1
|
Enten GA, Gao X, McGee MY, Weche M, Majetschak M. Chemokine receptor hetero-oligomers regulate monocyte chemotaxis. Life Sci Alliance 2024; 7:e202402657. [PMID: 38782603 PMCID: PMC11116815 DOI: 10.26508/lsa.202402657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.
Collapse
MESH Headings
- Humans
- Monocytes/metabolism
- Chemotaxis
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/genetics
- THP-1 Cells
- Protein Multimerization
- HEK293 Cells
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- CRISPR-Cas Systems
- Signal Transduction
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Ligands
Collapse
Affiliation(s)
- Garrett A Enten
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Xianlong Gao
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Michelle Y McGee
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
2
|
Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21:257. [PMID: 37749552 PMCID: PMC10518940 DOI: 10.1186/s12964-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, β-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and β-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.
Collapse
Affiliation(s)
- Jong Min Hong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Seung Seen
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea.
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Gao X, Majetschak M. G protein activation via chemokine (C-X-C motif) receptor 4 and α 1b -adrenoceptor is ligand and heteromer-dependent. FEBS Lett 2023; 597:2017-2027. [PMID: 37395117 PMCID: PMC10530236 DOI: 10.1002/1873-3468.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
It is unknown whether heteromerization between chemokine (C-X-C motif) receptor 4 (CXCR4), atypical chemokine receptor 3 (ACKR3) and α1b -adrenoceptor (α1b -AR) influences effects of the CXCR4/ACKR3 agonist chemokine (C-X-C motif) ligand 12 (CXCL12) and the noncognate CXCR4 agonist ubiquitin on agonist-promoted G protein activation. We provide biophysical evidence that both ligands stimulate CXCR4-mediated Gαi activation. Unlike CXCL12, ubiquitin fails to recruit β-arrestin. Both ligands differentially modulate the conformation of CXCR4:ACKR3 heterodimers and its propensity to hetero-trimerize with α1b -AR. CXCR4:ACKR3 heterodimerization reduces the potency of CXCL12, but not of ubiquitin, to activate Gαi. Ubiquitin enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from hetero-oligomers comprising CXCR4. CXCL12 enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from CXCR4:α1b -AR heterodimers and reduces phenylephrine-stimulated α1b -AR-promoted Gαq activation from ACKR3 comprising heterodimers and trimers. Our findings suggest heteromer and ligand-dependent functions of the receptor partners.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Chen J, Wang Z, Zhang R, Yin H, Wang P, Wang C, Jiang Y. Heterodimerization of apelin and opioid receptor-like 1 receptors mediates apelin-13-induced G protein biased signaling. Life Sci 2023:121892. [PMID: 37364634 DOI: 10.1016/j.lfs.2023.121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and β-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override β-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| | - Zhengwen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Haiyan Yin
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Peixiang Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Gao X, Enten GA, McGee MY, Weche M, Majetschak M. α 1-adrenoceptor ligands inhibit chemokine receptor heteromerization partners of α 1B/D-adrenoceptors via interference with heteromer formation. Pharmacol Res 2023; 190:106730. [PMID: 36925091 PMCID: PMC10108735 DOI: 10.1016/j.phrs.2023.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
We reported previously that α1-adrenoceptor (α1-AR) ligands inhibit chemokine receptor (CR) heteromerization partners of α1B/D-AR. The underlying mechanisms are unknown and in vivo evidence for such effects is missing. Utilizing CCR2 and α1B-AR as prototypical partners, we observed in recombinant systems and THP-1 cells that α1B-AR enhanced whereas its absence inhibited Gαi signaling of CCR2. Phenylephrine and phentolamine reduced the CCR2:α1B-AR heteromerization propensity and inhibited Gαi signaling of CCR2. Phenylephrine cross-recruited β-arrestin-2 to CCR2, and reduced expression of α1B/D-AR, CR partners (CCR1/2, CXCR4) and corresponding heteromers. Phentolamine reduced CR:α1B/D-AR heteromers without affecting β-arrestin-2 recruitment or receptor expression. Phenylephrine/phentolamine prevented leukocyte infiltration mediated via CR heteromerization partners in a murine air pouch model. Our findings document that α1-AR ligands inhibit leukocyte migration mediated by CR heteromerization partners in vivo and suggest interference with α1B-AR:CR heteromerization as a mechanism by which CR partners are inhibited. These findings provide new insights into the pharmacology of GPCR heteromers and indicate that an agonist and antagonist at one GPCR can act as antagonists at heteromerization partners of their target receptors.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michelle Y McGee
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
6
|
Elmansi AM, Eisa NH, Periyasamy-Thandavan S, Kondrikova G, Kondrikov D, Calkins MM, Aguilar-Pérez A, Chen J, Johnson M, Shi XM, Reitman C, McGee-Lawrence ME, Crawford KS, Dwinell MB, Volkman BF, Blumer JB, Luttrell LM, McCorvy JD, Hill WD. DPP4-Truncated CXCL12 Alters CXCR4/ACKR3 Signaling, Osteogenic Cell Differentiation, Migration, and Senescence. ACS Pharmacol Transl Sci 2023; 6:22-39. [PMID: 36659961 PMCID: PMC9844133 DOI: 10.1021/acsptsci.2c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Bone marrow skeletal stem cells (SSCs) secrete many cytokines including stromal derived factor-1 or CXCL12, which influences cell proliferation, migration, and differentiation. All CXCL12 splice variants are rapidly truncated on their N-terminus by dipeptidyl peptidase 4 (DPP4). This includes the common variant CXCL12 alpha (1-68) releasing a much less studied metabolite CXCL12(3-68). Here, we found that CXCL12(3-68) significantly inhibited SSC osteogenic differentiation and RAW-264.7 cell osteoclastogenic differentiation and induced a senescent phenotype in SSCs. Importantly, pre-incubation of SSCs with CXCL12(3-68) significantly diminished their ability to migrate toward CXCL12(1-68) in transwell migration assays. Using a high-throughput G-protein-coupled receptor (GPCR) screen (GPCRome) and bioluminescent resonance energy transfer molecular interaction assays, we revealed that CXCL12(3-68) acts via the atypical cytokine receptor 3-mediated β-arrestin recruitment and as a competitive antagonist to CXCR4-mediated signaling. Finally, a reverse phase protein array assay revealed that DPP4-cleaved CXCL12 possesses a different downstream signaling profile from that of intact CXCL12 or controls. The data presented herein provides insights into regulation of CXCL12 signaling. Importantly, it demonstrates that DPP4 proteolysis of CXCL12 generates a metabolite with significantly different and previously overlooked bioactivity that helps explain discrepancies in the literature. This also contributes to an understanding of the molecular mechanisms of osteoporosis and bone fracture repair and could potentially significantly affect the interpretation of experimental outcomes with clinical consequences in other fields where CXCL12 is vital, including cancer biology, immunology, cardiovascular biology, neurobiology, and associated pathologies.
Collapse
Affiliation(s)
- Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Department of Pathology, University of
Michigan School of Medicine, Ann Arbor, Michigan 48109, United
States
| | - Nada H. Eisa
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Department of Biochemistry, Faculty of Pharmacy,
Mansoura University, Mansoura 35516,
Egypt
| | | | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 W. Watertown Plank Road,
Milwaukee, Wisconsin 53226, United States
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology,
Indiana University School of Medicine in Indianapolis,
Indianapolis, Indiana 46202, United States
- Department of Cellular and Molecular Biology, School
of Medicine, Universidad Central Del Caribe, Bayamon, Puerto
Rico 00956, United States
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
| | - Jie Chen
- Division of Biostatistics and Data Science,
Department of Population Health Science, Medical College of Georgia, Augusta
University, Augusta, Georgia 30912, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science,
Department of Population Health Science, Medical College of Georgia, Augusta
University, Augusta, Georgia 30912, United States
| | - Xing-ming Shi
- Department of Orthopaedic Surgery, Medical
College of Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Department of Neuroscience and Regenerative
Medicine, Medical College of Georgia, Augusta University,
Augusta, Georgia 30912, United States
| | - Charles Reitman
- Orthopaedics and Physical Medicine Department,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
| | - Meghan E. McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Department of Orthopaedic Surgery, Medical
College of Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Center for Healthy Aging, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
| | - Kyler S. Crawford
- Department of Biochemistry,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Brian F. Volkman
- Department of Biochemistry,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Joe B. Blumer
- Department of Cell and Molecular Pharmacology and
Experimental Therapeutics, Medical University of South
Carolina, Charleston, South Carolina 29425, United
States
| | - Louis M. Luttrell
- Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina,
Charleston, South Carolina 29403, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 W. Watertown Plank Road,
Milwaukee, Wisconsin 53226, United States
| | - William D. Hill
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Center for Healthy Aging, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Charlie Norwood Veterans Affairs
Medical Center, Augusta, Georgia 30904, United
States
| |
Collapse
|
7
|
The transmembrane domains of GPCR dimers as targets for drug development. Drug Discov Today 2023; 28:103419. [PMID: 36309194 DOI: 10.1016/j.drudis.2022.103419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) can form homodimers or heterodimers that modulate specific signal transduction pathways to regulate a wide range of physiological and pathological functions. As such, GPCR dimers are novel drug targets for disorders including depression, hypertension, diabetes, and vascular dementia. The interaction between two receptors in a GPCR dimer involves a conformational change in the transmembrane domain (TMD). It has been demonstrated that the TMD has an important role in GPCR dimer formation and stability in vitro and in vivo. Moreover, increasing evidence shows that the TMD of GPCRs affects the function of dimers. Therefore, the TMD of GPCRs is an emerging target for the development of drugs to treat diseases that involve GPCR dimerization.
Collapse
|
8
|
Liao L, Zhang L, Chen H, Teng D, Xu B, Gong L, Zhong L, Wang C, Dong H, Jia W, Yang J, Shi Z. Identification of Key Genes from the Visceral Adipose Tissues of Overweight/Obese Adults with Hypertension through Transcriptome Sequencing. Cytogenet Genome Res 2022; 162:541-559. [PMID: 36521430 PMCID: PMC10534961 DOI: 10.1159/000528702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 08/31/2023] Open
Abstract
Overweight and obese (OW/OB) adults are at increased risk of hypertension due to visceral adipose tissue (VAT) inflammation. In this study, we explored gene level differences in the VAT of hypertensive and normotensive OW/OB patients. VAT samples obtained from six OW/OB adults (three hypertensive, three normotensive) were subjected to transcriptome sequencing analysis. Gene set enrichment analysis was conducted for all gene expression data to identify differentially expressed genes (DEGs) with |log2 (fold change)| ≥ 1 and q < 0.05. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses were performed on the DEGs, and hub genes were identified by constructing a protein-protein interaction (PPI) network. The proposed hub genes were validated using quantitative real-time PCR in ten other samples from five hypertensive and five normotensive patients. In addition, we performed ROC analysis and Spearman correlation analysis. A total of 84 DEGs were identified between VAT samples from OW/OB patients with and without hypertension, among which 21 were significantly upregulated and 63 were significantly downregulated. Bioinformatics analysis revealed that spleen function was related to hypertension in OW/OB adults. Meanwhile, PPI network analysis identified the following top 10 hub genes: CD79A, CR2, SELL, CD22, IL7R, CCR7, TNFRSF13C, CXCR4, POU2AF1, and JAK3. Through qPCR verification, we found that CXCR4, CD22, and IL7R were statistically significant. qPCR verification suggested that RELA was statistically significant. However, qPCR verification indicated that NFKB1 and KLF2 were not statistically significant. These hub genes were mainly regulated by the transcription factor RELA. The AUC of ROC analysis for CXCR4, IL7R, and CD22 was 0.92. What is more, VAT CXCR4 and CD22 were positively related to RELA relative expression levels. Taken together, our research demonstrates that CXCR4, IL7R, and CD22 related to VAT in hypertensive OW/OB adults could serve as future therapeutic targets.
Collapse
Affiliation(s)
- Lanlan Liao
- The Second Clinical Medical College, Binzhou Medical University, Yantai, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
- Medical College, Qingdao University, Qingdao, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
- Medical College, Qingdao University, Qingdao, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
- Medical College, Qingdao University, Qingdao, China
| | - Bowen Xu
- The Second Clinical Medical College, Binzhou Medical University, Yantai, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Zhen Shi
- Basic Medical College, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Gao X, DeSantis AJ, Enten GA, Weche M, Marcet JE, Majetschak M. Heteromerization between α 1B -adrenoceptor and chemokine (C-C motif) receptor 2 biases α 1B -adrenoceptor signaling: Implications for vascular function. FEBS Lett 2022; 596:2706-2716. [PMID: 35920096 PMCID: PMC9830583 DOI: 10.1002/1873-3468.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
Previously, we reported that chemokine (C-C motif) receptor 2 (CCR2) heteromerizes with α1B -adrenoceptor (α1B -AR) in leukocytes, through which α1B -AR controls CCR2. Whether such heteromers are expressed in human vascular smooth muscle cells (hVSMCs) is unknown. Bioluminescence resonance energy transfer confirmed formation of recombinant CCR2:α1b -AR heteromers. Proximity ligation assays detected CCR2:α1B -AR heteromers in hVSMCs and human mesenteric arteries. CCR2:α1B -AR heteromerization per se enhanced α1B -AR-mediated Gαq -coupling. Chemokine (C-C motif) ligand 2 (CCL2) binding to CCR2 inhibited Gαq activation via α1B -AR, cross-recruited β-arrestin to and induced internalization of α1B -AR in recombinant systems and in hVSMCs. Our findings suggest that CCR2 within CCR2:α1B -AR heteromers biases α1B -AR signaling and provide a mechanism for previous observations suggesting a role for CCL2/CCR2 in the regulation of cardiovascular function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jorge E Marcet
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Chechekhin VI, Kulebyakin KY, Tyurin-Kuzmin PA. Specific Features of Regulation of Hormonal Sensitivity in Stem Cells. Russ J Dev Biol 2022. [DOI: 10.1134/s106236042203002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
The Chemokine (C-C Motif) Receptor 2 Antagonist INCB3284 Reduces Fluid Requirements and Protects From Hemodynamic Decompensation During Resuscitation From Hemorrhagic Shock. Crit Care Explor 2022; 4:e0701. [PMID: 35620770 PMCID: PMC9119637 DOI: 10.1097/cce.0000000000000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clinical correlations suggest that systemic chemokine (C-C motif) ligand (CCL) 2 release may contribute to blood pressure regulation and the development of hemodynamic instability during the early inflammatory response to traumatic-hemorrhagic shock. Thus, we investigated whether blockade of the principal CCL2 receptor chemokine (C-C motif) receptor (CCR) 2 affects blood pressure in normal animals, and hemodynamics and resuscitation fluid requirements in hemorrhagic shock models.
Collapse
|
12
|
Enten GA, Gao X, Strzelinski HR, Weche M, Liggett SB, Majetschak M. α 1B/D-adrenoceptors regulate chemokine receptor-mediated leukocyte migration via formation of heteromeric receptor complexes. Proc Natl Acad Sci U S A 2022; 119:e2123511119. [PMID: 35537053 PMCID: PMC9171806 DOI: 10.1073/pnas.2123511119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.
Collapse
Affiliation(s)
- Garrett A. Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Hannah R. Strzelinski
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
13
|
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers (Basel) 2022; 14:cancers14092314. [PMID: 35565443 PMCID: PMC9105267 DOI: 10.3390/cancers14092314] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chemokines are small soluble proteins that control and regulate cell trafficking within and between tissues by binding to their receptors. Among them, CXCL12 and its receptor CXCR4 appeared with ancestral vertebrates, are expressed almost ubiquitously, and play essential roles in embryogenesis and organogenesis. In addition, CXCL12 and CXCR4 are involved in antigen recognition by T and B cells and in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. New data indicate that CXCR4 interacts with the surface protein CD47 in a novel form of immunosurveillance, called ImmunoGenic Surrender (IGS). Following the co-internalization of CXCR4 and CD47 in tumor cells, macrophages phagocytose them and cross-present their antigens to the adaptive immune system, leading to tumor rejection in a fraction of mice. All of these specific activities of CXCL12 and CXCR4 in antigen presentation might be complementary to current immunotherapies. Abstract CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.
Collapse
|
14
|
Plasticity of seven-transmembrane-helix receptor heteromers in human vascular smooth muscle cells. PLoS One 2021; 16:e0253821. [PMID: 34166476 PMCID: PMC8224933 DOI: 10.1371/journal.pone.0253821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, we reported that the chemokine (C-X-C motif) receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) heteromerize with α1A/B/D-adrenoceptors (ARs) and arginine vasopressin receptor 1A (AVPR1A) in recombinant systems and in rodent and human vascular smooth muscle cells (hVSMCs). In these studies, we observed that heteromerization between two receptor partners may depend on the presence and the expression levels of other partnering receptors. To test this hypothesis and to gain initial insight into the formation of these receptor heteromers in native cells, we utilized proximity ligation assays in hVSMCs to visualize receptor-receptor proximity and systematically studied how manipulation of the expression levels of individual protomers affect heteromerization patterns among other interacting receptor partners. We confirmed subtype-specific heteromerization between endogenously expressed α1A/B/D-ARs and detected that AVPR1A also heteromerizes with α1A/B/D-ARs. siRNA knockdown of CXCR4 and of ACKR3 resulted in a significant re-arrangement of the heteromerization patterns among α1-AR subtypes. Similarly, siRNA knockdown of AVPR1A significantly increased heteromerization signals for seven of the ten receptor pairs between CXCR4, ACKR3, and α1A/B/D-ARs. Our findings suggest plasticity of seven transmembrane helix (7TM) receptor heteromerization in native cells and could be explained by a supramolecular organization of these receptors within dynamic clusters in the plasma membrane. Because we previously observed that recombinant CXCR4, ACKR3, α1a-AR and AVPR1A form hetero-oligomeric complexes composed of 2–4 different protomers, which show signaling properties distinct from individual protomers, re-arrangements of receptor heteromerization patterns in native cells may contribute to the phenomenon of context-dependent GPCR signaling. Furthermore, these findings advise caution in the interpretation of functional consequences after 7TM receptor knockdown in experimental models. Alterations of the heteromerization patterns among other receptor partners may alter physiological and pathological responses, in particular in more complex systems, such as studies on the function of isolated organs or in in vivo experiments.
Collapse
|
15
|
DeSantis AJ, Enten GA, Gao X, Majetschak M. Chemokine receptor antagonists with α 1-adrenergic receptor blocker activity. J Basic Clin Physiol Pharmacol 2021; 33:519-523. [PMID: 34144642 DOI: 10.1515/jbcpp-2020-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Chemokine receptor antagonists are being explored for their therapeutic potential in various disease processes. As the chemokine (C-C motif) receptor 2 (CCR2) antagonist RS504393 is known to compete with ligand binding to α1-adrenoceptors, we tested a panel of 10 CCR antagonists for interactions with α1-adrenoceptors to evaluate potential cardiovascular activities and side-effect profiles. METHODS The PRESTO-Tango β-arrestin recruitment assay was utilized to test whether the CCR antagonists interfere with α1b-AR activation upon stimulation with phenylephrine. Pressure myography with isolated rat resistance arteries was employed to assess their effects on phenylephrine-induced vasoconstriction. The following antagonists were tested: CCR1-BX471, BX513, BI639667; CCR2-RS504393, INCB3284; CCR3-SB328437; and CCR4-AZD2098, and C021; CCR5-Maraviroc; CCR10-BI6901. The pan-α1-adrenoceptor antagonist prazosin was used as control. RESULTS Among the CCR antagonists tested, RS504393, BX513, and C021 inhibited phenylephrine-induced β-arrestin recruitment to α1b-adrenoceptor and phenylephrine-induced vasoconstriction. While RS504393 functioned as a competitive α1-adrenoceptor blocker, BX513 and C021 functioned as noncompetitive α1-adrenoceptor antagonists in both assay systems. Furthermore, RS504393, BX513, and C021 dose-dependently dilated arteries that were fully preconstricted with phenylephrine. CONCLUSIONS Our data suggest that CCR antagonists should be screened for cross-reactivity with α1-adrenoceptors to exclude potential adverse cardiovascular effects when used as anti inflammatory drugs.
Collapse
Affiliation(s)
| | - Garrett A Enten
- Departments of Surgery and Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Xianlong Gao
- Department of Surgery, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Gao X, Enten GA, DeSantis AJ, Majetschak M. Class A G protein-coupled receptors assemble into functional higher-order hetero-oligomers. FEBS Lett 2021; 595:1863-1875. [PMID: 34032285 DOI: 10.1002/1873-3468.14135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Although class A seven-transmembrane helix (7TM) receptor hetero-oligomers have been proposed, information on the assembly and function of such higher-order hetero-oligomers is not available. Utilizing bioluminescence resonance energy transfer (BRET), bimolecular luminescence/fluorescence complementation (BiLC/BiFC), and BiLC/BiFC BRET in HEK293T cells, we provide evidence that chemokine (C-X-C motif) receptor 4, atypical chemokine receptor 3, α1a -adrenoceptor, and arginine vasopressin receptor 1A form hetero-oligomers composed of 2-4 different protomers. We show that hetero-oligomerization per se and ligand binding to individual protomers regulate agonist-induced coupling to the signaling transducers of interacting receptor partners. Our findings support the concept that receptor hetero-oligomers form supramolecular machineries with molecular signaling properties distinct from the individual protomers. These findings provide a mechanism for the phenomenon of context-dependent receptor function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
17
|
Walsh SK, Lipina C, Ang SY, Sato M, Chia LY, Kocan M, Hutchinson DS, Summers RJ, Wainwright CL. GPR55 regulates the responsiveness to, but does not dimerise with, α 1A-adrenoceptors. Biochem Pharmacol 2021; 188:114560. [PMID: 33844984 DOI: 10.1016/j.bcp.2021.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.
Collapse
Affiliation(s)
- Sarah K Walsh
- Cardiometabolic Health Research, School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Aberdeen AB10 7GJ, UK.
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sheng Y Ang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental Health and School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cherry L Wainwright
- Cardiometabolic Health Research, School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Aberdeen AB10 7GJ, UK
| |
Collapse
|
18
|
Tarasov SG, Dyba M, Yu J, Tarasova N. Design and Generation of Self-Assembling Peptide Virus-like Particles with Intrinsic GPCR Inhibitory Activity. Methods Mol Biol 2021; 2208:135-148. [PMID: 32856260 PMCID: PMC10801811 DOI: 10.1007/978-1-0716-0928-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic analogs of the second transmembrane domain (TM) containing a portion of the extracellular loop 1 of G-protein-coupled receptors (GPCR) can serve as biased antagonists of the corresponding receptor. Analogs with negative charges added to the extracellular end self-assemble into round structures. Addition of polyethylene glycol chains of defined length to the C-terminus of the peptides prevents super aggregation and results in highly uniform particles that can fuse with cell membranes spontaneously. Added PEG chains slow down cell fusion, while attachment of receptor ligands to the surface of particles results in receptor-mediated membrane fusion and cell-selective delivery. Critical assembly concentration of TM peptide particles is in the nanomolar range and thus requires nontraditional methods of determination. In this chapter, we outline sequence selection and design of self-assembling GPCR antagonists, methods of the preparation of the nanoparticles, and biophysical methods of particle characterization. The protocols allow for straightforward rational design, generation, and characterization of self-assembling GPCR antagonists for a variety of applications.
Collapse
Affiliation(s)
- Sergey G Tarasov
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Marzena Dyba
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua Yu
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, USA
| | - Nadya Tarasova
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
19
|
Ji Y, Yao J, He Y. Extracellular ubiquitin protects cardiomyocytes during ischemia/hypoxia by inhibiting mitochondrial apoptosis pathway through CXCR4. Biomed Pharmacother 2020; 131:110787. [PMID: 33152945 DOI: 10.1016/j.biopha.2020.110787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022] Open
Abstract
AIM Acute myocardial infarction (AMI) is one of the deadliest diseases worldwide. The search for countermeasures to reduce cardiomyocytes death in the infarcted area has always been the focus of research. Ubiquitin (UB) is a small polypeptide mainly involved in proteasome-mediated protein degradation in cells, whereas extracellular UB in body fluids can also function through its receptor CXC chemokine receptor type 4 (CXCR4). This study aimed to explore the functional roles of extracellular UB in cardiomyocytes during ischemia/hypoxia (I/H). METHODS H9C2 cells were subjected to I/H treatment and cell injury was evaluated by cell viability, morphology changes and apoptosis rate. UB expression and levels of ubiquitinated proteins after I/H injury were measured. The effects of extracellular UB on I/H-induced cardiomyocytes apoptosis and the possible underlying mechanisms were studied. RESULTS I/H injury induced the decrease of cell viability as well as enhanced impaired cell morphology and apoptosis rate in H9C2 cells. Levels of UB mRNA and ubiquitinated proteins were significantly up-regulated after I/H treatment, whereas the concentration of extracellular UB in the conditioned media did not show significant change and the intracellular mono-UB levels in cells were down-regulated. Extracellular UB treatment protected cardiomyocytes from I/H injury by inhibiting the overactivation of mitochondria-dependent apoptosis pathway and up-regulating autophagy level. Inhibition of CXCR4 receptor using AMD3100 abolished cardioprotective effects of extracellular UB. CONCLUSION The up-regulation of UB was suggested to be an adaptive response to resist I/H-induced cardiomyocytes apoptosis, and additional extracellular UB treatment might serve as a new potential therapeutic drug for AMI.
Collapse
Affiliation(s)
- Yiqun Ji
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jialu Yao
- Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
20
|
Gao X, Cheng YH, Enten GA, DeSantis AJ, Gaponenko V, Majetschak M. Regulation of the thrombin/protease-activated receptor 1 axis by chemokine (C XC motif) receptor 4. J Biol Chem 2020; 295:14893-14905. [PMID: 32839271 DOI: 10.1074/jbc.ra120.015355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
The chemokine receptor CXCR4, a G protein-coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce β-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced β-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
21
|
Natural and engineered chemokine (C-X-C motif) receptor 4 agonists prevent acute respiratory distress syndrome after lung ischemia-reperfusion injury and hemorrhage. Sci Rep 2020; 10:11359. [PMID: 32647374 PMCID: PMC7347544 DOI: 10.1038/s41598-020-68425-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
We compared therapeutic properties of natural and engineered chemokine (C-X-C motif) receptor 4 (CXCR4) agonists in a rat acute respiratory distress syndrome (ARDS) model utilizing the PaO2/FiO2-ratio as a clinically relevant primary outcome criterion. Ventilated rats underwent unilateral lung ischemia from t = 0–70 min plus hemorrhage to a mean arterial blood pressure (MAP) of 30 mmHg from t = 40–70 min, followed by reperfusion/fluid resuscitation until t = 300 min. Natural CXCR4 agonists (CXCL12, ubiquitin) and engineered CXCL12 variants (CXCL121, CXCL22, CXCL12K27A/R41A/R47A, CXCL12 (3–68)) were administered within 5 min of fluid resuscitation. Animals treated with vehicle or CXCL12 (3–68) reached criteria for mild and moderate ARDS between t = 90–120 min and t = 120–180 min, respectively, and remained in moderate ARDS until t = 300 min. Ubiquitin, CXCL12, CXCL121 and CXCL122 prevented ARDS development. Potencies of CXCL12/CXCL121/CXCL122 were higher than the potency of ubiquitin. CXCL12K27A/R41A/R47A was inefficacious. CXCL121 > CXCL12 stabilized MAP and reduced fluid requirements. CXCR4 agonists at doses that preserved lung function reduced histological injury of the post-ischemic lung and reduced mortality from 55 to 9%. Our findings suggest that CXCR4 protein agonists prevent development of ARDS and reduce mortality in a rat model, and that development of new engineered protein therapeutics with improved pharmacological properties for ARDS is possible.
Collapse
|
22
|
Gao X, Enten GA, DeSantis AJ, Volkman BF, Gaponenko V, Majetschak M. Characterization of heteromeric complexes between chemokine (C-X-C motif) receptor 4 and α 1-adrenergic receptors utilizing intermolecular bioluminescence resonance energy transfer assays. Biochem Biophys Res Commun 2020; 528:368-375. [PMID: 32085899 DOI: 10.1016/j.bbrc.2020.02.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
Recently, we reported that chemokine (C-X-C motif) receptor 4 (CXCR4) heteromerizes with α1-adrenergic receptors (AR) on the cell surface of vascular smooth muscle cells, through which the receptors cross-talk. Direct biophysical evidence for CXCR4:α1-AR heteromers, however, is lacking. Here we utilized bimolecular luminescence/fluorescence complementation (BiLC/BiFC) combined with intermolecular bioluminescence resonance energy transfer (BRET) assays in HEK293T cells to evaluate CXCR4:α1a/b/d-AR heteromerization. Atypical chemokine receptor 3 (ACKR3) and metabotropic glutamate receptor 1 (mGlu1R) were utilized as controls. BRET between CXCR4-RLuc (Renilla reniformis) and enhanced yellow fluorescent protein (EYFP)-tagged ACKR3 or α1a/b/d-ARs fulfilled criteria for constitutive heteromerization. BRET between CXCR4-RLuc and EYFP or mGlu1R-EYFP were nonspecific. BRET50 for CXCR4:ACKR3 and CXCR4:α1a/b/d-AR heteromers were comparable. Stimulation of cells with phenylephrine increased BRETmax of CXCR4:α1a/b/d-AR heteromers without affecting BRET50; stimulation with CXCL12 reduced BRETmax of CXCR4:α1a-AR heteromers, but did not affect BRET50 or BRETmax/50 for CXCR4:α1b/d-AR. A peptide analogue of transmembrane domain (TM) 2 of CXCR4 reduced BRETmax of CXCR4:α1a/b/d-AR heteromers and increased BRET50 of CXCR4:α1a/b-AR interactions. A TM4 analogue of CXCR4 did not alter BRET. We observed CXCR4, α1a-AR and mGlu1R homodimerization by BiFC/BiLC, and heteromerization of homodimeric CXCR4 with proto- and homodimeric α1a-AR by BiFC/BiLC BRET. BiFC/BiLC BRET for interactions between homodimeric CXCR4 and homodimeric mGlu1R was nonspecific. Our findings suggest that the heteromerization affinity of CXCR4 for ACKR3 and α1-ARs is comparable, provide evidence for conformational changes of the receptor complexes upon agonist binding and support the concept that proto- and oligomeric CXCR4 and α1-ARs constitutively form higher-order hetero-oligomeric receptor clusters.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
23
|
A 2A Receptor Homodimer-Disrupting Sequence Efficiently Delivered by a Protease-Resistant, Cyclic CPP Vector. Int J Mol Sci 2019; 20:ijms20194937. [PMID: 31590403 PMCID: PMC6801510 DOI: 10.3390/ijms20194937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors associate into dimers/oligomers whose function is not well understood. One approach to investigate this issue is to challenge oligomerization by peptides replicating transmembrane domains and to study their effect on receptor functionality. The disruptor peptides are typically delivered by means of cell-penetrating vectors such as the human immunodeficiency virus (HIV) transcription trans-activation protein Tat. In this paper we report a cyclic, Tat-like peptide that significantly improves its linear analogue in targeting interreceptor sequences in the transmembrane space. The same cyclic Tat-like vector fused to a transmembrane region not involved in receptor oligomerization was totally ineffective. Besides higher efficacy, the cyclic version has enhanced proteolytic stability, as shown by trypsin digestion experiments.
Collapse
|
24
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
25
|
Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019; 96:778-793. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by complex molecular mechanisms, both in physiologic and pathologic conditions, and their signaling can be intricate. Many factors influence their signaling behavior, including the type of ligand that activates the GPCR, the presence of interacting partners, the kinetics involved, or their location. The two CXC-type chemokine receptors, CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), both members of the GPCR superfamily, are important and established therapeutic targets in relation to cancer, human immunodeficiency virus infection, and inflammatory diseases. Therefore, it is crucial to understand how the signaling of these receptors works to be able to specifically target them. In this review, we discuss how the signaling pathways activated by CXCR4 and ACKR3 can vary in different situations. G protein signaling of CXCR4 depends on the cellular context, and discrepancies exist depending on the cell lines used. ACKR3, as an atypical chemokine receptor, is generally reported to not activate G proteins but can broaden its signaling spectrum upon heteromerization with other receptors, such as CXCR4, endothelial growth factor receptor, or the α 1-adrenergic receptor (α 1-AR). Also, CXCR4 forms heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na+/H+ exchanger regulatory factor 1, CXCR3, α 1-AR, and the opioid receptors, which results in differential signaling from that of the monomeric subunits. In addition, CXCR4 is present on membrane rafts but can go into the nucleus during cancer progression, probably acquiring different signaling properties. In this review, we also provide an overview of the currently known critical amino acids involved in CXCR4 and ACKR3 signaling.
Collapse
Affiliation(s)
- Joyce Heuninck
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Cristina Perpiñá Viciano
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Ali Işbilir
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Birgit Caspar
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Davide Capoferri
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Briddon
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Thierry Durroux
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Hill
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Martin J Lohse
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Graeme Milligan
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Jean-Philippe Pin
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Carsten Hoffmann
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| |
Collapse
|
26
|
Albee LJ, LaPorte HM, Gao X, Eby JM, Cheng YH, Nevins AM, Volkman BF, Gaponenko V, Majetschak M. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Open Biol 2019; 8:rsob.170207. [PMID: 29386406 PMCID: PMC5795052 DOI: 10.1098/rsob.170207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Recent observations suggest that atypical chemokine receptor (ACKR)3 and chemokine (C-X-C motif) receptor (CXCR)4 regulate human vascular smooth muscle function through hetero-oligomerization with α1-adrenoceptors. Here, we show that ACKR3 also regulates arginine vasopressin receptor (AVPR)1A. We observed that ACKR3 agonists inhibit arginine vasopressin (aVP)-induced inositol trisphosphate (IP3) production in human vascular smooth muscle cells (hVSMCs) and antagonize aVP-mediated constriction of isolated arteries. Proximity ligation assays, co-immunoprecipitation and bioluminescence resonance energy transfer experiments suggested that recombinant and endogenous ACKR3 and AVPR1A interact on the cell surface. Interference with ACKR3 : AVPR1A heteromerization using siRNA and peptide analogues of transmembrane domains of ACKR3 abolished aVP-induced IP3 production. aVP stimulation resulted in β-arrestin 2 recruitment to AVPR1A and ACKR3. While ACKR3 activation failed to cross-recruit β-arrestin 2 to AVPR1A, the presence of ACKR3 reduced the efficacy of aVP-induced β-arrestin 2 recruitment to AVPR1A. AVPR1A and ACKR3 co-internalized upon agonist stimulation in hVSMC. These data suggest that AVPR1A : ACKR3 heteromers are constitutively expressed in hVSMC, provide insights into molecular events at the heteromeric receptor complex, and offer a mechanistic basis for interactions between the innate immune and vasoactive neurohormonal systems. Our findings suggest that ACKR3 is a regulator of vascular smooth muscle function and a possible drug target in diseases associated with impaired vascular reactivity.
Collapse
Affiliation(s)
- Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Xianlong Gao
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Jonathan M Eby
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| |
Collapse
|
27
|
Grozdanovic M, Laffey KG, Abdelkarim H, Hitchinson B, Harijith A, Moon HG, Park GY, Rousslang LK, Masterson JC, Furuta GT, Tarasova NI, Gaponenko V, Ackerman SJ. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J Allergy Clin Immunol 2019; 143:669-680.e12. [PMID: 29778505 PMCID: PMC6240402 DOI: 10.1016/j.jaci.2018.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 10/25/2022]
Abstract
BACKGROUND Chemokine signaling through CCR3 is a key regulatory pathway for eosinophil recruitment into tissues associated with allergic inflammation and asthma. To date, none of the CCR3 antagonists have shown efficacy in clinical trials. One reason might be their unbiased mode of inhibition that prevents receptor internalization, leading to drug tolerance. OBJECTIVE We sought to develop a novel peptide nanoparticle CCR3 inhibitor (R321) with a biased mode of inhibition that would block G protein signaling but enable or promote receptor internalization. METHODS Self-assembly of R321 peptide into nanoparticles and peptide binding to CCR3 were analyzed by means of dynamic light scattering and nuclear magnetic resonance. Inhibitory activity on CCR3 signaling was assessed in vitro by using flow cytometry, confocal microscopy, and Western blot analysis in a CCR3+ eosinophil cell line and blood eosinophils. In vivo effects of R321 were assessed by using a triple-allergen mouse asthma model. RESULTS R321 self-assembles into nanoparticles and binds directly to CCR3, altering receptor function. Half-maximal inhibitory concentration values for eotaxin-induced chemotaxis of blood eosinophils are in the low nanomolar range. R321 inhibits only the early phase of extracellular signal-regulated kinase 1/2 activation and not the late phase generally associated with β-arrestin recruitment and receptor endocytosis, promoting CCR3 internalization and degradation. In vivo R321 effectively blocks eosinophil recruitment into the blood, lungs, and airways and prevents airway hyperresponsiveness in a mouse eosinophilic asthma model. CONCLUSIONS R321 is a potent and selective antagonist of the CCR3 signaling cascade. Inhibition through a biased mode of antagonism might hold significant therapeutic promise by eluding the formation of drug tolerance.
Collapse
Affiliation(s)
- Milica Grozdanovic
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Kimberly G Laffey
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Anantha Harijith
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Hyung-Geon Moon
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Gye Young Park
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep & Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Lee K Rousslang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Joanne C Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine, and the Digestive Health Institute, Children's Hospital Colorado, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colo
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine, and the Digestive Health Institute, Children's Hospital Colorado, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colo
| | - Nadya I Tarasova
- Center for Cancer Research, National Cancer Institute, Frederick, Md
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill.
| |
Collapse
|
28
|
Gao X, Abdelkarim H, Albee LJ, Volkman BF, Gaponenko V, Majetschak M. Partial agonist activity of α1-adrenergic receptor antagonists for chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3. PLoS One 2018; 13:e0204041. [PMID: 30248140 PMCID: PMC6152952 DOI: 10.1371/journal.pone.0204041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
We observed in PRESTO-Tango β-arrestin recruitment assays that the α1-adrenergic receptor (AR) antagonist prazosin activates chemokine (C-X-C motif) receptor (CXCR)4. This prompted us to further examine this unexpected pharmacological behavior. We screened a panel of 14 α1/2- and β1/2/3-AR antagonists for CXCR4 and atypical chemokine receptor (ACKR)3 agonist activity in PRESTO-Tango assays against the cognate agonist CXCL12. We observed that multiple α1-AR antagonists activate CXCR4 (CXCL12 = prazosin = cyclazosin > doxazosin) and ACKR3 (CXCL12 = prazosin = cyclazosin > alfuzosin = doxazosin = phentolamine > terazosin = silodosin = tamsulosin). The two strongest CXCR4/ACKR3 activators, prazosin and cyclazosin, were selected for a more detailed evaluation. We found that the drugs dose-dependently activate both receptors in β-arrestin recruitment assays, stimulate ERK1/2 phosphorylation in HEK293 cells overexpressing each receptor, and that their effects on CXCR4 could be inhibited with AMD3100. Both α1-AR antagonists induced significant chemical shift changes in the 1H-13C-heteronuclear single quantum correlation spectrum of CXCR4 and ACKR3 in membranes, suggesting receptor binding. Furthermore, prazosin and cyclazosin induced internalization of endogenous CXCR4/ACKR3 in human vascular smooth muscle cells (hVSMC). While these drugs did not in induce chemotaxis in hVSMC, they inhibited CXCL12-induced chemotaxis with high efficacy and potency (IC50: prazosin—4.5 nM, cyclazosin 11.6 pM). Our findings reveal unexpected pharmacological properties of prazosin, cyclazosin, and likely other α1-AR antagonists. The results of the present study imply that prazosin and cyclazosin are biased or partial CXCR4/ACKR3 agonists, which function as potent CXCL12 antagonists. Our findings could provide a mechanistic basis for previously observed anti-cancer properties of α1-AR antagonists and support the concept that prazosin could be re-purposed for the treatment of disease processes in which CXCR4 and ACKR3 are thought to play significant pathophysiological roles, such as cancer metastases or various autoimmune pathologies.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lauren J. Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States of America
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
O'Sullivan KM, Ford SL, Longano A, Kitching AR, Holdsworth SR. Intrarenal Toll-like receptor 4 and Toll-like receptor 2 expression correlates with injury in antineutrophil cytoplasmic antibody-associated vasculitis. Am J Physiol Renal Physiol 2018; 315:F1283-F1294. [PMID: 29923769 DOI: 10.1152/ajprenal.00040.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In antineutrophil cytoplasmic antibody-associated vasculitis (AAV), Toll-like receptors (TLRs) may be engaged by infection-associated patterns and by endogenous danger signals, linking infection and innate inflammation with this autoimmune disease. This study examined intrarenal TLR2, TLR4, and TLR9 expression and renal injury in AAV, testing the hypothesis that increased TLR expression correlates with renal injury. Patients with AAV exhibited both glomerular and tubulointerstitial expression of TLR2, TLR4, and TLR9, with TLR4 being the most prominent in both compartments. Glomerular TLR4 expression correlated with glomerular segmental necrosis and cellular crescents, with TLR2 expression correlating with glomerular segmental necrosis. The extent and intensity of glomerular and tubulointerstitial TLR4 expression and the intensity of glomerular TLR2 expression inversely correlated with the presenting estimated glomerular filtration rate. Although myeloid cells within the kidney expressed TLR2, TLR4, and TLR9, TLR2 and TLR4 colocalized with endothelial cells and podocytes, whereas TLR9 was expressed predominantly by podocytes. The functional relevance of intrarenal TLR expression was further supported by the colocalization of TLRs with their endogenous ligands high-mobility group box 1 and fibrinogen. Therefore, in AAV, the extent of intrarenal TLR4 and TLR2 expression and their correlation with renal injury indicates that TLR4, and to a lesser degree TLR2, may be potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Kim M O'Sullivan
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia
| | - Sharon L Ford
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia
| | - Anthony Longano
- Department of Pathology, Monash Health, Clayton, Victoria , Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia.,Department of Nephrology, Monash Health, Clayton, Victoria , Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria , Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia.,Department of Nephrology, Monash Health, Clayton, Victoria , Australia
| |
Collapse
|
30
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 787] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
31
|
Abstract
The objective of this study was to determine whether urine ubiquitin levels are elevated after burns and to assess whether urine ubiquitin could be useful as a noninvasive biomarker for burn patients. Forty burn patients (%TBSA: 20 ± 22; modified Baux scores: 73 ± 26) were included (control: 11 volunteers). Urine was collected in 2-hour intervals for 72 hours, followed by 12-hour intervals until discharge from the intensive care unit. Ubiquitin concentrations were analyzed by enzyme linked immunosorbent assay and Western blot. Total protein was determined with a Bradford assay. Patient characteristics and clinical parameters were documented. Urine ubiquitin concentrations, renal ubiquitin excretion, and excretion rates were correlated with patient characteristics and outcomes. Initial urine ubiquitin concentrations were 362 ± 575 ng/ml in patients and 14 ± 18 ng/ml in volunteers (P < .01). Renal ubiquitin excretion on day 1 was 292.6 ± 510.8 μg/24 hr and 21 ± 27 μg/24 hr in volunteers (P < .01). Initial ubiquitin concentrations correlated with modified Baux scores (r = .46; P = .02). Ubiquitin levels peaked at day 6 postburn, whereas total protein concentrations and serum creatinine levels remained within the normal range. Total renal ubiquitin excretion and excretion rates were higher in patients with %TBSA ≥20 than with %TBSA <20, in patients who developed sepsis/multiple organ failure than in patients without these complications and in nonsurvivors vs survivors. These data suggest that ubiquitin urine levels are significantly increased after burns. Renal ubiquitin excretion and/or excretion rates are associated with %TBSA, sepsis/multiple organ failure, and mortality. Although these findings may explain previous correlations between systemic ubiquitin levels and outcomes after burns, the large variability of ubiquitin urine levels suggests that urine ubiquitin will not be useful as a noninvasive disease biomarker.
Collapse
|
32
|
Cardiovascular Responsiveness to Vasopressin and α1-Adrenergic Receptor Agonists After Burn Injury. J Burn Care Res 2018; 38:90-98. [PMID: 28045780 DOI: 10.1097/bcr.0000000000000374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effects of burn injury on cardiovascular responsiveness to vasoactive agents are not well understood. The aims of this study were to determine whether burn injury alters cardiovascular reactivity to vasoactive drugs in vivo and intrinsic function of isolated mesenteric resistance arteries. Anesthetized Sprague-Dawley rats were subjected to sham procedure or 30% TBSA dorsal scald burn, followed by crystalloid resuscitation (Parkland Formula). At 24, 72, 96, and 168 hours post burn, rats were reanesthetized, and the mean arterial blood pressure (MAP) responses to various doses of the α1-adrenergic receptor agonist phenylephrine and arginine vasopressin were tested. Mesenteric arteries were harvested from uninjured animals and at 24 and 168 hours post burn. The responsiveness of arteries to phenylephrine and arginine vasopressin was tested by pressure myography. Dose response curves were generated and EC50 concentrations, Hill slopes, and maximal effects were compared. The potency of phenylephrine to increase MAP was reduced 2-fold 24 hours post burn (P < .05 vs sham) and gradually normalized at later time points. The reactivity of isolated arteries to phenylephrine was not significantly altered after burns. The potency of arginine vasopressin to increase MAP and to constrict isolated arteries was increased 2- to 3-fold at 24 hours post burn (P < .05) and normalized at later time points. Our findings suggest that burn injury differentially regulates vasopressor and blood pressure effects of α-adrenergic and vasopressin receptor agonists. Intrinsic vasopressin receptor reactivity of resistance arteries is sensitized early after burns. These findings will help to optimize resuscitation strategies and vasopressor use in difficult to resuscitate burn patients.
Collapse
|
33
|
Gao X, Albee LJ, Volkman BF, Gaponenko V, Majetschak M. Asymmetrical ligand-induced cross-regulation of chemokine (C-X-C motif) receptor 4 by α 1-adrenergic receptors at the heteromeric receptor complex. Sci Rep 2018; 8:2730. [PMID: 29426850 PMCID: PMC5807542 DOI: 10.1038/s41598-018-21096-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/30/2018] [Indexed: 02/03/2023] Open
Abstract
Recently, we reported that chemokine (C-X-C motif) receptor (CXCR)4 and atypical chemokine receptor 3 regulate α1-adrenergic receptors (α1-AR) through the formation of hetero-oligomeric complexes. Whether α1-ARs also regulate chemokine receptor function within such heteromeric receptor complexes is unknown. We observed that activation of α1b-AR within the α1b-AR:CXCR4 heteromeric complex leads to cross-recruitment of β-arrestin2 to CXCR4, which could not be inhibited with AMD3100. Activation of CXCR4 did not cross-recruit β-arrestin2 to α1b-AR. A peptide analogue of transmembrane domain 2 of CXCR4 interfered with α1b-AR:CXCR4 heteromerization and inhibited α1b-AR-mediated β-arrestin2 cross-recruitment. Phenylephrine (PE) induced internalization of CXCR4 in HEK293 cells co-expressing CXCR4 and α1b-AR and of endogenous CXCR4 in human vascular smooth muscle cells (hVSMC). The latter was detectable despite blockade of CXCR4 with the neutralizing antibody 12G5. hVSMC migrated towards CXCL12 and PE, but not towards a combination of CXCL12 and PE. PE inhibited CXCL12-induced chemotaxis of hVSMC (IC50: 77 ± 30 nM). Phentolamine cross-inhibited CXCL12-induced chemotaxis of hVSMC, whereas AMD3100 did not cross-inhibit PE-induced chemotaxis. These data provide evidence for asymmetrical cross-regulation of CXCR4 by α1-adrenergic receptors within the heteromeric receptor complex. Our findings provide mechanistic insights into the function of α1-AR:CXCR4 heteromers and suggest alternative approaches to modulate CXCR4 in disease conditions.
Collapse
Affiliation(s)
- Xianlong Gao
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA
| | - Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA. .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA.
| |
Collapse
|
34
|
Boule LA, Ju C, Agudelo M, Parira T, Cannon A, Davis B, Eby J, Cresci G, Samuelson DR, Shukla P, Alrefai WA, Sureshchandra S, Pandey SC, Schnabl B, Curtis BJ, Wyatt TA, Choudhry MA, Kovacs EJ. Summary of the 2016 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2018; 66:35-43. [PMID: 29127885 PMCID: PMC5743588 DOI: 10.1016/j.alcohol.2017.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
On November 18, 2016 the 21st annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the Center for Translational Research and Education at Loyola University Chicago's Health Sciences Campus in Maywood, IL. The 2016 meeting focused broadly on alcohol and inflammation, epigenetics, and the microbiome. The four plenary sessions of the meeting were Alcohol, Inflammation, and Immunity; Alcohol and Epigenetics; Alcohol, Transcriptional Regulation, and Epigenetics; and Alcohol, Intestinal Mucosa, and the Gut Microbiome. Presentations in all sessions of the meeting explored putative underlying causes for chronic diseases and mortality associated with alcohol consumption, shedding light on future work and potential therapeutic targets to alleviate the negative effects of alcohol misuse.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Alcohol Research Program, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Cynthia Ju
- Department of Pharmaceutical Sciences, University of Colorado Denver, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Marisela Agudelo
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Tiyash Parira
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Abigail Cannon
- Burn & Shock Trauma Research Institute, Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Booker Davis
- Department of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Jonathan Eby
- Burn & Shock Trauma Research Institute, Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Gail Cresci
- Pediatric Research Center and Departments of Gastroenterology/Hepatology/Nutrition and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Pradeep Shukla
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Waddah A Alrefai
- Department of Medicine, University of Illinois at Chicago, & Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago & Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Brenda J Curtis
- Alcohol Research Program, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd A Wyatt
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mashkoor A Choudhry
- Burn & Shock Trauma Research Institute, Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. PLoS One 2017; 12:e0187949. [PMID: 29125867 PMCID: PMC5681266 DOI: 10.1371/journal.pone.0187949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3–68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05–0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03–3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3–68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3–68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3–68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Collapse
|
36
|
Nassoiy SP, Babu FS, LaPorte HM, Majetschak M. Pharmacological modulation of C-X-C motif chemokine receptor 4 influences development of acute respiratory distress syndrome after lung ischaemia-reperfusion injury. Clin Exp Pharmacol Physiol 2017; 45:16-26. [PMID: 28815665 DOI: 10.1111/1440-1681.12845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Activation of C-X-C motif chemokine receptor 4 (CXCR4) has been reported to result in lung protective effects in various experimental models. The effects of pharmacological CXCR4 modulation on the development of acute respiratory distress syndrome (ARDS) after lung injury, however, are unknown. Thus, we studied whether blockade and activation of CXCR4 influences development of ARDS in a unilateral lung ischaemia-reperfusion injury rat model. Anaesthetized, mechanically ventilated animals underwent right lung ischaemia (series 1, 30 minutes; series 2, 60 minutes) followed by reperfusion for 300 minutes. In series 1, animals were treated with vehicle or 0.7 μmol/kg of AMD3100 (CXCR4 antagonist) and in series 2 with vehicle, 0.7 or 3.5 μmol/kg ubiquitin (non-cognate CXCR4 agonist) within 5 minutes of reperfusion. AMD3100 significantly reduced PaO2 /FiO2 ratios, converted mild ARDS with vehicle treatment into moderate ARDS (PaO2 /FiO2 ratio<200) and increased histological lung injury. Ubiquitin dose-dependently increased PaO2 /FiO2 ratios, converted moderate-to-severe into mild-to-moderate ARDS and reduced protein content of bronchoalveolar lavage fluid (BALF). Measurements of cytokine levels (TNFα, IL-6, IL-10) in lung homogenates and BALF showed that AMD3100 reduced IL-10 levels in homogenates from post-ischaemic lungs, whereas ubiquitin dose-dependently increased IL-10 levels in BALF from post-ischaemic lungs. Our findings establish a cause-effect relationship for the effects of pharmacological CXCR4 modulation on the development of ARDS after lung ischaemia-reperfusion injury. These data further suggest CXCR4 as a new drug target to reduce the incidence and attenuate the severity of ARDS after lung injury.
Collapse
Affiliation(s)
- Sean P Nassoiy
- Department of Surgery, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Favin S Babu
- Department of Surgery, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Heather M LaPorte
- Department of Surgery, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA.,Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Zha D, Cheng H, Li W, Wu Y, Li X, Zhang L, Feng YH, Wu X. High glucose instigates tubulointerstitial injury by stimulating hetero-dimerization of adiponectin and angiotensin II receptors. Biochem Biophys Res Commun 2017; 493:840-846. [PMID: 28870804 DOI: 10.1016/j.bbrc.2017.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/13/2017] [Indexed: 01/04/2023]
Abstract
Abnormal expression and dysfunction of adiponectin and the cognate receptors are involved in diabetes and diabetic kidney disease (DKD), whereas angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) alleviate diabetic albuminuria and prevent development of DKD through upregulation of adiponectin expression. Here we report that high glucose stimulates expression of angiotensin II (AngII) receptors (AT1 and AT2) in renal proximal tubular epithelial cells (NRK-52E). These receptors underwent hetero-dimerization with adiponectin receptor AdipoR1 and AdipoR2, respectively. High glucose inhibited the dimerization between AT1 and AT2. Interestingly, these hetero-dimers instigated tubulointerstitial injury by inhibiting the cytoprotective action of the adiponectin receptors. These modes of receptor-receptor hetero-dimerization may contribute to high glucose-induced renal tubulointerstitial injury and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huaiyan Cheng
- Dept. of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weiwei Li
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yizhe Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoning Li
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lian Zhang
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying-Hong Feng
- Dept. of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoyan Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Oishi A, Karamitri A, Gerbier R, Lahuna O, Ahmad R, Jockers R. Orphan GPR61, GPR62 and GPR135 receptors and the melatonin MT 2 receptor reciprocally modulate their signaling functions. Sci Rep 2017; 7:8990. [PMID: 28827538 PMCID: PMC5566548 DOI: 10.1038/s41598-017-08996-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the function of orphan G protein-coupled receptors (GPCRs), whose cognate ligand is unknown, is of major importance as GPCRs are privileged drug targets for many diseases. Recent phylogenetic studies classified three orphan receptors, GPR61, GPR62 and GPR135 among the melatonin receptor subfamily, but their capacity to bind melatonin and their biochemical functions are not well characterized yet. We show here that GPR61, GPR62 and GPR135 do not bind [3H]-melatonin nor 2-[125I]iodomelatonin and do not respond to melatonin in several signaling assays. In contrast, the three receptors show extensive spontaneous ligand-independent activities on the cAMP, inositol phosphate and ß-arrestin pathways with distinct pathway-specific profiles. Spontaneous ß-arrestin recruitment internalizes all three GPRs in the endosomal compartment. Co-expression of the melatonin binding MT2 receptor with GPR61, GPR62 or GPR135 has several consequences such as (i) the formation of receptor heteromers, (ii) the inhibition of melatonin-induced ß-arrestin2 recruitment to MT2 and (iii) the decrease of elevated cAMP levels upon melatonin stimulation in cells expressing spontaneously active GPR61 and GPR62. Collectively, these data show that GPR61, GPR62 and GPR135 are unable to bind melatonin, but show a reciprocal regulatory interaction with MT2 receptors.
Collapse
Affiliation(s)
- Atsuro Oishi
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Olivier Lahuna
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Raise Ahmad
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France. .,CNRS UMR, 8104, Paris, France. .,University Paris Descartes, Paris, France.
| |
Collapse
|
39
|
Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. α 1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 2017; 6:JAHA.117.006575. [PMID: 28862946 PMCID: PMC5586474 DOI: 10.1161/jaha.117.006575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Recently, we provided evidence that α1‐adrenergic receptors (ARs) in vascular smooth muscle are regulated by chemokine (C‐X‐C motif) receptor (CXCR) 4 and atypical chemokine receptor 3 (ACKR3). While we showed that CXCR4 controls α1‐ARs through formation of heteromeric receptor complexes in human vascular smooth muscle cells (hVSMCs), the molecular basis underlying cross‐talk between ACKR3 and α1‐ARs is unknown. Methods and Results We show that ACKR3 agonists inhibit inositol trisphosphate production in hVSMCs on stimulation with phenylephrine. In proximity ligation assays and co‐immunoprecipitation experiments, we observed that recombinant and endogenous ACKR3 form heteromeric complexes with α1A/B/D‐AR. While small interfering RNA knockdown of ACKR3 in hVSMCs reduced α1B/D‐AR:ACKR3, CXCR4:ACKR3, and α1B/D‐AR:CXCR4 complexes, small interfering RNA knockdown of CXCR4 reduced α1B/D‐AR:ACKR3 heteromers. Phenylephrine‐induced inositol trisphosphate production from hVSMCs was abolished after ACKR3 and CXCR4 small interfering RNA knockdown. Peptide analogs of transmembrane domains 2/4/7 of ACKR3 showed differential effects on heteromerization between ACKR3, α1A/B/D‐AR, and CXCR4. While the transmembrane domain 2 peptide interfered with α1B/D‐AR:ACKR3 and CXCR4:ACKR3 heteromerization, it increased heteromerization between CXCR4 and α1A/B‐AR. The transmembrane domain 2 peptide inhibited ACKR3 but did not affect α1b‐AR in β‐arrestin recruitment assays. Furthermore, the transmembrane domain 2 peptide inhibited phenylephrine‐induced inositol trisphosphate production in hVSMCs and attenuated phenylephrine‐induced constriction of mesenteric arteries. Conclusions α1‐ARs form hetero‐oligomeric complexes with the ACKR3:CXCR4 heteromer, which is required for α1B/D‐AR function, and activation of ACKR3 negatively regulates α1‐ARs. G protein–coupled receptor hetero‐oligomerization is a dynamic process, which depends on the relative abundance of available receptor partners. Endogenous α1‐ARs function within a network of hetero‐oligomeric receptor complexes.
Collapse
Affiliation(s)
- Lauren J Albee
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Jonathan M Eby
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Abhishek Tripathi
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Heather M LaPorte
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Xianlong Gao
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| |
Collapse
|
40
|
Functional and structural consequences of chemokine (C-X-C motif) receptor 4 activation with cognate and non-cognate agonists. Mol Cell Biochem 2017; 434:143-151. [PMID: 28455789 DOI: 10.1007/s11010-017-3044-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/22/2017] [Indexed: 01/27/2023]
Abstract
Chemokine (C-X-C motif) receptor 4 (CXCR4) regulates cell trafficking and plays important roles in the immune system. Ubiquitin has recently been identified as an endogenous non-cognate agonist of CXCR4, which activates CXCR4 via interaction sites that are distinct from those of the cognate agonist C-X-C motif chemokine ligand 12 (CXCL12). As compared with CXCL12, chemotactic activities of ubiquitin in primary human cells are poorly characterized. Furthermore, evidence for functional selectivity of CXCR4 agonists is lacking, and structural consequences of ubiquitin binding to CXCR4 are unknown. Here, we show that ubiquitin and CXCL12 have comparable chemotactic activities in normal human peripheral blood mononuclear cells, monocytes, vascular smooth muscle, and endothelial cells. Chemotactic activities of the CXCR4 ligands could be inhibited with the selective CXCR4 antagonist AMD3100 and with a peptide analogue of the second transmembrane domain of CXCR4. In human monocytes, ubiquitin- and CXCL12-induced chemotaxis could be inhibited with pertussis toxin and with inhibitors of phospholipase C, phosphatidylinositol 3 kinase, and extracellular signal-regulated kinase 1/2. Both agonists induced inositol trisphosphate production in vascular smooth muscle cells, which could be inhibited with AMD3100. In β-arrestin recruitment assays, ubiquitin did not sufficiently recruit β-arrestin2 to CXCR4 (EC50 > 10 μM), whereas the EC50 for CXCL12 was 4.6 nM (95% confidence interval 3.1-6.1 nM). Both agonists induced similar chemical shift changes in the 13C-1H-heteronuclear single quantum correlation (HSQC) spectrum of CXCR4 in membranes, whereas CXCL11 did not significantly alter the 13C-1H-HSQC spectrum of CXCR4. Our findings point towards ubiquitin as a biased agonist of CXCR4.
Collapse
|
41
|
Cai X, Bai B, Zhang R, Wang C, Chen J. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling. Sci Rep 2017; 7:40335. [PMID: 28091541 PMCID: PMC5238433 DOI: 10.1038/srep40335] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
The apelin receptor (APJ) belongs to family A of the G protein-coupled receptors (GPCRs) and is a potential pharmacotherapeutic target for heart failure, hypertension, and other cardiovascular diseases. There is evidence APJ heterodimerizes with other GPCRs; however, the existence of APJ homodimers and oligomers remains to be investigated. Here, we measured APJ monomer-homodimer-oligomer interconversion by monitoring APJ dynamically on cells and compared their proportions, spatial arrangement, and mobility using total internal reflection fluorescence microscopy, resonance energy transfer, and proximity biotinylation. In cells with <0.3 receptor particles/μm2, approximately 60% of APJ molecules were present as dimers or oligomers. APJ dimers were present on the cell surface in a dynamic equilibrium with constant formation and dissociation of receptor complexes. Furthermore, we applied interference peptides and MALDI-TOF mass spectrometry to confirm APJ homo-dimer and explore the dimer-interfaces. Peptides corresponding to transmembrane domain (TMD)1, 2, 3, and 4, but not TMD5, 6, and 7, disrupted APJ dimerization. APJ mutants in TMD1 and TMD2 also decreased bioluminescence resonance energy transfer of APJ dimer. APJ dimerization resulted in novel functional characteristics, such as a distinct G-protein binding profile and cell responses after agonist stimulation. Thus, dimerization may serve as a unique mechanism for fine-tuning APJ-mediated functions.
Collapse
Affiliation(s)
- Xin Cai
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012 P.R. China.,Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
42
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
43
|
Kwon EK, Min CK, Kim Y, Lee JW, Aigerim A, Schmidt S, Nam HJ, Han SK, Kim K, Cha JS, Kim H, Kim S, Cho HS, Choi MS, Cho NH. Constitutive activation of T cells by γ2-herpesviral GPCR through the interaction with cellular CXCR4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1-11. [PMID: 27751885 DOI: 10.1016/j.bbamcr.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/14/2016] [Accepted: 10/11/2016] [Indexed: 12/28/2022]
Abstract
Members of the herpesviral family use multiple strategies to hijack infected host cells and exploit cellular signaling for their pathogenesis and latent infection. Among the most intriguing weapons in the arsenal of pathogenic herpesviruses are the constitutively active virally-encoded G protein-coupled receptors (vGPCRs). Even though vGPCRs contribute to viral pathogenesis such as immune evasion and proliferative disorders, the molecular details of how vGPCRs continuously activate cellular signaling are largely unknown. Here, we report that the vGPCR of Herpesvirus saimiri (HVS), an oncogenic γ2-herpesvirus, constitutively activates T cells via a heteromeric interaction with cellular CXCR4. Constitutive T cell activation also occurs with expression of the vGPCR of Kaposi's sarcoma-associated herpesvirus (KSHV), but not the vGPCR of Epstein-Barr virus. Expression of HVS vGPCR down-regulated the surface expression of CXCR4 but did not induce the degradation of the chemokine receptor, suggesting that vGPCR/CXCR4 signaling continues in cytosolic compartments. The physical association of vGPCR with CXCR4 was demonstrated by proximity ligation assay as well as immunoprecipitation. Interestingly, the constitutive activation of T cells by HVS vGPCR is independent of proximal T cell receptor (TCR) signaling molecules, such as TCRβ, Lck, and ZAP70, whereas CXCR4 silencing by shRNA abolished T cell activation by vGPCRs of HVS and KSHV. Furthermore, previously identified inactive vGPCR mutants failed to interact with CXCR4. These findings on the positive cooperativity of vGPCR with cellular CXCR4 in T cell activation extend our current understanding of the molecular mechanisms of vGPCR function and highlight the importance of heteromerization for GPCR activity.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jae-Won Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Abdimadiyeva Aigerim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sebastian Schmidt
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun-Jun Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoyoung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul 03080, Republic of Korea.
| |
Collapse
|
44
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
45
|
Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci 2016; 17:ijms17060971. [PMID: 27331810 PMCID: PMC4926503 DOI: 10.3390/ijms17060971] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca2+-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC.
Collapse
MESH Headings
- Animals
- Binding Sites
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Female
- Humans
- Male
- Mice
- Molecular Dynamics Simulation
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Multimerization
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, CXCR/genetics
- Receptors, CXCR/metabolism
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
Collapse
Affiliation(s)
- Ann E Evans
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhay Kumar Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Kenneth L Byron
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, PO Box B, Frederick, MD 21702-1201, USA.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL 60607, USA.
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
46
|
Pharmacological targeting of chemokine (C-X-C motif) receptor 4 in porcine polytrauma and hemorrhage models. J Trauma Acute Care Surg 2016; 80:102-10. [PMID: 26683396 DOI: 10.1097/ta.0000000000000865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent evidence suggests that chemokine receptor CXCR4 regulates vascular α1-adrenergic receptor function and that the noncognate CXCR4 agonist ubiquitin has therapeutic potential after trauma/hemorrhage. Pharmacologic properties of ubiquitin in large animal trauma models, however, are poorly characterized. Thus, the aims of the present study were to determine the effects of CXCR4 modulation on resuscitation requirements after polytrauma, to assess whether ubiquitin influences survival times after lethal polytrauma-hemorrhage, and to characterize its dose-effect profile in porcine models. METHODS Anesthetized pigs underwent polytrauma (PT, femur fractures/lung contusion) alone (Series 1) or PT/hemorrhage (PT/H) to a mean arterial blood pressure of 30 mmHg with subsequent fluid resuscitation (Series 2 and 3) or 40% blood volume hemorrhage within 15 minutes followed by 2.5% blood volume hemorrhage every 15 minutes without fluid resuscitation (Series 4). In Series 1, ubiquitin (175 and 350 nmol/kg), AMD3100 (CXCR4 antagonist, 350 nmol/kg), or vehicle treatment 60 minutes after PT was performed. In Series 2, ubiquitin (175, 875, and 1,750 nmol/kg) or vehicle treatment 60 minutes after PT/H was performed. In Series 3, ubiquitin (175 and 875 nmol/kg) or vehicle treatment at 60 and 180 minutes after PT/H was performed. In Series 4, ubiquitin (875 nmol/kg) or vehicle treatment 30 minutes after hemorrhage was performed. RESULTS In Series 1, resuscitation fluid requirements were significantly reduced by 40% with 350-nmol/kg ubiquitin and increased by 25% with AMD3100. In Series 2, median survival time was 190 minutes with vehicle, 260 minutes with 175-nmol/kg ubiquitin, and longer than 420 minutes with 875-nmol/kg and 1,750-nmol/kg ubiquitin (p < 0.05 vs. vehicle). In Series 3, median survival time was 288 minutes with vehicle and 336 minutes and longer than 420 minutes (p < 0.05 vs. vehicle) with 175-nmol/kg and 875-nmol/kg ubiquitin, respectively. In Series 4, median survival time was 147.5 minutes and 150 minutes with vehicle and ubiquitin, respectively (p > 0.05). CONCLUSION These findings further suggest CXCR4 as a drug target after PT/H. Ubiquitin treatment reduces resuscitation fluid requirements and provides survival benefits after PT/H. The pharmacological effects of ubiquitin treatment occur dose dependently.
Collapse
|
47
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
48
|
Anderson CA, Solari R, Pease JE. Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery? J Leukoc Biol 2015; 99:901-9. [PMID: 26701135 DOI: 10.1189/jlb.2mr0815-392r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 01/14/2023] Open
Abstract
Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond.
Collapse
Affiliation(s)
- Caroline A Anderson
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, Norfolk Place, London, United Kingdom
| | - James E Pease
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| |
Collapse
|
49
|
Mani BK, Robakowski C, Brueggemann LI, Cribbs LL, Tripathi A, Majetschak M, Byron KL. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents. Mol Pharmacol 2015; 89:323-34. [PMID: 26700561 DOI: 10.1124/mol.115.101758] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4.
Collapse
Affiliation(s)
- Bharath K Mani
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Christina Robakowski
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Lyubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Leanne L Cribbs
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Abhishek Tripathi
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Matthias Majetschak
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics (B.K.M., C.R., L.I.B., M.M., K.L.B.), Department of Cell and Molecular Physiology (L.L.C.), and Department of Surgery (A.T., M.M.), Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
50
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|