1
|
Bleck D, Loacker-Schöch K, Classen T, Jose J, Schneider M, Pongratz G. Fibroblast-like synoviocytes preferentially induce terminal differentiation of IgD + memory B cells instead of naïve B cells. Immunology 2024; 173:520-535. [PMID: 39054787 DOI: 10.1111/imm.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease driven by highly active autoantibody-producing B cells. Activation of B cells is maintained within ectopic germinal centres found in affected joints. Fibroblast-like synoviocytes (FLS) present in inflamed joints support B-cell survival, activation, and differentiation. CD27+ memory B cells and naive B cells show very different responses to activation, particularly by CD40 ligand (CD40L). We show that FLS-dependent activation of human B cells is dependent on interleukin-6 (IL-6) and CD40L. FLS have been shown to activate both naive and memory B cells. Whether the activating potential of FLS is different for naive and memory B cells has not been investigated. Our results suggest that FLS-induced activation of B cells is dependent on IL-6 and CD40L. While FLS are able to induce plasma cell differentiation, isotype switching, and antibody production in memory B cells, the ability of FLS to activate naive B cells is significantly lower.
Collapse
Affiliation(s)
- Dennis Bleck
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Klara Loacker-Schöch
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tim Classen
- Clinic of Orthopedics/Orthopedic Rheumatology, St. Elisabeth-Hospital Meerbusch-Lank, Meerbusch, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Muenster, Germany
| | - Matthias Schneider
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Georg Pongratz
- Clinic for Rheumatology, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Hiller Research Center, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Rheumatology, Barmherzige Brueder Hospital Regensburg, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Ma RX, Wei JR, Hu YW. Characteristics of Carcinoembryonic Antigen-Related Cell Adhesion Molecules and Their Relationship to Cancer. Mol Cancer Ther 2024; 23:939-948. [PMID: 38490257 DOI: 10.1158/1535-7163.mct-23-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAM), such as carcinoembryonic antigen (CEA) and the oncofetal glycoprotein family, are tumor markers. The CEACAMs consist of 12 different human CEACAMs and 5 different murine CEACAMs. The CEACAM family of proteins participates in multiple biological processes that include the immune response, angiogenesis, and cancer. CEACAMs play a significant role in cancer initiation and development. Increasing evidence suggests that family members may be new cancer biomarkers and targets in that CEACEAMs tend to be aberrantly expressed and therefore may have potential diagnostic and therapeutic importance. This review systematically summarizes the biogenesis, biological properties, and functions of CEACAMs, with a focus on their relationship with cancer and potential clinical application. As our knowledge of the relationships among CEACAMs and cancer increases, and as our understanding of the involved molecular mechanisms improves, new therapeutic strategies will evolve for cancer prevention and treatment of patients with cancer.
Collapse
Affiliation(s)
- Ru-Xue Ma
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Jian-Rui Wei
- Department of Cardiac Center, Guangzhou Medical University, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yan-Wei Hu
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Fouza A, Fylaktou A, Tagkouta A, Daoudaki M, Vagiotas L, Kasimatis E, Stangou M, Xochelli A, Nikolaidou V, Katsanos G, Tsoulfas G, Skoura L, Papagianni A, Antoniadis N. Evaluation of Regulatory B Cell Subpopulations CD24++CD38++, CD24++CD27+, Plasmablasts and Their Correlation with T Regs CD3+CD4+CD25+FOXP3+ in Dialysis Patients and Early Post-Transplant Rejection-Free Kidney Recipients. J Clin Med 2024; 13:3080. [PMID: 38892795 PMCID: PMC11173263 DOI: 10.3390/jcm13113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: B and T regulatory cells, also known as Bregs and Tregs, are involved in kidney transplantation. The purpose of this study is to monitor changes in the frequency and absolute numbers of Tregs (CD3+CD4+CD25+FoxP3+), transitional Bregs (tBregs) (CD24++CD38++), memory Bregs (mBregs) (CD24++CD27+), and plasmablasts before (T0) and six months (T6) after transplantation. Additionally, we aim to investigate any correlation between Tregs and tBregs, mBregs, or plasmablasts and their relationship with graft function. Methods: Flow cytometry was used to immunophenotype cells from 50 kidney recipients who did not experience rejection. Renal function was assessed using the estimated glomerular filtration rate (eGFR). Results: At T6, there was a significant decrease in the frequency of Tregs, plasmablasts, and tBregs, as well as in the absolute number of tBregs. The frequency of mBregs, however, remained unchanged. Graft function was found to have a positive correlation with the frequency of tBregs and plasmablasts. A significant correlation was observed between the frequency and absolute number of tBregs only when the eGFR was greater than 60 but not at lower values. At an eGFR greater than 60, there was a positive correlation between the absolute numbers of Tregs and mBregs but not between Tregs and tBregs. No correlation was observed for any cell population in dialysis patients. Conclusions: The data show a correlation between the frequency and absolute number of tBregs and the absolute number of Tregs and mBregs with good renal function in the early post-transplant period.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lampros Vagiotas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Efstratios Kasimatis
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Maria Stangou
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Aliki Xochelli
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Department of Immunology, Ippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Georgios Katsanos
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, Ippokration General Hospital, 54642 Thessaloniki, Greece; (E.K.); (M.S.); (A.P.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54642 Thessaloniki, Greece; (L.V.); (G.K.); (G.T.); (N.A.)
| |
Collapse
|
4
|
Kashimura M. Blood defense system - Proposal for a new concept of an immune system against blood borne pathogens comprising the liver, spleen and bone marrow. Scand J Immunol 2024; 99:e13363. [PMID: 38605529 DOI: 10.1111/sji.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/13/2024]
Abstract
Blood-borne pathogen (BBP) infections can rapidly progress to life-threatening sepsis and must therefore be promptly eliminated by the host's immune system. Intravascular macrophages of the liver sinusoid, splenic marginal zone and red pulp and perisinusoidal macrophage protrusions in the bone marrow (BM) directly phagocytose BBPs in the blood as an innate immune response. The liver, spleen and BM thereby work together as the blood defence system (BDS) in response to BBPs by exerting their different immunological roles. The liver removes the vast majority of these invading organisms via innate immunity, but their complete elimination is not possible without the actions of antibodies. Splenic marginal zone B cells promptly produce IgM and IgG antibodies against BBPs. The splenic marginal zone transports antigenic information from the innate to the adaptive immune systems. The white pulp of the spleen functions as adaptive immune tissue and produces specific and high-affinity antibodies with an immune memory against BBPs. The BM works to maintain immune memory by supporting the survival of memory B cells, memory T cells and long-lived plasma cells (LLPCs), all of which have dedicated niches. Furthermore, BM perisinusoidal naïve follicular B cells promptly produce IgM antibodies against BBPs in the BM sinusoid and the IgG memory B cells residing in the BM rapidly transform to plasma cells which produce high-affinity IgG antibodies upon reinfection. This review describes the complete immune defence characteristics of the BDS against BBPs through the collaboration of the liver, spleen and BM with combined different immunological roles.
Collapse
Affiliation(s)
- Makoto Kashimura
- Department of Hematology, Shinmatsudo Central General Hospital, Matsudo, Japan
| |
Collapse
|
5
|
Bozhkova M, Gardzheva P, Rangelova V, Taskov H, Murdjeva M. Cutting-edge assessment techniques for B cell immune memory: an overview. BIOTECHNOL BIOTEC EQ 2024; 38. [DOI: 10.1080/13102818.2024.2345119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 10/31/2024] Open
Affiliation(s)
- Martina Bozhkova
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Petya Gardzheva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University–Plovdiv, Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Ambegaonkar AA, Holla P, Sohn H, George R, Tran TM, Pierce SK. Isotype switching in human memory B cells sets intrinsic antigen-affinity thresholds that dictate antigen-driven fates. Proc Natl Acad Sci U S A 2024; 121:e2313672121. [PMID: 38502693 PMCID: PMC10990115 DOI: 10.1073/pnas.2313672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Memory B cells (MBCs) play a critical role in protection against homologous and variant pathogen challenge by either differentiating to plasma cells (PCs) or to germinal center (GC) B cells. The human MBC compartment contains both switched IgG+ and unswitched IgM+ MBCs; however, whether these MBC subpopulations are equivalent in their response to B cell receptor cross-linking and their resulting fates is incompletely understood. Here, we show that IgG+ and IgM+ MBCs can be distinguished based on their response to κ-specific monoclonal antibodies of differing affinities. IgG+ MBCs responded only to high-affinity anti-κ and differentiated almost exclusively toward PC fates. In contrast, IgM+ MBCs were eliminated by apoptosis by high-affinity anti-κ but responded to low-affinity anti-κ by differentiating toward GC B cell fates. These results suggest that IgG+ and IgM+ MBCs may play distinct yet complementary roles in response to pathogen challenge ensuring the immediate production of high-affinity antibodies to homologous and closely related challenges and the generation of variant-specific MBCs through GC reactions.
Collapse
Affiliation(s)
- Abhijit A. Ambegaonkar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
7
|
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12:349. [PMID: 38675732 PMCID: PMC11054513 DOI: 10.3390/vaccines12040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines prevent a significant number of deaths annually. However, certain populations do not respond adequately to vaccination due to impaired immune systems. Cirrhosis, a condition marked by a profound disruption of immunity, impairs the normal immunization process. Critical vaccines for cirrhotic patients, such as the hepatitis A virus (HAV), hepatitis B virus (HBV), influenza, pneumococcal, and coronavirus disease 19 (COVID-19), often elicit suboptimal responses in these individuals. The humoral response, essential for immunization, is less effective in cirrhosis due to a decline in B memory cells and an increase in plasma blasts, which interfere with the creation of a long-lasting response to antigen vaccination. Additionally, some T cell subtypes exhibit reduced activation in cirrhosis. Nonetheless, the persistence of memory T cell activity, while not preventing infections, may help to attenuate the severity of diseases in these patients. Alongside that, the impairment of innate immunity, particularly in dendritic cells (DCs), prevents the normal priming of adaptive immunity, interrupting the immunization process at its onset. Furthermore, cirrhosis disrupts the gut-liver axis balance, causing dysbiosis, reduced production of short-chain fatty acids (SCFAs), increased intestinal permeability, and bacterial translocation. Undermining the physiological activity of the immune system, these alterations could impact the vaccine response. Enhancing the understanding of the molecular and cellular factors contributing to impaired vaccination responses in cirrhotic patients is crucial for improving vaccine efficacy in this population and developing better prevention strategies.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Silvia Andaloro
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| |
Collapse
|
8
|
Yuuki H, Itamiya T, Nagafuchi Y, Ota M, Fujio K. B cell receptor repertoire abnormalities in autoimmune disease. Front Immunol 2024; 15:1326823. [PMID: 38361948 PMCID: PMC10867955 DOI: 10.3389/fimmu.2024.1326823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
B cells play a crucial role in the immune response and contribute to various autoimmune diseases. Recent studies have revealed abnormalities in the B cell receptor (BCR) repertoire of patients with autoimmune diseases, with distinct features observed among different diseases and B cell subsets. Classically, BCR repertoire was used as an identifier of distinct antigen-specific clonotypes, but the recent advancement of analyzing large-scale repertoire has enabled us to use it as a tool for characterizing cellular biology. In this review, we provide an overview of the BCR repertoire in autoimmune diseases incorporating insights from our latest research findings. In systemic lupus erythematosus (SLE), we observed a significant skew in the usage of VDJ genes, particularly in CD27+IgD+ unswitched memory B cells and plasmablasts. Notably, autoreactive clones within unswitched memory B cells were found to be increased and strongly associated with disease activity, underscoring the clinical significance of this subset. Similarly, various abnormalities in the BCR repertoire have been reported in other autoimmune diseases such as rheumatoid arthritis. Thus, BCR repertoire analysis holds potential for enhancing our understanding of the underlying mechanisms involved in autoimmune diseases. Moreover, it has the potential to predict treatment effects and identify therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hayato Yuuki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Faber E, van Schalkwyk A, Ivy Tshilwane S, Van Kleef M, Pretorius A. Identification of T cell and linear B cell epitopes on African horse sickness virus serotype 4 proteins VP1-1, VP2, VP4, VP7 and NS3. Vaccine 2024; 42:136-145. [PMID: 38097459 DOI: 10.1016/j.vaccine.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/01/2024]
Abstract
The viral proteins VP1-1, VP2, VP4, VP7 and NS3, of African horse sickness virus serotype 4 (AHSV4), have previously been identified to contain CD8+ T cell epitopes. In this study, overlapping peptides spanning the entire sequences of these AHSV4 proteins were synthesized and used to map epitopes. Peripheral blood mononuclear cells (PBMC) isolated from five horses immunized with an attenuated AHSV4 were stimulated in vitro with the synthesized peptides. Various memory immune assays were used to identify the individual peptides that contain CD8+ T cell epitopes, CD4+ T cell epitopes and linear B cell epitopes. The newly discovered individual peptides of AHSV4 proteins VP1-1, VP4, VP7 and/or NS3 that contain CD8+ T cell, CD4+ T cell or linear B cell epitopes could contribute to the design and development of new generation AHS peptide-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Erika Faber
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa.
| | - Antoinette van Schalkwyk
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Biotechnology, University of the Western Cape, Robert Sobukwe road, Bellville 7535, South Africa
| | - Selaelo Ivy Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Mirinda Van Kleef
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Alri Pretorius
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
10
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
11
|
Quirk GE, Schoenle MV, Peyton KL, Uhrlaub JL, Lau B, Burgess JL, Ellingson K, Beitel S, Romine J, Lutrick K, Fowlkes A, Britton A, Tyner HL, Caban-Martinez AJ, Naleway A, Gaglani M, Yoon S, Edwards L, Olsho L, Dake M, LaFleur BJ, Nikolich JŽ, Sprissler R, Worobey M, Bhattacharya D. Determinants of de novo B cell responses to drifted epitopes in post-vaccination SARS-CoV-2 infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295384. [PMID: 37745498 PMCID: PMC10516057 DOI: 10.1101/2023.09.12.23295384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Vaccine-induced immunity may impact subsequent de novo responses to drifted epitopes in SARS-CoV-2 variants, but this has been difficult to quantify due to the challenges in recruiting unvaccinated control groups whose first exposure to SARS-CoV-2 is a primary infection. Through local, statewide, and national SARS-CoV-2 testing programs, we were able to recruit cohorts of individuals who had recovered from either primary or post-vaccination infections by either the Delta or Omicron BA.1 variants. Regardless of variant, we observed greater Spike-specific and neutralizing antibody responses in post-vaccination infections than in those who were infected without prior vaccination. Through analysis of variant-specific memory B cells as markers of de novo responses, we observed that Delta and Omicron BA.1 infections led to a marked shift in immunodominance in which some drifted epitopes elicited minimal responses, even in primary infections. Prior immunity through vaccination had a small negative impact on these de novo responses, but this did not correlate with cross-reactive memory B cells, arguing against competitive inhibition of naïve B cells. We conclude that dampened de novo B cell responses against drifted epitopes are mostly a function of altered immunodominance hierarchies that are apparent even in primary infections, with a more modest contribution from pre-existing immunity, perhaps due to accelerated antigen clearance.
Collapse
Affiliation(s)
- Grace E Quirk
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Marta V Schoenle
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kameron L Peyton
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Branden Lau
- University of Arizona Genomics Core and the Arizona Research Labs, University of Arizona Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Katherine Ellingson
- Department of Epidemiology and Biostatistics, Zuckerman College of Public Health, University of Arizona, Tucson
| | - Shawn Beitel
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - James Romine
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Karen Lutrick
- College of Medicine-Tucson, University of Arizona, Tucson, Arizona, USA
| | - Ashley Fowlkes
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Amadea Britton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Harmony L Tyner
- St. Luke's Regional Health Care System, Duluth, Minnesota, USA
| | | | - Allison Naleway
- Kaiser Permanente Northwest Center for Health Research, Portland, Oregon, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health and Texas A&M University College of Medicine, Temple, Texas, USA
| | - Sarang Yoon
- Rocky Mountain Center for Occupational and Environmental Health, Department of Family and Preventive Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | | | | | - Michael Dake
- Office of the Senior Vice-President for Health Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Janko Ž Nikolich
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ryan Sprissler
- University of Arizona Genomics Core and the Arizona Research Labs, University of Arizona Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
12
|
Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan X, Kam N, Dai W. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med 2023; 15:e17341. [PMID: 37272217 PMCID: PMC10493577 DOI: 10.15252/emmm.202217341] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Most mature B cells can be divided into four subtypes based on the expression of the surface markers IgD and CD27: IgD+ CD27- naïve B cells, IgD+ CD27+ unswitched memory B cells, IgD- CD27+ switched memory B cells, and IgD- CD27- double-negative (DN) B cells. Despite their small population size in normal peripheral blood, DN B cells play integral roles in various diseases. For example, they generate autoimmunity in autoimmune conditions, while these cells may generate both autoimmune and antipathogenic responses in COVID-19, or act in a purely antipathogenic capacity in malaria. Recently, DN B cells have been identified in nasopharyngeal carcinoma and non-small-cell lung cancers, where they may play an immunosuppressive role. The distinct functions that DN B cells play in different diseases suggest that they are a heterogeneous B-cell population. Therefore, further study of the mechanisms underlying the involvement of DN B cells in these diseases is essential for understanding their pathogenesis and the development of therapeutic strategies. Further research is thus warranted to characterize the DN B-cell population in detail.
Collapse
Affiliation(s)
- Michael King Yung Chung
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Dora Lai‐Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Victor Ho‐Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ann Wing‐Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Xin‐Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ngar‐Woon Kam
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Laboratory for Synthetic Chemistry and Chemical BiologyHong Kong (SAR)China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized TherapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
13
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
14
|
Castleman MJ, Santos AL, Lesteberg KE, Maloney JP, Janssen WJ, Mould KJ, Beckham JD, Pelanda R, Torres RM. Activation and pro-inflammatory cytokine production by unswitched memory B cells during SARS-CoV-2 infection. Front Immunol 2023; 14:1213344. [PMID: 37638016 PMCID: PMC10449608 DOI: 10.3389/fimmu.2023.1213344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Memory B cells are comprised of unswitched (CD27+IgD+) and switched (CD27+IgD-) subsets. The origin and function of unswitched human memory B cells are debated in the literature, whereas switched memory B cells are primed to respond to recurrent infection. Unswitched memory B cells have been described to be reduced in frequency with severe SARS-CoV2 infection and here we characterize their activation status, BCR functionality, and contribution to virally-induced cytokine production. Analyses of whole blood from healthy individuals, people immunized against SARS-CoV2, and those who have had mild and severe SARS-CoV2 infection, confirm a reduction in the frequency of unswitched memory B cells during severe SARS-CoV2 infection and demonstrate this reduction is associated with increased levels of systemic TNFα. We further document how severe viral infection is associated with an increased frequency of 'IgD+' only memory B cells that correlate with increased IgG autoantibody levels. Unswitched and switched memory B cells from severe SARS-CoV2 infection displayed evidence of heightened activation with a concomitant reduction in the expression of the inhibitory receptor CD72. Functionally, both populations of memory B cells from severe SARS-COV2 infection harbored a signaling-competent BCR that displayed enhanced BCR signaling activity in the unswitched population. Finally, we demonstrate that B cells from mild SARS-CoV2 infection are poised to secrete pro-inflammatory cytokines IL-6 and TNFα. Importantly, unswitched memory B cells were a major producer of IL-6 and switched memory B cells were a major producer of TNFα in response to viral TLR ligands. Together these data indicate that B cells contribute to the inflammatory milieu during viral infection.
Collapse
Affiliation(s)
- Moriah J. Castleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adriana Luna Santos
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kelsey E. Lesteberg
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Division of Infectious Disease, University of Colorado School of Medicine, Aurora, CO, United States
| | - James P. Maloney
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - William J. Janssen
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Kara J. Mould
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - J. David Beckham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Division of Infectious Disease, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional VA, Medical Center, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
15
|
Lopes de Assis F, Hoehn KB, Zhang X, Kardava L, Smith CD, El Merhebi O, Buckner CM, Trihemasava K, Wang W, Seamon CA, Chen V, Schaughency P, Cheung F, Martins AJ, Chiang CI, Li Y, Tsang JS, Chun TW, Kleinstein SH, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep 2023; 42:112780. [PMID: 37440409 PMCID: PMC10529190 DOI: 10.1016/j.celrep.2023.112780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.
Collapse
Affiliation(s)
- Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor D Smith
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krittin Trihemasava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine A Seamon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Microbiology and Immunology and Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John S Tsang
- NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA; Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Chakma CR, Good-Jacobson KL. Requirements of IL-4 during the Generation of B Cell Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1853-1860. [PMID: 37276051 DOI: 10.4049/jimmunol.2200922] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 06/07/2023]
Abstract
IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Kibler A, Seifert M, Budeus B. Age-related changes of the human splenic marginal zone B cell compartment. Immunol Lett 2023; 256-257:59-65. [PMID: 37044264 DOI: 10.1016/j.imlet.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
In this review, we will summarize the growing body of knowledge on the age-related changes of human splenic B cell composition and molecular evidence of immune maturation and discuss the contribution of these changes on splenic protective function. From birth on, the splenic marginal zone (sMZ) contains a specialized B cell subpopulation, which recruits and archives memory B cells from immune responses throughout the organism. The quality of sMZ B cell responses is augmented by germinal center (GC)-dependent maturation of memory B cells during childhood, however, in old age, these mechanisms likely contribute to waning of splenic protective function.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Nguyen NK, Devilder MC, Gautreau-Rolland L, Fourgeux C, Sinha D, Poschmann J, Hourmant M, Bressollette-Bodin C, Saulquin X, McIlroy D. A cluster of broadly neutralizing IgG against BK polyomavirus in a repertoire dominated by IgM. Life Sci Alliance 2023; 6:e202201567. [PMID: 36717250 PMCID: PMC9887757 DOI: 10.26508/lsa.202201567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
The BK polyomavirus (BKPyV) is an opportunistic pathogen, which is only pathogenic in immunosuppressed individuals, such as kidney transplant recipients, in whom BKPyV can cause significant morbidity. To identify broadly neutralizing antibodies against this virus, we used fluorescence-labeled BKPyV virus-like particles to sort BKPyV-specific B cells from the PBMC of KTx recipients, then single-cell RNAseq to obtain paired heavy- and light-chain antibody sequences from 2,106 sorted B cells. The BKPyV-specific repertoire was highly diverse in terms of both V-gene usage and clonotype diversity and included most of the IgM B cells, including many with extensive somatic hypermutation. In two patients where sufficient data were available, IgM B cells in the BKPyV-specific dataset had significant differences in V-gene usage compared with IgG B cells from the same patient. CDR3 sequence-based clustering allowed us to identify and characterize three broadly neutralizing "41F17-like" clonotypes that were predominantly IgG, suggesting that some specific BKPyV capsid epitopes are preferentially targeted by IgG.
Collapse
Affiliation(s)
- Ngoc-Khanh Nguyen
- Nantes Universitéhttps://ror.org/05c1qsg97 , CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Marie-Claire Devilder
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Laetitia Gautreau-Rolland
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- UFR Sciences et Techniques, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- Nantes Universitéhttps://ror.org/05c1qsg97 , CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Debajyoti Sinha
- Nantes Universitéhttps://ror.org/05c1qsg97 , CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Jeremie Poschmann
- Nantes Universitéhttps://ror.org/05c1qsg97 , CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Maryvonne Hourmant
- CHU Nanteshttps://ror.org/03gnr7b55 , Nantes Université, Service de Néphrologie-Immunologie clinique, Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Universitéhttps://ror.org/05c1qsg97 , CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- CHU Nanteshttps://ror.org/03gnr7b55 , Nantes Université, Service de Virologie, Nantes, France
- UFR Médecine, Nantes Université, Nantes, France
| | - Xavier Saulquin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- UFR Sciences et Techniques, Nantes Université, Nantes, France
| | - Dorian McIlroy
- Nantes Universitéhttps://ror.org/05c1qsg97 , CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- UFR Sciences et Techniques, Nantes Université, Nantes, France
| |
Collapse
|
19
|
Swift M, Horns F, Quake SR. Lineage tracing reveals fate bias and transcriptional memory in human B cells. Life Sci Alliance 2023; 6:e202201792. [PMID: 36639222 PMCID: PMC9840405 DOI: 10.26508/lsa.202201792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
We combined single-cell transcriptomics and lineage tracing to understand fate choice in human B cells. Using the antibody sequences of B cells, we tracked clones during in vitro differentiation. Clonal analysis revealed a subset of IgM+ B cells which were more proliferative than other B-cell types. Whereas the population of B cells adopted diverse states during differentiation, clones had a restricted set of fates available to them; there were two times more single-fate clones than expected given population-level cell-type diversity. This implicated a molecular memory of initial cell states that was propagated through differentiation. We then identified the genes which had strongest coherence within clones. These genes significantly overlapped known B-cell fate determination programs, suggesting the genes which determine cell identity are most robustly controlled on a clonal level. Persistent clonal identities were also observed in human plasma cells from bone marrow, indicating that these transcriptional programs maintain long-term cell identities in vivo. Thus, we show how cell-intrinsic fate bias influences differentiation outcomes in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Swift
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Felix Horns
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
20
|
Piras-Douce F, Broudic K, Chautard E, Raynal F, Courtois V, Gautheron S, Mantel N. Evaluation of safety and immuno-efficacy of a next generation live-attenuated yellow fever vaccine in cynomolgus macaques. Vaccine 2023; 41:1457-1470. [PMID: 36702693 DOI: 10.1016/j.vaccine.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 01/26/2023]
Abstract
The increased demand for yellow fever (YF) vaccines over the last decade, along with insufficient availability of specific pathogen-free embryonated eggs required for timely vaccine production, has led to global YF vaccine shortages. A new live-attenuated YF vaccine candidate (generically referred to as vYF) cloned from a YF-VAX® vaccine (YF-17D vaccine) substrain adapted for growth in Vero cells cultured in serum-free media is currently in development. Here, we assessed the safety and immunogenicity of vYF, and its protective activity upon virulent challenge with wild-type yellow fever virus (YFV) Asibi, compared to licensed YF-17D vaccines in the translational cynomolgus macaque model. vYF was well tolerated with no major safety concerns. Vaccine-related safety observations were limited to minimal/minor microscopic findings at the injection sites and in the draining lymph nodes, consistent with expected stimulation of the immune system. vYF induced early differential expression of genes involved in antiviral innate immunity previously described in humans vaccinated with YF-17D vaccines, as well as YFV-specific IgM and IgG antibodies, high and sustained YFV neutralizing antibody titers from Day 14 up to at least Day 258 post-immunization, IgM+ and IgG+ memory B cells from Day 14 up to at least Day 221 post-vaccination, and Th1 interferon (IFN)-γ and interleukin (IL)-2 secreting effector and memory T cells. Additionally, vYF provided effective resistance to virulent challenge with wild-type YFV Asibi including complete protection against YFV-induced mortality, pathology, dysregulation of blood and liver soluble biomarkers, and a significant reduction in viremia and viral load to the limit of detection. These NHP data suggest that vYF would provide protection against YFV infection in practice, at least similar to that achieved with currently marketed YF-17D vaccines.
Collapse
Affiliation(s)
| | | | - Emilie Chautard
- Scientific and Digital Innovation, Sanofi, Marcy l'Etoile, France.
| | - Franck Raynal
- Research and External Innovation, Sanofi, Marcy l'Etoile, France.
| | | | | | - Nathalie Mantel
- Research and External Innovation, Sanofi, Marcy l'Etoile, France.
| |
Collapse
|
21
|
Scharf L, Axelsson H, Emmanouilidi A, Mathew NR, Sheward DJ, Leach S, Isakson P, Smirnov IV, Marklund E, Miron N, Andersson LM, Gisslén M, Murrell B, Lundgren A, Bemark M, Angeletti D. Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight 2023; 8:165299. [PMID: 36445762 PMCID: PMC9870078 DOI: 10.1172/jci.insight.165299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from patients with severe COVID-19 every third to seventh day during hospitalization and every third month after recovery. We profiled their antigen-specific immune cell dynamics by combining single-cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), and B cell receptor-Seq (BCR-Seq) with oligo-tagged antigen baits. While the proportion of Spike receptor binding domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen-specific cells, and affinity maturation was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to 1 year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen-specific B cell responses in longitudinally sampled patients infected with COVID-19.
Collapse
Affiliation(s)
- Lydia Scharf
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hannes Axelsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Aikaterini Emmanouilidi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nimitha R. Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susannah Leach
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pharmacology
| | - Pauline Isakson
- Department of Clinical Immunology and Transfusion Medicine, and
| | - Ilya V. Smirnov
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Marklund
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nicolae Miron
- Department of Clinical Immunology and Transfusion Medicine, and
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lundgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
James LK. B cells defined by immunoglobulin isotypes. Clin Exp Immunol 2022; 210:230-239. [PMID: 36197112 PMCID: PMC9985177 DOI: 10.1093/cei/uxac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to generate antibodies and provide long-lived protective immunity is the cornerstone of vaccination and has contributed to the success of modern medicine. The nine different antibody subclasses produced by humans have effector functions that differ according to antigen type and route of exposure. Expression of the appropriate isotype is critical for effective humoral immunity, and it is becoming clear that subclass specificity is to some extent reflected at the cellular level. Understanding the mechanisms that govern the induction, expansion, and maintenance of B cells expressing different antibody subclasses informs the strategic manipulation of responses to benefit human health. This article provides an overview of the mechanisms by which the different human antibody subclasses regulate immunity, presents an update on how antibody subclass expression is regulated at the cellular level and highlights key areas for future research.
Collapse
|
23
|
Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol 2022; 210:201-216. [PMID: 36617261 PMCID: PMC9985170 DOI: 10.1093/cei/uxac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023] Open
Abstract
Our understanding of the B-cell subsets found in human blood and their functional significance has advanced greatly in the past decade. This has been aided by the evolution of high dimensional phenotypic tools such as mass cytometry and single-cell RNA sequencing which have revealed heterogeneity in populations that were previously considered homogenous. Despite this, there is still uncertainty and variation between studies as to how B-cell subsets are identified and named. This review will focus on the most commonly encountered subsets of B cells in human blood and will describe gating strategies for their identification by flow and mass cytometry. Important changes to population frequencies and function in common inflammatory and autoimmune diseases will also be described.
Collapse
Affiliation(s)
- Rebekah L Velounias
- Department of Immunobiology, King’s College London, Guy’s Hospital Campus, London, UK
| | - Thomas J Tull
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital Campus, London, UK
| |
Collapse
|
24
|
Montorsi L, Siu JHY, Spencer J. B cells in human lymphoid structures. Clin Exp Immunol 2022; 210:240-252. [PMID: 36370126 PMCID: PMC9985168 DOI: 10.1093/cei/uxac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Most B cells in the human body are present in tissues where they support immune responses to pathogens, vaccines, autoantigens, and tumours. Despite their clear importance, they are very difficult to study and there are many areas of uncertainty that are difficult to resolve because of limited tissue access. In this review, we consider the zonal structure of lymphoid tissues, the B cell subsets they contain, and how these are regulated. We also discuss the impact that methods of deep interrogation have made on our current knowledge base, especially with respect to studies of cells from dissociated tissues. We discuss in some detail the controversial B cells with marginal zone distribution that some consider being archived memory B cells. We anticipate that more we understand of B cells in tissues and the niches they create, the more opportunities will be identified to harness their potential for therapeutic benefit.
Collapse
Affiliation(s)
- Lucia Montorsi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Jacqueline H Y Siu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Jo Spencer
- Correspondence: Jo Spencer, Peter Gorer Department of Immunobiology, King’s College London, Second Floor Borough Wing, Guy’s Hospital Campus, St Thomas’ St, London SE1 9RT, UK.
| |
Collapse
|
25
|
Hara A, Chihara N, Akatani R, Nishigori R, Tsuji A, Yoshimura H, Kawamoto M, Otsuka Y, Kageyama Y, Kondo T, Leypoldt F, Wandinger KP, Matsumoto R. Circulating plasmablasts and follicular helper T-cell subsets are associated with antibody-positive autoimmune epilepsy. Front Immunol 2022; 13:1048428. [PMID: 36569937 PMCID: PMC9773883 DOI: 10.3389/fimmu.2022.1048428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune epilepsy (AE) is an inflammatory disease of the central nervous system with symptoms that have seizures that are refractory to antiepileptic drugs. Since the diagnosis of AE tends to rely on a limited number of anti-neuronal antibody tests, a more comprehensive analysis of the immune background could achieve better diagnostic accuracy. This study aimed to compare the characteristics of anti-neuronal antibody-positive autoimmune epilepsy (AE/Ab(+)) and antibody-negative suspected autoimmune epilepsy (AE/Ab(-)) groups. A total of 23 patients who met the diagnostic criteria for autoimmune encephalitis with seizures and 11 healthy controls (HC) were enrolled. All patients were comprehensively analyzed for anti-neuronal antibodies; 13 patients were identified in the AE/Ab(+) group and 10 in the AE/Ab(-) group. Differences in clinical characteristics, including laboratory and imaging findings, were evaluated between the groups. In addition, the immunophenotype of peripheral blood mononuclear cells (PBMCs) and CSF mononuclear cells, particularly B cells and circulating Tfh (cTfh) subsets, and multiplex assays of serum and CSF were analyzed using flow cytometry. Patients with AE/Ab(+) did not show any differences in clinical parameters compared to patients with AE/Ab(-). However, the frequency of plasmablasts within PBMCs and CSF in patients with AE/Ab(+) was higher than that in patients with AE/Ab(-) and HC, and the frequency of cTfh17 cells and inducible T-cell co-stimulator (ICOS) expressing cTfh17 cells within cTfh subsets was higher than that in patients with AE/Ab(-). Furthermore, the frequency of ICOShighcTfh17 cells was positively correlated with that of the unswitched memory B cells. We also found that IL-12, IL-23, IL-6, IL-17A, and IFN-γ levels were elevated in the serum and IL-17A and IL-6 levels were elevated in the CSF of patients with AE/Ab(+). Our findings indicate that patients with AE/Ab(+) showed increased differentiation of B cells and cTfh subsets associated with antibody production. The elevated frequency of plasmablasts and ICOS expressing cTfh17 shift in PBMCs may be indicative of the presence of antibodies in patients with AE.
Collapse
Affiliation(s)
- Atsushi Hara
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norio Chihara
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan,*Correspondence: Norio Chihara, ; Riki Matsumoto,
| | - Ritsu Akatani
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryusei Nishigori
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asato Tsuji
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hajime Yoshimura
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Michi Kawamoto
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshihisa Otsuka
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Takayuki Kondo
- Department of Neurology, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany,Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Klaus-Peter Wandinger
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan,*Correspondence: Norio Chihara, ; Riki Matsumoto,
| |
Collapse
|
26
|
Abstract
Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and memory B cells are acknowledged as biomarkers of AMR. Nevertheless, it may be too late for the DSA routine examination production since DSAs may have binded to graft vascular endothelial cells through complement-dependent or complement-independent pathways. Therefore, methods to effectively monitor memory B cells and long-lived plasma cells and subsequently prevent DSA production are key to reducing the adverse effects of AMR. Therefore, this review mainly summarizes the production pathways of memory B cells and long-lived plasma cells and provides suggestions for the prevention of AMR after transplantation.
Collapse
Affiliation(s)
- Wenlong Yue
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Dietetics Teaching and Research Section, Henan Medical College, Xinzheng, People's Republic of China
| | - Xiaohu Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Correlation between the Neutrophil-to-Lymphocyte Ratio and Multiple Sclerosis: Recent Understanding and Potential Application Perspectives. Neurol Res Int 2022; 2022:3265029. [PMID: 36340639 PMCID: PMC9629953 DOI: 10.1155/2022/3265029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system, which causes demyelination and neuroaxonal damage. Low-grade systemic inflammation has been considered to lead to pathogenesis owing to the amplification of pathogenic immune response activation. However, there is a shortage of reliable systemic inflammatory biomarkers to predict the disease activity and progression of MS. In MS patients, a series of cytokines and chemokines promote the proliferation of neutrophils and lymphocytes and their transfer to the central nervous system. The neutrophil-to-lymphocyte ratio (NLR), which combines the information of the inherent and adaptive parts of the immune system, represents a reliable measure of the inflammatory burden. In this review, we aimed to discuss the inflammatory response in MS, mainly the function of lymphocytes and neutrophils, which can be implemented in the utility of NLR as a diagnostic tool in MS patients. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.
Collapse
|
28
|
Burton H, McLaughlin L, Shiu KY, Shaw O, Mamode N, Spencer J, Dorling A. The phenotype of HLA-binding B cells from sensitized kidney transplant recipients correlates with clinically prognostic patterns of interferon-γ production against purified HLA proteins. Kidney Int 2022; 102:355-369. [PMID: 35483526 DOI: 10.1016/j.kint.2022.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
B cells play crucial roles in cell-mediated alloimmune responses. In vitro, B cells can support or regulate indirect T-cell alloreactivity in response to donor antigens on ELISpot and these patterns associate with clinical outcome. Previous reports of associations between B-cell phenotype and function have examined global phenotypes and responses to polyclonal stimuli. We hypothesized that studying antigen-specific B cells, using samples from sensitized patients, would inform further study to identify novel targets for intervention. Using biotinylated HLA proteins, which bind HLA-specific B cells via the B-cell receptor in a dose-dependent fashion, we report the specific phenotype of HLA-binding B cells and define how they associated with patterns of anti-HLA response in interferon-γ ELISpot. HLA-binding class-switched and IgM+CD27+ memory cells associated strongly with B-dependent interferon-γ production and appeared not suppressible by endogenous Tregs. When the predominant HLA-binding phenotype was naïve B cells, the associated functional ELISpot phenotype was determined by other cells present. High numbers of non-HLA-binding transitional cells associated with B-suppressed interferon-γ production, especially if Tregs were present. However, high frequencies of HLA-binding marginal-zone precursors associated with B-dependent interferon-γ production that appeared suppressible by Tregs. Finally, non-HLA-binding marginal zone precursors may also suppress interferon-γ production, though this association only emerged when Tregs were absent from the ELISpot. Thus, our novel data provide a foundation on which to further define the complexities of interactions between HLA-specific T and B cells and identify new targets for intervention in new therapies for chronic rejection.
Collapse
Affiliation(s)
- Hannah Burton
- Department of Inflammation Biology, King's College London, London, UK
| | - Laura McLaughlin
- Department of Inflammation Biology, King's College London, London, UK
| | - Kin Yee Shiu
- Department of Inflammation Biology, King's College London, London, UK; Department of Renal Medicine (UCL), Royal Free Hospital, London, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Guy's Hospital, London, UK
| | - Nizam Mamode
- Department of Inflammation Biology, King's College London, London, UK
| | - Jo Spencer
- Department of Immunobiology, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London, London, UK.
| |
Collapse
|
29
|
Langley DB, Schofield P, Nevoltris D, Jackson J, Jackson KJL, Peters TJ, Burk M, Matthews JM, Basten A, Goodnow CC, van Nunen S, Reed JH, Christ D. Genetic and structural basis of the human anti-α-galactosyl antibody response. Proc Natl Acad Sci U S A 2022; 119:e2123212119. [PMID: 35867757 PMCID: PMC9282431 DOI: 10.1073/pnas.2123212119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
Humans lack the capacity to produce the Galα1-3Galβ1-4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.
Collapse
Affiliation(s)
- David B. Langley
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Damien Nevoltris
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Tim J. Peters
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Melanie Burk
- Tick-induced Allergies Research and Awareness Centre, Sydney, NSW 2065, Australia
| | - Jacqueline M. Matthews
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Antony Basten
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sheryl van Nunen
- Tick-induced Allergies Research and Awareness Centre, Sydney, NSW 2065, Australia
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2065, Australia
| | - Joanne H. Reed
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
30
|
Radzieta M, Peters TJ, Dickson HG, Cowin AJ, Lavery LA, Schwarzer S, Roberts T, Jensen SO, Malone M. A metatranscriptomic approach to explore longitudinal tissue specimens from non-healing diabetes related foot ulcers. APMIS 2022; 130:383-396. [PMID: 35394091 PMCID: PMC9320801 DOI: 10.1111/apm.13226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Cellular mechanisms and/or microbiological interactions which contribute to chronic diabetes related foot ulcers (DRFUs) were explored using serially collected tissue specimens from chronic DRFUs and control healthy foot skin. Total RNA was isolated for next-generation sequencing. We found differentially expressed genes (DEGs) and enriched hallmark gene ontology biological processes upregulated in chronic DRFUs which primarily functioned in the host immune response including: (i) Inflammatory response; (ii) TNF signalling via NFKB; (iii) IL6 JAK-STAT3 signalling; (iv) IL2 STAT5 signalling and (v) Reactive oxygen species. A temporal analysis identified RN7SL1 signal recognition protein and IGHG4 immunoglobulin protein coding genes as being the most upregulated genes after the onset of treatment. Testing relative temporal changes between healing and non-healing DRFUs identified progressive upregulation in healed wounds of CXCR5 and MS4A1 (CD20), both canonical markers of lymphocytes (follicular B cells/follicular T helper cells and B cells, respectively). Collectively, our RNA-seq data provides insights into chronic DRFU pathogenesis.
Collapse
Affiliation(s)
- Michael Radzieta
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Hugh G Dickson
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Lawrence A Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Saskia Schwarzer
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia
| | - Tara Roberts
- Oncology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Slade O Jensen
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Matthew Malone
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
31
|
Wang CM, Zhang Y, Xu HH, Huo FJ, Li YZ, Li ZF, Li HQ, Liu ST, Zhang XM, Bai JW. B cell subsets were associated with prognosis in elderly patients with community acquired pneumonia. BMC Pulm Med 2022; 22:206. [PMID: 35610602 PMCID: PMC9128775 DOI: 10.1186/s12890-022-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of B cell subsets remained to be elucidated in a variety of immune diseases, though which was used as an effective biomarker for anti-inflammatory or antiviral response. This study aimed to evaluate the early changes of B cell subtypes distribution in elderly patients with community acquired pneumonia (CAP), as well as the association between B cell subtypes and prognosis. METHODS This prospective study included elderly patients with CAP, severe CAP (sCAP) and healthy elderly subjects between April 2016 and March 2018. Flow cytometry was used to detect CD3, CD20, HLA-DR, CD24, CD27, CD38, IgM, and IgD. CD20+ B cells were further divided into naïve B cells (Bn), IgM/D+ memory B cells (IgM+ Bm), switched B cells (SwB), and transitional B cells (Btr). RESULTS A total of 22 healthy controls, 87 patients with CAP and 58 patients with sCAP were included in the study. Compared to CAP, sCAP was characterized by significantly lower absolute number of B cells, Bn and Btr, significantly lower Btr and Bn subset percentage, while percentage of IgM+ Bm was significantly higher. Heat map showed Bn and Btr on day 3 and day 7 was negatively correlated with activated partial prothrombin time (APTT), international normalized ratio (INR), sequential organ failure assessment score (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II). After 28-day follow-up, Btr percentage in survival group was significantly higher. Receiver operator characteristic (ROC) curve analysis found that Btr count showed sensitivity of 48.6% and specificity of 87.0% for predicting the 28-day survival, with an area under the ROC curves of 0.689 (p = 0.019). CONCLUSIONS Severity and prognosis of CAP in elderly people is accompanied by changes in the B cell subsets. Btr subsets could play prognostic role for a short-term mortality of elderly CAP patients.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China.,Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zhang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Hui-Hui Xu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, No. 320 Yueyang Road, Xuhui District, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | | | - Yin-Zhen Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Zhi-Fang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Hong-Qiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Si-Ting Liu
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiao-Ming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, No. 320 Yueyang Road, Xuhui District, Shanghai, 200031, China.
| | - Jian-Wen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China. .,Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
32
|
Koers J, Pollastro S, Tol S, Pico-Knijnenburg I, Derksen NIL, van Schouwenburg PA, van der Burg M, van Ham SM, Rispens T. CD45RB Glycosylation and Ig Isotype Define Maturation of Functionally Distinct B Cell Subsets in Human Peripheral Blood. Front Immunol 2022; 13:891316. [PMID: 35572548 PMCID: PMC9095956 DOI: 10.3389/fimmu.2022.891316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosylation of CD45RB (RB+) has recently been identified to mark antigen-experienced B cells, independent of their CD27 expression. By using a novel combination of markers including CD45RB glycosylation, CD27 and IgM/IgD isotype expression we segregated human peripheral blood B cell subsets and investigated their IGHV repertoire and in vitro functionality. We observed distinct maturation stages for CD27-RB+ cells, defined by differential expression of non-switched Ig isotypes. CD27-RB+ cells, which only express IgM, were more matured in terms of Ig gene mutation levels and function as compared to CD27-RB+ cells that express both IgM and IgD or cells that were CD27-RB-. Moreover, CD27-RB+IgM+ cells already showed remarkable rigidity in IgM isotype commitment, different from CD27-RB+IgMD+ and CD27-RB- cells that still demonstrated great plasticity in B cell fate decision. Thus, glycosylation of CD45RB is indicative for antigen-primed B cells, which are, dependent on the Ig isotype, functionally distinct.
Collapse
Affiliation(s)
- Jana Koers
- Landsteiner Laboratory, Sanquin Research, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabrina Pollastro
- Landsteiner Laboratory, Sanquin Research, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Simon Tol
- Landsteiner Laboratory, Sanquin Research, Department of Research Facilities, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Ninotska I L Derksen
- Landsteiner Laboratory, Sanquin Research, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pauline A van Schouwenburg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - S Marieke van Ham
- Landsteiner Laboratory, Sanquin Research, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Landsteiner Laboratory, Sanquin Research, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Studniberg SI, Ioannidis LJ, Utami RAS, Trianty L, Liao Y, Abeysekera W, Li‐Wai‐Suen CSN, Pietrzak HM, Healer J, Puspitasari AM, Apriyanti D, Coutrier F, Poespoprodjo JR, Kenangalem E, Andries B, Prayoga P, Sariyanti N, Smyth GK, Cowman AF, Price RN, Noviyanti R, Shi W, Garnham AL, Hansen DS. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol Syst Biol 2022; 18:e10824. [PMID: 35475529 PMCID: PMC9045086 DOI: 10.15252/msb.202110824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/12/2023] Open
Abstract
Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.
Collapse
Affiliation(s)
- Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Retno A S Utami
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia,Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Leily Trianty
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Yang Liao
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Connie S N Li‐Wai‐Suen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Halina M Pietrzak
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | | | | | | | | | - Pak Prayoga
- Papuan Health and Community FoundationPapuaIndonesia
| | | | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| | | | - Wei Shi
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
34
|
Kibler A, Budeus B, Küppers R, Seifert M. The Splenic Marginal Zone in Children Is Characterized by a Subpopulation of CD27-Negative, Lowly IGHV-Mutated B Cells. Front Immunol 2022; 13:825619. [PMID: 35154145 PMCID: PMC8828478 DOI: 10.3389/fimmu.2022.825619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Young children and older adults suffer from enhanced susceptibility to infections with blood-borne pathogens. An essential step towards immunity is the establishment of a splenic marginal zone (sMZ), which is immature at below 2 years of age. At approximately 5 years of age, an adult level of protection is reached but wanes again in older adults. Although the infant sMZ is thought to contain mostly naïve B cells, memory B cells are recruited to and recirculate from the sMZ throughout life, and class-switched sMZ B cells dominate in older adults. For a better resolution of naïve versus memory B-cell subset accumulation in the sMZ, we performed a single cell-based gene expression analysis of (CD21highIgMhigh) sMZ B cells among five healthy donors (age 3 to 48 years) and validated the sMZ B-cell subset composition by flow cytometry of 147 spleen biopsies (age 0 to 82 years). We identified a major sMZ B-cell subpopulation, which is abundant at birth but decreases with age. These cells lack CD27 expression but carry a weak-to-intermediate memory B-cell signature. These CD27neg sMZ B cells are either IGHV-unmutated or carry only a few IGHV mutations early in life but show average memory B-cell IGHV mutation frequencies (>3%) in adults. The activation and proliferation potential of CD27neg sMZ B cells is significantly above that of non-sMZ B cells already in children. Our study suggests that the human sMZ B-cell pool changes with age, encompassing a major population of lowly Ig-mutated CD27neg but antigen-experienced B cells early in life.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Wang P, Luo M, Zhou W, Jin X, Xu Z, Yan S, Li Y, Xu C, Cheng R, Huang Y, Lin X, Yao L, Nie H, Jiang Q. Global Characterization of Peripheral B Cells in Parkinson's Disease by Single-Cell RNA and BCR Sequencing. Front Immunol 2022; 13:814239. [PMID: 35250991 PMCID: PMC8888848 DOI: 10.3389/fimmu.2022.814239] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Immune system plays important roles in the pathogenesis of Parkinson’s disease (PD). However, the role of B cells in this complex disease are still not fully understood. B cells produce antibodies but can also regulate immune responses. In order to decode the relative contribution of peripheral B cell subtypes to the etiology of PD, we performed single cell RNA and BCR sequencing for 10,466 B cells from 8 PD patients and 6 age-matched healthy controls. We observed significant increased memory B cells and significant decreased naïve B cells in PD patients compared to healthy controls. Notably, we also discovered increased IgG and IgA isotypes and more frequent class switch recombination events in PD patients. Moreover, we identified preferential V and J gene segments of B cell receptors in PD patients as the evidence of convergent selection in PD. Finally, we found a marked clonal expanded memory B cell population in PD patients, up-regulating both MHC II genes (HLA-DRB5, HLA-DQA2 and HLA-DPB1) and transcription factor activator protein 1 (AP-1), suggesting that the antigen presentation capacity of B cells was enhanced and B cells were activated in PD patients. Overall, this study conducted a comprehensive analysis of peripheral B cell characteristics of PD patients, which provided novel insights into the humoral immune response in the pathogenesis of PD.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shi Yan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China
| |
Collapse
|
36
|
Barcenilla H, Pihl M, Wahlberg J, Ludvigsson J, Casas R. Intralymphatic GAD-alum Injection Modulates B Cell Response and Induces Follicular Helper T Cells and PD-1+ CD8+ T Cells in Patients With Recent-Onset Type 1 Diabetes. Front Immunol 2022; 12:797172. [PMID: 35095874 PMCID: PMC8791064 DOI: 10.3389/fimmu.2021.797172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Antigen-specific immunotherapy is an appealing strategy to preserve beta-cell function in type 1 diabetes, although the approach has yet to meet its therapeutic endpoint. Direct administration of autoantigen into lymph nodes has emerged as an alternative administration route that can improve the efficacy of the treatment. In the first open-label clinical trial in humans, injection of aluminum-formulated glutamic acid decarboxylase (GAD-alum) into an inguinal lymph node led to the promising preservation of C-peptide in patients with recent-onset type 1 diabetes. The treatment induced a distinct immunomodulatory effect, but the response at the cell level has not been fully characterized. Here we used mass cytometry to profile the immune landscape in peripheral blood mononuclear cells from 12 participants of the study before and after 15 months of treatment. The immunomodulatory effect of the therapy included reduction of naïve and unswitched memory B cells, increase in follicular helper T cells and expansion of PD-1+ CD69+ cells in both CD8+ and double negative T cells. In vitro stimulation with GAD65 only affected effector CD8+ T cells in samples collected before the treatment. However, the recall response to antigen after 15 months included induction of CXCR3+ and CD11c+Tbet+ B cells, PD-1+ follicular helper T cells and exhausted-like CD8+ T cells. This study provides a deeper insight into the immunological changes associated with GAD-alum administration directly into the lymph nodes.
Collapse
Affiliation(s)
- Hugo Barcenilla
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Mikael Pihl
- Core Facility, Flow Cytometry Unit, Linköping University, Linköping, Sweden
| | - Jeanette Wahlberg
- Department of Health, Medicine and Caring Sciences (HMV), Linköping University, Linköping, Sweden.,Division of Diagnostics and Specialist Medicine and Faculty of Health Sciences, Örebro University, Örebro, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Division of Pediatrics, Crown Princess Victoria Children's Hospital, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
37
|
Khanmohammadi S, Shad TM, Delavari S, Shirmast P, Bagheri Y, Azizi G, Aghamohammadi A, Abolhassani H, Yazdani R, Rezaei N. Evaluation of Specific Antibody Responses in Patients with Selective IgA Deficiency and Ataxia Telangiectasia. Endocr Metab Immune Disord Drug Targets 2022; 22:640-649. [PMID: 35135457 DOI: 10.2174/1871530322666220208111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Specific Antibody Deficiency (SAD) is a primary immunodeficiency disease (PID) characterized by the occurrence of recurrent infections and inadequate antibody response to polysaccharide new antigens. OBJECTIVE This study aims to determine the titer of specific antibodies against unconjugated 23-valent pneumococcal polysaccharide vaccine (PPSV-23), the presence of SAD, and its association with clinical and laboratory findings in Ataxia-telangiectasia (A-T) and selective immunoglobulin A deficiency (SIgAD) patients. METHODS 32 A-T patients and 43 SIgAD patients were included in the study. Samples of the patients were obtained before and three weeks after vaccination with PPSV-23. Specific immunoglobulin G (IgG) directed towards pneumococcal capsular antigen and specific antibodies against whole pneumococcal antigens was measured. RESULTS Comparison of the response to vaccination revealed that 81.3% of A-T patients and 18.6% of the SIgAD patients had an inadequate response to PPSV-23 (p<0.001). The prevalence of recurrent infection (p=0.034) and pneumonia (p=0.003) in SIgAD patients was significantly higher in non-responders than responders. Likewise, the number of marginal zone B cells (p=0.037), transitional B cells (p=0.019), plasmablasts (p=0.019), CD8+ naïve T cells (p=0.036), and percentage of CD8+ T cells (p=0.047), switched memory B cells (SMB) (p=0.026) and immunoglobulin M (IgM) memory B cells (p=0.022) in SIgAD patients were significantly lower in non-responder group than responder group. In contrast, the percentage of CD4 T+ cells in A-T patients was lower in the non-responder group than responders (p=0.035). CONCLUSION SAD is more frequent in A-T patients than SIgAD patients. The role of SMB and T cells should not be underestimated in SAD.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paniz Shirmast
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Asghar Aghamohammadi
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hassan Abolhassani
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran.
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Ira
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
38
|
Corinaldesi C, Holmes AB, Shen Q, Grunstein E, Pasqualucci L, Dalla-Favera R, Basso K. Tracking Immunoglobulin Repertoire and Transcriptomic Changes in Germinal Center B Cells by Single-Cell Analysis. Front Immunol 2022; 12:818758. [PMID: 35095922 PMCID: PMC8789751 DOI: 10.3389/fimmu.2021.818758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
In response to T-cell-dependent antigens, mature B cells in the secondary lymphoid organs are stimulated to form germinal centers (GCs), which are histological structures deputed to antibody affinity maturation, a process associated with immunoglobulin gene editing by somatic hypermutation (SHM) and class switch recombination (CSR). GC B cells are heterogeneous and transition across multiple stages before being eliminated by apoptosis or committing to post-GC differentiation as memory B cells or plasma cells. In order to explore the dynamics of SHM and CSR during the GC reaction, we identified GC subpopulations by single-cell (sc) transcriptomics and analyzed the load of immunoglobulin variable (V) region mutations as well as the isotype class distribution in each subpopulation. The results showed that the large majority of GC B cells display a quantitatively similar mutational load in the V regions and analogous IGH isotype class distribution, except for the precursors of memory B cells (PreM) and plasma cells (PBL). PreM showed a bimodal pattern with about half of the cells displaying high V region germline identity and enrichment for unswitched IGH, while the rest of the cells carried a mutational load similar to the bulk of GC B cells and showed a switched isotype. PBL displayed a bias toward expression of IGHG and higher V region germline identity compared to the bulk of GC B cells. Genes implicated in SHM and CSR were significantly induced in specific GC subpopulations, consistent with the occurrence of SHM in dark zone cells and suggesting that CSR can occur within the GC.
Collapse
Affiliation(s)
| | - Antony B. Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Eli Grunstein
- Department of Otolaringology Head and Neck Surgery, Columbia University, New York, NY, United States
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
39
|
Abstract
It is well known that B lymphocytes differentiate into plasma cells that produce antibodies. B cells also perform a number of less well-known roles including antigen presentation, regulation of T cells and innate immune cells, cytokine production, and maintenance of subcapsular sinus macrophages. Given that there is clear evidence of inflammation in Parkinson's disease (PD) both in the central nervous system and in the periphery, it is almost certain that B lymphocytes are involved. This involvement is likely to be complicated given the variety of roles B cells play via a number of distinct subsets. They have received less attention to date than their counterparts, T cells, and monocytes. B lymphocytes are decreased in PD overall with some limited evidence that this may be driven by a decrease in regulatory subsets. There is also evidence that regulatory B cells are protective in PD. There is evidence for a role played by antibodies to alpha-synuclein in PD with a possible increase in early disease. There are many exciting potential future avenues for further exploration of the role of B lymphocytes including improving our understanding of the role of meningeal and calvarial (skull bone marrow) based B cells in health and disease, the use of larger, well phenotyped clinical cohorts to understand changes in peripheral and cerebrospinal fluid B cells over time and the potential application of B cell targeted therapies in PD.
Collapse
Affiliation(s)
- Kirsten M. Scott
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Montesinos-Rongen M, Brunn A, Sanchez-Ruiz M, Küppers R, Siebert R, Deckert M. Impact of a Faulty Germinal Center Reaction on the Pathogenesis of Primary Diffuse Large B Cell Lymphoma of the Central Nervous System. Cancers (Basel) 2021; 13:cancers13246334. [PMID: 34944954 PMCID: PMC8699297 DOI: 10.3390/cancers13246334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary The pathogenetic mechanisms and peculiar tropism of primary CNS lymphoma (PCNSL) of the central nervous system (CNS) have been the subject of debate for decades. Hypothesis-driven targeted molecular studies have revealed that PCNSLs derived from self-/polyreactive B cells that have escaped developmental control mechanisms. The early acquisition of activating mutations targeting the B cell receptor pathway provides a survival advantage. The failure of the germinal center (GC) reaction and its checkpoints increases tumor B cell affinity for the CNS. During this faulty GC reaction, PCNSL tumor cells acquire further oncogenic alterations converging on the Toll-like receptor, B cell receptor, and NF-κB pathway. These activated pathways sustain proliferation. Concomitantly, cells become unable to complete terminal B cell differentiation, becoming trapped within the vicious cycle of the GC reaction as low-affinity IgM+ B cells related to memory cells. Abstract Primary lymphoma of the central nervous system (PCNSL, CNS) is a specific diffuse large B cell lymphoma (DLBCL) entity confined to the CNS. Key to its pathogenesis is a failure of B cell differentiation and a lack of appropriate control at differentiation stages before entrance and within the germinal center (GC). Self-/polyreactive B cells rescued from apoptosis by MYD88 and/or CD79B mutations accumulate a high load of somatic mutations in their rearranged immunoglobulin (IG) genes, with ongoing somatic hypermutation (SHM). Furthermore, the targeting of oncogenes by aberrant SHM (e.g., PIM1, PAX5, RHOH, MYC, BTG2, KLHL14, SUSD2), translocations of the IG and BCL6 genes, and genomic instability (e.g., gains of 18q21; losses of 9p21, 8q12, 6q21) occur in these cells in the course of their malignant transformation. Activated Toll-like receptor, B cell receptor (BCR), and NF-κB signaling pathways foster lymphoma cell proliferation. Hence, tumor cells are arrested in a late B cell differentiation stage, corresponding to late GC exit B cells, which are genetically related to IgM+ memory cells. Paradoxically, the GC reaction increases self-/polyreactivity, yielding increased tumor BCR reactivity for multiple CNS proteins, which likely contributes to CNS tropism of the lymphoma. The loss of MHC class I antigen expression supports tumor cell immune escape. Thus, specific and unique interactions of the tumor cells with resident CNS cells determine the hallmarks of PCNSL.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
| | - Monica Sanchez-Ruiz
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, 45122 Essen, Germany;
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany;
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine, University Hospital Cologne, 50937 Cologne, Germany; (M.M.-R.); (A.B.); (M.S.-R.)
- Correspondence: ; Tel.: +49-221-478-5265; Fax: +49-221-478-3712
| |
Collapse
|
41
|
Desombere I, Van Houtte F, Farhoudi A, Verhoye L, Buysschaert C, Gijbels Y, Couvent S, Swinnen W, Van Vlierberghe H, Elewaut A, Magri A, Stamataki Z, Meuleman P, McKeating JA, Leroux-Roels G. A Role for B Cells to Transmit Hepatitis C Virus Infection. Front Immunol 2021; 12:775098. [PMID: 34975862 PMCID: PMC8716873 DOI: 10.3389/fimmu.2021.775098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge on the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We and others have reported that HCV can associate with and infect immune cells and may thereby evade host immune surveillance and elimination. To evaluate whether B cells play a role in HCV transmission, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) HCV patients to infect humanized liver chimeric mice. HCV was transmitted by B cells from chronic infected patients whereas the sera were non-infectious. In contrast, B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. We observed an association between circulating anti-glycoprotein E1E2 antibodies and B cell HCV transmission. Taken together, our studies provide evidence for HCV transmission by B cells, findings that have clinical implications for prophylactic and therapeutic antibody-based vaccine design.
Collapse
Affiliation(s)
| | - Freya Van Houtte
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Ali Farhoudi
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lieven Verhoye
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Yvonne Gijbels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sibyl Couvent
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - André Elewaut
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Researc (NIHR) Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Philip Meuleman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
42
|
Xia L, Guo L, Kang J, Yang Y, Yao Y, Xia W, Sun R, Zhang S, Li W, Gao Y, Chen H, Li Z, Yang J, Lu S, Wang Y. Predictable Roles of Peripheral IgM Memory B Cells for the Responses to Anti-PD-1 Monotherapy Against Advanced Non-Small Cell Lung Cancer. Front Immunol 2021; 12:759217. [PMID: 34899709 PMCID: PMC8652218 DOI: 10.3389/fimmu.2021.759217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 01/21/2023] Open
Abstract
Tumor-infiltrating B cells and tertiary lymphoid structures have been identified to predict the responses to immune checkpoint inhibitors (ICIs) in cancer immunotherapy. Considering the feasibility of sample collection, whether peripheral B cell signatures are associated with the responses to ICI therapy remains unclear. Herein, we have defined peripheral B cell signatures in advanced non-small cell lung cancer (NSCLC) patients receiving anti-PD-1 monotherapy and investigated their associations with clinical efficacy. It was found that the percentages of B cells before the treatment (baseline) were significantly higher (P = 0.004) in responder (R, n = 17) than those in non-responder (NonR, n = 33) NSCLC patients in a discovery cohort. Moreover, the percentages of baseline IgM+ memory B cells were higher (P < 0.001) in R group than those in NonR group, and associated with a longer progression free survival (PFS) (P = 0.003). By logistic regression analysis peripheral baseline IgM+ memory B cells were identified as an independent prognostic factor (P = 0.002) for the prediction of the responses to anti-PD-1 monotherapy with the AUC value of 0.791, which was further validated in another anti-PD-1 monotherapy cohort (P = 0.011, n = 70) whereas no significance was observed in patients receiving anti-PD-L1 monotherapy (P = 0.135, n = 30). Therefore, our data suggest the roles of peripheral IgM+ memory B cells in predicting the responses to anti-PD-1 treatment in Chinese advanced NSCLC patients.
Collapse
Affiliation(s)
- Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limin Guo
- Department of Genetic Engineering, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, China
| | - Yi Yang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yao
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Xia
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiming Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shun Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfeng Li
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, China
| | - Yuer Gao
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, China
| | - Hongyan Chen
- Department of Genetic Engineering, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jinji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Carsetti R, Corrente F, Capponi C, Mirabella M, Cascioli S, Palomba P, Bertaina V, Pagliara D, Colucci M, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in pathological conditions. Cytometry A 2021; 101:140-149. [PMID: 34851033 PMCID: PMC9299869 DOI: 10.1002/cyto.a.24518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Several diseases are associated with alterations of the B-cell compartment. Knowing how to correctly identify by flow cytometry the distribution of B-cell populations in the peripheral blood is important to help in the early diagnosis. In the accompanying article we describe how to identify the different B-cell subsets in the peripheral blood of healthy donors. Here we show a few examples of diseases that cause dysregulation of the B-cell compartment.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Mirabella
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Cascioli
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Palomba
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology/Oncology and Cell Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology and Cell Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetic and Rare Diseases Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
44
|
Shroff RT, Chalasani P, Wei R, Pennington D, Quirk G, Schoenle MV, Peyton KL, Uhrlaub JL, Ripperger TJ, Jergović M, Dalgai S, Wolf A, Whitmer R, Hammad H, Carrier A, Scott AJ, Nikolich-Žugich J, Worobey M, Sprissler R, Dake M, LaFleur BJ, Bhattacharya D. Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nat Med 2021; 27:2002-2011. [PMID: 34594036 PMCID: PMC9004706 DOI: 10.1038/s41591-021-01542-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy, but immunocompromised participants were excluded from controlled clinical trials. In this study, we compared immune responses to the BNT162b2 mRNA Coronavirus Disease 2019 vaccine in patients with solid tumors (n = 53) who were on active cytotoxic anti-cancer therapy to a control cohort of participants without cancer (n = 50). Neutralizing antibodies were detected in 67% of patients with cancer after the first immunization, followed by a threefold increase in median titers after the second dose. Similar patterns were observed for spike protein-specific serum antibodies and T cells, but the magnitude of each of these responses was diminished relative to the control cohort. In most patients with cancer, we detected spike receptor-binding domain and other S1-specific memory B cell subsets as potential predictors of anamnestic responses to additional immunizations. We therefore initiated a phase 1 trial for 20 cancer cohort participants of a third vaccine dose of BNT162b2 ( NCT04936997 ); primary outcomes were immune responses, with a secondary outcome of safety. At 1 week after a third immunization, 16 participants demonstrated a median threefold increase in neutralizing antibody responses, but no improvement was observed in T cell responses. Adverse events were mild. These results suggest that a third dose of BNT162b2 is safe, improves humoral immunity against SARS-CoV-2 and could be immunologically beneficial for patients with cancer on active chemotherapy.
Collapse
Affiliation(s)
- Rachna T Shroff
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Pavani Chalasani
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ran Wei
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Pennington
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Grace Quirk
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Marta V Schoenle
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Kameron L Peyton
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Mladen Jergović
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Shelby Dalgai
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Alexander Wolf
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Hytham Hammad
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Amy Carrier
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Aaron J Scott
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Michael Worobey
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Ryan Sprissler
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- University of Arizona Genomics Core and the Arizona Research Labs, University of Arizona Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Michael Dake
- Office of the Senior Vice-President for Health Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
45
|
Carsetti R, Terreri S, Conti MG, Fernandez Salinas A, Corrente F, Capponi C, Albano C, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in healthy conditions. Cytometry A 2021; 101:131-139. [PMID: 34664397 PMCID: PMC9546334 DOI: 10.1002/cyto.a.24507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
The B cell compartment provides innate and adaptive immune defenses against pathogens. Different B cell subsets, reflecting the maturation stages of B cells, have noninterchangeable functions and roles in innate and adaptive immune responses. In this review, we provide an overview of the B cell subsets present in peripheral blood of healthy individuals. A specific gating strategy is also described to clearly and univocally identify B cell subsets based on the their phenotypic traits by flow cytometric analysis.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ane Fernandez Salinas
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
46
|
Tjiam MC, Fernandez S, French MA. Characterising the Phenotypic Diversity of Antigen-Specific Memory B Cells Before and After Vaccination. Front Immunol 2021; 12:738123. [PMID: 34650561 PMCID: PMC8505969 DOI: 10.3389/fimmu.2021.738123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
The diversity of B cell subsets and their contribution to vaccine-induced immunity in humans are not well elucidated but hold important implications for rational vaccine design. Prior studies demonstrate that B cell subsets distinguished by immunoglobulin (Ig) isotype expression exhibit divergent activation-induced fates. Here, the antigen-specific B cell response to tetanus toxoid (TTd) booster vaccination was examined in healthy adults, using a dual-TTd tetramer staining flow cytometry protocol. Unsupervised analyses of the data revealed that prior to vaccination, IgM-expressing CD27+ B cells accounted for the majority of TTd-binding B cells. 7 days following vaccination, there was an acute expansion of TTd-binding plasmablasts (PB) predominantly expressing IgG, and a minority expressing IgA or IgM. Frequencies of all PB subsets returned to baseline at days 14 and 21. TTd-binding IgG+ and IgA+ memory B cells (MBC) exhibited a steady and delayed maximal expansion compared to PB, peaking in frequencies at day 14. In contrast, the number of TTd-binding IgM+IgD+CD27+ B cells and IgM-only CD27+ B cells remain unchanged following vaccination. To examine TTd-binding capacity of IgG+ MBC and IgM+IgD+CD27+ B cells, surface TTd-tetramer was normalised to expression of the B cell receptor-associated CD79b subunit. CD79b-normalised TTd binding increased in IgG+ MBC, but remained unchanged in IgM+IgD+CD27+ B cells, and correlated with the functional affinity index of plasma TTd-specific IgG antibodies, following vaccination. Finally, frequencies of activated (PD-1+ICOS+) circulating follicular helper T cells (cTFH), particularly of the CXCR3-CCR6- cTFH2 cell phenotype, at their peak expansion, strongly predicted antigen-binding capacity of IgG+ MBC. These data highlight the phenotypic and functional diversity of the B cell memory compartment, in their temporal kinetics, antigen-binding capacities and association with cTFH cells, and are important parameters for consideration in assessing vaccine-induced immune responses.
Collapse
Affiliation(s)
- M Christian Tjiam
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sonia Fernandez
- Division of Immunology, PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Martyn A French
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
47
|
Verstegen NJM, Ubels V, Westerhoff HV, van Ham SM, Barberis M. System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation. Front Immunol 2021; 12:734282. [PMID: 34616402 PMCID: PMC8488341 DOI: 10.3389/fimmu.2021.734282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Germinal center (GC) reactions are vital to the correct functioning of the adaptive immune system, through formation of high affinity, class switched antibodies. GCs are transient anatomical structures in secondary lymphoid organs where specific B cells, after recognition of antigen and with T cell help, undergo class switching. Subsequently, B cells cycle between zones of proliferation and somatic hypermutation and zones where renewed antigen acquisition and T cell help allows for selection of high affinity B cells (affinity maturation). Eventually GC B cells first differentiate into long-lived memory B cells (MBC) and finally into plasma cells (PC) that partially migrate to the bone marrow to encapsulate into long-lived survival niches. The regulation of GC reactions is a highly dynamically coordinated process that occurs between various cells and molecules that change in their signals. Here, we present a system-level perspective of T cell-mediated GC B cell differentiation, presenting and discussing the experimental and computational efforts on the regulation of the GCs. We aim to integrate Systems Biology with B cell biology, to advance elucidation of the regulation of high-affinity, class switched antibody formation, thus to shed light on the delicate functioning of the adaptive immune system. Specifically, we: i) review experimental findings of internal and external factors driving various GC dynamics, such as GC initiation, maturation and GCBC fate determination; ii) draw comparisons between experimental observations and mathematical modeling investigations; and iii) discuss and reflect on current strategies of modeling efforts, to elucidate B cell behavior during the GC tract. Finally, perspectives are specifically given on to the areas where a Systems Biology approach may be useful to predict novel GCBC-T cell interaction dynamics.
Collapse
Affiliation(s)
- Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Victor Ubels
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
48
|
Kibler A, Budeus B, Homp E, Bronischewski K, Berg V, Sellmann L, Murke F, Heinold A, Heinemann FM, Lindemann M, Bekeredjian-Ding I, Horn PA, Kirschning CJ, Küppers R, Seifert M. Systematic memory B cell archiving and random display shape the human splenic marginal zone throughout life. J Exp Med 2021; 218:211756. [PMID: 33538775 PMCID: PMC7868796 DOI: 10.1084/jem.20201952] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Human memory B cells (MBCs) are generated and diversified in secondary lymphoid tissues throughout the organism. A paired immunoglobulin (Ig)-gene repertoire analysis of peripheral blood (PB) and splenic MBCs from infant, adult, and elderly humans revealed that throughout life, circulating MBCs are comprehensively archived in the spleen. Archive MBC clones are systematically preserved and uncoupled from class-switching. Clonality in the spleen increases steadily, but boosts at midlife, thereby outcompeting small clones. The splenic marginal zone (sMZ) represents a primed MBC compartment, generated from a stochastic exchange within the archive memory pool. This is supported by functional assays, showing that PB and splenic CD21+ MBCs acquire transient CD21high expression upon NOTCH2-stimulation. Our study provides insight that the human MBC system in PB and spleen is composed of three interwoven compartments: the dynamic relationship of circulating, archive, and its subset of primed (sMZ) memory changes with age, thereby contributing to immune aging.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ekaterina Homp
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Kevin Bronischewski
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Victoria Berg
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ludger Sellmann
- Department of Haematology, University Hospital Essen, Essen, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
49
|
Cococcia S, Lenti MV, Santacroce G, Achilli G, Borrelli de Andreis F, Di Sabatino A. Liver-spleen axis dysfunction in COVID-19. World J Gastroenterol 2021; 27:5919-5931. [PMID: 34629809 PMCID: PMC8475007 DOI: 10.3748/wjg.v27.i35.5919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/01/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an acute infectious disease that spreads mainly through the respiratory route. Besides interstitial pneumonia, a number of other clinical manifestations were noticed in COVID-19 patients. In particular, liver and spleen dysfunctions have been described both as complications of COVID-19 and as potential predisposing factors for severe COVID-19. Liver damage is rather common in COVID-19 patients, and it is most likely multifactorial, caused by the direct insult of SARS-CoV-2 to the liver by the cytokine storm triggered by the virus, by the use of hepatotoxic drugs, and as a consequence of hypoxia. Although generally mild, liver impairment has been found to be associated with a higher rate of intensive care unit admission. A higher mortality rate was reported among chronic liver disease patients. Instead, spleen impairment in patients with COVID-19 has been poorly described. The main anatomical changes are the architectural derangement of the B cell compartment, white pulp atrophy, and reduction or absence of lymphoid follicles, while, from a functional point of view, the IgM memory B cell pool is markedly depleted. The outcome of COVID-19 in asplenic or hyposplenic patients is yet to be defined. In this review, we will summarise the current knowledge regarding the impact of SARS-CoV-2 on the liver and spleen function, as well as the outcome of patients with a pre-existent liver disease or defective spleen function.
Collapse
Affiliation(s)
- Sara Cococcia
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia 27100, Italy
- Department of Gastroenterology, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia 27100, Italy
| | - Giovanni Santacroce
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia 27100, Italy
| | - Giovanna Achilli
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia 27100, Italy
| | | | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
50
|
Shroff RT, Chalasani P, Wei R, Pennington D, Quirk G, Schoenle MV, Peyton KL, Uhrlaub JL, Ripperger TJ, Jergović M, Dalgai S, Wolf A, Whitmer R, Hammad H, Carrier A, Scott AJ, Nikolich-Žugich J, Worobey M, Sprissler R, Dake M, LaFleur BJ, Bhattacharya D. Immune Responses to COVID-19 mRNA Vaccines in Patients with Solid Tumors on Active, Immunosuppressive Cancer Therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.13.21257129. [PMID: 34013289 PMCID: PMC8132263 DOI: 10.1101/2021.05.13.21257129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vaccines against SARS-CoV-2 have shown high efficacy, but immunocompromised participants were excluded from controlled clinical trials. We compared immune responses to the Pfizer/BioNTech mRNA vaccine in solid tumor patients (n=53) on active cytotoxic anti-cancer therapy to a control cohort (n=50) as an observational study. Using live SARS-CoV-2 assays, neutralizing antibodies were detected in 67% and 80% of cancer patients after the first and second immunizations, respectively, with a 3-fold increase in median titers after the booster. Similar trends were observed in serum antibodies against the receptor-binding domain (RBD) and S2 regions of Spike protein, and in IFNγ+ Spike-specific T cells. Yet the magnitude of each of these responses was diminished relative to the control cohort. We therefore quantified RBD- and Spike S1-specific memory B cell subsets as predictors of anamnestic responses to additional immunizations. After the second vaccination, Spike-specific plasma cell-biased memory B cells were observed in most cancer patients at levels similar to those of the control cohort after the first immunization. We initiated an interventional phase 1 trial of a third booster shot (NCT04936997); primary outcomes were immune responses with a secondary outcome of safety. After a third immunization, the 20 participants demonstrated an increase in antibody responses, with a median 3-fold increase in virus-neutralizing titers. Yet no improvement was observed in T cell responses at 1 week after the booster immunization. There were mild adverse events, primarily injection site myalgia, with no serious adverse events after a month of follow-up. These results suggest that a third vaccination improves humoral immunity against COVID-19 in cancer patients on active chemotherapy with no severe adverse events.
Collapse
Affiliation(s)
- Rachna T. Shroff
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Pavani Chalasani
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ran Wei
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Pennington
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Grace Quirk
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Marta V. Schoenle
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Kameron L. Peyton
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tyler J. Ripperger
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Mladen Jergović
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Shelby Dalgai
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Alexander Wolf
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Hytham Hammad
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Amy Carrier
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Aaron J. Scott
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Michael Worobey
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Ryan Sprissler
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- University of Arizona Genomics Core and the Arizona Research Labs, University of Arizona Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Michael Dake
- Office of the Senior Vice-President for Health Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|