1
|
Lv Y, Wu S, Nitsche MA, Yue T, Zschorlich VR, Qi F. A meta-analysis of the effects of transcranial direct current stimulation combined with cognitive training on working memory in healthy older adults. Front Aging Neurosci 2024; 16:1454755. [PMID: 39376507 PMCID: PMC11456488 DOI: 10.3389/fnagi.2024.1454755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Working memory (WM) loss, which can lead to a loss of independence, and declines in the quality of life of older adults, is becoming an increasingly prominent issue affecting the ageing population. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, is emerging as a potential alternative to pharmacological treatments that shows promise for enhancing WM capacity and May enhance the effects of cognitive training (CT) interventions. Objective The purpose of this meta-analysis was to explore how different tDCS protocols in combination with CT enhanced WM in healthy older adults. Methods Randomized controlled trials (RCTs) exploring the effects of tDCS combined with CT on WM in healthy older adults were retrieved from the Web of Science, PubMed, Embase, Scopus and the Cochrane Library databases. The search time period ranged from database inception to January 15, 2024. Methodological quality of the trials was assessed using the risk-of-bias criteria for RCTs from the Cochrane Collaboration Network, and RevMan 5.3 (Cochrane, London, United Kingdom) was used for the meta-analysis of the final literature outcomes. Results Six RCTs with a total of 323 participants were ultimately included. The results of the meta-analysis show that tDCS combined with CT statistically significantly improves WM performance compared to the control sham stimulation group in healthy older adults [standard mean difference (SMD) = 0.35, 95% CI: 0.11-0.59, I 2 = 0%, Z = 2.86, p = 0.004]. The first subgroup analysis indicated that, when the stimulus intensity was 2 mA, a statistically significant improvement in WM performance in healthy older adults was achieved (SMD = 0.39, 95% CI: 0.08-0.70, I 2 = 6%, Z = 2.46, p = 0.01). The second subgroup analysis showed that long-term intervention (≥ 10 sessions) with tDCS combined with CT statistically significantly improved WM compared to the control group in healthy older adults (SMD = 0.72, 95% CI: 0.22-1.21, I 2 = 0%, Z = 2.85, p = 0.004). Conclusion tDCS combined with CT statistically significantly improves WM in healthy older adults. For the stimulus parameters, long-term interventions (≥ 10 sessions) with a stimulation intensity of 2 mA are the most effective.
Collapse
Affiliation(s)
- Yanxin Lv
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Shuo Wu
- Faculty of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Tian Yue
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Volker R. Zschorlich
- Faculty of Philosophy, Institute of Sports Science, University of Rostock, Rostock, Germany
- Faculty of Interdisciplinary Research, Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Department of Sport Science, University of Oldenburg, Oldenburg, Germany
| | - Fengxue Qi
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
3
|
Sánchez-León CA, Campos GSG, Fernández M, Sánchez-López A, Medina JF, Márquez-Ruiz J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.18.529047. [PMID: 36824866 PMCID: PMC9949160 DOI: 10.1101/2023.02.18.529047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. We investigated how Cb-tDCS affects the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex to understand the underlying mechanisms behind the polarity-dependent modulation of neuronal activity induced by tDCS. Mice (n = 9) were prepared for the chronic recording of LFPs to assess the actual electric field gradient imposed by Cb-tDCS in our experimental design. Single-neuron extracellular recording of PCs in awake (n = 24) and anesthetized (n = 27) mice was combined with juxtacellular recordings and subsequent staining of PC with neurobiotin under anesthesia (n = 8) to correlate their neuronal orientation with their response to Cb-tDCS. Finally, a high-density Neuropixels recording system was used to demonstrate the relevance of neuronal orientation during the application of Cb-tDCS in awake mice (n = 6). In this study, we observe that Cb-tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex. We demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings highlight the need to consider neuronal orientation and morphology to improve tDCS computational models, enhance stimulation protocol reliability, and optimize effects in both basic and clinical applications.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
- Department of Neurology and Neurobiology, University of California Los Angeles, Los Angeles 90095, USA
| | | | - Marta Fernández
- Department of Psychiatry, University of California Los Angeles, Los Angeles 90095, USA
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
| |
Collapse
|
4
|
Anderson BA. Trichotomy revisited: A monolithic theory of attentional control. Vision Res 2024; 217:108366. [PMID: 38387262 PMCID: PMC11523554 DOI: 10.1016/j.visres.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The control of attention was long held to reflect the influence of two competing mechanisms of assigning priority, one goal-directed and the other stimulus-driven. Learning-dependent influences on the control of attention that could not be attributed to either of those two established mechanisms of control gave rise to the concept of selection history and a corresponding third mechanism of attentional control. The trichotomy framework that ensued has come to dominate theories of attentional control over the past decade, replacing the historical dichotomy. In this theoretical review, I readily affirm that distinctions between the influence of goals, salience, and selection history are substantive and meaningful, and that abandoning the dichotomy between goal-directed and stimulus-driven mechanisms of control was appropriate. I do, however, question whether a theoretical trichotomy is the right answer to the problem posed by selection history. If we reframe the influence of goals and selection history as different flavors of memory-dependent modulations of attentional priority and if we characterize the influence of salience as a consequence of insufficient competition from such memory-dependent sources of priority, it is possible to account for a wide range of attention-related phenomena with only one mechanism of control. The monolithic framework for the control of attention that I propose offers several concrete advantages over a trichotomy framework, which I explore here.
Collapse
Affiliation(s)
- Brian A Anderson
- Texas A&M University, Department of Psychological & Brain Sciences, 4235 TAMU, College Station, TX 77843-4235, United States.
| |
Collapse
|
5
|
Mishima T, Komano K, Tabaru M, Kofuji T, Saito A, Ugawa Y, Terao Y. Repetitive pulsed-wave ultrasound stimulation suppresses neural activity by modulating ambient GABA levels via effects on astrocytes. Front Cell Neurosci 2024; 18:1361242. [PMID: 38601023 PMCID: PMC11004293 DOI: 10.3389/fncel.2024.1361242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown. To investigate the mechanism of action of ultrasound stimulation, we studied the effects of two types of patterned ultrasound on synaptic transmission and neural network activity using whole-cell recordings in primary cultured hippocampal cells. Single-shot pulsed-wave (PW) or continuous-wave (CW) ultrasound had no effect on neural activity. By contrast, although repetitive CW stimulation also had no effect, repetitive PW stimulation persistently reduced spontaneous recurrent burst firing. This inhibitory effect was dependent on extrasynaptic-but not synaptic-GABAA receptors, and the effect was abolished under astrocyte-free conditions. Pharmacological activation of astrocytic TRPA1 channels mimicked the effects of ultrasound by increasing the tonic GABAA current induced by ambient GABA. Pharmacological blockade of TRPA1 channels abolished the inhibitory effect of ultrasound. These findings suggest that the repetitive PW low-intensity ultrasound used in our study does not have a direct effect on neural function but instead exerts its sustained neuromodulatory effect through modulation of ambient GABA levels via channels with characteristics of TRPA1, which is expressed in astrocytes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenta Komano
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
- Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
6
|
Zhang L, Yamada Y. Alternating capture of attention by multiple visual working memory representations. Sci Rep 2023; 13:13029. [PMID: 37563170 PMCID: PMC10415262 DOI: 10.1038/s41598-023-40095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Can we look for multiple objects simultaneously? Previous studies have proposed that the representation of an item in visual working memory (VWM) can bias the deployment of attention to memory-matching items in visual search. However, it is still controversial whether multiple VWM item representations are able to capture attention. In the present study, we adopted an eye-tracking technique to reveal this issue. In Experiment 1, we replicated Chen and Du's Experiment 2 and adopted an eye-tracking technique to determine whether multiple VWM item representations are able to bias attention. In Chen and Du's paradigm, the memory test was always followed by the search test, and the participants might intentionally prepare for the search task, which can affect the results of the research. Thus, in Experiment 2, we prevented participants from predicting the temporal occurrence of the visual search task by randomly conducting a search test or a memory test after memoranda. The findings of the present study suggested that only one working memory item at a time influences attention and multiple working memory items may affect attention through alternation. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on September 5, 2022. The protocol, as accepted by the journal, can be found at: https://doi.org/10.17605/OSF.IO/BE529 .
Collapse
Affiliation(s)
- Lunbo Zhang
- Graduate School of Human-Environment Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yuki Yamada
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Rubinstein DY, Weidemann CT, Sperling MR, Kahana MJ. Direct brain recordings suggest a causal subsequent-memory effect. Cereb Cortex 2023; 33:6891-6901. [PMID: 36702495 PMCID: PMC10233277 DOI: 10.1093/cercor/bhad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Endogenous variation in brain state and stimulus-specific evoked activity can both contribute to successful encoding. Previous studies, however, have not clearly distinguished among these components. We address this question by analysing intracranial EEG recorded from epilepsy patients as they studied and subsequently recalled lists of words. We first trained classifiers to predict recall of either single items or entire lists and found that both classifiers exhibited similar performance. We found that list-level classifier output-a biomarker of successful encoding-tracked item presentation and recall events, despite having no information about the trial structure. Across widespread brain regions, decreased low- and increased high-frequency activity (HFA) marked successful encoding of both items and lists. We found regional differences in the hippocampus and prefrontal cortex, where in the hippocampus HFA correlated more strongly with item recall, whereas, in the prefrontal cortex, HFA correlated more strongly with list performance. Despite subtle differences in item- and list-level features, the similarity in overall classification performance, spectral signatures of successful recall and fluctuations of spectral activity across the encoding period argue for a shared endogenous process that causally impacts the brain's ability to learn new information.
Collapse
Affiliation(s)
- Daniel Y Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christoph T Weidemann
- Department of Psychology, Swansea University, Swansea SA2 8PP, UK
- Department of Bioengineering, Columbia University, New York, NY 10027, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 2022; 25:1237-1246. [PMID: 35995877 PMCID: PMC10068908 DOI: 10.1038/s41593-022-01132-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory-verbal working memory and long-term memory in 65-88-year-old people. Modulation of synchronous low-frequency, but not high-frequency, activity in parietal cortex preferentially improved working memory on day 3 and day 4 and 1 month after intervention, whereas modulation of synchronous high-frequency, but not low-frequency, activity in prefrontal cortex preferentially improved long-term memory on days 2-4 and 1 month after intervention. The rate of memory improvements over 4 days predicted the size of memory benefits 1 month later. Individuals with lower baseline cognitive function experienced larger, more enduring memory improvements. Our findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation grounded in spatiospectral parameters of memory-specific cortical circuitry.
Collapse
|
9
|
Dell'Italia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current State of Potential Mechanisms Supporting Low Intensity Focused Ultrasound for Neuromodulation. Front Hum Neurosci 2022; 16:872639. [PMID: 35547195 PMCID: PMC9081930 DOI: 10.3389/fnhum.2022.872639] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Low intensity focused ultrasound (LIFU) has been gaining traction as a non-invasive neuromodulation technology due to its superior spatial specificity relative to transcranial electrical/magnetic stimulation. Despite a growing literature of LIFU-induced behavioral modifications, the mechanisms of action supporting LIFU's parameter-dependent excitatory and suppressive effects are not fully understood. This review provides a comprehensive introduction to the underlying mechanics of both acoustic energy and neuronal membranes, defining the primary variables for a subsequent review of the field's proposed mechanisms supporting LIFU's neuromodulatory effects. An exhaustive review of the empirical literature was also conducted and studies were grouped based on the sonication parameters used and behavioral effects observed, with the goal of linking empirical findings to the proposed theoretical mechanisms and evaluating which model best fits the existing data. A neuronal intramembrane cavitation excitation model, which accounts for differential effects as a function of cell-type, emerged as a possible explanation for the range of excitatory effects found in the literature. The suppressive and other findings need additional theoretical mechanisms and these theoretical mechanisms need to have established relationships to sonication parameters.
Collapse
Affiliation(s)
- John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- *Correspondence: John Dell'Italia
| | - Joseph L. Sanguinetti
- Department of Psychology, University of Arizona, Tuscon, AZ, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Martin M. Monti
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Bystritsky
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| |
Collapse
|
10
|
Arulpragasam AR, van 't Wout-Frank M, Barredo J, Faucher CR, Greenberg BD, Philip NS. Low Intensity Focused Ultrasound for Non-invasive and Reversible Deep Brain Neuromodulation-A Paradigm Shift in Psychiatric Research. Front Psychiatry 2022; 13:825802. [PMID: 35280168 PMCID: PMC8907584 DOI: 10.3389/fpsyt.2022.825802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 01/15/2023] Open
Abstract
This article describes an emerging non-invasive neuromodulatory technology, called low intensity focused ultrasound (LIFU). This technology is potentially paradigm shifting as it can deliver non-invasive and reversible deep brain neuromodulation through acoustic sonication, at millimeter precision. Low intensity focused ultrasound's spatial precision, yet non-invasive nature sets it apart from current technologies, such as transcranial magnetic or electrical stimulation and deep brain stimulation. Additionally, its reversible effects allow for the causal study of deep brain regions implicated in psychiatric illness. Studies to date have demonstrated that LIFU can safely modulate human brain activity at cortical and subcortical levels. Due to its novelty, most researchers and clinicians are not aware of the potential applications and promise of this technique, underscoring the need for foundational papers to introduce the community to LIFU. This mini-review and synthesis of recent advances examines several key papers on LIFU administered to humans, describes the population under study, parameters used, and relevant findings that may guide future research. We conclude with a concise overview of some of the more pressing questions to date, considerations when interpreting new data from an emerging field, and highlight the opportunities and challenges in this exciting new area of study.
Collapse
Affiliation(s)
- Amanda R Arulpragasam
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States
| | - Mascha van 't Wout-Frank
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| | - Jennifer Barredo
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| | - Christiana R Faucher
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States
| | - Benjamin D Greenberg
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| | - Noah S Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| |
Collapse
|
11
|
Anderson BA, Kim H, Kim AJ, Liao MR, Mrkonja L, Clement A, Grégoire L. The past, present, and future of selection history. Neurosci Biobehav Rev 2021; 130:326-350. [PMID: 34499927 PMCID: PMC8511179 DOI: 10.1016/j.neubiorev.2021.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023]
Abstract
The last ten years of attention research have witnessed a revolution, replacing a theoretical dichotomy (top-down vs. bottom-up control) with a trichotomy (biased by current goals, physical salience, and selection history). This third new mechanism of attentional control, selection history, is multifaceted. Some aspects of selection history must be learned over time whereas others reflect much more transient influences. A variety of different learning experiences can shape the attention system, including reward, aversive outcomes, past experience searching for a target, target‒non-target relations, and more. In this review, we provide an overview of the historical forces that led to the proposal of selection history as a distinct mechanism of attentional control. We then propose a formal definition of selection history, with concrete criteria, and identify different components of experience-driven attention that fit within this definition. The bulk of the review is devoted to exploring how these different components relate to one another. We conclude by proposing an integrative account of selection history centered on underlying themes that emerge from our review.
Collapse
Affiliation(s)
- Brian A Anderson
- Texas A&M University, College Station, TX, 77843, United States.
| | - Haena Kim
- Texas A&M University, College Station, TX, 77843, United States
| | - Andy J Kim
- Texas A&M University, College Station, TX, 77843, United States
| | - Ming-Ray Liao
- Texas A&M University, College Station, TX, 77843, United States
| | - Lana Mrkonja
- Texas A&M University, College Station, TX, 77843, United States
| | - Andrew Clement
- Texas A&M University, College Station, TX, 77843, United States
| | | |
Collapse
|
12
|
Allocation of resources in working memory: Theoretical and empirical implications for visual search. Psychon Bull Rev 2021; 28:1093-1111. [PMID: 33733298 PMCID: PMC8367923 DOI: 10.3758/s13423-021-01881-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
Recently, working memory (WM) has been conceptualized as a limited resource, distributed flexibly and strategically between an unlimited number of representations. In addition to improving the precision of representations in WM, the allocation of resources may also shape how these representations act as attentional templates to guide visual search. Here, we reviewed recent evidence in favor of this assumption and proposed three main principles that govern the relationship between WM resources and template-guided visual search. First, the allocation of resources to an attentional template has an effect on visual search, as it may improve the guidance of visual attention, facilitate target recognition, and/or protect the attentional template against interference. Second, the allocation of the largest amount of resources to a representation in WM is not sufficient to give this representation the status of attentional template and thus, the ability to guide visual search. Third, the representation obtaining the status of attentional template, whether at encoding or during maintenance, receives an amount of WM resources proportional to its relevance for visual search. Thus defined, the resource hypothesis of visual search constitutes a parsimonious and powerful framework, which provides new perspectives on previous debates and complements existing models of template-guided visual search.
Collapse
|
13
|
Visual Working Memory Guides Spatial Attention: Evidence from alpha oscillations and sustained potentials. Neuropsychologia 2020; 151:107719. [PMID: 33309675 DOI: 10.1016/j.neuropsychologia.2020.107719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Selective attention can facilitate performance by filtering irrelevant information and temporary maintaining limited information to accomplish the current task. However, the neural substrate how attentional selection can be guided by visual working memory (vWM) is not clear. Here, we recorded electrophysiological signals during vWM retention and investigated the relationship between objects held in memorial templates and the subsequent attentional selection during visual search. We observed that sustained posterior contralateral delay activity (CDA) was present and scaled with lateral vWM loads during the whole period of vWM retention, but that it was absent when objects were bilaterally held in vWM. Surprisingly, a strikingly similar pattern emerged for modulations in the averaged posterior alpha (8-12 Hz) power during the late period but not during the early period of retention. More importantly, it was the alpha modulation, but not the CDA, that strongly predicted the subsequent biomarker of attentional selection (the memorial template-induced N2pc) during visual search. We further observed the N2pc amplitudes decreased with increasing memory loads and predicted the same gradation of the final behavioral accuracy in visual search. All these results suggested that the subsequent memorial template-induced N2pc is response to the level of top-down attentional guiding effect caused by vWM. Our results provide neurophysiological evidence that keeping multiple templates in working memory simultaneously weakens the guiding effect to the following attentional selection.
Collapse
|
14
|
Zhao C, Woodman GF. Converging Evidence That Neural Plasticity Underlies Transcranial Direct-Current Stimulation. J Cogn Neurosci 2020; 33:146-157. [PMID: 33054552 DOI: 10.1162/jocn_a_01639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.
Collapse
|
15
|
Three visual working memory representations simultaneously control attention. Sci Rep 2020; 10:10504. [PMID: 32601295 PMCID: PMC7324568 DOI: 10.1038/s41598-020-67455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/02/2020] [Indexed: 11/08/2022] Open
Abstract
How many items can we store in visual working memory while simultaneously conducting a visual search? Previous research has proposed that during concurrent visual search, only one visual working memory representation can be activated to directly influence attention. This previous research suggests that other visual working memory representations are "accessory items", which have little direct influence on attention. However, recent findings provided evidence that not one, but two visual working memory representations can capture attention and interfere with concurrent visual search. We successfully replicate these findings, and further test whether the capacity of visual working memory during visual search extends to not two, but three representations that influence attention directly. We find evidence that three visual working memory representations can simultaneously control attention.
Collapse
|
16
|
Wang S, Itthipuripat S, Ku Y. Encoding strategy mediates the effect of electrical stimulation over posterior parietal cortex on visual short-term memory. Cortex 2020; 128:203-217. [PMID: 32361592 DOI: 10.1016/j.cortex.2020.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/08/2020] [Accepted: 03/10/2020] [Indexed: 01/20/2023]
Abstract
Over past decades, converging neuroimaging and electrophysiological findings have suggested a crucial role of posterior parietal cortex (PPC) in supporting the storage capacity of visual short-term memory (VSTM). Moreover, a few recent studies have shown that electrical stimulation over PPC can enhance VSTM capacity, making it a promising method for improving VSTM function. However, the reliability of these results is still in question because null findings have also been observed. Among studies that reported significant effects, some found increased VSTM capacity only in people with low capacity. Here, we hypothesized that subjects' encoding strategy might be a key source of these variable results. To directly test this hypothesis, we stimulated PPC using transcranial direct-current stimulation (tDCS) in male and female human subjects instructed to employ different encoding strategies during a VSTM recall task. We found that VSTM capacity was higher in subjects who were instructed to remember all items in the supra-capacity array of visual stimuli (i.e., the remember-all group), compared to subjects who were told to focus on a subset of these stimuli (i.e., the remember-subset group). As predicted, anodal tDCS over PPC significantly enhanced VSTM capacity only in the remember-subset group, but not in the remember-all group. Additionally, no effect of encoding strategy or its interaction with electrical stimulation was found on VSTM precision. Together, these results suggest that encoding strategy has a selective influence on VSTM capacity and this influence of encoding strategy mediates the effect of electrical stimulation over PPC on VSTM function.
Collapse
Affiliation(s)
- Sisi Wang
- Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Department of Psychology, Sun Yat-Sen University, Guangzhou, China; Peng Cheng Laboratory, Shenzhen, China; Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Sirawaj Itthipuripat
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand; Futuristic Research in Enigmatic Aesthetics Knowledge Laboratory, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Department of Psychology, Sun Yat-Sen University, Guangzhou, China; Peng Cheng Laboratory, Shenzhen, China; Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China.
| |
Collapse
|
17
|
Rajsic J, Carlisle NB, Woodman GF. What not to look for: Electrophysiological evidence that searchers prefer positive templates. Neuropsychologia 2020; 140:107376. [PMID: 32032582 DOI: 10.1016/j.neuropsychologia.2020.107376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
To-be-attended information can be specified either with positive cues (I'll be wearing a blue shirt) or with negative cues (I won't be wearing a red shirt). Numerous experiments have found that positive cues help search more than negative cues. Given that negative cues produce smaller benefits compared to positive cues, it stands to reason that searchers may choose to use positive templates instead of negative templates if given the opportunity. Here, we evaluate this possibility with behavioral measures as well as by directly measuring the formation of positive and negative templates with event-related potentials. Analysis of the contralateral delay activity (CDA) elicited by cues revealed that positive and negative templates relied on working memory to the same extent, even when negative working memory templates could have been circumvented by relying on long-term memories of target colors. Whereas the CDA did not discriminate positive and negative templates, a CNV-like potential did, suggesting cognitive differences between positive and negative templates beyond visual working memory. However, when both positive and negative information were presented in each cue, participants preferred to make use of the positive cues, as indicated by a CDA contralateral to the positive color in negative cue blocks, and a lack of search benefits for positive- and negative-color cues relative to positive-color cues alone. Our results show that searchers elect to selectively encode only positive information into visual working memory when both positive and negative information are available.
Collapse
Affiliation(s)
- Jason Rajsic
- Department of Psychology, Northumbria University, Newcastle Upon Tyne, Tyne and Wear, NE1 8SG, UK.
| | - Nancy B Carlisle
- Department of Psychology, College of Arts and Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Geoffrey F Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
18
|
Jones KT, Johnson EL, Berryhill ME. Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. Neuroimage 2020; 211:116615. [PMID: 32044440 PMCID: PMC7733399 DOI: 10.1016/j.neuroimage.2020.116615] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023] Open
Abstract
Despite considerable interest in enhancing, preserving, and rehabilitating working memory (WM), efforts to elicit sustained behavioral improvements have been met with limited success. Here, we paired WM training with transcranial direct current stimulation (tDCS) to the frontoparietal network over four days. Active tDCS enhanced WM performance by modulating interactions between frontoparietal theta oscillations and gamma activity, as measured by pre- and post-training high-density electroencephalography (EEG). Increased phase-amplitude coupling (PAC) between the prefrontal stimulation site and temporo-parietal gamma activity explained behavioral improvements, and was most effective when gamma occurred near the prefrontal theta peak. These results demonstrate for the first time that tDCS-linked WM training elicits lasting changes in behavior by optimizing the oscillatory substrates of prefrontal control.
Collapse
Affiliation(s)
- Kevin T Jones
- University of Nevada-Reno, Department of Psychology, Cognitive and Brain Sciences, Reno, NV, 89557, USA; University of California-San Francisco, Department of Neurology, Neuroscape, San Francisco, CA, 94158, USA
| | - Elizabeth L Johnson
- University of California-Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, 94720, USA; Wayne State University, Institute of Gerontology, Life-Span Cognitive Neuroscience Program, Detroit, MI, 48202, USA
| | - Marian E Berryhill
- University of Nevada-Reno, Department of Psychology, Cognitive and Brain Sciences, Reno, NV, 89557, USA.
| |
Collapse
|
19
|
Tsapa D, Ahmadlou M, Heimel JA. Long-term enhancement of visual responses by repeated transcranial electrical stimulation of the mouse visual cortex. Brain Stimul 2019; 12:1421-1428. [PMID: 31331791 DOI: 10.1016/j.brs.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (tES) is a popular method to modulate brain activity by sending a weak electric current through the head. Despite its popularity, long-term effects are poorly understood. OBJECTIVE We wanted to test if anodal tES immediately changes cerebral responses to visual stimuli, and if repeated sessions of tES produce plasticity in these responses. METHODS We applied repeated anodal tES, like transcranial direct current stimulation (tDCS), but pulsed (8 s on, 10 s off), to the visual cortex of mice while visually presenting gratings. We measured the responses to these visual stimuli in the visual cortex using the genetically encoded calcium indicator GCaMP3. RESULTS We found an increase in the visual response when concurrently applying tES on the bone without skin (epicranially). This increase was only transient when tES was applied through the skin (transcutaneous). There was no immediate after-effect of tES. However, repeated transcutaneous tES for four sessions at two-day intervals increased the visual response in the visual cortex. This increase was not specific to the grating stimulus coupled to tES and also occurred for an orthogonal grating presented in the same sessions but without concurrent tES. No increase was found in mice that received no tES. CONCLUSION Our study provides evidence that tES induces long-term changes in the mouse brain. Results in mice do not directly translate to humans, because of differences in stimulation protocols and the way current translates to electric field strength in vastly different heads.
Collapse
Affiliation(s)
- Despoina Tsapa
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, Institute of the Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Mehran Ahmadlou
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, Institute of the Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - J Alexander Heimel
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, Institute of the Royal Academy for Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 2019; 22:820-827. [PMID: 30962628 PMCID: PMC6486414 DOI: 10.1038/s41593-019-0371-x] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
Understanding normal brain aging and developing methods to maintain or improve cognition in older adults are major goals of fundamental and translational neuroscience. Here we show a core feature of cognitive decline-working-memory deficits-emerges from disconnected local and long-range circuits instantiated by theta-gamma phase-amplitude coupling in temporal cortex and theta phase synchronization across frontotemporal cortex. We developed a noninvasive stimulation procedure for modulating long-range theta interactions in adults aged 60-76 years. After 25 min of stimulation, frequency-tuned to individual brain network dynamics, we observed a preferential increase in neural synchronization patterns and the return of sender-receiver relationships of information flow within and between frontotemporal regions. The end result was rapid improvement in working-memory performance that outlasted a 50 min post-stimulation period. The results provide insight into the physiological foundations of age-related cognitive impairment and contribute to groundwork for future non-pharmacological interventions targeting aspects of cognitive decline.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA.
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA
| |
Collapse
|
21
|
Abstract
Visual mental imagery resembles visual working memory (VWM). Because both visual mental imagery and VWM involve the representation and manipulation of visual information, it was hypothesized that they would exert similar effects on visual attention. Several previous studies have demonstrated that working-memory representations guide attention toward a memory-matching task-irrelevant stimulus during visual-search tasks. Therefore, mental imagery may also guide attention toward imagery-matching stimuli. In the present study, five experiments were conducted to investigate the effects of visual mental imagery on visual attention during a visual-search task. Participants were instructed to visualize a color or an object clearly associated with a specific color, after which they were asked to detect a colored target in the visual-search task. Reaction times for target detection were shorter when the color of the target matched the imagined color, and when the color of the target was similar to that strongly associated with the imagined object, than when the color of the target did not match that of the mental representation. This effect was not observed when participants were not instructed to imagine a color. These results suggest that similar to VWM, visual mental imagery guides attention toward imagery-matching stimuli.
Collapse
|
22
|
Wang S, Itthipuripat S, Ku Y. Electrical Stimulation Over Human Posterior Parietal Cortex Selectively Enhances the Capacity of Visual Short-Term Memory. J Neurosci 2019; 39:528-536. [PMID: 30459222 PMCID: PMC6335754 DOI: 10.1523/jneurosci.1959-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022] Open
Abstract
Visual short-term memory (VSTM) provides an on-line mental space for incoming sensory information to be temporally maintained to carry out complex behavioral tasks. Despite its essential functions, the capacity at which VSTM could maintain sensory information is limited (i.e., VSTM can hold only about three to four visual items at once). Moreover, the quality of sensory representation (i.e., precision) degrades as more information has to be maintained in VSTM. Correlational evidence suggests that the level and the pattern of neural activity measured in the posterior parietal cortex (PPC) track both VSTM capacity and precision. However, the causal contributions of the PPC to these different VSTM operations are unclear. Here, we tested whether stimulating the PPC with transcranial direct current stimulation (tDCS) could increase VSTM capacity or precision. We found that stimulating the PPC in male and female human participants selectively enhanced VSTM capacity when the number of memory items exceeded capacity limit, without significant effects on VSTM precision. Moreover, this enhancement of VSTM capacity is region specific as stimulating the prefrontal cortex did not change VSTM capacity or precision. Null stimulation effects in the sensory memory condition confirmed that the tDCS-induced enhancement of VSTM capacity was not simply due to changes in sensory or attentional processes. Altogether, these results provide causal evidence suggesting that the PPC has a more dominant role in supporting the storage capacity of VSTM compared with maintaining the quality of sensory representations. Furthermore, tDCS could be used as a promising noninvasive method to enhance this PPC VSTM-related function.SIGNIFICANCE STATEMENT Correlational evidence from neuroimaging and electrophysiology suggests that the posterior parietal cortex (PPC) supports the storage capacity of visual short-term memory (VSTM) and the precision of sensory representations maintained in VSTM. However, the causal contributions of the PPC to these different VSTM functions were unclear. Here, we found that electrical stimulation over the PPC selectively enhanced VSTM capacity without changing VSTM precision. Overall, our findings suggest that the PPC has a dominant and causal role in supporting the storage capacity of VSTM.
Collapse
Affiliation(s)
- Sisi Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37235
| | - Sirawaj Itthipuripat
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37235
- Learning Institute, and
- Futuristic Research in Enigmatic Aesthetics Knowledge Laboratory, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, and
| | - Yixuan Ku
- Shanghai Key Laboratory of Brain Functional Genomics, Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China,
- NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai 200062, People's Republic of China
| |
Collapse
|
23
|
Reinhart RMG, Park S, Woodman GF. Localization and Elimination of Attentional Dysfunction in Schizophrenia During Visual Search. Schizophr Bull 2019; 45:96-105. [PMID: 29420805 PMCID: PMC6293221 DOI: 10.1093/schbul/sby002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Theories of the locus of visual selective attention dysfunction in schizophrenia propose that the deficits arise from either an inability to maintain working memory representations that guide attention, or difficulty focusing lower-level visual attention mechanisms. However, these theoretical accounts neglect the role of long-term memory representations in controlling attention. Here, we show that the control of visual attention is impaired in people with schizophrenia, and that this impairment is driven by an inability to shift top-down attentional control from working memory to long-term memory across practice. Next, we provide converging evidence for the source of attentional impairments in long-term memory by showing that noninvasive electrical stimulation of medial frontal cortex normalizes long-term memory related neural signatures and patients' behavior. Our findings suggest that long-term memory structures may be a source of impaired attentional selection in schizophrenia when visual attention is taxed during the processing of multi-object arrays.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Center for Research in Sensory Communications and Neural Technology, Boston University, Boston,To whom correspondence should be addressed; tel: 617-353-9481; e-mail:
| | - Sohee Park
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN,Kyung Hee University, Seoul, Korea
| | - Geoffrey F Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
24
|
Zinchenko A, Conci M, Taylor PCJ, Müller HJ, Geyer T. Taking Attention Out of Context: Frontopolar Transcranial Magnetic Stimulation Abolishes the Formation of New Context Memories in Visual Search. J Cogn Neurosci 2018; 31:442-452. [PMID: 30457915 DOI: 10.1162/jocn_a_01358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study investigates the causal contribution of the left frontopolar cortex (FPC) to the processing of violated expectations from learned target-distractor spatial contingencies during visual search. The experiment consisted of two phases: learning and test. Participants searched for targets presented either among repeated or nonrepeated target-distractor configurations. Prior research showed that repeated encounters of identically arranged displays lead to memory about these arrays, which then can come to guide search (contextual cueing effect). The crucial manipulation was a change of the target location, in a nevertheless constant distractor layout, at the transition from learning to test. In addition to this change, we applied repetitive transcranial magnetic stimulation (rTMS) over the left lateral FPC, over a posterior control site, or no rTMS at all (baseline; between-group manipulation) to see how FPC rTMS influences the ability of observers to adapt context-based memories acquired in the training phase. The learning phase showed expedited search in repeated relative to nonrepeated displays, with this context-based facilitation being comparable across all experimental groups. For the test phase, the recovery of cueing was critically dependent on the stimulation site: Although there was evidence of context adaptation toward the end of the experiment in the occipital and no-rTMS conditions, observers with FPC rTMS showed no evidence of relearning at all after target location changes. This finding shows that FPC plays an important role in the regulation of prediction errors in statistical context learning, thus contributing to an update of the spatial target-distractor contingencies after target position changes in learned spatial arrays.
Collapse
Affiliation(s)
| | | | | | - Hermann J Müller
- Ludwig-Maximilians-Universität München.,Birkbeck, University of London
| | | |
Collapse
|
25
|
Nguyen J, Deng Y, Reinhart RMG. Brain-state determines learning improvements after transcranial alternating-current stimulation to frontal cortex. Brain Stimul 2018; 11:723-726. [PMID: 29482970 PMCID: PMC6019559 DOI: 10.1016/j.brs.2018.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/30/2017] [Accepted: 02/13/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Theories of executive control propose that communication between medial frontal cortex (MFC) and lateral prefrontal cortex (lPFC) is critical for learning. 6-Hz phase synchronization may be the mechanism by which neural activity between MFC and lPFC is coordinated into a functional network. Recent evidence suggests that switching from eyes closed to open may induce a change in brain-state reflected by enhanced executive control and related functional connectivity. OBJECTIVE/HYPOTHESIS To examine whether causal manipulation of MFC and lPFC can improve learning according to the brain-state induced by switching from eyes closed to open. METHODS Within-subjects, sham-controlled, double-blind study of 30 healthy subjects, each receiving 6-Hz in-phase high definition transcranial alternating-current stimulation (HD-tACS) applied to MFC and right lPFC prior to performing a time estimation task. RESULTS HD-tACS with eyes open improved learning ability relative to sham, whereas HD-tACS with eyes closed had no significant effect on behavior. CONCLUSION Results suggest a phase-sensitive mechanism in frontal cortex mediates components of learning performance in a state-dependent manner.
Collapse
Affiliation(s)
- John Nguyen
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Center for Research in Sensory Communications and Neural Technology, Boston University, Boston, MA 02215, USA
| | - Yuqi Deng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Center for Research in Sensory Communications and Neural Technology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Schneider D, Bonmassar C, Hickey C. Motivation and short-term memory in visual search: Attention's accelerator revisited. Cortex 2018; 102:45-56. [DOI: 10.1016/j.cortex.2017.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/09/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
|
27
|
Mallett R, Lewis-Peacock JA. Behavioral decoding of working memory items inside and outside the focus of attention. Ann N Y Acad Sci 2018; 1424:256-267. [PMID: 29604084 DOI: 10.1111/nyas.13647] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
Abstract
How we attend to our thoughts affects how we attend to our environment. Holding information in working memory can automatically bias visual attention toward matching information. By observing attentional biases on reaction times to visual search during a memory delay, it is possible to reconstruct the source of that bias using machine learning techniques and thereby behaviorally decode the content of working memory. Can this be done when more than one item is held in working memory? There is some evidence that multiple items can simultaneously bias attention, but the effects have been inconsistent. One explanation may be that items are stored in different states depending on the current task demands. Recent models propose functionally distinct states of representation for items inside versus outside the focus of attention. Here, we use behavioral decoding to evaluate whether multiple memory items-including temporarily irrelevant items outside the focus of attention-exert biases on visual attention. Only the single item in the focus of attention was decodable. The other item showed a brief attentional bias that dissipated until it returned to the focus of attention. These results support the idea of dynamic, flexible states of working memory across time and priority.
Collapse
Affiliation(s)
- Remington Mallett
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
28
|
Greenwood PM, Blumberg EJ, Scheldrup MR. Hypothesis for cognitive effects of transcranial direct current stimulation: Externally- and internally-directed cognition. Neurosci Biobehav Rev 2018; 86:226-238. [DOI: 10.1016/j.neubiorev.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022]
|
29
|
Servant M, Cassey P, Woodman GF, Logan GD. Neural bases of automaticity. J Exp Psychol Learn Mem Cogn 2017; 44:440-464. [PMID: 28933906 DOI: 10.1037/xlm0000454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Automaticity allows us to perform tasks in a fast, efficient, and effortless manner after sufficient practice. Theories of automaticity propose that across practice processing transitions from being controlled by working memory to being controlled by long-term memory retrieval. Recent event-related potential (ERP) studies have sought to test this prediction, however, these experiments did not use the canonical paradigms used to study automaticity. Specifically, automaticity is typically studied using practice regimes with consistent mapping between targets and distractors and spaced practice with individual targets, features that these previous studies lacked. The aim of the present work was to examine whether the practice-induced shift from working memory to long-term memory inferred from subjects' ERPs is observed under the conditions in which automaticity is traditionally studied. We found that to be the case in 3 experiments, firmly supporting the predictions of theories. In addition, we found that the temporal distribution of practice (massed vs. spaced) modulates the shape of learning curves. The ERP data revealed that the switch to long-term memory is slower for spaced than massed practice, suggesting that memory systems are used in a strategic manner. This finding provides new constraints for theories of learning and automaticity. (PsycINFO Database Record
Collapse
Affiliation(s)
- Mathieu Servant
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University
| | - Peter Cassey
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University
| | - Geoffrey F Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University
| | - Gordon D Logan
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University
| |
Collapse
|
30
|
Chen Y, Du F. Two visual working memory representations simultaneously control attention. Sci Rep 2017; 7:6107. [PMID: 28733668 PMCID: PMC5522436 DOI: 10.1038/s41598-017-05865-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022] Open
Abstract
It has been proposed that only one visual working memory (VWM) representation can be activated to influence perception directly, whereas other VWM representations are accessory items which have little influence on visual selection. The sole active VWM representation might reflect a fundamental bottleneck in the information processing of human beings. However, the present study showed that each of two VWM representations can capture attention and interfere with concurrent visual search. In addition, each of two VWM representations can interfere with concurrent visual search as much as can a single cued VWM representation. Moreover, when two memory-matching distractors appear in visual search, two VWM representations produce a larger memory-driven capture effect than a single memory-matching distractor. Thus, two VWM representations can simultaneously control attention.
Collapse
Affiliation(s)
- Yanan Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Psychology Department, University of Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Behavior and Psychology, Henan University, Kaifeng, 475004, China
| | - Feng Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Psychology Department, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Reteig LC, Talsma LJ, van Schouwenburg MR, Slagter HA. Transcranial Electrical Stimulation as a Tool to Enhance Attention. JOURNAL OF COGNITIVE ENHANCEMENT 2017. [DOI: 10.1007/s41465-017-0010-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Stimulation of the Posterior Cortical-Hippocampal Network Enhances Precision of Memory Recollection. Curr Biol 2017; 27:465-470. [PMID: 28111154 DOI: 10.1016/j.cub.2016.12.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Episodic memory is thought to critically depend on interaction of the hippocampus with distributed brain regions [1-3]. Specific contributions of distinct networks have been hypothesized, with the hippocampal posterior-medial (HPM) network implicated in the recollection of highly precise contextual and spatial information [3-6]. Current evidence for HPM specialization is mostly indirect, derived from correlative measures such as neural activity recordings. Here we tested the causal role of the HPM network in recollection using network-targeted noninvasive brain stimulation in humans, which has previously been shown to increase functional connectivity within the HPM network [7]. Effects of multiple-day electromagnetic stimulation were assessed using an object-location memory task that segregated recollection precision from general recollection success. HPM network-targeted stimulation produced lasting (∼24 hr) enhancement of recollection precision, without effects on general success. Canonical neural correlates of recollection [8-10] were also modulated by stimulation. Late-positive evoked potential amplitude and theta-alpha oscillatory power were reduced, suggesting that stimulation can improve memory through enhanced reactivation of detailed visuospatial information at retrieval. The HPM network was thus specifically implicated in the processing of fine-grained memory detail, supporting functional specialization of hippocampal-cortical networks. These findings demonstrate that brain networks can be causally linked to distinct and specific neurocognitive functions and suggest mechanisms for long-lasting changes in memory due to network-targeted stimulation.
Collapse
|
33
|
Reinhart RMG, Cosman JD, Fukuda K, Woodman GF. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys 2017; 79:3-23. [PMID: 27804033 PMCID: PMC5539401 DOI: 10.3758/s13414-016-1224-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological and Brain Sciences, Center for Research in Sensory Communications and Neural Technology, Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| | - Josh D Cosman
- Department of Translational Medicine, Pfizer Inc., Cambridge, MA, 02215, USA
| | - Keisuke Fukuda
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Geoffrey F Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, 37240, USA.
| |
Collapse
|
34
|
Heinrichs-Graham E, McDermott TJ, Mills MS, Coolidge NM, Wilson TW. Transcranial direct-current stimulation modulates offline visual oscillatory activity: A magnetoencephalography study. Cortex 2016; 88:19-31. [PMID: 28042984 DOI: 10.1016/j.cortex.2016.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive neuromodulatory method that involves delivering low amplitude, direct current to specific regions of the brain. While a wealth of literature shows changes in behavior and cognition following tDCS administration, the underlying neuronal mechanisms remain largely unknown. Neuroimaging studies have generally used fMRI and shown only limited consensus to date, while the few electrophysiological studies have reported mostly null or counterintuitive findings. The goal of the current investigation was to quantify tDCS-induced alterations in the oscillatory dynamics of visual processing. To this end, we performed either active or sham tDCS using an occipital-frontal electrode configuration, and then recorded magnetoencephalography (MEG) offline during a visual entrainment task. Significant oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on absolute and relative power were assessed. The results indicated significantly increased basal alpha levels in the occipital cortex following anodal tDCS, as well as reduced occipital synchronization at the second harmonic of the stimulus-flicker frequency relative to sham stimulation. In addition, we found reduced power in brain regions near the cathode (e.g., right inferior frontal gyrus [IFG]) following active tDCS, which was absent in the sham group. Taken together, these results suggest that anodal tDCS of the occipital cortices differentially modulates spontaneous and induced activity, and may interfere with the entrainment of neuronal populations by a visual-flicker stimulus. These findings also demonstrate the importance of electrode configuration on whole-brain dynamics, and highlight the deceptively complicated nature of tDCS in the context of neurophysiology.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA
| | | | | | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA.
| |
Collapse
|
35
|
Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—correlation or causality in stimulation-mediated effects? Neurosci Biobehav Rev 2016; 69:333-56. [DOI: 10.1016/j.neubiorev.2016.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
|
36
|
|
37
|
Fukuda K, Kang MS, Woodman GF. Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations. J Neurophysiol 2016; 116:1715-1727. [PMID: 27440249 DOI: 10.1152/jn.00991.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/14/2016] [Indexed: 11/22/2022] Open
Abstract
Visual working memory (VWM) allows humans to actively maintain a limited amount of information. Whereas previous electrophysiological studies have found that lateralized event-related potentials (ERPs) track the maintenance of information in VWM, recent imaging experiments have shown that spatially global representations can be read out using the activity across the visual cortex. The goal of the present study was to determine whether both lateralized and spatially global electrophysiological signatures coexist. We first show that it is possible to simultaneously measure lateralized ERPs that track the number of items held in VWM from one visual hemfield and parietooccipital α (8-12 Hz) power over both hemispheres indexing spatially global VWM representations. Next, we replicated our findings and went on to show that this bilateral parietooccipital α power as well as the contralaterally biased ERP correlate of VWM carries a signal that can be used to decode the identity of the representations stored in VWM. Our findings not only unify observations across electrophysiology and imaging techniques but also suggest that ERPs and α-band oscillations index different neural mechanisms that map on to lateralized and spatially global representations, respectively.
Collapse
Affiliation(s)
- Keisuke Fukuda
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee;
| | - Min-Suk Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; and Department of Psychology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Geoffrey F Woodman
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
38
|
Reinhart RMG, Xiao W, McClenahan LJ, Woodman GF. Electrical Stimulation of Visual Cortex Can Immediately Improve Spatial Vision. Curr Biol 2016; 26:1867-72. [PMID: 27374337 DOI: 10.1016/j.cub.2016.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 01/10/2023]
Abstract
We can improve human vision by correcting the optics of our lenses [1-3]. However, after the eye transduces the light, visual cortex has its own limitations that are challenging to correct [4]. Overcoming these limitations has typically involved innovative training regimes that improve vision across many days [5, 6]. In the present study, we wanted to determine whether it is possible to immediately improve the precision of spatial vision with noninvasive direct-current stimulation. Previous work suggested that visual processing could be modulated with such stimulation [7-9]. However, the short duration and variability of such effects made it seem unlikely that spatial vision could be improved for more than several minutes [7, 10]. Here we show that visual acuity in the parafoveal belt can be immediately improved by delivering noninvasive direct current to visual cortex. Twenty minutes of anodal stimulation improved subjects' vernier acuity by approximately 15% and increased the amplitude of the earliest visually evoked potentials in lockstep with the behavioral effects. When we reversed the orientation of the electric field, we impaired resolution and reduced the amplitude of visually evoked potentials. Next, we found that anodal stimulation improved acuity enough to be measurable with the relatively coarse Snellen test and that subjects with the poorest acuity benefited the most from stimulation. Finally, we found that stimulation-induced acuity improvements were accompanied by changes in contrast sensitivity at high spatial frequencies.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Wenxi Xiao
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Laura J McClenahan
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Geoffrey F Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
39
|
Reinhart RMG, McClenahan LJ, Woodman GF. Attention's Accelerator. Psychol Sci 2016; 27:790-8. [PMID: 27056975 DOI: 10.1177/0956797616636416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/09/2016] [Indexed: 11/15/2022] Open
Abstract
How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations.
Collapse
|
40
|
Fan JE, Turk-Browne NB. Incidental biasing of attention from visual long-term memory. J Exp Psychol Learn Mem Cogn 2015; 42:970-7. [PMID: 26618914 DOI: 10.1037/xlm0000209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record
Collapse
|
41
|
Medial-Frontal Stimulation Enhances Learning in Schizophrenia by Restoring Prediction Error Signaling. J Neurosci 2015; 35:12232-40. [PMID: 26338333 DOI: 10.1523/jneurosci.1717-15.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Posterror learning, associated with medial-frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disorders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninvasively passing direct current through human medial-frontal cortex, we could enhance the event-related potential related to learning from mistakes (i.e., the error-related negativity), a putative index of prediction error signaling in the brain. Following this causal manipulation of brain activity, the patients learned a new task at a rate that was indistinguishable from healthy individuals. Moreover, the severity of delusions interacted with the efficacy of the stimulation to improve learning. Our results demonstrate a causal link between disrupted prediction error signaling and inefficient learning in schizophrenia. These findings also demonstrate the feasibility of nonpharmacological interventions to address cognitive deficits in neuropsychiatric disorders. SIGNIFICANCE STATEMENT When there is a difference between what we expect to happen and what we actually experience, our brains generate a prediction error signal, so that we can map stimuli to responses and predict outcomes accurately. Theories of schizophrenia implicate abnormal prediction error signaling in the cognitive deficits of the disorder. Here, we combine noninvasive brain stimulation with large-scale electrophysiological recordings to establish a causal link between faulty prediction error signaling and learning deficits in schizophrenia. We show that it is possible to improve learning rate, as well as the neural signature of prediction error signaling, in patients to a level quantitatively indistinguishable from that of healthy subjects. The results provide mechanistic insight into schizophrenia pathophysiology and suggest a future therapy for this condition.
Collapse
|
42
|
Reinhart RMG, Woodman GF. The surprising temporal specificity of direct-current stimulation. Trends Neurosci 2015; 38:459-61. [PMID: 26093845 DOI: 10.1016/j.tins.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
As studies increasingly use transcranial direct-current stimulation (tDCS) to manipulate brain activity, surprising results are emerging. Specifically, research combining tDCS with electrophysiology is showing that the long-lasting effects of tDCS can counter-intuitively influence specific neural mechanisms active for as little as 100 ms during the flow of human information processing.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Geoffrey F Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
43
|
Matsushita R, Andoh J, Zatorre RJ. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Front Neurosci 2015; 9:174. [PMID: 26041982 PMCID: PMC4434966 DOI: 10.3389/fnins.2015.00174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioral outcomes, possibly due to differences in stimulation parameters, task-induced brain activity, or task measurements used in each study. Further research, using well-validated tasks is therefore required for clarification of behavioral effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for 3 days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold) over the 3 days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the 3 days. The results support a causal role for the right auditory cortex in pitch discrimination learning.
Collapse
Affiliation(s)
- Reiko Matsushita
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music, and Sound Research Montreal, QC, Canada ; Centre for Research on Brain, Language, and Music Montreal, QC, Canada
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health Mannheim Mannheim, Germany
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music, and Sound Research Montreal, QC, Canada ; Centre for Research on Brain, Language, and Music Montreal, QC, Canada
| |
Collapse
|
44
|
Sellers KK, Mellin JM, Lustenberger CM, Boyle MR, Lee WH, Peterchev AV, Fröhlich F. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. Behav Brain Res 2015; 290:32-44. [PMID: 25934490 DOI: 10.1016/j.bbr.2015.04.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 01/23/2023]
Abstract
Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Juliann M Mellin
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | | | - Michael R Boyle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham NC 27710; Department of Biomedical Engineering, Duke University, Durham NC 27710; Department of Electrical and Computer Engineering, Duke University, Durham NC 27710
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill NC 27599.
| |
Collapse
|