1
|
Wong P, Leong JW, Sohn H, Chang L, Keppel CR, Neal CC, Cubitt CC, Yao T, Keppel MP, Tran J, Burdi A, Hwang K, Fogel LA, Schappe T, Marsala L, Berrien-Elliott MM, Wagner JA, Schneider SE, Sullivan RP, Pingel JT, Cooper MA, French AR, Fehniger TA. MicroRNA-146a deficiency enhances host protection against murine cytomegalovirus. Eur J Immunol 2024; 54:e2451173. [PMID: 39246120 DOI: 10.1002/eji.202451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells that protect a host from viral infections and malignancies. MicroRNA-146a (miR-146a) is an important regulator of immune function that is highly expressed in NK cells and is further upregulated during murine cytomegalovirus (MCMV) infection. Here we utilized mice with a global targeted deletion of miR-146a to understand its impact on the innate immune responses to MCMV infection. MiR-146a-/- mice were protected from lethal MCMV infection, which was intrinsic to the hematopoietic compartment based on bone marrow chimera experiments. NK cell depletion abrogated this protection, implicating NK cells as critical for the miR-146a-/- protection from MCMV. Surprisingly, NK cells from miR-146a-deficient mice were largely similar to control NK cells with respect to development, maturation, trafficking, and effector functions. However, miR-146a-/- mice had increased NK cell numbers and frequency of the most mature Stage IV (CD27-CD11b+) NK cells in the liver at baseline, enhanced STAT1 phosphorylation, and increased selective expansion of Ly49H+ NK cells and T cells during MCMV infection. This study demonstrates a critical role for miR-146a in the host response to MCMV, arising from mechanisms that include increased NK cell numbers and early T-cell expansion.
Collapse
Affiliation(s)
- Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey W Leong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hyogon Sohn
- Divison of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lily Chang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Catherine R Keppel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carly C Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Celia C Cubitt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tony Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Molly P Keppel
- Divison of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Allison Burdi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kimberly Hwang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leslie A Fogel
- Divison of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lynne Marsala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julia A Wagner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie E Schneider
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan P Sullivan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeanette T Pingel
- Divison of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan A Cooper
- Divison of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anthony R French
- Divison of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
3
|
Kanter J, Gordon SM, Mani S, Sokalska A, Park JY, Senapati S, Huh DD, Mainigi M. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation. Hum Reprod 2023; 38:1047-1059. [PMID: 37075311 PMCID: PMC10501469 DOI: 10.1093/humrep/dead069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Indexed: 04/21/2023] Open
Abstract
STUDY QUESTION How does an altered maternal hormonal environment, such as that seen during superovulation with gonadotropins in ART, impact human uterine immune cell distribution and function during the window of implantation? SUMMARY ANSWER Hormonal stimulation with gonadotropins alters abundance of maternal immune cells including uterine natural killer (uNK) cells and reduces uNK cell ability to promote extravillous trophoblast (EVT) invasion. WHAT IS KNOWN ALREADY An altered maternal hormonal environment, seen following ART, can lead to increased risk for adverse perinatal outcomes associated with disordered placentation. Maternal immune cells play an essential role in invasion of EVTs, a process required for proper establishment of the placenta, and adverse perinatal outcomes have been associated with altered immune cell populations. How ART impacts maternal immune cells and whether this can in turn affect implantation and placentation in humans remain unknown. STUDY DESIGN, SIZE, DURATION A prospective cohort study was carried out between 2018 and 2021 on 51 subjects: 20 from natural cycles 8 days after LH surge; and 31 from stimulated IVF cycles 7 days after egg retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrial biopsies and peripheral blood samples were collected during the window of implantation in subjects with regular menstrual cycles or undergoing superovulation. Serum estradiol and progesterone levels were measured by chemiluminescent competitive immunoassay. Immune cell populations in blood and endometrium were analyzed using flow cytometry. uNK cells were purified using fluorescence-activated cell sorting and were subjected to RNA sequencing (RNA-seq). Functional changes in uNK cells due to hormonal stimulation were evaluated using the implantation-on-a-chip (IOC) device, a novel bioengineered platform using human primary cells that mimics early processes that occur during pregnancy in a physiologically relevant manner. Unpaired t-tests, one-way ANOVA, and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE Baseline characteristics were comparable for both groups. As expected, serum estradiol levels on the day of biopsy were significantly higher in stimulated (superovulated) patients (P = 0.0005). In the setting of superovulation, we found an endometrium-specific reduction in the density of bulk CD56+ uNK cells (P < 0.05), as well as in the uNK3 subpopulation (P = 0.025) specifically (CD103+ NK cells). In stimulated samples, we also found that the proportion of endometrial B cells was increased (P < 0.0001). Our findings were specific to the endometrium and not seen in peripheral blood. On the IOC device, uNK cells from naturally cycling secretory endometrium promote EVT invasion (P = 0.03). However, uNK cells from hormonally stimulated endometrium were unable to significantly promote EVT invasion, as measured by area of invasion, depth of invasion, and number of invaded EVTs by area. Bulk RNA-seq of sorted uNK cells from stimulated and unstimulated endometrium revealed changes in signaling pathways associated with immune cell trafficking/movement and inflammation. LIMITATIONS, REASONS FOR CAUTION Patient numbers utilized for the study were low but were enough to identify significant overall population differences in select immune cell types. With additional power and deeper immune phenotyping, we may detect additional differences in immune cell composition of blood and endometrium in the setting of hormonal stimulation. Flow cytometry was performed on targeted immune cell populations that have shown involvement in early pregnancy. A more unbiased approach might identify changes in novel maternal immune cells not investigated in this study. We performed RNA-seq only on uNK cells, which demonstrated differences in gene expression. Ovarian stimulation may also impact gene expression and function of other subsets of immune cells, as well as other cell types within the endometrium. Finally, the IOC device, while a major improvement over existing in vitro methods to study early pregnancy, does not include all possible maternal cells present during early pregnancy, which could impact functional effects seen. Immune cells other than uNK cells may impact invasion of EVTs in vitro and in vivo, though these remain to be tested. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate that hormonal stimulation affects the distribution of uNK cells during the implantation window and reduces the proinvasive effects of uNK cells during early pregnancy. Our results provide a potential mechanism by which fresh IVF cycles may increase risk of disorders of placentation, previously linked to adverse perinatal outcomes. STUDY FUNDING/COMPETING INTEREST(S) Research reported in this publication was supported by the University of Pennsylvania University Research Funding (to M.M.), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD068157 to M.M., S.S., and S.M.), National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR001880 to J.K.), the Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania, the Children's Hospital of Philadelphia Research Institute (to S.M.G.), and the National Institute of Allergy and Infectious Diseases (K08AI151265 to S.M.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- J Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S M Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - A Sokalska
- Division of Reproductive Endocrinology and Infertility, Stanford University, Stanford, CA, USA
| | - J Y Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - S Senapati
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - D D Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Pearson A, Ortiz C, Eisenbaum M, Arrate C, Browning M, Mullan M, Bachmeier C, Crawford F, Ojo JO. Deletion of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Mol Cell Neurosci 2023; 125:103855. [PMID: 37084991 DOI: 10.1016/j.mcn.2023.103855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Traumatic brain injury is a leading cause of morbidity and mortality in adults and children in developed nations. Following the primary injury, microglia, the resident innate immune cells of the CNS, initiate several inflammatory signaling cascades and pathophysiological responses that may persist chronically; chronic neuroinflammation following TBI has been closely linked to the development of neurodegeneration and neurological dysfunction. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that have been shown to regulate several key mechanisms in the inflammatory response to TBI. Increasing evidence has shown that the modulation of the PI3K/AKT signaling pathway has the potential to influence the cellular response to inflammatory stimuli. However, directly targeting PI3K signaling poses several challenges due to its regulatory role in several cell survival pathways. We have previously identified that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), the major negative regulator of PI3K/AKT signaling, is dysregulated following exposure to repetitive mild traumatic brain injury (r-mTBI). Moreover, this dysregulated PI3K/AKT signaling was correlated with chronic microglial-mediated neuroinflammation. Therefore, we interrogated microglial-specific PTEN as a therapeutic target in TBI by generating a microglial-specific, Tamoxifen inducible conditional PTEN knockout model using a CX3CR1 Cre recombinase mouse line PTENfl/fl/CX3CR1+/CreERT2 (mcg-PTENcKO), and exposed them to our 20-hit r-mTBI paradigm. Animals were treated with tamoxifen at 76 days post-last injury, and the effects of microglia PTEN deletion on immune-inflammatory responses were assessed at 90-days post last injury. We observed that the deletion of microglial PTEN ameliorated the proinflammatory response to repetitive brain trauma, not only reducing chronic microglial activation and proinflammatory cytokine production but also rescuing TBI-induced reactive astrogliosis, demonstrating that these effects extended beyond microglia alone. Additionally, we observed that the pharmacological inhibition of PTEN with BpV(HOpic) ameliorated the LPS-induced activation of microglial NFκB signaling in vitro. Together, these data provide support for the role of PTEN as a regulator of chronic neuroinflammation following repetitive mild TBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom.
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Clara Arrate
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | | | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Joseph O Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
5
|
Papa A, Pandolfi PP. PTEN in Immunity. Curr Top Microbiol Immunol 2022; 436:95-115. [DOI: 10.1007/978-3-031-06566-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Satooka H, Matsui M, Ichioka S, Nakamura Y, Hirata T. The ERM protein moesin regulates natural killer cell homeostasis in vivo. Cell Immunol 2021; 371:104456. [PMID: 34798556 DOI: 10.1016/j.cellimm.2021.104456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins with actin filaments in the cell cortex. Hemizygous mutations in the X-linked moesin gene are associated with primary immunodeficiency with T and B cell lymphopenia, which also affects natural killer (NK) cells in most cases. We previously showed that moesin deficiency in mice substantially affects lymphocyte homeostasis, but its impact on NK cells remains unexplored. Here, we found that in moesin-deficient mice, NK cells were decreased in the peripheral blood and bone marrow but increased in the spleen. Analysis of female heterozygous mice showed a selective advantage for moesin-expressing NK cells in the blood. Moesin-deficient NK cells exhibited increased cell death and impaired signaling in response to IL-15, suggesting that moesin regulates NK cell survival through IL-15-mediated signaling. Our findings thus identify moesin as an NK cell homeostasis regulator in vivo.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Makoto Matsui
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Satoko Ichioka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Yuzuki Nakamura
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
7
|
Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, Sun JC, Chen J, Caligiuri MA, Yu J. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 2021; 218:e20210279. [PMID: 34160549 PMCID: PMC8225680 DOI: 10.1084/jem.20210279] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/07/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most prevalent posttranscriptional modification on RNA. NK cells are the predominant innate lymphoid cells that mediate antiviral and antitumor immunity. However, whether and how m6A modifications affect NK cell immunity remain unknown. Here, we discover that YTHDF2, a well-known m6A reader, is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impairs NK cell antitumor and antiviral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. YTHDF2 promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Transcriptome-wide screening identifies Tardbp to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells. Collectively, we elucidate the biological roles of m6A modifications in NK cells and highlight a new direction to harness NK cell antitumor immunity.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA
| |
Collapse
|
8
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
9
|
Yao X, Matosevic S. Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine Growth Factor Rev 2021; 59:36-45. [PMID: 33495094 DOI: 10.1016/j.cytogfr.2020.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cell-based cell therapy has been emerging as a powerful weapon in the treatment of multiple malignancies. However, the inadequate infiltration of the therapeutic NK cells into solid tumors remains a big challenge to their clinical utility. Chemokine networks, which play essential roles in the migration of lymphocytes, have been recognized as critical in driving the intratumoral infiltration of NK cells via interactions between soluble chemokines and their receptors. Often, such interactions are complex and disease-specific. In the context of NK cells, chemokine receptors of note have included CCR2, CCR5, CCR7, CXCR3, and CX3CR1. The immunobiology of chemokine-receptor interactions has fueled the development of approaches that hope to improve the infiltration of NK cells into the microenvironment of solid tumors. Stimulation of NK cells ex vivo in the presence of various cytokines (such as IL-2, IL-15, and IL-21) and genetic engineering of NK cells have been utilized to alter the chemokine receptor profile and generate NK cells with higher infiltrating capacity. Additionally, the immune-suppressive tumor microenvironment has also been targeted, by introducing, either directly or indirectly, chemokine ligands which NK cells are able to respond to, ultimately creating a more hospitable niche for NK cell trafficking. Such strategies have promoted the infiltration and activity of infused NK cells into multiple solid tumors. In this review, we discuss how chemokine receptors and their ligands coordinate and how they can be manipulated to regulate the trafficking, distribution, and residence of NK cells in solid tumors.
Collapse
Affiliation(s)
- Xue Yao
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA.
| |
Collapse
|
10
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
11
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
12
|
Fan X, Kraynak J, Knisely JPS, Formenti SC, Shen WH. PTEN as a Guardian of the Genome: Pathways and Targets. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036194. [PMID: 31932469 DOI: 10.1101/cshperspect.a036194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Faithful transmission of genetic information is only possible with the structural and functional integrity of the genome. PTEN has been recognized as a guardian of the genome since the identification of its noncanonical localization and function in the nucleus. Yet, the role of PTEN in guarding the genome relies on integration of diverse mechanisms elicited by its canonical activity in antagonizing PI3K as well as emerging noncanonical functions. In the nucleus, PTEN maintains the structural integrity of chromosomes and the architecture of heterochromatin by physically interacting with chromosomal and nucleosomal components. PTEN also controls the functional integrity of key genetic transmission machineries by promoting proper assembly of the replisome and mitotic spindles. Deregulation of PTEN signaling impairs genome integrity, leading to spontaneous replication/mitotic stress and subsequent stress tolerance. Identification of novel targets of PTEN signaling and illumination of the interplay of diverse PTEN pathways in genome maintenance will help us better understand mechanisms underlying tumor evolution and therapeutic resistance.
Collapse
Affiliation(s)
- Xinyi Fan
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| |
Collapse
|
13
|
PTEN Function at the Interface between Cancer and Tumor Microenvironment: Implications for Response to Immunotherapy. Int J Mol Sci 2020; 21:ijms21155337. [PMID: 32727102 PMCID: PMC7432882 DOI: 10.3390/ijms21155337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.
Collapse
|
14
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
15
|
Berrien-Elliott MM, Sun Y, Neal C, Ireland A, Trissal MC, Sullivan RP, Wagner JA, Leong JW, Wong P, Mah-Som AY, Wong TN, Schappe T, Keppel CR, Cortez VS, Stamatiades EG, Li MO, Colonna M, Link DC, French AR, Cooper MA, Wang WL, Boldin MP, Reddy P, Fehniger TA. MicroRNA-142 Is Critical for the Homeostasis and Function of Type 1 Innate Lymphoid Cells. Immunity 2019; 51:479-490.e6. [PMID: 31402259 PMCID: PMC6750984 DOI: 10.1016/j.immuni.2019.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/16/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-β (TGF-β) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.
Collapse
Affiliation(s)
- Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yaping Sun
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Carly Neal
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Aaron Ireland
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maria C Trissal
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ryan P Sullivan
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julia A Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeffrey W Leong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pamela Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Annelise Y Mah-Som
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Terrence N Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Catherine R Keppel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel C Link
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wei-Le Wang
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mark P Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Pavan Reddy
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
16
|
Freund-Brown J, Chirino L, Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 2019; 38:105-130. [PMID: 29953390 DOI: 10.1615/critrevimmunol.2018025248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells are innate immune cells equipped with the ability to rapidly kill stressed cells that are neoplastic or virally infected. These cells are especially important in settings where these stressed cells downregulate MHC class I molecules and evade recognition by cytotoxic T cells. However, the activity of NK cells alone is often suboptimal to fully control tumor growth or to clear viral infections. Thus, the enhancement of NK cell function is necessary to fully harness their antitumor or antiviral potential. In this review, we discuss how NK cell function can be augmented by the modulation of signal transduction pathways, by the manipulation of inhibitory/activating receptors on NK cells, and by cytokine-induced activation. We also discuss how some of these strategies are currently impacting NK cells in the treatment of cancer and infections.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leilani Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
18
|
Rulle U, Tsourti Z, Casanova R, Deml KF, Verbeken E, Thunnissen E, Warth A, Cheney R, Sejda A, Speel EJ, Madsen LB, Nonaka D, Navarro A, Sansano I, Marchetti A, Finn SP, Monkhorst K, Kerr KM, Haberecker M, Wu C, Zygoura P, Kammler R, Geiger T, Gendreau S, Schulze K, Vrugt B, Wild P, Moch H, Weder W, Ciftlik AT, Dafni U, Peters S, Bubendorf L, Stahel RA, Soltermann A. Computer-Based Intensity Measurement Assists Pathologists in Scoring Phosphatase and Tensin Homolog Immunohistochemistry — Clinical Associations in NSCLC Patients of the European Thoracic Oncology Platform Lungscape Cohort. J Thorac Oncol 2018; 13:1851-1863. [DOI: 10.1016/j.jtho.2018.08.2034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
|
19
|
Eissing M, Ripken L, Schreibelt G, Westdorp H, Ligtenberg M, Netea-Maier R, Netea MG, de Vries IJM, Hoogerbrugge N. PTEN Hamartoma Tumor Syndrome and Immune Dysregulation. Transl Oncol 2018; 12:361-367. [PMID: 30504085 PMCID: PMC6277246 DOI: 10.1016/j.tranon.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Carriers of a pathogenic germline mutations in the PTEN gene, a well-known tumor suppressor gene, are at increased risk of multiple benign and malignant tumors, e.g. breast, thyroid, endometrial and colon cancer. This is called PTEN Hamartomous Tumor Syndrome (PHTS). PHTS patients may also have an increased risk of immunological dysregulation, such as autoimmunity and immune deficiencies. The effects of PTEN on the immune system have been studied in murine knockout models demonstrating that loss of PTEN function leads to dysregulation of the immune response. This results in susceptibility to autoimmunity, impaired B cell class switching with subsequent hypogammaglobulinemia. Additionally, a decreased ability of dendritic cells to prime CD8+ T cells was observed, leading to impaired tumor eradication. Immune dysfunction in PHTS patients has not yet been extensively studied but might be a manageable contributing factor to the increased cancer risk in PHTS.
Collapse
Affiliation(s)
- Marc Eissing
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Lise Ripken
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Harm Westdorp
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands
| | - Marjolijn Ligtenberg
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid1 0, 6525, GA, Nijmegen, The Netherlands
| | - Romana Netea-Maier
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands; Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein 8, 6525, GA, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat Commun 2018; 9:5006. [PMID: 30479334 PMCID: PMC6258708 DOI: 10.1038/s41467-018-07344-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Engineered oncolytic viruses are used clinically to destroy cancer cells and have the ability to boost anticancer immunity. Phosphatase and tensin homolog deleted on chromosome 10 loss is common across a broad range of malignancies, and is implicated in immune escape. The N-terminally extended isoform, phosphatase and tensin homolog deleted on chromosome 10 alpha (PTENα), regulates cellular functions including protein kinase B signaling and mitochondrial adenosine triphosphate production. Here we constructed HSV-P10, a replicating, PTENα expressing oncolytic herpesvirus, and demonstrate that it inhibits PI3K/AKT signaling, increases cellular adenosine triphosphate secretion, and reduces programmed death-ligand 1 expression in infected tumor cells, thus priming an adaptive immune response and overcoming tumor immune escape. A single dose of HSV-P10 resulted in long term survivors in mice bearing intracranial tumors, priming anticancer T-cell immunity leading to tumor rejection. This implicates HSV-P10 as an oncolytic and immune stimulating therapeutic for anticancer therapy. Oncolytic viruses are a promising therapeutic approach for cancer treatment. The authors demonstrate the efficacy of an engineered HSV-1 expressing PTENα as an oncolytic and immune stimulating therapy against brain cancer metastases.
Collapse
|
21
|
Yang C, Tsaih SW, Lemke A, Flister MJ, Thakar MS, Malarkannan S. mTORC1 and mTORC2 differentially promote natural killer cell development. eLife 2018; 7:35619. [PMID: 29809146 PMCID: PMC5976438 DOI: 10.7554/elife.35619] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/13/2018] [Indexed: 01/02/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that are essential for innate and adaptive immunity. Mechanistic target of rapamycin (mTOR) is critical for NK cell development; however, the independent roles of mTORC1 or mTORC2 in regulating this process remain unknown. Ncr1iCre-mediated deletion of Rptor or Rictor in mice results in altered homeostatic NK cellularity and impaired development at distinct stages. The transition from the CD27+CD11b− to the CD27+CD11b+ stage is impaired in Rptor cKO mice, while, the terminal maturation from the CD27+CD11b+ to the CD27−CD11b+ stage is compromised in Rictor cKO mice. Mechanistically, Raptor-deficiency renders substantial alteration of the gene expression profile including transcription factors governing early NK cell development. Comparatively, loss of Rictor causes more restricted transcriptome changes. The reduced expression of T-bet correlates with the terminal maturation defects and results from impaired mTORC2-AktS473-FoxO1 signaling. Collectively, our results reveal the divergent roles of mTORC1 and mTORC2 in NK cell development.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Shirng-Wern Tsaih
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Angela Lemke
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, United States.,Departments of Medicine, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
22
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
23
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
24
|
Mace EM. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency. Front Immunol 2018; 9:445. [PMID: 29563913 PMCID: PMC5845875 DOI: 10.3389/fimmu.2018.00445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Human natural killer (NK) cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K)-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
25
|
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell 2017; 32:135-154. [PMID: 28810142 DOI: 10.1016/j.ccell.2017.06.009] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/21/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
The metastatic spread of malignant cells to distant anatomical locations is a prominent cause of cancer-related death. Metastasis is governed by cancer-cell-intrinsic mechanisms that enable neoplastic cells to invade the local microenvironment, reach the circulation, and colonize distant sites, including the so-called epithelial-to-mesenchymal transition. Moreover, metastasis is regulated by microenvironmental and systemic processes, such as immunosurveillance. Here, we outline the cancer-cell-intrinsic and -extrinsic factors that regulate metastasis, discuss the key role of natural killer (NK) cells in the control of metastatic dissemination, and present potential therapeutic approaches to prevent or target metastatic disease by harnessing NK cells.
Collapse
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain.
| | - Segundo Gonzalez
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| |
Collapse
|
26
|
The functions of tumor suppressor PTEN in innate and adaptive immunity. Cell Mol Immunol 2017; 14:581-589. [PMID: 28603282 DOI: 10.1038/cmi.2017.30] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) is a lipid and protein phosphatase that is able to antagonize the PI3K/AKT pathway and inhibit tumor growth. PTEN also possesses phosphatase-independent functions. Genetic alterations of PTEN may lead to the deregulation of cell proliferation, survival, differentiation, energy metabolism and cellular architecture and mobility. Although the role of PTEN in tumor suppression is extensively documented and well established, the evidence for its roles in immunity did not start to accumulate until recently. In this review, we will focus on the newly discovered functions of PTEN in the regulation of innate and adaptive immunity, including antiviral responses.
Collapse
|
27
|
Yang M, Chen S, Du J, He J, Wang Y, Li Z, Liu G, Peng W, Zeng X, Li D, Xu P, Guo W, Chang Z, Wang S, Tian Z, Dong Z. NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. Nat Commun 2016; 7:12730. [PMID: 27601261 PMCID: PMC5023956 DOI: 10.1038/ncomms12730] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/27/2016] [Indexed: 01/13/2023] Open
Abstract
Activation of metabolic signalling by IL-15 is required for natural killer (NK) cell development. Here we show that Tsc1, a repressor of mTOR, is dispensable for the terminal maturation, survival and function of NK cells but is critical to restrict exhaustive proliferation of immature NK cells and activation downstream of IL-15 during NK cell development. Tsc1 is expressed in immature NK cells and is upregulated by IL-15. Haematopoietic-specific deletion of Tsc1 causes a marked decrease in the number of NK cells and compromises rejection of ‘missing-self' haematopoietic tumours and allogeneic bone marrow. The residual Tsc1-null NK cells display activated, pro-apoptotic phenotype and elevated mTORC1 activity. Deletion of Raptor, a component of mTORC1, largely reverses these defects. Tsc1-deficient NK cells express increased levels of T-bet and downregulate Eomes and CD122, a subunit of IL-15 receptor. These results reveal a role for Tsc1-dependent inhibition of mTORC1 activation during immature NK cell development. IL-15 orchestrates NK cell metabolism, proliferation, and activation. Here the authors show that Tsc1 is dispensable for mature NK cells but is critical for survival of immature NK by preventing their exhaustive proliferation and activation downstream of IL-15.
Collapse
Affiliation(s)
- Meixiang Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Shasha Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Juan Du
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Junming He
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Yuande Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Zehua Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Guangao Liu
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Wanwen Peng
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiaokang Zeng
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Dan Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Panglian Xu
- School of Medicine, Tsinghua University, Beijing 100086, China
| | - Wei Guo
- School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zai Chang
- Center of Animal Facility, Tsinghua University, Beijing 100086, China
| | - Song Wang
- Collaborative Innovation Center, Wuhan Sports University, Wuhan 340036, China
| | - Zhigang Tian
- School of Life Sciences, University of Sciences and Technology of China, Hefei 230026, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| |
Collapse
|
28
|
Transcription factor KLF2 regulates homeostatic NK cell proliferation and survival. Proc Natl Acad Sci U S A 2016; 113:5370-5. [PMID: 27114551 DOI: 10.1073/pnas.1521491113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that recognize and lyse virally infected or transformed cells. This latter property is being pursued in clinics to treat leukemia with the hope that further breakthroughs in NK cell biology can extend treatments to other cancers. At issue is the ability to expand transferred NK cells and prolong their functionality within the context of a tumor. In terms of NK cell expansion and survival, we now report that Kruppel-like factor 2 (KLF2) is a key transcription factor that underpins both of these events. Excision of Klf2 using gene-targeted mouse models promotes spontaneous proliferation of immature NK cells in peripheral tissues, a phenotype that is replicated under ex vivo conditions. Moreover, KLF2 imprints a homeostatic migration pattern on mature NK cells that allows these cells to access IL-15-rich microenvironments. KLF2 accomplishes this feat within the mature NK cell lineage via regulation of a subset of homing receptors that respond to homeostatic ligands while leaving constitutively expressed receptors that recognize inflammatory cytokines unperturbed. Under steady-state conditions, KLF2-deficient NK cells alter their expression of homeostatic homing receptors and subsequently undergo apoptosis due to IL-15 starvation. This novel mechanism has implications regarding NK cell contraction following the termination of immune responses including the possibility that retention of an IL-15 transpresenting support system is key to extending NK cell activity in a tumor environment.
Collapse
|
29
|
Pelletier AN, Guilbault L, Guimont-Desrochers F, Hillhouse EE, Lesage S. NK Cell Proportion and Number Are Influenced by Genetic Loci on Chromosomes 8, 9, and 17. THE JOURNAL OF IMMUNOLOGY 2016; 196:2627-36. [DOI: 10.4049/jimmunol.1502284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022]
|
30
|
Deng Y, Yu J. The negative NK cell maturation checkpoint Foxo1. Oncotarget 2015; 6:32301-2. [PMID: 26472033 PMCID: PMC4741688 DOI: 10.18632/oncotarget.6109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| |
Collapse
|
31
|
Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology 2015; 222:11-20. [PMID: 26264743 DOI: 10.1016/j.imbio.2015.07.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/15/2015] [Accepted: 07/22/2015] [Indexed: 01/21/2023]
Abstract
Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined.
Collapse
Affiliation(s)
- Jens Pahl
- Innate Immunity Group, D080, German Cancer Research Center, DKFZ Im Neuenheimer Feld 280, 69221 Heidelberg, Germany.
| | - Adelheid Cerwenka
- Innate Immunity Group, D080, German Cancer Research Center, DKFZ Im Neuenheimer Feld 280, 69221 Heidelberg, Germany.
| |
Collapse
|