1
|
Yaghoobi A, Malekpour SA. Unraveling the genetic architecture of blood unfolded p-53 among non-demented elderlies: novel candidate genes for early Alzheimer's disease. BMC Genomics 2024; 25:440. [PMID: 38702606 PMCID: PMC11067101 DOI: 10.1186/s12864-024-10363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a heritable neurodegenerative disease whose long asymptomatic phase makes the early diagnosis of it pivotal. Blood U-p53 has recently emerged as a superior predictive biomarker for AD in the early stages. We hypothesized that genetic variants associated with blood U-p53 could reveal novel loci and pathways involved in the early stages of AD. RESULTS We performed a blood U-p53 Genome-wide association study (GWAS) on 484 healthy and mild cognitively impaired subjects from the ADNI cohort using 612,843 Single nucleotide polymorphisms (SNPs). We performed a pathway analysis and prioritized candidate genes using an AD single-cell gene program. We fine-mapped the intergenic SNPs by leveraging a cell-type-specific enhancer-to-gene linking strategy using a brain single-cell multimodal dataset. We validated the candidate genes in an independent brain single-cell RNA-seq and the ADNI blood transcriptome datasets. The rs279686 between AASS and FEZF1 genes was the most significant SNP (p-value = 4.82 × 10-7). Suggestive pathways were related to the immune and nervous systems. Twenty-three candidate genes were prioritized at 27 suggestive loci. Fine-mapping of 5 intergenic loci yielded nine cell-specific candidate genes. Finally, 15 genes were validated in the independent single-cell RNA-seq dataset, and five were validated in the ADNI blood transcriptome dataset. CONCLUSIONS We underlined the importance of performing a GWAS on an early-stage biomarker of AD and leveraging functional omics datasets for pinpointing causal genes in AD. Our study prioritized nine genes (SORCS1, KIF5C, TMEFF2, TMEM63C, HLA-E, ATAT1, TUBB, ARID1B, and RUNX1) strongly implicated in the early stages of AD.
Collapse
Affiliation(s)
- Arash Yaghoobi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran
| | - Seyed Amir Malekpour
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran.
| |
Collapse
|
2
|
Ali M, Wani SUD, Dey T, Sridhar SB, Qadrie ZL. A common molecular and cellular pathway in developing Alzheimer and cancer. Biochem Biophys Rep 2024; 37:101625. [PMID: 38225990 PMCID: PMC10788207 DOI: 10.1016/j.bbrep.2023.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Globally cancer and Alzheimer's disease (AD) are two major diseases and still, there is no clearly defined molecular mechanism. There is an opposite relation between cancer and AD which are the proportion of emerging cancer was importantly slower in AD patients, whereas slow emerging AD in patients with cancer. In cancer, regulation of cell mechanisms is interrupted by an increase in cell survival and proliferation, while on the contrary, AD is related to augmented neuronal death, that may be either produced by or associated with amyloid-β (Aβ) and tau deposition. Stated that the probability that disruption of mechanisms takes part in the regulation of cell survival/death and might be implicated in both diseases. The mechanism of actions such as DNA-methylation, genetic polymorphisms, or another mechanism of actions that induce alteration in the action of drugs with significant roles in resolving the finding to repair and live or die might take part in the pathogenesis of these two ailments. The functions of miRNA, p53, Pin1, the Wnt signaling pathway, PI3 KINASE/Akt/mTOR signaling pathway GRK2 signaling pathway, and the pathophysiological role of oxidative stress are presented in this review as potential candidates which hypothetically describe inverse relations between cancer and AD. Innovative materials almost mutual mechanisms in the aetiology of cancer and AD advocates novel treatment approaches. Among these treatment strategies, the most promising use treatment such as tyrosine kinase inhibitor, nilotinib, protein kinase C, and bexarotene.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagar, Nagamagala, Bellur, Karnataka, 571418, India
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Sathvik B. Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates
| | | |
Collapse
|
3
|
Das S, Li Z, Wachter A, Alla S, Noori A, Abdourahman A, Tamm JA, Woodbury ME, Talanian RV, Biber K, Karran EH, Hyman BT, Serrano‐Pozo A. Distinct transcriptomic responses to Aβ plaques, neurofibrillary tangles, and APOE in Alzheimer's disease. Alzheimers Dement 2024; 20:74-90. [PMID: 37461318 PMCID: PMC10792109 DOI: 10.1002/alz.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear. METHODS We performed laser capture microdissection of amyloid beta (Aβ) plaques, the 50 μm halo around them, tangles with the 50 μm halo around them, and areas distant (> 50 μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aβ plaques had more differentially expressed genes than tangles. We identified a gradient Aβ plaque > peri-plaque > tangle > distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aβ plaques. DISCUSSION Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aβ plaques, and are exacerbated by the APOE ε4 allele.
Collapse
Affiliation(s)
- Sudeshna Das
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Zhaozhi Li
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
| | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KGGenomics Research CenterLudwigshafenGermany
| | - Srinija Alla
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | - Ayush Noori
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Joseph A. Tamm
- AbbVie, Cambridge Research CenterCambridgeMassachusettsUSA
| | | | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KGNeuroscience Research CenterLudwigshafenGermany
| | - Eric H. Karran
- AbbVie, Cambridge Research CenterCambridgeMassachusettsUSA
| | - Bradley T. Hyman
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Alberto Serrano‐Pozo
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
5
|
Schulz L, Ramirez P, Lemieux A, Gonzalez E, Thomson T, Frost B. Tau-Induced Elevation of the Activity-Regulated Cytoskeleton Associated Protein Arc1 Causally Mediates Neurodegeneration in the Adult Drosophila Brain. Neuroscience 2023; 518:101-111. [PMID: 35487302 PMCID: PMC9606145 DOI: 10.1016/j.neuroscience.2022.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease and other tauopathies are neurodegenerative disorders pathologically defined by aggregated forms of tau protein in the brain. While synaptic degradation is a well-established feature of tau-induced neurotoxicity, the underlying mechanisms of how pathogenic forms of tau drive synaptic dysfunction are incompletely understood. Synaptic function and subsequent memory consolidation are dependent upon synaptic plasticity, the ability of synapses to adjust their structure and strength in response to changes in activity. The activity regulated cytoskeleton associated protein ARC acts in the nucleus and at postsynaptic densities to regulate various forms of synaptic plasticity. ARC harbors a retrovirus-like Gag domain that facilitates ARC multimerization and capsid formation. Trans-synaptic transfer of RNA-containing ARC capsids is required for synaptic plasticity. While ARC is elevated in brains of patients with Alzheimer's disease and genetic variants in ARC increase susceptibility to Alzheimer's disease, mechanistic insight into the role of ARC in Alzheimer's disease is lacking. Using a Drosophila model of tauopathy, we find that pathogenic tau significantly increases multimeric species of the protein encoded by the Drosophila homolog of ARC, Arc1, in the adult fly brain. We find that Arc1 is elevated within nuclei and the neuropil of tau transgenic Drosophila, but does not localize to synaptic vesicles or presynaptic terminals. Lastly, we find that genetic manipulation of Arc1 modifies tau-induced neurotoxicity, suggesting that tau-induced Arc1 elevation mediates neurodegeneration. Taken together, our results suggest that ARC elevation in human Alzheimer's disease is a consequence of tau pathology and is a causal factor contributing to neuronal death.
Collapse
Affiliation(s)
- Lulu Schulz
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States
| | - Adrienne Lemieux
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Elias Gonzalez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
6
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
7
|
Das S, Li Z, Wachter A, Alla S, Noori A, Abdourahman A, Tamm JA, Woodbury ME, Talanian RV, Biber K, Karran EH, Hyman BT, Serrano-Pozo A. Distinct Transcriptomic Responses to Aβ plaques, Neurofibrillary Tangles, and APOE in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533303. [PMID: 36993332 PMCID: PMC10055287 DOI: 10.1101/2023.03.20.533303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE -linked differences remain unclear. METHODS We performed laser capture microdissection of Aβ plaques, the 50μm halo around them, tangles with the 50μm halo around them, and areas distant (>50μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aβ plaques had more differentially expressed genes than tangles. We identified a gradient Aβ plaque>peri-plaque>tangle>distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aβ plaques. DISCUSSION Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aβ plaques, and are exacerbated by the APOE ε4 allele.
Collapse
Affiliation(s)
- Sudeshna Das
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Zhaozhi Li
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
| | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, 67061 Ludwigshafen
| | - Srinija Alla
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
| | - Ayush Noori
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
| | - Aicha Abdourahman
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Joseph A. Tamm
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Maya E. Woodbury
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Robert V. Talanian
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research Center, Knollstrasse, 67061 Ludwigshafen
| | - Eric H. Karran
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Bradley T. Hyman
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Beckmann A, Ramirez P, Gamez M, Gonzalez E, De Mange J, Bieniek KF, Ray WJ, Frost B. Moesin is an effector of tau-induced actin overstabilization, cell cycle activation, and neurotoxicity in Alzheimer's disease. iScience 2023; 26:106152. [PMID: 36879821 PMCID: PMC9984563 DOI: 10.1016/j.isci.2023.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.
Collapse
Affiliation(s)
- Adrian Beckmann
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Gamez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
9
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
10
|
Lagisetty Y, Bourquard T, Al-Ramahi I, Mangleburg CG, Mota S, Soleimani S, Shulman JM, Botas J, Lee K, Lichtarge O. Identification of risk genes for Alzheimer's disease by gene embedding. CELL GENOMICS 2022; 2:100162. [PMID: 36268052 PMCID: PMC9581494 DOI: 10.1016/j.xgen.2022.100162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer's disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares the functional perturbations induced in gene interaction network neighborhoods by coding variants from disease versus healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes were differentially expressed in post mortem AD brains and modulated neurological phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of other complex diseases.
Collapse
Affiliation(s)
- Yashwanth Lagisetty
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
11
|
Torshin VI, Kastyro IV, Reshetov IV, Kostyaeva MG, Popadyuk VI. The Relationship between p53-Positive Neurons and Dark Neurons in the Hippocampus of Rats after Surgical Interventions on the Nasal Septum. DOKL BIOCHEM BIOPHYS 2022; 502:30-35. [PMID: 35275303 DOI: 10.1134/s1607672922010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022]
Abstract
The study evaluates the dependence of p53 protein expression on the appearance of dark neurons (DNs) in the hippocampus in rats during experimental modeling of septoplasty. Septoplasty simulation was carried out on 15 sexually mature male Wistar rats. We studied histological sections of the hippocampus stained with Nissl toluidine blue and antibodies to the p53 protein. In the CA1 subfield, the number of p53-positive neurons significantly increased on the 2nd, 4th (p < 0.001) and 6th days (p < 0.05). In the dynamics, the peak of the growth of p53 protein expression in the cytoplasm of CA1 and CA2 neurons fell on the 2-4th day after the operation, and on the 6th day the number of these neurons decreased (p < 0.001). In the cytoplasm of CA3 neurons in all periods after surgery, an increase in the expression of the p53 protein as compared to the control group was noted. In the CA1 pyramidal layer, the number of DNs decreased on the 6th day (p < 0.001). In CA2, after 2 days, a minimum of DNs as compared with the 4th day (p < 0.001) was noted. In CA3, on the 4th day, there was a peak in DNs as compared with the rest of the days (p < 0.001). A positive strong association was found in all periods of assessment and in all subfields of the hippocampus between an increase in the number of dark and p53-positive neurons. The appearance of dark and p53-positive neurons in the hippocampal formation in rats after simulating septoplasty are typical responses of nervous tissue to stress. It is obvious that the expression of the p53 protein is associated with the basophilia of the cytoplasm of neurons, their morpho-functional state. Presumably, the p53 protein can trigger not only the activation of damaged neurons in the hippocampus but also play a neuroprotective role. Upcoming studies should determine the role of the p53 protein in the further fate of damaged neurons in the pyramidal layer and differentiate the mechanisms of its expression.
Collapse
Affiliation(s)
- V I Torshin
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - I V Kastyro
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - I V Reshetov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M G Kostyaeva
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - V I Popadyuk
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
12
|
Lai L, Wang Y, Peng S, Guo W, Li F, Xu S. P53 and taurine upregulated gene 1 promotes the repair of the DeoxyriboNucleic Acid damage induced by bupivacaine in murine primary sensory neurons. Bioengineered 2022; 13:7439-7456. [PMID: 35271399 PMCID: PMC9208530 DOI: 10.1080/21655979.2022.2048985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The research aimed to explore the biological role of p53 protein and long non-coding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in bupivacaine (bup)-induced neurotoxicity. Our work treated dorsal root ganglion (DRG) cells with bup, detected cell viability through CCK-8, apoptosis through TUNEL assays, DeoxyriboNucleic Acid (DNA) damage through γ-H2AX protein and comet assay, including p53 mRNA, protein and TUG1 expression through q-PCR and western blot, furthermore, cell viability and DNA damage were determined after the silencing of p53 and TUG1, biological information and TUG1 FISH combined with p53 protein immunofluorescence (IF) was performed to determine the cellular localization of these molecule. In vivo experiments, we explored the impact of intrathecal injection of bup on p53 mRNA and protein, TUG1, γ-H2AX protein expression. The results showed that bup was available to signally decreased cell viability, promoted apoptosis rate and DNA damage, additionally, bup increased p53 mRNA and protein and TUG1 expression. P53 siRNA and TUG1 siRNA significantly increased DNA damage. Furthermore, bioinformatics analysis and colocalization experiments revealed that the p53 protein is a transcription factor of TUG1, in vivo experiment, intrathecal injection of bup increased the p53 mRNA, p53 protein, TUG1 and γ-H2AX protein in the murine DRG. In this study, it was found p53 and TUG1 promote the repair of the DNA damage induced by bup in murine dorsal root ganglion cells, suggesting a new strategy for the amelioration of bup-induced neurotoxicity.
Collapse
Affiliation(s)
- Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongwei Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenghui Peng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenjing Guo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Zabłocka A, Kazana W, Sochocka M, Stańczykiewicz B, Janusz M, Leszek J, Orzechowska B. Inverse Correlation Between Alzheimer's Disease and Cancer: Short Overview. Mol Neurobiol 2021; 58:6335-6349. [PMID: 34523079 PMCID: PMC8639554 DOI: 10.1007/s12035-021-02544-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
The negative association between Alzheimer's disease (AD) and cancer suggests that susceptibility to one disease may protect against the other. When biological mechanisms of AD and cancer and relationship between them are understood, the unsolved problem of both diseases which still touches the growing human population could be overcome. Actual information about biological mechanisms and common risk factors such as chronic inflammation, age-related metabolic deregulation, and family history is presented here. Common signaling pathways, e.g., p53, Wnt, role of Pin1, and microRNA, are discussed as well. Much attention is also paid to the potential impact of chronic viral, bacterial, and fungal infections that are responsible for the inflammatory pathway in AD and also play a key role to cancer development. New data about common mechanisms in etiopathology of cancer and neurological diseases suggests new therapeutic strategies. Among them, the use of nilotinib, tyrosine kinase inhibitor, protein kinase C, and bexarotene is the most promising.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Wioletta Kazana
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, K. Bartla 5, 51-618, Wroclaw, Poland
| | - Maria Janusz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367, Wroclaw, Poland
| | - Beata Orzechowska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
14
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
15
|
Afanasyeva EA, Gartlgruber M, Ryl T, Decaesteker B, Denecker G, Mönke G, Toprak UH, Florez A, Torkov A, Dreidax D, Herrmann C, Okonechnikov K, Ek S, Sharma AK, Sagulenko V, Speleman F, Henrich KO, Westermann F. Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Sci Alliance 2021; 4:e201900332. [PMID: 33658318 PMCID: PMC8017594 DOI: 10.26508/lsa.201900332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
Collapse
Affiliation(s)
- Elena A Afanasyeva
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Tatsiana Ryl
- Department of Neurosurgery, University of Duisburg Essen, Essen, Germany
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Gregor Mönke
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Umut H Toprak
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Andres Florez
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
- Center for Systems Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Alica Torkov
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel Dreidax
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Carl Herrmann
- Group of Cancer Regulatory Genomics B086, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Department of Pediatric Neurooncology, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ashwini Kumar Sharma
- Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Kai-Oliver Henrich
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Frank Westermann
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
16
|
Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021; 185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein p53 participates in the control of key biological functions such as cell death, metabolic homeostasis and immune function, which are closely related to various diseases such as tumors, metabolic disorders, infection and neurodegeneration. The p53 gene is also mutated in approximately 50% of human cancer cells. Mutant p53 proteins escape from the ubiquitination-dependent degradation, gain oncogenic function and promote the carcinogenesis, malignant progression, metastasis and chemoresistance. Therefore, the stability of both wild type and mutant p53 needs to be precisely regulated to maintain normal functions and targeting the p53 stability is one of the therapeutic strategies against cancer. Here, we focus on compound-induced degradation of p53 by both the ubiquitination-dependent proteasome and autophagy-lysosome degradation pathways. We also review other posttranslational modifications which control the stability of p53 and the biological functions involved in these processes. This review provides the current theoretical basis for the regulation of p53 abundance and its possible applications in different diseases.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model. Proc Natl Acad Sci U S A 2020; 117:33608-33618. [PMID: 33318181 DOI: 10.1073/pnas.1922392117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial and metabolic dysfunction are often implicated in neurological disease, but effective mechanism-based therapies remain elusive. We performed a genome-scale forward genetic screen in a Drosophila model of tauopathy, a class of neurodegenerative disorders characterized by the accumulation of the protein tau, and identified manipulation of the B-vitamin biotin as a potential therapeutic approach in tauopathy. We show that tau transgenic flies have an innate biotin deficiency due to tau-mediated relaxation of chromatin and consequent aberrant expression of multiple biotin-related genes, disrupting both carboxylase and mitochondrial function. Biotin depletion alone causes mitochondrial pathology and neurodegeneration in both flies and human neurons, implicating mitochondrial dysfunction as a mechanism in biotin deficiency. Finally, carboxylase biotin levels are reduced in mammalian tauopathies, including brains of human Alzheimer's disease patients. These results provide insight into pathogenic mechanisms of human biotin deficiency, the resulting effects on neuronal health, and a potential therapeutic pathway in the treatment of tau-mediated neurotoxicity.
Collapse
|
18
|
Network Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Qiaoshao Formula for Treatment of Premature Ejaculation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1418634. [PMID: 33273947 PMCID: PMC7676949 DOI: 10.1155/2020/1418634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Background Qiaoshao (QS) formula, a traditional Chinese medicine (TCM) comprising seven herbs, has been clinically proven to have a favorable treatment effect on premature ejaculation (PE). However, its underlying pharmacological mechanisms in the treatment of PE need to be further clarified. Methods In the present study, a network pharmacology-based strategy was adopted. The active compounds of QS formula were obtained from the Chinese medicine database, and the potential targets of these compounds were collected from the DrugBank database to construct compound-compound targets network. PE-related targets were identified from human disease databases and used to construct the protein-protein interaction (PPI) networks. Compound-disease target PPI network was constructed by merging the PPI network of disease-targets and compound-targets. Cluster and enrichment analyses were performed on the PPI network of disease targets and compound-disease targets. The influence of QS formula on serum 5-HT, NO, oxytocin, and thyroid hormones of PE patients was verified. Results Four primary pharmacological networks of QS formula were constructed, including the compound-compound targets network, PPI network of PE-related targets and compound-disease targets, and the QS-PE mechanism network. The module and pathway enrichment analyses revealed that the QS formula had the potential to affect varieties of biological process and pathways, such as nitric oxide biosynthetic process, oxytocin, thyroid hormone, TNF, PI3K-Akt, and the HIF-1 signaling pathway, that play an important role in the pathogenesis of PE. Meanwhile, the QS formula has been clinically confirmed to regulate the serum level of 5-HT, NO, oxytocin, and TT in PE patients. Conclusion This study preliminarily discovered the potential targets and pathways of QS formula in the treatment of PE, which laid a good foundation for further experimental research.
Collapse
|
19
|
Mangleburg CG, Wu T, Yalamanchili HK, Guo C, Hsieh YC, Duong DM, Dammer EB, De Jager PL, Seyfried NT, Liu Z, Shulman JM. Integrated analysis of the aging brain transcriptome and proteome in tauopathy. Mol Neurodegener 2020; 15:56. [PMID: 32993812 PMCID: PMC7526226 DOI: 10.1186/s13024-020-00405-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023] Open
Abstract
Background Tau neurofibrillary tangle pathology characterizes Alzheimer’s disease and other neurodegenerative tauopathies. Brain gene expression profiles can reveal mechanisms; however, few studies have systematically examined both the transcriptome and proteome or differentiated Tau- versus age-dependent changes. Methods Paired, longitudinal RNA-sequencing and mass-spectrometry were performed in a Drosophila model of tauopathy, based on pan-neuronal expression of human wildtype Tau (TauWT) or a mutant form causing frontotemporal dementia (TauR406W). Tau-induced, differentially expressed transcripts and proteins were examined cross-sectionally or using linear regression and adjusting for age. Hierarchical clustering was performed to highlight network perturbations, and we examined overlaps with human brain gene expression profiles in tauopathy. Results TauWT induced 1514 and 213 differentially expressed transcripts and proteins, respectively. TauR406W had a substantially greater impact, causing changes in 5494 transcripts and 697 proteins. There was a ~ 70% overlap between age- and Tau-induced changes and our analyses reveal pervasive bi-directional interactions. Strikingly, 42% of Tau-induced transcripts were discordant in the proteome, showing opposite direction of change. Tau-responsive gene expression networks strongly implicate innate immune activation. Cross-species analyses pinpoint human brain gene perturbations specifically triggered by Tau pathology and/or aging, and further differentiate between disease amplifying and protective changes. Conclusions Our results comprise a powerful, cross-species functional genomics resource for tauopathy, revealing Tau-mediated disruption of gene expression, including dynamic, age-dependent interactions between the brain transcriptome and proteome.
Collapse
Affiliation(s)
- Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hari K Yalamanchili
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Caiwei Guo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi-Chen Hsieh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for the study of Alzheimer's disease and the aging brain, Columbia University Medical Center, New York, NY, 10032, USA.,Cell Circuits Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, 77030, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Genetic variation in APOE, GRN, and TP53 are phenotype modifiers in frontotemporal dementia. Neurobiol Aging 2020; 99:99.e15-99.e22. [PMID: 32972771 DOI: 10.1016/j.neurobiolaging.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
Frontotemporal dementia (FTD) is a clinical, genetic, and pathologic heterogeneous group of neurodegenerative diseases. In this study, we investigated the role of APOƐ4, rs5848 in GRN, and rs1042522 in TP53 gene as disease risk factors and/or phenotype modifiers in 440 FTD patients, including 175 C9orf72 expansion carriers. We found that the C9orf72 expansion carriers showing an earlier age at onset (p < 0.001). Among the clinical groups, the FTD-MND (motoneuron disease) showed the lowest survival (hazard ratio [HR] = 4.12), and the progressive nonfluent aphasia group showed the highest onset age (p = 0.03). In our cohort, the rs1042522 in TP53 was associated with disease onset (p = 0.02) and survival (HR = 1.73) and rs5848 GRN with a significantly shorter survival in CC homozygous patients (HR = 1.98). The frequency of APOƐ4 carriers was significantly increased in the C9orf72 noncarriers (p = 0.022). Although validation of our findings is necessary, our results suggest that TP53, GRN, and APOE genes may act as phenotype modifiers in FTD and should be considered in future clinical trials.
Collapse
|
21
|
Makarevich O, Sabirzhanov B, Aubrecht TG, Glaser EP, Polster BM, Henry RJ, Faden AI, Stoica BA. Mithramycin selectively attenuates DNA-damage-induced neuronal cell death. Cell Death Dis 2020; 11:587. [PMID: 32719328 PMCID: PMC7385624 DOI: 10.1038/s41419-020-02774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.
Collapse
Affiliation(s)
- Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Taryn G Aubrecht
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ethan P Glaser
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Mahoney R, Ochoa Thomas E, Ramirez P, Miller HE, Beckmann A, Zuniga G, Dobrowolski R, Frost B. Pathogenic Tau Causes a Toxic Depletion of Nuclear Calcium. Cell Rep 2020; 32:107900. [PMID: 32668249 PMCID: PMC7428851 DOI: 10.1016/j.celrep.2020.107900] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Synaptic activity-induced calcium (Ca2+) influx and subsequent propagation into the nucleus is a major way in which synapses communicate with the nucleus to regulate transcriptional programs important for activity-dependent survival and memory formation. Nuclear Ca2+ shapes the transcriptome by regulating cyclic AMP (cAMP) response element-binding protein (CREB). Here, we utilize a Drosophila model of tauopathy and induced pluripotent stem cell (iPSC)-derived neurons from humans with Alzheimer's disease to study the effects of pathogenic tau, a pathological hallmark of Alzheimer's disease and related tauopathies, on nuclear Ca2+. We find that pathogenic tau depletes nuclear Ca2+ and CREB to drive neuronal death, that CREB-regulated genes are over-represented among differentially expressed genes in tau transgenic Drosophila, and that activation of big potassium (BK) channels elevates nuclear Ca2+ and suppresses tau-induced neurotoxicity. Our studies identify nuclear Ca2+ depletion as a mechanism contributing to tau-induced neurotoxicity, adding an important dimension to the calcium hypothesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Rebekah Mahoney
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA
| | - Elizabeth Ochoa Thomas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA
| | - Henry E Miller
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA; Greehey Children's Cancer Institute, University of Texas Health, San Antonio, San Antonio, TX, USA
| | - Adrian Beckmann
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA
| | - Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA
| | - Radek Dobrowolski
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Rutgers University, Newark, NJ, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health, San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX, USA.
| |
Collapse
|
23
|
Fusaric acid alters Akt and ampk signalling in c57bl/6 mice brain tissue. Food Chem Toxicol 2020; 138:111252. [DOI: 10.1016/j.fct.2020.111252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
|
24
|
Baquero J, Varriano S, Ordonez M, Kuczaj P, Murphy MR, Aruggoda G, Lundine D, Morozova V, Makki AE, Alonso ADC, Kleiman FE. Nuclear Tau, p53 and Pin1 Regulate PARN-Mediated Deadenylation and Gene Expression. Front Mol Neurosci 2019; 12:242. [PMID: 31749682 PMCID: PMC6843027 DOI: 10.3389/fnmol.2019.00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
While nuclear tau plays a role in DNA damage response (DDR) and chromosome relaxation, the mechanisms behind these functions are not fully understood. Here, we show that tau forms complex(es) with factors involved in nuclear mRNA processing such as tumor suppressor p53 and poly(A)-specific ribonuclease (PARN) deadenylase. Tau induces PARN activity in different cellular models during DDR, and this activation is further increased by p53 and inhibited by tau phosphorylation at residues implicated in neurological disorders. Tau's binding factor Pin1, a mitotic regulator overexpressed in cancer and depleted in Alzheimer's disease (AD), also plays a role in the activation of nuclear deadenylation. Tau, Pin1 and PARN target the expression of mRNAs deregulated in AD and/or cancer. Our findings identify novel biological roles of tau and toxic effects of hyperphosphorylated-tau. We propose a model in which factors involved in cancer and AD regulate gene expression by interactions with the mRNA processing machinery, affecting the transcriptome and suggesting insights into alternative mechanisms for the initiation and/or developments of these diseases.
Collapse
Affiliation(s)
- Jorge Baquero
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Sophia Varriano
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Martha Ordonez
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Pawel Kuczaj
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Michael R. Murphy
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Gamage Aruggoda
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Devon Lundine
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Viktoriya Morozova
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, United States
| | - Ali Elhadi Makki
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, United States
| | - Alejandra del C. Alonso
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, United States
| | - Frida E. Kleiman
- Chemistry Department, Hunter College and Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
25
|
Hsieh YC, Guo C, Yalamanchili HK, Abreha M, Al-Ouran R, Li Y, Dammer EB, Lah JJ, Levey AI, Bennett DA, De Jager PL, Seyfried NT, Liu Z, Shulman JM. Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing and Neurodegeneration in Alzheimer's Disease. Cell Rep 2019; 29:301-316.e10. [PMID: 31597093 PMCID: PMC6919331 DOI: 10.1016/j.celrep.2019.08.104] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
In Alzheimer's disease (AD), spliceosomal proteins with critical roles in RNA processing aberrantly aggregate and mislocalize to Tau neurofibrillary tangles. We test the hypothesis that Tau-spliceosome interactions disrupt pre-mRNA splicing in AD. In human postmortem brain with AD pathology, Tau coimmunoprecipitates with spliceosomal components. In Drosophila, pan-neuronal Tau expression triggers reductions in multiple core and U1-specific spliceosomal proteins, and genetic disruption of these factors, including SmB, U1-70K, and U1A, enhances Tau-mediated neurodegeneration. We further show that loss of function in SmB, encoding a core spliceosomal protein, causes decreased survival, progressive locomotor impairment, and neuronal loss, independent of Tau toxicity. Lastly, RNA sequencing reveals a similar profile of mRNA splicing errors in SmB mutant and Tau transgenic flies, including intron retention and non-annotated cryptic splice junctions. In human brains, we confirm cryptic splicing errors in association with neurofibrillary tangle burden. Our results implicate spliceosome disruption and the resulting transcriptome perturbation in Tau-mediated neurodegeneration in AD.
Collapse
Affiliation(s)
- Yi-Chen Hsieh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caiwei Guo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hari K Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Measho Abreha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rami Al-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Wang Z, Xu P, Chen B, Zhang Z, Zhang C, Zhan Q, Huang S, Xia ZA, Peng W. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis. Aging (Albany NY) 2019; 10:775-788. [PMID: 29706607 PMCID: PMC5940119 DOI: 10.18632/aging.101427] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ1-42-induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p-value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Panpan Xu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Biyue Chen
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Siqi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zi-An Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
27
|
Courtney NL, Mole AJ, Thomson AK, Murray LM. Reduced P53 levels ameliorate neuromuscular junction loss without affecting motor neuron pathology in a mouse model of spinal muscular atrophy. Cell Death Dis 2019; 10:515. [PMID: 31273192 PMCID: PMC6609617 DOI: 10.1038/s41419-019-1727-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022]
Abstract
Spinal Muscular Atrophy (SMA) is a childhood motor neuron disease caused by mutations or deletions within the SMN1 gene. At endstages of disease there is profound loss of motor neurons, loss of axons within ventral roots and defects at the neuromuscular junctions (NMJ), as evidenced by pathological features such as pre-synaptic loss and swelling and post-synaptic shrinkage. Although these motor unit defects have been widely described, the time course and interdependancy of these aspects of motor unit degeneration are unclear. Recent reports have also revealed an early upregulation of transcripts associated with the P53 signalling pathway. The relationship between the upregulation of these transcripts and pathology within the motor unit is also unclear. In this study, we exploit the prolonged disease timecourse and defined pre-symptomatic period in the Smn2B/- mouse model to perform a temporal analysis of the different elements of motor unit pathology. We demonstrate that NMJ loss occurs prior to cell body loss, and coincides with the onset of symptoms. The onset of NMJ pathology also coincides with an increase in P53-related transcripts at the cell body. Finally, using a tamoxifen inducible P53 knockout, we demonstrate that post-natal reduction in P53 levels can reduce NMJ loss, but does not affect other aspects of NMJ pathology, motor neuron loss or the phenotype of the Smn2B/- mouse model. Together this work provides a detailed temporal description of pathology within motor units of an SMA mouse model, and demonstrates that NMJ loss is a P53-dependant process. This work supports the role for P53 as an effector of synaptic and axonal degeneration in a die-back neuropathy.
Collapse
Affiliation(s)
- Natalie L Courtney
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Alannah J Mole
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Alison K Thomson
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
28
|
Kurtz P, Jones AE, Tiwari B, Link N, Wylie A, Tracy C, Krämer H, Abrams JM. Drosophila p53 directs nonapoptotic programs in postmitotic tissue. Mol Biol Cell 2019; 30:1339-1351. [PMID: 30892991 PMCID: PMC6724604 DOI: 10.1091/mbc.e18-12-0791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TP53 is the most frequently mutated gene in human cancers, and despite intensive research efforts, genome-scale studies of p53 function in whole animal models are rare. The need for such in vivo studies is underscored by recent challenges to established paradigms, indicating that unappreciated p53 functions contribute to cancer prevention. Here we leveraged the Drosophila system to interrogate p53 function in a postmitotic context. In the developing embryo, p53 robustly activates important apoptotic genes in response to radiation-induced DNA damage. We recently showed that a p53 enhancer (p53RErpr) near the cell death gene reaper forms chromatin contacts and enables p53 target activation across long genomic distances. Interestingly, we found that this canonical p53 apoptotic program fails to activate in adult heads. Moreover, this failure to exhibit apoptotic responses was not associated with altered chromatin contacts. Instead, we determined that p53 does not occupy the p53RErpr enhancer in this postmitotic tissue as it does in embryos. Through comparative RNA-seq and chromatin immunoprecipitation-seq studies of developing and postmitotic tissues, we further determined that p53 regulates distinct transcriptional programs in adult heads, including DNA repair, metabolism, and proteolysis genes. Strikingly, in the postmitotic context, p53-binding landscapes were poorly correlated with nearby transcriptional effects, raising the possibility that p53 enhancers could be generally acting through long distances.
Collapse
Affiliation(s)
- Paula Kurtz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.,Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Helmut Krämer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
29
|
Cai H, Li Y, Niringiyumukiza JD, Su P, Xiang W. Circular RNA involvement in aging: An emerging player with great potential. Mech Ageing Dev 2019; 178:16-24. [DOI: 10.1016/j.mad.2018.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
30
|
Robin M, Issa AR, Santos CC, Napoletano F, Petitgas C, Chatelain G, Ruby M, Walter L, Birman S, Domingos PM, Calvi BR, Mollereau B. Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy 2018; 15:771-784. [PMID: 30563404 DOI: 10.1080/15548627.2018.1558001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor suppressor TP53/p53 is a known regulator of apoptosis and macroautophagy/autophagy. However, the molecular mechanism by which TP53 regulates 2 apparently incompatible processes remains unknown. We found that Drosophila lacking p53 displayed impaired autophagic flux, higher caspase activation and mortality in response to oxidative stress compared with wild-type flies. Moreover, autophagy and apoptosis were differentially regulated by the p53 (p53B) and ΔNp53 (p53A) isoforms: while the former induced autophagy in differentiated neurons, which protected against cell death, the latter inhibited autophagy by activating the caspases Dronc, Drice, and Dcp-1. Our results demonstrate that the differential use of p53 isoforms combined with the antagonism between apoptosis and autophagy ensures the generation of an appropriate p53 biological response to stress.
Collapse
Affiliation(s)
- Marion Robin
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Abdul Raouf Issa
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Cristiana C Santos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Francesco Napoletano
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France.,e Department of Life Sciences , University of Trieste c/o CIB National Laboratory , Area Science Park , Trieste , Italy
| | - Céline Petitgas
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Gilles Chatelain
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Mathilde Ruby
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Ludivine Walter
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| | - Serge Birman
- b Genes Circuits Rhythms and Neuropathology , Brain Plasticity Unit, CNRS, ESPCI Paris, Labex Memolife, PSL Research University , Paris , France
| | - Pedro M Domingos
- c Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Oeiras , Portugal
| | - Brian R Calvi
- d Department of Biology , Indiana University , Bloomington , IN , USA
| | - Bertrand Mollereau
- a Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland , Lyon , France
| |
Collapse
|
31
|
Lapresa R, Agulla J, Sánchez-Morán I, Zamarreño R, Prieto E, Bolaños JP, Almeida A. Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology 2018; 146:19-27. [PMID: 30452955 DOI: 10.1016/j.neuropharm.2018.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Neurodegeneration in selective brain areas underlies the pathology of Alzheimer's disease (AD). Although oligomeric amyloid-β (Aβ) plays a central role in the AD pathogenesis, the mechanism of neuronal loss in response to Aβ remains elusive. The p53 tumor suppressor protein, a key regulator of cell apoptosis, has been described to accumulate in affected brain areas from AD patients. However, whether p53 plays any role in AD pathogenesis remains unknown. To address this issue, here we investigated the involvement of p53 on Aß-induced neuronal apoptosis. We found that exposure of neurons to oligomers of the amyloidogenic fragment 25-35 of the Aß peptide (Aβ25-35) promoted p53 protein phosphorylation and stabilization, leading to mitochondrial dysfunction and neuronal apoptosis. To address the underlying mechanism, we focused on cyclin dependent kinase-5 (Cdk5), a known p53-phosphorylating kinase. The results revealed that Aβ25-35 treatment activated Cdk5, and that inhibiting Cdk5 activity prevented p53 protein stabilization. Furthermore, Aβ25-35-mediated mitochondrial dysfunction and neuronal apoptosis were prevented by both genetic and pharmacological inhibition of either p53 or Cdk5 activities. This effect was mimicked with the full-length peptide Aβ1-42. To confirm the mechanism in vivo, Aβ25-35 was stereotaxically injected in the cerebral right ventricle of mice, a treatment that caused p53 protein accumulation, dendrite disruption and neuronal death. Furthermore, these effects were prevented in p53 knockout mice or by pharmacologically inhibiting p53. Thus, Aβ25-35 triggers Cdk5 activation to induce p53 phosphorylation and stabilization, which leads to neuronal damage. Inhibition of the Cdk5-p53 pathway may therefore represent a novel therapeutic strategy against Aβ-induced neurodegeneration.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Jesús Agulla
- Institute of Biology and Molecular Genetics, University of Valladolid, CSIC, Calle Sanz y Fores 3, 47003, Valladolid, Spain.
| | - Irene Sánchez-Morán
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Rubén Zamarreño
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Estefanía Prieto
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| | - Juan P Bolaños
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain; CIBERFES, Instituto de Salud Carlos III, Madrid, Spain.
| | - Angeles Almeida
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Calle Zacarías González 2, 37007, Salamanca, Spain; Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
32
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
33
|
Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 2018; 21:1038-1048. [PMID: 30038280 PMCID: PMC6095477 DOI: 10.1038/s41593-018-0194-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
Transposable elements, known colloquially as “jumping genes,” constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. Here we identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi/piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi/piRNA depletion and consequent transposable element dysregulation as a novel, pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.
Collapse
|
34
|
Contreras EG, Sierralta J, Glavic A. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development. PLoS One 2018; 13:e0194344. [PMID: 29621246 PMCID: PMC5886404 DOI: 10.1371/journal.pone.0194344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.
Collapse
Affiliation(s)
- Esteban G. Contreras
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
| | - Jimena Sierralta
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- * E-mail: (AG); (JS)
| | - Alvaro Glavic
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
- * E-mail: (AG); (JS)
| |
Collapse
|
35
|
A Conserved Cytoskeletal Signaling Cascade Mediates Neurotoxicity of FTDP-17 Tau Mutations In Vivo. J Neurosci 2017; 38:108-119. [PMID: 29138281 DOI: 10.1523/jneurosci.1550-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022] Open
Abstract
The microtubule binding protein tau is strongly implicated in multiple neurodegenerative disorders, including frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), which is caused by mutations in tau. In vitro, FTDP-17 mutant versions of tau can reduce microtubule binding and increase the aggregation of tau, but the mechanism by which these mutations promote disease in vivo is not clear. Here we take a combined biochemical and in vivo modeling approach to define functional properties of tau driving neurotoxicity in vivo We express wild-type human tau and five FTDP-17 mutant forms of tau in Drosophila using a site-directed insertion strategy to ensure equivalent levels of expression. We then analyze multiple markers of neurodegeneration and neurotoxicity in transgenic animals, including analysis of both males and females. We find that FTDP-17 mutations act to enhance phosphorylation of tau and thus promote neurotoxicity in an in vivo setting. Further, we demonstrate that phosphorylation-dependent excess stabilization of the actin cytoskeleton is a key phosphorylation-dependent mediator of the toxicity of wild-type tau and of all the FTDP-17 mutants tested. Finally, we show that important downstream pathways, including autophagy and the unfolded protein response, are coregulated with neurotoxicity and actin cytoskeletal stabilization in brains of flies expressing wild-type human and various FTDP-17 tau mutants, supporting a conserved mechanism of neurotoxicity of wild-type tau and FTDP-17 mutant tau in disease pathogenesis.SIGNIFICANCE STATEMENT The microtubule protein tau aggregates and forms insoluble inclusion bodies known as neurofibrillary tangles in the brain tissue of patients with a variety of neurodegenerative disorders, including Alzheimer's disease. The tau protein is thus widely felt to play a key role in promoting neurodegeneration. However, precisely how tau becomes toxic is unclear. Here we capitalize on an "experiment of nature" in which rare missense mutations in tau cause familial neurodegeneration and neurofibrillary tangle formation. By comparing the biochemical activities of different tau mutations with their in vivo toxicity in a well controlled Drosophila model system, we find that all mutations tested increase phosphorylation of tau and trigger a cascade of neurotoxicity critically impinging on the integrity of the actin cytoskeleton.
Collapse
|
36
|
Dräger NM, Nachman E, Winterhoff M, Brühmann S, Shah P, Katsinelos T, Boulant S, Teleman AA, Faix J, Jahn TR. Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 2017; 18:2051-2066. [PMID: 28893863 DOI: 10.15252/embr.201744137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Endocytic processes are facilitated by both curvature-generating BAR-domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N-BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown. Here, we report that Bin1 not only shapes membranes, but is also directly involved in actin binding through its BAR domain. We observed a moderate actin bundling activity by human Bin1 and describe its ability to stabilize actin filaments against depolymerization. Moreover, Bin1 is also involved in stabilizing tau-induced actin bundles, which are neuropathological hallmarks of Alzheimer's disease. We also provide evidence for this effect in vivo, where we observed that downregulation of Bin1 in a Drosophila model of tauopathy significantly reduces the appearance of tau-induced actin inclusions. Together, these findings reveal the ability of Bin1 to modify actin dynamics and provide a possible mechanistic connection between Bin1 and tau-induced pathobiological changes of the actin cytoskeleton.
Collapse
Affiliation(s)
- Nina M Dräger
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Eliana Nachman
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Pranav Shah
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Taxiarchis Katsinelos
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism (B140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas R Jahn
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| |
Collapse
|
37
|
Szybińska A, Leśniak W. P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect of Pathological Changes? Aging Dis 2017; 8:506-518. [PMID: 28840063 PMCID: PMC5524811 DOI: 10.14336/ad.2016.1120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous, mostly age-associated group of disorders characterized by progressive neuronal loss, the most prevalent being Alzheimer disease. It is anticipated that, with continuously increasing life expectancy, these diseases will pose a serious social and health problem in the near feature. Meanwhile, however, their etiology remains largely obscure even though all possible novel clues are being thoroughly examined. In this regard, a concept has been proposed that p53, as a transcription factor controlling many vital cellular pathways including apoptosis, may contribute to neuronal death common to all neurodegenerative disorders. In this work, we review the research devoted to the possible role of p53 in the pathogenesis of these diseases. We not only describe aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases but, most importantly, put special attention to the complicated reciprocal regulatory ties existing between p53 and proteins commonly regarded as pathological hallmarks of these diseases, with the ultimate goal to identify the primary element of their pathogenesis.
Collapse
Affiliation(s)
- Aleksandra Szybińska
- 1Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland.,2Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Center Polish Academy of Sciences, 5 Pawinskiego St. 02-106 Warsaw, Poland
| | - Wiesława Leśniak
- 3Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw Poland
| |
Collapse
|
38
|
Lu T, Kim PP, Greig NH, Luo Y. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity. Neurotox Res 2017; 32:218-230. [PMID: 28342134 DOI: 10.1007/s12640-017-9723-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.
Collapse
Affiliation(s)
- Tao Lu
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Paul P Kim
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute of Aging, Baltimore, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA.
| |
Collapse
|
39
|
Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J Alzheimers Dis 2017; 60:S107-S131. [PMID: 28436392 DOI: 10.3233/jad-161221] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer's disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Edward Fielder
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Diana Jurk
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
40
|
Kovach KM, Kumsa DW, Srivastava V, Hudak EM, Untereker DF, Kelley SC, von Recum HA, Capadona JR. High-throughput in vitro assay to evaluate the cytotoxicity of liberated platinum compounds for stimulating neural electrodes. J Neurosci Methods 2016; 273:1-9. [PMID: 27485087 DOI: 10.1016/j.jneumeth.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND It is currently unclear how the platinum (Pt) species released from platinum-containing stimulating electrodes may affect the health of the surrounding tissue. This study develops an effective system to assess the cytotoxicity of any electrode-liberated Pt over a short duration, to screen systems before future in vivo testing. NEW METHOD A platinum electrode was stimulated for two hours under physiologically relevant conditions to induce the liberation of Pt species. The total concentration of liberated Pt species was quantified and the concentration found was used to develop a range of Pt species for our model system comprised of microglia and neuron-like cells. RESULTS Under our stimulation conditions (k=2.3, charge density of 57.7μC/cm2), Pt was liberated to a concentration of 1ppm. Interestingly, after 24h of Pt exposure, the dose-dependent cytotoxicity plots revealed that cell death became statistically significant at 10ppm for microglia and 20ppm for neuronal cells. However, in neuron-like cell cultures, concentrations above 1ppm resulted in significant neurite loss after 24h. COMPARISON WITH EXISTING METHODS To our knowledge, there does not exist a simple, in vitro assay system for assessing the cytotoxicity of Pt liberated from stimulating neural electrodes. CONCLUSIONS This work describes a simple model assay that is designed to be applicable to almost any electrode and stimulation system where the electrode is directly juxtaposed to the neural target. Based on the application, the duration of stimulation and Pt exposure may be varied.
Collapse
Affiliation(s)
- Kyle M Kovach
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151W/APT, Cleveland, OH 44106, USA
| | - Doe W Kumsa
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | - Vishnupriya Srivastava
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151W/APT, Cleveland, OH 44106, USA
| | - Eric M Hudak
- Department of Research & Technology, Advanced Bionics LLC, 28515 Westinghouse Place, Valencia, CA 91355, USA
| | - Darrel F Untereker
- Medtronic plc, Science and Technology, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Shawn C Kelley
- Medtronic plc, Science and Technology, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151W/APT, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg., Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151W/APT, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Chouhan AK, Guo C, Hsieh YC, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson GR, Bellen HJ, Shulman JM. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathol Commun 2016; 4:62. [PMID: 27338814 PMCID: PMC4918017 DOI: 10.1186/s40478-016-0333-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 02/04/2023] Open
Abstract
Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system.
Collapse
|
42
|
Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJO, Bakal C. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis. Open Biol 2016; 5:150093. [PMID: 26333836 PMCID: PMC4593667 DOI: 10.1098/rsob.150093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth.
Collapse
Affiliation(s)
- Miguel Sanchez-Alvarez
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Qifeng Zhang
- Lipidomics Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Fabian Finger
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
43
|
Bongiorno-Borbone L, Giacobbe A, Compagnone M, Eramo A, De Maria R, Peschiaroli A, Melino G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget 2016. [PMID: 26219257 PMCID: PMC4627282 DOI: 10.18632/oncotarget.4700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer.
Collapse
Affiliation(s)
- Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Arianna Giacobbe
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester, United Kingdom
| |
Collapse
|
44
|
Frost B, Bardai FH, Feany MB. Lamin Dysfunction Mediates Neurodegeneration in Tauopathies. Curr Biol 2015; 26:129-36. [PMID: 26725200 DOI: 10.1016/j.cub.2015.11.039] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/19/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
The filamentous meshwork formed by the lamin nucleoskeleton provides a scaffold for the anchoring of highly condensed heterochromatic DNA to the nuclear envelope, thereby establishing the three-dimensional architecture of the genome [1]. Insight into the importance of lamins to cellular viability can be gleaned from laminopathies, severe disorders caused by mutations in genes encoding lamins. A cellular consequence of lamin dysfunction in laminopathies is relaxation of heterochromatic DNA [1]. Similarly, we have recently reported the widespread relaxation of heterochromatin in tauopathies [1]: age-related progressive neurodegenerative disorders, including Alzheimer's disease, that are pathologically characterized by aggregates of phosphorylated tau protein in the brain [2, 3]. Here we demonstrate that acquired lamin misregulation though aberrant cytoskeletal-nucleoskeletal coupling promotes relaxation of heterochromatin and neuronal death in an in vivo model of neurodegenerative tauopathy. Genetic manipulation of lamin function significantly modifies neurodegeneration in vivo, demonstrating that lamin pathology plays a causal role in tau-mediated neurotoxicity. We show that lamin dysfunction is conserved in human tauopathy, as super-resolution microscopy reveals a significantly disrupted nuclear lamina in postmortem tissue from human Alzheimer's disease brain. Our study provides strong evidence that tauopathies are neurodegenerative laminopathies and identifies a new pathway mediating neuronal death in currently untreatable human neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Bess Frost
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Farah H Bardai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 2015; 35:3272-81. [PMID: 26477317 PMCID: PMC4929483 DOI: 10.1038/onc.2015.388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer–DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with ‘static' deformations always present and measured by the slide parameter in the central thymine–adenine base pairs; we also detect ‘dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53–DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer.
Collapse
|
46
|
Modeling the complex pathology of Alzheimer's disease in Drosophila. Exp Neurol 2015; 274:58-71. [PMID: 26024860 DOI: 10.1016/j.expneurol.2015.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncover the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42.
Collapse
|