1
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Graupner N, Müssig J. A Bio-Inspired Approach to Improve the Toughness of Brittle Bast Fibre-Reinforced Composites Using Cellulose Acetate Foils. Biomimetics (Basel) 2024; 9:131. [PMID: 38534816 DOI: 10.3390/biomimetics9030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Bast fibre-reinforced plastics are characterised by good strength and stiffness but are often brittle due to the stiff and less ductile fibres. This study uses a biomimetic approach to improve impact strength. Based on the structure of the spicules of a deep-sea glass sponge, in which hard layers of bioglass alternate with soft layers of proteins, the toughness of kenaf/epoxy composites was significantly improved by a multilayer structure of kenaf and cellulose acetate (CA) foils as impact modifiers. Due to the alternating structure, cracks are deflected, and toughness is improved. One to five CA foils were stacked with kenaf layers and processed to composite plates with bio-based epoxy resin by compression moulding. Results have shown a significant improvement in toughness using CA foils due to increased crack propagation. The unnotched Charpy impact strength increased from 9.0 kJ/m2 of the pure kenaf/epoxy composite to 36.3 kJ/m2 for the sample containing five CA foils. The tensile and flexural strength ranged from 74 to 81 MPa and 112 to 125 MPa, respectively. The tensile modulus reached values between 9100 and 10,600 MPa, and the flexural modulus ranged between 7200 and 8100 MPa. The results demonstrate the successful implementation of an abstract transfer of biological role models to improve the toughness of brittle bast fibre-reinforced plastics.
Collapse
Affiliation(s)
- Nina Graupner
- HSB-Hochschule Bremen, the Biological Materials Group, Department of Biomimetics, Neustadtswall 30, D-28199 Bremen, Germany
| | - Jörg Müssig
- HSB-Hochschule Bremen, the Biological Materials Group, Department of Biomimetics, Neustadtswall 30, D-28199 Bremen, Germany
| |
Collapse
|
3
|
Greenfeld I, Wagner HD. Two natural toughening strategies may inspire sustainable structures. Sci Rep 2023; 13:20416. [PMID: 37989760 PMCID: PMC10663515 DOI: 10.1038/s41598-023-47574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
Contemporary designs of engineering structures strive to minimize the use of material in order to reduce cost and weight. However, the approach taken by focusing on materials selection and on the design of the exterior shape of structures has reached its limits. By contrast, nature implements bottom-up designs based on a multiple-level hierarchy, spanning from nanoscale to macroscale, which evolved over millions of years in an environmentally sustainable manner given limited resources. Natural structures often appear as laminates in wood, bone, plants, exoskeletons, etc., and employ elaborate micro-structural mechanisms to generate simultaneous strength and toughness. One such mechanism, observed in the scorpion cuticle and in the sponge spicule, is the grading (gradual change) of properties like layers thickness, stiffness, strength and toughness. We show that grading is a biological design tradeoff, which optimizes the use of material to enhance survival traits such as endurance against impending detrimental cracks. We found that such design, when applied in a more vulnerable direction of the laminate, has the potential to restrain propagation of hazardous cracks by deflecting or bifurcating them. This is achieved by shifting material from non-critical regions to more critical regions, making the design sustainable in the sense of efficient use of building resources. We investigate how such a mechanism functions in nature and how it can be implemented in synthetic structures, by means of a generic analytical model for crack deflection in a general laminate. Such a mechanical model may help optimize the design of bioinspired structures for specific applications and, eventually, reduce material waste.
Collapse
Affiliation(s)
- Israel Greenfeld
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - H Daniel Wagner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
4
|
Wysokowski M, Luu RK, Arevalo S, Khare E, Stachowiak W, Niemczak M, Jesionowski T, Buehler MJ. Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic-Organic Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7878-7903. [PMID: 37840775 PMCID: PMC10568971 DOI: 10.1021/acs.chemmater.3c00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Indexed: 10/17/2023]
Abstract
Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Rachel K. Luu
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Sofia Arevalo
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Witold Stachowiak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Michał Niemczak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Cao K, Zhu Y, Zheng Z, Cheng W, Zi Y, Zeng S, Zhao D, Yu H. Bio-Inspired Multiscale Design for Strong and Tough Biological Ionogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207233. [PMID: 36905237 PMCID: PMC10161113 DOI: 10.1002/advs.202207233] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Indexed: 05/06/2023]
Abstract
Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale-structured ionogel (M-gel) via ionothermal-stimulated silk fiber splitting and moderate molecularization in the cellulose-ions matrix is reported. The produced M-gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M-gel, the resultant biomimetic M-gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m-3 , and instantaneous impact resistance of 3.07 kJ m-1 , which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load-bearing materials requiring greater impact resistance.
Collapse
Affiliation(s)
- Kaiyue Cao
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Ying Zhu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zihao Zheng
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Wanke Cheng
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yifei Zi
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Suqing Zeng
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Dawei Zhao
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
- Key Laboratory on Resources Chemicals and Materials of Ministry of EducationShenyang University of Chemical TechnologyShenyang110142P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
6
|
Greenfeld I, Wagner HD. Crack deflection in laminates with graded stiffness-lessons from biology. BIOINSPIRATION & BIOMIMETICS 2023; 18:036001. [PMID: 36863022 DOI: 10.1088/1748-3190/acc0ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A crack propagating through a laminate can cause severe structural failure, which may be avoided by deflecting or arresting the crack before it deepens. Inspired by the biology of the scorpion exoskeleton, this study shows how crack deflection can be achieved by gradually varying the stiffness and thickness of the laminate layers. A new generalized multi-layer, multi-material analytical model is proposed, using linear elastic fracture mechanics. The condition for deflection is modeled by comparing the applied stress causing a cohesive failure, resulting in crack propagation, to that causing an adhesive failure, resulting in delamination between layers. We show that a crack propagating in a direction of progressively decreasing elastic moduli is likely to deflect sooner than when the moduli are uniform or increasing. The model is applied to the scorpion cuticle, the laminated structure of which is composed of layers of helical units (Bouligands) with inward decreasing moduli and thickness, interleaved with stiff unidirectional fibrous layers (interlayers). The decreasing moduli act to deflect cracks, whereas the stiff interlayers serve as crack arrestors, making the cuticle less vulnerable to external defects induced by its exposure to harsh living conditions. These concepts may be applied in the design of synthetic laminated structures to improve their damage tolerance and resilience.
Collapse
Affiliation(s)
- Israel Greenfeld
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - H Daniel Wagner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Li QW, Sun BH. Optimization of a lattice structure inspired by glass sponge. BIOINSPIRATION & BIOMIMETICS 2022; 18:016005. [PMID: 36322985 DOI: 10.1088/1748-3190/ac9fb2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The biomimetic design of engineering structures is based on biological structures with excellent mechanical properties, which are the result of billions of years of evolution. However, current biomimetic structures, such as ordered lattice materials, are still inferior to many biomaterials in terms of structural complexity and mechanical properties. For example, the structure ofEuplectella aspergillum, a type of deep-sea glass sponge, is an eye-catching source of inspiration for biomimetic design, many researches have introduced similar architecture in cellular solids. However, guided by scientific theory, how to surpass the mechanical properties ofE. aspergillumremains an unsolved problem. We proposed the lattice structure which firstly surpass theE. aspergillummechanically. The lattice structure of the skeleton ofE. aspergillumconsists of vertically, horizontally, and diagonally oriented struts, which provide superior strength and flexural resistance compared with the conventional square lattice structure. Herein, the structure ofE. aspergillumwas investigated in detail, and by using the theory of elasticity, a lattice structure inspired by the biomimetic structure was proposed. The mechanical properties of the sponge-inspired lattice structure surpassed the sponge structure under a variety of loading conditions, and the excellent performance of this configuration was verified experimentally. The proposed lattice structure can greatly improve the mechanical properties of engineering structures, and it improves strength without much redundancy of material. This study achieved the first surpassing of the mechanical properties of an existing sponge-mimicking design. This design can be applied to lattice structures, truss systems, and metamaterial cells.
Collapse
Affiliation(s)
- Quan-Wei Li
- School of Civil Engineering & Institute of Mechanics and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Bo-Hua Sun
- School of Civil Engineering & Institute of Mechanics and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| |
Collapse
|
8
|
Li T, Liu Q, Qi H, Zhai W. Prestrain Programmable 4D Printing of Nanoceramic Composites with Bioinspired Microstructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204032. [PMID: 36180413 DOI: 10.1002/smll.202204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Four-dimensional (4D) printing enables programmable, predictable, and precise shape change of responsive materials to achieve desirable behaviors beyond conventional three-dimensional (3D) printing. However, applying 4D printing to ceramics remains challenging due to their intrinsic brittleness and inadequate stimuli-responsive ability. Here, this work proposes a conceptional combination of bioinspired microstructure design and a programmable prestrain approach for 4D printing of nanoceramics. To overcome the flexibility limitation, the bioinspired concentric cylinder structure in the struts of 3D printed lattices are replicated to develop origami nanoceramic composites with high inorganic content (95 wt%). Furthermore, 4D printing is achieved by applying a programmed prestrain to the printed lattices, enabling the desired deformation when the prestrain is released. Due to the bioinspired concentric cylinder microstructures, the printed flexible nanoceramic composites exhibit superior mechanical performance and anisotropic thermal management capability. Further, by introducing oxygen vacancies to the ceramic nanosheets, conductive nanoceramic composites are prepared with a unique sensing capability for various sensing applications. Hence, this research breaks through the limitation of ceramics in 4D printing and achieves high-performance shape morphing materials for applications under extreme conditions, such as space exploration and high-temperature systems.
Collapse
Affiliation(s)
- Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
9
|
Chen H, Jia Z, Li L. Lightweight lattice-based skeleton of the sponge Euplectella aspergillum: On the multifunctional design. J Mech Behav Biomed Mater 2022; 135:105448. [PMID: 36166939 DOI: 10.1016/j.jmbbm.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
The glass sponge, Euplectella aspergillum, possesses a lightweight, silica spicule-based, cylindrical lattice-like skeleton, representing an excellent model system for bioinspired lattices. Previous analysis suggested that the E. aspergillum's skeletal lattice exhibits improved buckling resistance and suppressed vortex shedding. How the sponge's skeletal lattice with diagonally-oriented reinforcing bundle of fused spicules and the ridge system behaves under different loading conditions and achieves dual mechanical and fluidic transport performance requires further investigation. Here, we first quantified the structural descriptors such as length and thickness of the bundles of fused spicules and hole opening diameter of the sponge skeletons with and without the soft tissue covered. Secondly, parametric modeling and simulations of the sponge lattice in comparison with other bioinspired designs under different loading conditions were implemented to obtain the structure-mechanical property relationship. Our results reveal that the double-diagonal reinforcements of the E. aspergillum's lattices show i) tendency to maximize the torsional rigidity in comparison to longitudinal and radial modulus and flexural rigidity, and ii) independency of mechanical properties on the diagonal spacing, leaving freedom to control the hole-opening position for the sponge's fluid transport. Furthermore, our coupled fluid-mechanical simulations suggest that the ridge system spiraling the cylindrical lattice simultaneously improves the radial stiffness and fluid permeability. Finally, we discuss the general mechanical strategies and design flexibility in the sponge's skeletal lattice. Our work provides understanding of the mechanical and functional trade-offs in E. aspergillum's skeletal lattice which may shed light on the design of lightweight tubular lattices.
Collapse
Affiliation(s)
- Hongshun Chen
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Zian Jia
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
10
|
Penick CA, Cope G, Morankar S, Mistry Y, Grishin A, Chawla N, Bhate D. The Comparative approach to bio-inspired design: integrating biodiversity and biologists into the design process. Integr Comp Biol 2022; 62:icac097. [PMID: 35767863 DOI: 10.1093/icb/icac097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biodiversity provides a massive library of ideas for bio-inspired design, but the sheer number of species to consider can be daunting. Current approaches for sifting through biodiversity to identify relevant biological models include searching for champion adapters that are particularly adept at solving a particular design challenge. While the champion adapter approach has benefits, it tends to focus on a narrow set of popular models while neglecting the majority of species. An alternative approach to bio-inspired design is the comparative method, which leverages biodiversity by drawing inspiration across a broad range of species. This approach uses methods in phylogenetics to map traits across evolutionary trees and compare trait variation to infer structure-function relationships. Although comparative methods have not been widely used in bio-inspired design, they have led to breakthroughs in studies on gecko-inspired adhesives and multifunctionality of butterfly wing scales. Here we outline how comparative methods can be used to complement existing approaches to bioinspired design, and we provide an example focused on bio-inspired lattices, including honeycomb and glass sponges. We demonstrate how comparative methods can lead to breakthroughs in bio-inspired applications as well as answer major questions in biology, which can strengthen collaborations with biologists and produce deeper insights into biological function.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Grace Cope
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144USA
| | - Swapnil Morankar
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yash Mistry
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| | - Alex Grishin
- Phoenix Analysis & Design Technologies, Inc., Tempe, AZ 85284, USA
| | - Nikhilesh Chawla
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Bhate
- 3DX Research Group, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
11
|
Wagner HD. Hierarchical Interfaces as Fracture Propagation Traps in Natural Layered Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6855. [PMID: 34832257 PMCID: PMC8623779 DOI: 10.3390/ma14226855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Compared with their monolithic version, layered structures are known to be beneficial in the design of materials, especially ceramics, providing enhanced fracture toughness, mechanical strength, and overall reliability. This was proposed in recent decades and extensively studied in the engineering literature. The source of the property enhancement is the ability of layered structures to deflect and often arrest propagating cracks along internal interfaces between layers. Similar crack-stopping abilities are found in nature for a broad range of fibrillary layered biological structures. Such abilities are largely governed by complex architectural design solutions and geometries, which all appear to involve the presence of various types of internal interfaces at different structural levels. The simultaneous occurrence at several scales of different types of interfaces, designated here as hierarchical interfaces, within judiciously designed layered composite materials, is a powerful approach that constrains cracks to bifurcate and stop. This is concisely described here using selected biological examples, potentially serving as inspiration for alternative designs of engineering composites.
Collapse
|
12
|
Fang W, Kochiyama S, Kesari H. Sawtooth patterns in flexural force curves of structural biological materials are not signatures of toughness enhancement: Part II. J Mech Behav Biomed Mater 2021; 124:104787. [PMID: 34534844 DOI: 10.1016/j.jmbbm.2021.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Stiff biological materials (SBMs), such as nacre and bone, are composites that display remarkable toughness enhancements over their primary constituents, which are brittle minerals. These enhancements are thought to be a consequence of different mechanisms made possible by the SBMs' internal lamellar architecture. One such mechanism is the Cook-Gordon (crack-arrest-and-reinitiation) mechanism, whose operation manifests in flexural tests as a sawtooth pattern in the force-displacement curves. The curves from flexural tests carried out on marine sponge spicules, which also possess a lamellar architecture, also display a sawtooth-pattern, suggesting the presence of the Cook-Gordon mechanism. Intriguingly, the spicules were recently found not to display any significant toughness enhancement. To resolve this apparent contradiction, in the preceding paper (Kochiyama et al., 2021), we put forward the hypothesis that the sawtooth pattern was due to the spicules slipping at the tests' supports. In this paper, we present a model for the spicule's flexural tests in which we allow for the possibility for the specimen to slip at the test's supports. We model contact between the specimen and the test's supports using the Coulomb's friction law. By choosing experimentally reasonable values for the friction coefficient, we were able to get the model's predictions to match experimental measurements remarkably well. Additionally, on incorporating the spicules' surface roughness into the model, which we did by varying the friction coefficient along the spicule's length, its predictions can also be made to match the measured sawtooth patterns. We find that the sawtooth patterns in the model are due to slip type instabilities, which further reinforces the hypothesis put forward in our preceding paper.
Collapse
Affiliation(s)
- Wenqiang Fang
- Brown University, School of Engineering, 184 Hope Street, Providence, RI, USA
| | - Sayaka Kochiyama
- Brown University, School of Engineering, 184 Hope Street, Providence, RI, USA
| | - Haneesh Kesari
- Brown University, School of Engineering, 184 Hope Street, Providence, RI, USA.
| |
Collapse
|
13
|
Fernandes MC, Saadat M, Cauchy-Dubois P, Inamura C, Sirota T, Milliron G, Haj-Hariri H, Bertoldi K, Weaver JC. Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge. J R Soc Interface 2021; 18:20210559. [PMID: 34493089 DOI: 10.1098/rsif.2021.0559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From the discovery of functionally graded laminated composites, to near-structurally optimized diagonally reinforced square lattice structures, the skeletal system of the predominantly deep-sea sponge Euplectella aspergillum has continued to inspire biologists, materials scientists and mechanical engineers. Building on these previous efforts, in the present study, we develop an integrated finite element and fluid dynamics approach for investigating structure-function relationships in the complex maze-like organization of helical ridges that surround the main skeletal tube of this species. From these investigations, we discover that not only do these ridges provide additional mechanical reinforcement, but perhaps more significantly, provide a critical hydrodynamic benefit by effectively suppressing von Kármán vortex shedding and reducing lift forcing fluctuations over a wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge geometry to other more symmetrical strake-based vortex suppression systems commonly employed in infrastructure applications ranging from antennas to underwater gas and oil pipelines, we find that the unique maze-like ridge organization of E. aspergillum can completely suppress vortex shedding rather than delaying their shedding to a more downstream location, thus highlighting their potential benefit in these engineering contexts.
Collapse
Affiliation(s)
- Matheus C Fernandes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Mehdi Saadat
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Patrick Cauchy-Dubois
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Chikara Inamura
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ted Sirota
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | | | - Hossein Haj-Hariri
- College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Katia Bertoldi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - James C Weaver
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Falcucci G, Amati G, Fanelli P, Krastev VK, Polverino G, Porfiri M, Succi S. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature 2021; 595:537-541. [PMID: 34290424 DOI: 10.1038/s41586-021-03658-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/20/2021] [Indexed: 11/09/2022]
Abstract
Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3-6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the 'lattice Boltzmann' method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8-10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.
Collapse
Affiliation(s)
- Giacomo Falcucci
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Rome, Italy. .,Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Giorgio Amati
- High Performance Computing Department, CINECA Rome Section, Rome, Italy
| | | | - Vesselin K Krastev
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Maurizio Porfiri
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, USA.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, NY, USA.,Center for Urban Science and Progress, Tandon School of Engineering, New York University, New York, NY, USA
| | - Sauro Succi
- Department of Physics, Harvard University, Cambridge, MA, USA.,Italian Institute of Technology, Center for Life Nano- and Neuro-Science, Rome, Italy.,National Research Council of Italy - Institute for Applied Computing (IAC), Rome, Italy
| |
Collapse
|
15
|
Abstract
A comparative study of the microscopic morphology and chemical characteristics of spicules of Hexactinellids (Hexactinellida) with different structural features of the skeletons, as well as the freshwater Baikal sponge belonging to the class of common sponges (Demospongia), was carried out. The trace element composition of sponge spicules was determined by X-ray fluorescence spectrometry. The spicules of siliceous sponges contain many elements, arranged in decreasing order of concentration: Si, Ca, Fe, Cl, K, Zn, and others. It was shown that the surface layer of sea sponges contains mainly carbon (C), oxygen (O), and to a lesser extent nitrogen (N), silicon (Si), and sodium (Na). The spicules of the studied siliceous sponges can be divided into two groups according to the phase composition, namely one containing crystalline calcium compounds and one without them. Analysis of infrared absorption spectra allows us to conclude that the sponges Euplectella aspergillum, E. suberia and Dactylocalyx sp. contain silica partially bound to the organic matrix, while the silica skeleton of the sponges of the other group (Schulzeviella gigas, Sericolophus sp., Asconema setubalense, Sarostegia oculata, Farrea sp. and Lubomirskia baicalensis sp.) practically does not differ from the precipitated SiO2. This comparative study of the chemical composition of the skeletons of marine Hexactinellids and common freshwater sponge allows us to conclude that there are no fundamental differences in the chemical composition of spicules, and all of them can be used as a starting material for creating new composite silicon–organic functional materials.
Collapse
|
16
|
Sawtooth patterns in flexural force curves of structural biological materials are not signatures of toughness enhancement: Part I. J Mech Behav Biomed Mater 2021; 119:104362. [PMID: 33901967 DOI: 10.1016/j.jmbbm.2021.104362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
Layered architectures are prevalent in tough biological composites, such as nacre and bone. Another example of a biological composite with layered architecture is the skeletal elements-called spicules-from the sponge Euplectella aspergillum. Based on the similarities between the architectures, it has been speculated that the spicules are also tough. Such speculation is in part supported by a sequence of sudden force drops (sawtooth patterns) that are observed in the spicules' force-displacement curves from flexural tests, which are thought to reflect the operation of fracture toughness enhancing mechanisms. In this study, we performed three-point bending tests on the spicules, which also yielded the aforementioned sawtooth patterns. However, based on the analysis of the micrographs obtained during the tests, we found that the sawtooth patterns were in fact a consequence of slip events in the flexural tests. This is put into perspective by our recent study, in which we showed that the spicules' layered architecture contributes minimally to their toughness, and that the toughness enhancement in them is meager in comparison to what is observed in bone and nacre [Monn MA, Vijaykumar K, Kochiyama S, Kesari H (2020): Nat Commun 11:373]. Our past and current results underline the importance of inferring a material's fracture toughness through direct measurements, rather than relying on visual similarities in architectures or force-displacement curve patterns. Our results also suggest that since the spicules do not possess remarkable toughness, re-examining the mechanical function of the spicule's intricate architecture could lead to the discovery of new engineering design principles.
Collapse
|
17
|
Fernandes MC, Aizenberg J, Weaver JC, Bertoldi K. Mechanically robust lattices inspired by deep-sea glass sponges. NATURE MATERIALS 2021; 20:237-241. [PMID: 32958878 DOI: 10.1038/s41563-020-0798-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/11/2020] [Indexed: 05/18/2023]
Abstract
The predominantly deep-sea hexactinellid sponges are known for their ability to construct remarkably complex skeletons from amorphous hydrated silica. The skeletal system of one such species of sponge, Euplectella aspergillum, consists of a square-grid-like architecture overlaid with a double set of diagonal bracings, creating a chequerboard-like pattern of open and closed cells. Here, using a combination of finite element simulations and mechanical tests on 3D-printed specimens of different lattice geometries, we show that the sponge's diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material. Furthermore, using an evolutionary optimization algorithm, we show that our sponge-inspired lattice geometry approaches the optimum material distribution for the design space considered. Our results demonstrate that lessons learned from the study of sponge skeletal systems can be exploited for the realization of square lattice geometries that are geometrically optimized to avoid global structural buckling, with implications for improved material use in modern infrastructural applications.
Collapse
Affiliation(s)
- Matheus C Fernandes
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute, Harvard University, Cambridge, MA, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute, Harvard University, Cambridge, MA, USA
- Kavli Institute, Harvard University, Cambridge, MA, USA
| | - James C Weaver
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute, Harvard University, Cambridge, MA, USA.
| | - Katia Bertoldi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute, Harvard University, Cambridge, MA, USA.
- Kavli Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
18
|
Robson Brown K, Bacheva D, Trask RS. The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures. J R Soc Interface 2020; 16:20180965. [PMID: 31064257 PMCID: PMC6544886 DOI: 10.1098/rsif.2018.0965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In Nature, despite the diversity of materials, patterns and structural designs, the majority of biomineralized systems share a common feature: the incorporation of multiple sets of discrete elements across different length scales. This paper is the first to assess whether the design features observed in the hexactinellid sea sponge Euplectella aspergillum can be transferred and implemented for the development of new structurally efficient engineering architectures manufactured by three-dimensional (3D) additive manufacturing (AM). We present an investigation into the design and survival strategies found in the biological system and evaluate their translation into a scaled engineering analogue assessed experimentally and through finite-element (FE) simulations. Discrete sections of the skeletal lattice were evaluated and tested in an in situ compression fixture using micro-computed tomography (μCT). This methodology permitted the characterization of the hierarchical organization of the siliceous skeleton; a multi-layered arrangement with a fusion between struts to improve the local energy-absorbing capabilities. It was observed that the irregular overlapping architecture of spicule–nodal point sub-structure offers unique improvements in the global strength and stiffness of the structure. The 3D data arising from the μCT of the skeleton were used to create accurate FE models and replication through 3D AM. The printed struts in the engineering analogue were homogeneous, comprising bonded ceramic granular particles (10–100 µm) with an outer epoxy infused shell. In these specimens, the compressive response of the sample was expected to be dynamic and catastrophic, but while the specimens showed a similar initiation and propagation failure pattern to E. aspergillum, the macroscopic deformation behaviour was altered from the expected predominantly brittle behaviour to a more damage tolerant quasi-brittle failure mode. In addition, the FE simulation of the printed construct predicted the same global failure response (initiation location and propagation directionality) as observed in E. aspergillum. The ability to mimic directly the complex material construction and design features in E. aspergillum is currently beyond the latest advances in AM. However, while acknowledging the material-dominated limitations, the results presented here highlight the considerable potential of direct mimicry of biomineralized lattice architectures as future light-weight damage tolerant composite structures.
Collapse
Affiliation(s)
- K Robson Brown
- 1 CT Imaging Laboratory, University of Bristol , 43 Woodland Road, Bristol BS8 1UU , UK.,2 Department of Mechanical Engineering, University of Bristol , University Walk, Bristol BS8 1TR , UK
| | - D Bacheva
- 4 Hieta Technologies , Bristol and Bath Science Park, Bristol BS16 7FR , UK
| | - R S Trask
- 3 Department of Aerospace Engineering, Advanced Composites Centre for Innovation and Science, University of Bristol , University Walk, Bristol BS8 1TR , UK
| |
Collapse
|
19
|
Li L, Guo C, Chen Y, Chen Y. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties. BIOINSPIRATION & BIOMIMETICS 2020; 15:036006. [PMID: 31945752 DOI: 10.1088/1748-3190/ab6ca9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The glass sponge is a porous lightweight structure in the deep sea. It has high toughness, high strength, and high stability. In this work, a super-depth-of-field microscope was employed to observe the microstructure of the glass sponge. Based on its morphological characteristics, two novel bio-inspired lightweight structures were proposed, and the finite-element analyses (FEA) of the structures were carried out under compression, torsion, and bending loads, respectively. The structure samples were fabricated using stereolithography 3D-printing technology, and the dimension sizes of the samples were equal to those of the corresponding FEA models. Mechanical tests were performed on an electronic universal testing machine, and the results were used to demonstrate the reliability of the FEA. Additionally, lightweight numbers (LWN) were proposed to evaluate the lightweight efficiency, and a honeycomb structure was selected as the reference structure. The results indicate that the lightweight numbers of the novel bio-inspired structures are higher than those of the honeycomb structure, respectively. Finally, the proposed structures were optimized by the response surface, BP (Back Propagation) and GA-BP (Genetic Algorithm optimized Back Propagation) method. The results show that the GA-BP model after training has a high accuracy. These results can provide significant guidance for the design of tube-shaped, thin-walled structures in the engineering.
Collapse
Affiliation(s)
- Longhai Li
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China. Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Monn MA, Vijaykumar K, Kochiyama S, Kesari H. Lamellar architectures in stiff biomaterials may not always be templates for enhancing toughness in composites. Nat Commun 2020; 11:373. [PMID: 31953388 PMCID: PMC6969223 DOI: 10.1038/s41467-019-14128-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
The layered architecture of stiff biological materials often endows them with surprisingly high fracture toughness in spite of their brittle ceramic constituents. Understanding the link between organic-inorganic layered architectures and toughness could help to identify new ways to improve the toughness of biomimetic engineering composites. We study the cylindrically layered architecture found in the spicules of the marine sponge Euplectella aspergillum. We cut micrometer-size notches in the spicules and measure their initiation toughness and average crack growth resistance using flexural tests. We find that while the spicule's architecture provides toughness enhancements, these enhancements are relatively small compared to prototypically tough biological materials, like nacre. We investigate these modest toughness enhancements using computational fracture mechanics simulations.
Collapse
Affiliation(s)
- Michael A Monn
- Brown University School of Engineering, 184 Hope St, Providence, RI, 02912, USA
| | - Kaushik Vijaykumar
- Brown University School of Engineering, 184 Hope St, Providence, RI, 02912, USA
| | - Sayaka Kochiyama
- Brown University School of Engineering, 184 Hope St, Providence, RI, 02912, USA
| | - Haneesh Kesari
- Brown University School of Engineering, 184 Hope St, Providence, RI, 02912, USA.
| |
Collapse
|
21
|
Mueller J, Raney JR, Kochmann DM, Shea K. Stiffness-Independent Toughening of Beams through Coaxial Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800728. [PMID: 30479922 PMCID: PMC6247059 DOI: 10.1002/advs.201800728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/17/2018] [Indexed: 06/09/2023]
Abstract
To be of engineering relevance, it is essential for stiff and strong materials to possess also high toughness. However, as these properties are typically mutually exclusive, they are rarely found in nature and synthetic replications are extremely limited. Here, an elegant albeit simple physical principle that enables ligaments in cellular networks to possess these mechanical properties simultaneously is presented. The underlying architecture consists of multiple, coaxially aligned layers separated by interfaces that prevent crack propagation, hence increasing the energy required for complete rupture. The results show that the fracture strain and toughness can be increased by over 100%, when compared to conventional reference struts, while fully maintaining the density, stiffness, and strength. The bioinspired and highly versatile approach is scale-independent under the absence of shear, applicable to various geometries, and complementary to existing approaches. It can, therefore, significantly improve safety and reduce cost and environmental impact in numerous applications, such as packaging, sports equipment, and transportation.
Collapse
Affiliation(s)
- Jochen Mueller
- Engineering Design and Computing LaboratoryETH Zurich8092ZurichSwitzerland
| | - Jordan R. Raney
- Architected Materials LaboratoryUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Dennis M. Kochmann
- Mechanics and Materials GroupETH Zurich8092ZurichSwitzerland
- Kochmann Research GroupCalifornia Institute of TechnologyPasadenaCA91107USA
| | - Kristina Shea
- Engineering Design and Computing LaboratoryETH Zurich8092ZurichSwitzerland
| |
Collapse
|
22
|
Tanaka H, Hamada K, Shibutani Y. Transition mechanism for a periodic bar-and-joint framework with limited degrees of freedom controlled by uniaxial load and internal stiffness. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180139. [PMID: 30110423 PMCID: PMC6030267 DOI: 10.1098/rsos.180139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
A specific periodic bar-and-joint framework with limited degrees of freedom is shown to have a transition mechanism when subjected to an external force. The static nonlinear elasticity of this framework under a uniaxial load is modelled with the two angular variables specifying the rotation and distortion of the linked square components. Numerically exploring the equilibrium paths then reveals a transition state of the structure at a critical value of the internal stiffness. A simplified formulation of the model with weak nonlinear terms yields an exact solution of its transition state. Load-displacement behaviour and stability for the two systems with or without approximation are analysed and compared.
Collapse
Affiliation(s)
- H. Tanaka
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - K. Hamada
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Y. Shibutani
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Nanotechnology Program, Vietnam Japan University, Luu Huu Phuoc Street, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Viet Nam
| |
Collapse
|
23
|
Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture. J Mech Behav Biomed Mater 2017; 76:69-75. [DOI: 10.1016/j.jmbbm.2017.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/17/2022]
|
24
|
Monn MA, Ferreira J, Yang J, Kesari H. A Millimeter Scale Flexural Testing System for Measuring the Mechanical Properties of Marine Sponge Spicules. J Vis Exp 2017. [PMID: 29053688 DOI: 10.3791/56571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many load bearing biological structures (LBBSs)-such as feather rachises and spicules-are small (<1 mm) but not microscopic. Measuring the flexural behavior of these LBBSs is important for understanding the origins of their remarkable mechanical functions. We describe a protocol for performing three-point bending tests using a custom-built mechanical testing device that can measure forces ranging from 10-5 to 101 N and displacements ranging from 10-7 to 10-2 m. The primary advantage of this mechanical testing device is that the force and displacement capacities can be easily adjusted for different LBBSs. The device's operating principle is similar to that of an atomic force microscope. Namely, force is applied to the LBBS by a load point that is attached to the end of a cantilever. The load point displacement is measured by a fiber optic displacement sensor and converted into a force using the measured cantilever stiffness. The device's force range can be adjusted by using cantilevers of different stiffnesses. The device's capabilities are demonstrated by performing three-point bending tests on the skeletal elements of the marine sponge Euplectella aspergillum. The skeletal elements-known as spicules-are silica fibers that are approximately 50 µm in diameter. We describe the procedures for calibrating the mechanical testing device, mounting the spicules on a three-point bending fixture with a ≈1.3 mm span, and performing a bending test. The force applied to the spicule and its deflection at the location of the applied force are measured.
Collapse
|
25
|
An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida). Front Zool 2017; 14:18. [PMID: 28331531 PMCID: PMC5359874 DOI: 10.1186/s12983-017-0191-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. Phylogenetic analyses suggest that Aulocalycoida is diphyletic and provide further support for the paraphyly of order Hexactinosida; hence these orders are abolished from the Linnean classification. We further assembled morphological character matrices to integrate so far unsequenced genera into phylogenetic analyses in maximum parsimony (MP), maximum likelihood (ML), Bayesian, and morphology-based binning frameworks. We find that of these four approaches, total-evidence analysis using MP gave the most plausible results concerning congruence with existing phylogenetic and taxonomic hypotheses, whereas the other methods, especially ML and binning, performed more poorly. We use our total-evidence phylogeny of all extant glass sponge genera for ancestral state reconstruction of morphological characters in MP and ML frameworks, gaining new insights into the evolution of major hexactinellid body plans and other characters such as different spicule types. Conclusions Our study demonstrates how a comprehensive, albeit in some parts provisional, phylogeny of a larger taxon can be achieved with an integrative approach utilizing molecular and morphological data, and how this can be used as a basis for understanding phenotypic evolution. The datasets and associated trees presented here are intended as a resource and starting point for future work on glass sponge evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0191-3) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Tanaka H, Suga K, Iwata N, Shibutani Y. Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading. Sci Rep 2017; 7:39816. [PMID: 28051133 PMCID: PMC5209672 DOI: 10.1038/srep39816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
Anisotropic materials form inside living tissue and are widely applied in engineered structures, where sophisticated structural and functional design principles are essential to employing these materials. This paper presents a candidate laminated open-cell framework, which is an anisotropic material that shows remarkable mechanical performance. Using additive manufacturing, artificial frameworks are fabricated by lamination of in-plane orthotropic microstructures made of elbowed beam and column members; this fabricated structure features orthogonal anisotropy in three-dimensional space. Uniaxial loading tests reveal strong auxeticity (high negative Poisson's ratios) in the out-of-plane direction, which is retained reproducibly up to the nonlinear elastic region, and is equal under tensile and compressive loading. Finite element simulations support the observed auxetic behaviors for a unit cell in the periodic framework, which preserve the theoretical elastic properties of an orthogonal solid. These findings open the possibility of conceptual materials design based on geometry.
Collapse
Affiliation(s)
- Hiro Tanaka
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaito Suga
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Iwata
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoji Shibutani
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability. Sci Rep 2017; 7:39547. [PMID: 28051108 PMCID: PMC5209657 DOI: 10.1038/srep39547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/24/2016] [Indexed: 11/08/2022] Open
Abstract
We identify a new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia. The skeletal elements, known as spicules, are millimeter-long, axisymmetric, silica rods that are tapered along their lengths. Mechanical designs in other structural biomaterials, such as nacre and bone, have been studied primarily for their benefits to toughness properties. The structure-property connection we identify, however, falls in the entirely new category of buckling resistance. We use computational mechanics calculations and information about the spicules' arrangement within the sponge to develop a structural mechanics model for the spicules. We use our structural mechanics model along with measurements of the spicules' shape to estimate the load they can transmit before buckling. Compared to a cylinder with the same length and volume, we predict that the spicules' shape enhances this critical load by up to 30%. We also find that the spicules' shape is close to the shape of the column that is optimized to transmit the largest load before buckling. In man-made structures, many strategies are used to prevent buckling. We find, however, that the spicules use a completely new strategy. We hope our discussion will generate a greater appreciation for nature's ability to produce beneficial designs.
Collapse
|
28
|
Internal structure of sponge glass fiber revealed by ptychographic nanotomography. J Struct Biol 2016; 194:124-8. [PMID: 26853498 DOI: 10.1016/j.jsb.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
|
29
|
Zhang Y, Reed BW, Chung FR, Koski KJ. Mesoscale elastic properties of marine sponge spicules. J Struct Biol 2016; 193:67-74. [DOI: 10.1016/j.jsb.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
|
30
|
Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proc Natl Acad Sci U S A 2015; 112:11449-54. [PMID: 26261346 DOI: 10.1073/pnas.1506968112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.
Collapse
|