse
Affiliation(s)
- Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, and
| | | | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Hazy
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Caroline de Jager
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Hanzhang Ding
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Raymundo D. Hernandez
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, and
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
- Center for Engineered Health, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
41
|
Chanda K, Jana NR, Mukhopadhyay D. Long non-coding RNA MALAT1 protects against Aβ 1-42 induced toxicity by regulating the expression of receptor tyrosine kinase EPHA2 via quenching miR-200a/26a/26b in Alzheimer's disease. Life Sci 2022; 302:120652. [PMID: 35598655 DOI: 10.1016/j.lfs.2022.120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Altered expressions of Receptor Tyrosine Kinases (RTK) and non-coding (nc) RNAs are known to regulate the pathophysiology of Alzheimer's disease (AD). However, specific understanding of the roles played, especially the mechanistic and functional roles, by long ncRNAs in AD is still elusive. Using mouse tissue qPCR assays we observe changes in the expression levels of 41 lncRNAs in AD mice of which only 7 genes happen to have both human orthologs and AD associations. Post validation of these 7 human lncRNA genes, MEG3 and MALAT1 shows consistent and significant decrease in AD cell, animal models and human AD brain tissues, but MALAT1 showed a more pronounced decrease. Using bioinformatics, qRT-PCR, RNA FISH and RIP techniques, we could establish MALAT1 as an interactor and regulator of miRs-200a, -26a and -26b, all of which are naturally elevated in AD. We could further show that these miRNAs target the RTK EPHA2 and several of its downstream effectors. Expectedly EPHA2 over expression protects against Aβ1-42 induced cytotoxicity. Transiently knocking down MALAT1 validates these unique regulatory facets of AD at the miRNA and protein levels. Although the idea of sponging of miRNAs by lncRNAs in other pathologies is gradually gaining credibility, this novel MALAT1- miR-200a/26a/26b - EPHA2 regulation mechanism in the context of AD pathophysiology promises to become a significant strategy in controlling the disease.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India; Department of Neuroscience, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, United States of America
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India.
| |
Collapse
|
42
|
Medication Rules in Herbal Medicine for Mild Cognitive Impairment: A Network Pharmacology and Data Mining Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2478940. [PMID: 35646138 PMCID: PMC9132671 DOI: 10.1155/2022/2478940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Background Although traditional Chinese medicine (TCM) has good efficacy in the treatment of mild cognitive impairment (MCI), especially memory improvement and safety, its substance basis and intervention mechanism are particularly complex and unknown. Therefore, based on network pharmacology and data mining, this study aims to explore the rules, active ingredients and mechanism of TCM in the treatment of MCI. Methods By searching the GeneCard, OMIM, DisGeNET and DrugBank databases, we obtained the critical targets associated with MCI. We matched the components and herbs corresponding to the important targets in the TCMSP platform. Using Cytoscape 3.7.2 software, we constructed a target-component-herb network and conducted a network topology analysis to obtain the core components and herbs. Molecular docking was used to preliminarily analyze and predict the binding activities and main binding combinations of the core targets and components. Based on the analysis of the properties, flavor and meridian distribution of herbs, the rules of herbal therapy for MCI were summarized. Results Twenty-eight critical targets were obtained after the screening. Using the TCMSP platform, 492 components were obtained. After standardization, we obtained 387 herbs. Based on the target-composition-herb network analysis, the core targets were ADRB2, ADRA1B, DPP4, ACHE and ADRA1D. According to the screening, the core ingredients were beta-sitosterol, quercetin, kaempferol, stigmasterol and luteolin. The core herbs were matched to Danshen, Yanhusuo, Gancao, Gouteng and Jiangxiang. It was found that the herbs were mainly warm in nature, pungent in taste and liver and lung in meridian. The molecular docking results showed that most core components exhibited strong binding activity to the target combination regardless of the in or out of network combination. Conclusion The results of this study indicate that herbs have great potential in the treatment of MCI. This study provides a reference and basis for clinical application, experimental research and new drug development of herbal therapy for MCI.
Collapse
|
43
|
Harutyunyan A, Jones NC, Kwan P, Anderson A. Network Preservation Analysis Reveals Dysregulated Synaptic Modules and Regulatory Hubs Shared Between Alzheimer’s Disease and Temporal Lobe Epilepsy. Front Genet 2022; 13:821343. [PMID: 35309145 PMCID: PMC8926077 DOI: 10.3389/fgene.2022.821343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Background: There is increased prevalence of epilepsy in patients with Alzheimer’s disease (AD). Although shared pathological and clinical features have been identified, the underlying pathophysiology and cause-effect relationships are poorly understood. We aimed to identify commonly dysregulated groups of genes between these two disorders. Methods: Using publicly available transcriptomic data from hippocampal tissue of patients with temporal lobe epilepsy (TLE), late onset AD and non-AD controls, we constructed gene coexpression networks representing all three states. We then employed network preservation statistics to compare the density and connectivity-based preservation of functional gene modules between TLE, AD and controls and used the difference in significance scores as a surrogate quantifier of module preservation. Results: The majority (>90%) of functional gene modules were highly preserved between all coexpression networks, however several modules identified in the TLE network showed various degrees of preservation in the AD network compared to that of control. Of note, two synaptic signalling-associated modules and two metabolic modules showed substantial gain of preservation, while myelination and immune system-associated modules showed significant loss of preservation. The genes SCN3B and EPHA4 were identified as central regulatory hubs of the highly preserved synaptic signalling-associated module. GABRB3 and SCN2A were identified as central regulatory hubs of a smaller neurogenesis-associated module, which was enriched for multiple epileptic activity and seizure-related human phenotype ontologies. Conclusion: We conclude that these hubs and their downstream signalling pathways are common modulators of synaptic activity in the setting of AD and TLE, and may play a critical role in epileptogenesis in AD.
Collapse
Affiliation(s)
- Anna Harutyunyan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Nigel C. Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Patrick Kwan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Alison Anderson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Alison Anderson,
| |
Collapse
|
44
|
Murugan S, Cheng C. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Front Cell Dev Biol 2022; 10:852236. [PMID: 35295853 PMCID: PMC8918484 DOI: 10.3389/fcell.2022.852236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
The eye lens is responsible for fine focusing of light onto the retina, and its function relies on tissue transparency and biomechanical properties. Recent studies have demonstrated the importance of Eph-ephrin signaling for the maintenance of life-long lens homeostasis. The binding of Eph receptor tyrosine kinases to ephrin ligands leads to a bidirectional signaling pathway that controls many cellular processes. In particular, dysfunction of the receptor EphA2 or the ligand ephrin-A5 lead to a variety of congenital and age-related cataracts, defined as any opacity in the lens, in human patients. In addition, a wealth of animal studies reveal the unique and overlapping functions of EphA2 and ephrin-A5 in lens cell shape, cell organization and patterning, and overall tissue optical and biomechanical properties. Significant differences in lens phenotypes of mouse models with disrupted EphA2 or ephrin-A5 signaling indicate that genetic modifiers likely affect cataract phenotypes and progression, suggesting a possible reason for the variability of human cataracts due to Eph-ephrin dysfunction. This review summarizes the roles of EphA2 and ephrin-A5 in the lens and suggests future avenues of study.
Collapse
|
45
|
Yan Y, Aierken A, Wang C, Song D, Ni J, Wang Z, Quan Z, Qing H. A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neurosci Biobehav Rev 2021; 132:857-869. [PMID: 34810025 DOI: 10.1016/j.neubiorev.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 01/24/2023]
Abstract
The olfactory dysfunction can signal and act as a potential biomarker of preclinical AD. However, the precise regulatory mechanism of olfactory function on the neural pathogenesis of AD is still unclear. The impairment of neural networks in olfaction system has been shown to be tightly associated with AD. As key brain regions of the olfactory system, the olfactory bulb (OB) and the piriform cortex (PCx) have a profound influence on the olfactory function. Therefore, this review will explore the mechanism of olfactory dysfunction in preclinical AD in the perspective of abnormal neural networks in the OB and PCx and their associated brain regions, especially from two aspects of aberrant oscillations and synaptic plasticity damages, which help better understand the underlying mechanism of olfactory neural network damages related to AD.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
46
|
Fu WY, Hung KW, Lau SF, Butt B, Yuen VWH, Fu G, Chan IC, Ip FCF, Fu AKY, Ip NY. Rhynchophylline Administration Ameliorates Amyloid-β Pathology and Inflammation in an Alzheimer's Disease Transgenic Mouse Model. ACS Chem Neurosci 2021; 12:4249-4256. [PMID: 34738783 DOI: 10.1021/acschemneuro.1c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, has limited treatment options. As such, extensive studies have been conducted to identify novel therapeutic approaches. We previously reported that rhynchophylline (Rhy), a small molecule EphA4 inhibitor, rescues impaired hippocampal synaptic plasticity and cognitive dysfunctions in APP/PS1 mice, an AD transgenic mouse model. To assess whether Rhy can be developed as an alternative treatment for AD, it is important to examine its pharmacokinetics and effects on other disease-associated pathologies. Here, we show that Rhy ameliorates amyloid plaque burden and reduces inflammation in APP/PS1 mice. Transcriptome analysis revealed that Rhy regulates various molecular pathways in APP/PS1 mouse brains associated with amyloid metabolism and inflammation, specifically the ubiquitin proteasome system, angiogenesis, and microglial functional states. These results show that Rhy, which is blood-brain barrier permeable, is beneficial to amyloid pathology and regulates multiple molecular pathways.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong 999077China
| | - Kwok-Wang Hung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shun-Fat Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong 999077China
| | - Busma Butt
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Vincent Wai-Hin Yuen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Guangmiao Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ivy C. Chan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Fanny C. F. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong 999077China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen−Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong 999077China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen−Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong 999077China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen−Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
47
|
Liu H, Zhou YC, Song W. Involvement of IL-10R/STAT3 pathway in amyloid β clearance by microlgia in Alzheimer's disease. Int Immunopharmacol 2021; 101:108263. [PMID: 34710847 DOI: 10.1016/j.intimp.2021.108263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Both the total amount and annual growth rate of Alzheimer's disease (AD) patients in China are much higher than in other regions in the world. This trend of rapid growth will be difficult to change in the next few decades, hence the prevention and treatment situation of AD patients in China is more severe. Maintaining the balance between the production and removal pathways of Aβ is an important guarantee for the body to maintain its normal physiological state. The dysfunction of Aβ clearance is an important factor of Aβ accumulation in brain tissue of AD patients causing neurotoxicity of synaptic damage and neuronal death. Based on the literature review, it introduced the important role of microglias in clearing Aβ deposits in the process of Alzheimer's disease. And most of these phagocytic cells were the specific phenotype of disease-related microglia (DAM-I/DAM-II) that induced microglial differentiation after activation. IL-10KO promoted the transformation of microglial phenotype DAM-II, and enhanced its phagocytosis for Aβ oligomers. There is a hypothesis that IL-10R/STAT3 negatively regulates microglial phagocytosis. It was learnt that blocking the IL-10R/STAT3 pathway promoted microglial activation and enhanced phagocytosis. The comprehensive review on the involvement of IL-10R/STAT3 pathway in the process of AD would open up new ideas and discover new targets for the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.
| | - Yu-Cong Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
48
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
49
|
Geetha RG, Ramachandran S. Recent Advances in the Anti-Inflammatory Activity of Plant-Derived Alkaloid Rhynchophylline in Neurological and Cardiovascular Diseases. Pharmaceutics 2021; 13:pharmaceutics13081170. [PMID: 34452133 PMCID: PMC8400357 DOI: 10.3390/pharmaceutics13081170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Rhynchophylline (Rhy) is a plant-derived indole alkaloid isolated from Uncaria species. Both the plant and the alkaloid possess numerous protective properties such as anti-inflammatory, neuroprotective, anti-hypertensive, anti-rhythmic, and sedative effects. Several studies support the significance of the anti-inflammatory activity of the plant as an underlying mechanism for most of the pharmacological activities of the alkaloid. Rhy is effective in protecting both the central nervous system and cardiovascular system. Cerebro-cardiovascular disease primarily occurs due to changes in lifestyle habits. Many previous studies have highlighted the significance of Rhy in modulating calcium channels and potassium channels, thereby protecting the brain from neurodegenerative diseases and related effects. Rhy also has anticoagulation and anti-platelet aggregation activity. Although Rhy has displayed its role in protecting the cardiovascular system, very little is explored about its intervention in early atherosclerosis. Extensive studies are required to understand the cardioprotective effects of Rhye. This review summarized and discussed the various pharmacological effects of Rhy in neuro- and cardioprotection and in particular the relevance of Rhy in preventing early atherosclerosis using Rhy-loaded nanoparticles.
Collapse
|
50
|
Baggio C, Kulinich A, Dennys CN, Rodrigo R, Meyer K, Ethell I, Pellecchia M. NMR-Guided Design of Potent and Selective EphA4 Agonistic Ligands. J Med Chem 2021; 64:11229-11246. [PMID: 34293864 DOI: 10.1021/acs.jmedchem.1c00608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we applied an innovative nuclear magnetic resonance (NMR)-guided screening and ligand design approach, named focused high-throughput screening by NMR (fHTS by NMR), to derive potent, low-molecular-weight ligands capable of mimicking interactions elicited by ephrin ligands on the receptor tyrosine kinase EphA4. The agents bind with nanomolar affinity, trigger receptor activation in cellular assays with motor neurons, and provide remarkable motor neuron protection from amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Structural studies on the complex between EphA4 ligand-binding domain and a most active agent provide insights into the mechanism of the agents at a molecular level. Together with preliminary in vivo pharmacology studies, the data form a strong foundation for the translation of these agents for the treatment of ALS and potentially other human diseases.
Collapse
Affiliation(s)
- Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Anna Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Cassandra N Dennys
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio 43205, United States
| | - Rochelle Rodrigo
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio 43205, United States
| | - Kathrin Meyer
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio 43205, United States
| | - Iryna Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|