1
|
Baraniecka P, Seibt W, Groten K, Kessler D, McGale E, Gase K, Baldwin IT, Pannell JR. Prezygotic mate selection is only partially correlated with the expression of NaS-like RNases and affects offspring phenotypes. THE NEW PHYTOLOGIST 2024; 242:2832-2844. [PMID: 38581189 DOI: 10.1111/nph.19741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.
Collapse
Affiliation(s)
| | - Wibke Seibt
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Karin Groten
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Danny Kessler
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Erica McGale
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Klaus Gase
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Ian T Baldwin
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
2
|
Liu B, Li M, Qiu J, Xue J, Liu W, Cheng Q, Zhao H, Xue Y, Nasrallah ME, Nasrallah JB, Liu P. A pollen selection system links self and interspecific incompatibility in the Brassicaceae. Nat Ecol Evol 2024; 8:1129-1139. [PMID: 38637692 DOI: 10.1038/s41559-024-02399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengya Li
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jianfang Qiu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Xue
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenhong Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qingqing Cheng
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hainan Zhao
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yongbiao Xue
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Pei Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Feller AF, Burgin G, Lewis N, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593106. [PMID: 38766021 PMCID: PMC11100701 DOI: 10.1101/2024.05.08.593106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In flowering plants, pollen-pistil interactions can serve as an important barrier to reproduction between species. As the last barrier to reproduction before fertilization, interactions between these reproductive organs are both complex and important for determining a suitable mate. Here, we test whether differences in style length generate a post-mating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier we assess pollen tube growth in vitro and in vivo. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within and between species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F. Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Nia Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
- Northeastern University, Boston, MA 02115, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Moreels P, Bigot S, Defalque C, Correa F, Martinez JP, Lutts S, Quinet M. Intra- and inter-specific reproductive barriers in the tomato clade. FRONTIERS IN PLANT SCIENCE 2023; 14:1326689. [PMID: 38143584 PMCID: PMC10739309 DOI: 10.3389/fpls.2023.1326689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Tomato (Solanum lycopersicum L.) domestication and later introduction into Europe resulted in a genetic bottleneck that reduced genetic variation. Crosses with other wild tomato species from the Lycopersicon clade can be used to increase genetic diversity and improve important agronomic traits such as stress tolerance. However, many species in the Lycopersicon clade have intraspecific and interspecific incompatibility, such as gametophytic self-incompatibility and unilateral incompatibility. In this review, we provide an overview of the known incompatibility barriers in Lycopersicon. We begin by addressing the general mechanisms self-incompatibility, as well as more specific mechanisms in the Rosaceae, Papaveraceae, and Solanaceae. Incompatibility in the Lycopersicon clade is discussed, including loss of self-incompatibility, species exhibiting only self-incompatibility and species presenting both self-compatibility and self-incompatibility. We summarize unilateral incompatibility in general and specifically in Lycopersicon, with details on the 'self-compatible x self-incompatible' rule, implications of self-incompatibility in unilateral incompatibility and self-incompatibility-independent pathways of unilateral incompatibility. Finally, we discuss advances in the understanding of compatibility barriers and their implications for tomato breeding.
Collapse
Affiliation(s)
- Pauline Moreels
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Corentin Defalque
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Francisco Correa
- Instituto de Investigaciones Agropecuarias (INIA-Rayentué), Rengo, Chile
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
You S, Zhao Z, Yu X, Zhu S, Wang J, Lei D, Zhou J, Li J, Chen H, Xiao Y, Chen W, Wang Q, Lu J, Chen K, Zhou C, Zhang X, Cheng Z, Guo X, Ren Y, Zheng X, Liu S, Liu X, Tian Y, Jiang L, Tao D, Wu C, Wan J. A toxin-antidote system contributes to interspecific reproductive isolation in rice. Nat Commun 2023; 14:7528. [PMID: 37980335 PMCID: PMC10657391 DOI: 10.1038/s41467-023-43015-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/18/2023] [Indexed: 11/20/2023] Open
Abstract
Breakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer). Here, we report the cloning of qHMS1, a quantitative trait locus controlling hybrid male sterility between these two species. Like qHMS7, another locus we cloned previously, qHMS1 encodes a toxin-antidote system, but differs in the encoded proteins, their evolutionary origin, and action time point during pollen development. In plants heterozygous at qHMS1, ~ 50% of pollens carrying qHMS1-D (an allele from cultivated rice) are selectively killed. In plants heterozygous at both qHMS1 and qHMS7, ~ 75% pollens without co-presence of qHMS1-Mer and qHMS7-D are selectively killed, indicating that the antidotes function in a toxin-dependent manner. Our results indicate that different toxin-antidote systems provide stacked reproductive isolation for maintaining species identity and shed light on breakdown of hybrid male sterility.
Collapse
Affiliation(s)
- Shimin You
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Dekun Lei
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jiawu Zhou
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, 650200, P. R. China
| | - Jing Li
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, 650200, P. R. China
| | - Haiyuan Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yanjia Xiao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Weiwei Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Qiming Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jiayu Lu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Keyi Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Dayun Tao
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, 650200, P. R. China.
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
7
|
Wang L, Filatov DA. Mechanisms of prezygotic post-pollination reproductive barriers in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1230278. [PMID: 37476168 PMCID: PMC10354421 DOI: 10.3389/fpls.2023.1230278] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Hybridisation between individuals of different species can lead to maladapted or inviable progeny due to genetic incompatibilities between diverging species. On the other hand, mating with close relatives, or self-fertilisation may lead to inbreeding depression. Thus, both too much or too little divergence may lead to problems and the organisms have to carefully choose mating partners to avoid both of these pitfalls. In plants this choice occurs at many stages during reproduction, but pollen-pistil interactions play a particularly important role in avoiding inbreeding and hybridisation with other species. Interestingly, the mechanisms involved in avoidance of selfing and interspecific hybridisation may work via shared molecular pathways, as self-incompatible species tend to be more 'choosy' with heterospecific pollen compared to self-compatible ones. This review discusses various prezygotic post-pollination barriers to interspecific hybridisation, with a focus on the mechanisms of pollen-pistil interactions and their role in the maintenance of species integrity.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Dmitry A. Filatov
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
8
|
Behling WL, Douches DS. The Effect of Self-Compatibility Factors on Interspecific Compatibility in Solanum Section Petota. PLANTS (BASEL, SWITZERLAND) 2023; 12:1709. [PMID: 37111931 PMCID: PMC10144722 DOI: 10.3390/plants12081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The relationships of interspecific compatibility and incompatibility in Solanum section Petota are complex. Inquiry into these relationships in tomato and its wild relatives has elucidated the pleiotropic and redundant function of S-RNase and HT which tandemly and independently mediate both interspecific and intraspecific pollen rejection. Our findings presented here are consistent with previous work conducted in Solanum section Lycopersicon showing that S-RNase plays a central role in interspecific pollen rejection. Statistical analyses also demonstrated that HT-B alone is not a significant factor in these pollinations; demonstrating the overlap in gene function between HT-A and HT-B, as HT-A, was present and functional in all genotypes used. We were not able to replicate the general absence of prezygotic stylar barriers observable in S. verrucosum, which has been attributed to the lack of S-RNase, indicating that other non-S-RNase factors play a significant role. We also demonstrated that Sli played no significant role in these interspecific pollinations, directly conflicting with previous research. It is possible that S. chacoense as a pollen donor is better able to bypass stylar barriers in 1EBN species such as S. pinnatisectum. Consequently, S. chacoense may be a valuable resource in accessing these 1EBN species regardless of Sli status.
Collapse
|
9
|
Tsuchimatsu T, Fujii S. The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200510. [PMID: 35634918 PMCID: PMC9149797 DOI: 10.1098/rstb.2020.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/04/2021] [Indexed: 07/20/2023] Open
Abstract
The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE) Fellow, Bunkyo, Japan
| |
Collapse
|
10
|
Mondo JM, Agre PA, Edemodu A, Asiedu R, Akoroda MO, Asfaw A. Cross compatibility in intraspecific and interspecific hybridization in yam (Dioscorea spp.). Sci Rep 2022; 12:3432. [PMID: 35236890 PMCID: PMC8891288 DOI: 10.1038/s41598-022-07484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Yam (Dioscorea spp.) is a staple crop for millions of people in the tropics and subtropics. Its genetic improvement through breeding is being challenged by pre-zygotic and post-zygotic cross-compatibility barriers within and among species. Studies dissecting hybridization barriers on yam for improving the crossability rates are limited. This study aimed to assess the cross-compatibility, which yielded fruit set, viable seeds and progeny plants in an extensive intraspecific and interspecific crossing combinations in a yam genetic improvement effort to understand the internal and exogenous factors influencing pollination success. Cross-compatability was analyzed at the individual genotype or family level using historical data from crossing blocks and seedling nurseries from 2010 to 2020 at the International Institute of Tropical Agriculture (IITA). The average crossability rate (ACR) was lower in interspecific crossing combinations (6.1%) than intraspecific ones (27.6%). The seed production efficiency (SPE) values were 1.1 and 9.3% for interspecific and intraspecific crosses, respectively. Weather conditions and pollinator's skills are the main contributors to the low success rate in the intraspecific cross combinations in yam breeding. At the same time, genetic distance and heterozygosity played little role. Interspecific cross barriers were both pre-zygotic and post-zygotic, resulting from the evolutionary divergence among the yam species. Dioscorea rotundata had higher interspecific cross-compatibility indices than D. alata. Distant parents produced intraspecific crossbred seeds with higher germination rates compared to closest parents (r = 0.21, p = 0.033). This work provided important insights into interspecific and intraspecific cross-compatibility in yam and suggested actions for improving hybridization practices in yam breeding programs.
Collapse
Affiliation(s)
- Jean M Mondo
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.,Institute of Life and Earth Sciences, Pan African University, University of Ibadan, Ibadan, Nigeria.,Department of Crop Production, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
| | - Paterne A Agre
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Alex Edemodu
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.
| |
Collapse
|
11
|
Broz AK, Miller CM, Baek YS, Tovar-Méndez A, Acosta-Quezada PG, Riofrío-Cuenca TE, Rusch DB, Bedinger PA. S-RNase Alleles Associated With Self-Compatibility in the Tomato Clade: Structure, Origins, and Expression Plasticity. Front Genet 2021; 12:780793. [PMID: 34938321 PMCID: PMC8685505 DOI: 10.3389/fgene.2021.780793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The self-incompatibility (SI) system in the Solanaceae is comprised of cytotoxic pistil S-RNases which are countered by S-locus F-box (SLF) resistance factors found in pollen. Under this barrier-resistance architecture, mating system transitions from SI to self-compatibility (SC) typically result from loss-of-function mutations in genes encoding pistil SI factors such as S-RNase. However, the nature of these mutations is often not well characterized. Here we use a combination of S-RNase sequence analysis, transcript profiling, protein expression and reproductive phenotyping to better understand different mechanisms that result in loss of S-RNase function. Our analysis focuses on 12 S-RNase alleles identified in SC species and populations across the tomato clade. In six cases, the reason for gene dysfunction due to mutations is evident. The six other alleles potentially encode functional S-RNase proteins but are typically transcriptionally silenced. We identified three S-RNase alleles which are transcriptionally silenced under some conditions but actively expressed in others. In one case, expression of the S-RNase is associated with SI. In another case, S-RNase expression does not lead to SI, but instead confers a reproductive barrier against pollen tubes from other tomato species. In the third case, expression of S-RNase does not affect self, interspecific or inter-population reproductive barriers. Our results indicate that S-RNase expression is more dynamic than previously thought, and that changes in expression can impact different reproductive barriers within or between natural populations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Christopher M Miller
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | | | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Muñoz-Sanz JV, Tovar-Méndez A, Lu L, Dai R, McClure B. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato ( Solanum Section Lycopersicon) Clade. Int J Mol Sci 2021; 22:ijms222313067. [PMID: 34884871 PMCID: PMC8657656 DOI: 10.3390/ijms222313067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tomato clade species (Solanum sect. Lycopersicon) display multiple interspecific reproductive barriers (IRBs). Some IRBs conform to the SI x SC rule, which describes unilateral incompatibility (UI) where pollen from SC species is rejected on SI species’ pistils, but reciprocal pollinations are successful. However, SC x SC UI also exists, offering opportunities to identify factors that contribute to S-RNase-independent IRBs. For instance, SC Solanum pennellii LA0716 pistils only permit SC Solanum lycopersicum pollen tubes to penetrate to the top third of the pistil, while S. pennellii pollen penetrates to S. lycopersicum ovaries. We identified candidate S. pennellii LA0716 pistil barrier genes based on expression profiles and published results. CRISPR/Cas9 mutants were created in eight candidate genes, and mutants were assessed for changes in S. lycopersicum pollen tube growth. Mutants in a gene designated Defective in Induced Resistance 1-like (SpDIR1L), which encodes a small cysteine-rich protein, permitted S. lycopersicum pollen tubes to grow to the bottom third of the style. We show that SpDIR1L protein accumulation correlates with IRB strength and that species with weak or no IRBs toward S. lycopersicum pollen share a 150 bp deletion in the upstream region of SpDIR1L. These results suggest that SpDIR1L contributes to an S-RNase-independent IRB.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Rijk Zwaan Iberica S.A., Carretera Viator Paraje El Mamí S/N, La Cañada, 04120 Almería, Spain
- Correspondence:
| | - Alejandro Tovar-Méndez
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Elemental Enzymes, 1685 Galt Industrial Boulevard, St. Louis, MO 63132, USA
| | - Lu Lu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Ru Dai
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Department of Horticultural Sciences, University of Florida, Fifield Hall, 2550 Hull Road, Gainesville, FL 32611, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
| |
Collapse
|
13
|
Shang L, Song J, Yu H, Wang X, Yu C, Wang Y, Li F, Lu Y, Wang T, Ouyang B, Zhang J, Larkin RM, Ye Z, Zhang Y. A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. THE PLANT CELL 2021; 33:3293-3308. [PMID: 34338777 PMCID: PMC8505859 DOI: 10.1093/plcell/koab201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
The degree of stigma exsertion has a major influence on self-pollination efficiency in tomato, and its improvement is essential for raising productivity and for fixing advantageous traits in cultivated tomato. To study the evolution of stigma exsertion degree in tomato, we searched for genes associated with this trait and other aspects of flower morphology, including the lengths of anthers, styles, and ovaries. We performed a genome-wide association on 277 tomato accessions and discovered a novel stigma exsertion gene (SE3.1). We reannotated the structure of the gene, which encodes a C2H2-type zinc finger transcription factor. A mutation of the lead single nucleotide polymorphism creates a premature termination codon in SE3.1 and an inserted stigma in cultivated tomatoes. SE3.1 is essential for the conversion of flush stigmas to inserted stigmas. This conversion has a major impact on the rate of self-fertilization. Intriguingly, we found that both SE3.1 and Style2.1 contribute to the transition from stigma exsertion to insertion during the domestication and improvement of tomato. Style2.1 controls the first step of exserted stigmas to flush stigmas, and SE3.1 controls the second step of flush stigmas to inserted stigmas. We provide molecular details for the two-step process that controls the transition from stigma exsertion to insertion, which is of great agronomic importance in tomato.
Collapse
Affiliation(s)
- Lele Shang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Fangman Li
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
14
|
Against the Odds: Hybrid Zones between Mangrove Killifish Species with Different Mating Systems. Genes (Basel) 2021; 12:genes12101486. [PMID: 34680881 PMCID: PMC8535463 DOI: 10.3390/genes12101486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Different mating systems are expected to affect the extent and direction of hybridization. Due to the different levels of sexual conflict, the weak inbreeder/strong outbreeder (WISO) hypothesis predicts that gametes from self-incompatible (SI) species should outcompete gametes from self-compatible (SC) ones. However, other factors such as timing of selfing and unilateral incompatibilities may also play a role on the direction of hybridization. In addition, differential mating opportunities provided by different mating systems are also expected to affect the direction of introgression in hybrid zones involving outcrossers and selfers. Here, we explored these hypotheses with a unique case of recent hybridization between two mangrove killifish species with different mating systems, Kryptolebias ocellatus (obligately outcrossing) and K. hermaphroditus (predominantly self-fertilizing) in two hybrid zones in southeast Brazil. Hybridization rates were relatively high (~20%), representing the first example of natural hybridization between species with different mating systems in vertebrates. All F1 individuals were sired by the selfing species. Backcrossing was small, but mostly asymmetrical with the SI parental species, suggesting pattern commonly observed in plant hybrid zones with different mating systems. Our findings shed light on how contrasting mating systems may affect the direction and extent of gene flow between sympatric species, ultimately affecting the evolution and maintenance of hybrid zones.
Collapse
|
15
|
Broz AK, Simpson-Van Dam A, Tovar-Méndez A, Hahn MW, McClure B, Bedinger PA. Spread of self-compatibility constrained by an intrapopulation crossing barrier. THE NEW PHYTOLOGIST 2021; 231:878-891. [PMID: 33864700 DOI: 10.1111/nph.17400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Mating system transitions from self-incompatibility (SI) to self-compatibility (SC) are common in plants. In the absence of high levels of inbreeding depression, SC alleles are predicted to spread due to transmission advantage and reproductive assurance. We characterized mating system and pistil-expressed SI factors in 20 populations of the wild tomato species Solanum habrochaites from the southern half of the species range. We found that a single SI to SC transition is fixed in populations south of the Rio Chillon valley in central Peru. In these populations, SC correlated with the presence of the hab-6 S-haplotype that encodes a low activity S-RNase protein. We identified a single population segregating for SI/SC and hab-6. Intrapopulation crosses showed that hab-6 typically acts in the expected codominant fashion to confer SC. However, we found one specific S-haplotype (hab-10) that consistently rejects pollen of the hab-6 haplotype, and results in SI hab-6/hab-10 heterozygotes. We suggest that the hab-10 haplotype could act as a genetic mechanism to stabilize mixed mating in this population by presenting a disadvantage for the hab-6 haplotype. This barrier may represent a mechanism allowing for the persistence of SI when an SC haplotype appears in or invades a population.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | | | | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
16
|
Abstract
Pollen-pistil interactions serve as important prezygotic reproductive barriers that play a critical role in mate selection in plants. Here, we highlight recent progress toward understanding the molecular basis of pollen-pistil interactions as reproductive isolating barriers. These barriers can be active systems of pollen rejection, or they can result from a mismatch of required male and female factors. In some cases, the barriers are mechanistically linked to self-incompatibility systems, while others represent completely independent processes. Pollen-pistil reproductive barriers can act as soon as pollen is deposited on a stigma, where penetration of heterospecific pollen tubes is blocked by the stigma papillae. As pollen tubes extend, the female transmitting tissue can selectively limit growth by producing cell wall-modifying enzymes and cytotoxins that interact with the growing pollen tube. At ovules, differential pollen tube attraction and inhibition of sperm cell release can act as barriers to heterospecific pollen tubes.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA; ,
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA; ,
| |
Collapse
|
17
|
Li Y, Yapa MM, Hua Z. A Machine Learning Approach to Prioritizing Functionally Active F-box Members in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:639253. [PMID: 34122469 PMCID: PMC8192846 DOI: 10.3389/fpls.2021.639253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Protein degradation through the Ubiquitin (Ub)-26S Proteasome System (UPS) is a major gene expression regulatory pathway in plants. In this pathway, the 76-amino acid Ub proteins are covalently linked onto a large array of UPS substrates with the help of three enzymes (E1 activating, E2 conjugating, and E3 ligating enzymes) and direct them for turnover in the 26S proteasome complex. The S-phase Kinase-associated Protein 1 (Skp1), CUL1, F-box (FBX) protein (SCF) complexes have been identified as the largest E3 ligase group in plants due to the dramatic number expansion of the FBX genes in plant genomes. Since it is the FBX proteins that recognize and determine the specificity of SCF substrates, much effort has been done to characterize their genomic, physiological, and biochemical roles in the past two decades of functional genomic studies. However, the sheer size and high sequence diversity of the FBX gene family demands new approaches to uncover unknown functions. In this work, we first identified 82 known FBX members that have been functionally characterized up to date in Arabidopsis thaliana. Through comparing the genomic structure, evolutionary selection, expression patterns, domain compositions, and functional activities between known and unknown FBX gene members, we developed a neural network machine learning approach to predict whether an unknown FBX member is likely functionally active in Arabidopsis, thereby facilitating its future functional characterization.
Collapse
Affiliation(s)
- Yang Li
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Madhura M. Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| |
Collapse
|
18
|
Qin X, Chetelat RT. Ornithine decarboxylase genes contribute to S-RNase-independent pollen rejection. PLANT PHYSIOLOGY 2021; 186:452-468. [PMID: 33576789 PMCID: PMC8154068 DOI: 10.1093/plphys/kiab062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/23/2021] [Indexed: 05/14/2023]
Abstract
Unilateral incompatibility (UI) manifests as pollen rejection in the pistil, typically when self-incompatible (SI) species are pollinated by self-compatible (SC) relatives. In the Solanaceae, UI occurs when pollen lack resistance to stylar S-RNases, but other, S-RNase-independent mechanisms exist. Pistils of the wild tomato Solanum pennellii LA0716 (SC) lack S-RNase yet reject cultivated tomato (Solanum lycopersicum, SC) pollen. In this cross, UI results from low pollen expression of a farnesyl pyrophosphate synthase gene (FPS2) in S. lycopersicum. Using pollen from fps2-/- loss-of-function mutants in S. pennellii, we identified a pistil factor locus, ui3.1, required for FPS2-based pollen rejection. We mapped ui3.1 to an interval containing 108 genes situated on the IL 3-3 introgression. This region includes a cluster of ornithine decarboxylase (ODC2) genes, with four copies in S. pennellii, versus one in S. lycopersicum. Expression of ODC2 transcript was 1,034-fold higher in S. pennellii than in S. lycopersicum styles. Pistils of odc2-/- knockout mutants in IL 3-3 or S. pennellii fail to reject fps2 pollen and abolish transmission ratio distortion (TRD) associated with FPS2. Pollen of S. lycopersicum express low levels of FPS2 and are compatible on IL 3-3 pistils, but incompatible on IL 12-3 × IL 3-3 hybrids, which express both ODC2 and ui12.1, a locus thought to encode the SI proteins HT-A and HT-B. TRD observed in F2 IL 12-3 × IL 3-3 points to additional ODC2-interacting pollen factors on both chromosomes. Thus, ODC2 genes contribute to S-RNase independent UI and interact genetically with ui12.1 to strengthen pollen rejection.
Collapse
Affiliation(s)
- Xiaoqiong Qin
- Department of Plant Sciences (ms #3), University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Roger T Chetelat
- Department of Plant Sciences (ms #3), University of California, Davis, One Shields Avenue, Davis, California 95616
- Author for communication:
| |
Collapse
|
19
|
Orsucci M, Sicard A. Flower evolution in the presence of heterospecific gene flow and its contribution to lineage divergence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:971-989. [PMID: 33537708 DOI: 10.1093/jxb/eraa549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The success of species depends on their ability to exploit ecological resources in order to optimize their reproduction. However, species are not usually found within single-species ecosystems but in complex communities. Because of their genetic relatedness, closely related lineages tend to cluster within the same ecosystem, rely on the same resources, and be phenotypically similar. In sympatry, they will therefore compete for the same resources and, in the case of flowering plants, exchange their genes through heterospecific pollen transfer. These interactions, nevertheless, pose significant challenges to species co-existence because they can lead to resource limitation and reproductive interference. In such cases, divergent selective pressures on floral traits will favour genotypes that isolate or desynchronize the reproduction of sympatric lineages. The resulting displacement of reproductive characters will, in turn, lead to pre-mating isolation and promote intraspecific divergence, thus initiating or reinforcing the speciation process. In this review, we discuss the current theoretical and empirical knowledge on the influence of heterospecific pollen transfer on flower evolution, highlighting its potential to uncover the ecological and genomic constraints shaping the speciation process.
Collapse
Affiliation(s)
- Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
20
|
Hua Z. Diverse Evolution in 111 Plant Genomes Reveals Purifying and Dosage Balancing Selection Models for F-Box Genes. Int J Mol Sci 2021; 22:E871. [PMID: 33467195 PMCID: PMC7829749 DOI: 10.3390/ijms22020871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
The F-box proteins function as substrate receptors to determine the specificity of Skp1-Cul1-F-box ubiquitin ligases. Genomic studies revealed large and diverse sizes of the F-box gene superfamily across plant species. Our previous studies suggested that the plant F-box gene superfamily is under genomic drift evolution promoted by epigenomic programming. However, how the size of the superfamily drifts across plant genomes is currently unknown. Through a large-scale genomic and phylogenetic comparison of the F-box gene superfamily covering 110 green plants and one red algal species, I discovered four distinct groups of plant F-box genes with diverse evolutionary processes. While the members in Clusters 1 and 2 are species/lineage-specific, those in Clusters 3 and 4 are present in over 46 plant genomes. Statistical modeling suggests that F-box genes from the former two groups are skewed toward fewer species and more paralogs compared to those of the latter two groups whose presence frequency and sizes in plant genomes follow a random statistical model. The enrichment of known Arabidopsis F-box genes in Clusters 3 and 4, along with comprehensive biochemical evidence showing that Arabidopsis members in Cluster 4 interact with the Arabidopsis Skp1-like 1 (ASK1), demonstrates over-representation of active F-box genes in these two groups. Collectively, I propose purifying and dosage balancing selection models to explain the lineage/species-specific duplications and expansions of F-box genes in plant genomes. The purifying selection model suggests that most, if not all, lineage/species-specific F-box genes are detrimental and are thus kept at low frequencies in plant genomes.
Collapse
Affiliation(s)
- Zhihua Hua
- Interdisciplinary Program in Molecular and Cellular Biology, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
21
|
Florez-Rueda AM, Scharmann M, Roth M, Städler T. Population Genomics of the "Arcanum" Species Group in Wild Tomatoes: Evidence for Separate Origins of Two Self-Compatible Lineages. FRONTIERS IN PLANT SCIENCE 2021; 12:624442. [PMID: 33815438 PMCID: PMC8018279 DOI: 10.3389/fpls.2021.624442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Given their diverse mating systems and recent divergence, wild tomatoes (Solanum section Lycopersicon) have become an attractive model system to study ecological divergence, the build-up of reproductive barriers, and the causes and consequences of the breakdown of self-incompatibility. Here we report on a lesser-studied group of species known as the "Arcanum" group, comprising the nominal species Solanum arcanum, Solanum chmielewskii, and Solanum neorickii. The latter two taxa are self-compatible but are thought to self-fertilize at different rates, given their distinct manifestations of the morphological "selfing syndrome." Based on experimental crossings and transcriptome sequencing of a total of 39 different genotypes from as many accessions representing each species' geographic range, we provide compelling evidence for deep genealogical divisions within S. arcanum; only the self-incompatible lineage known as "var. marañón" has close genealogical ties to the two self-compatible species. Moreover, there is evidence under multiple inference schemes for different geographic subsets of S. arcanum var. marañón being closest to S. chmielewskii and S. neorickii, respectively. To broadly characterize the population-genomic consequences of these recent mating-system transitions and their associated speciation events, we fit demographic models indicating strong reductions in effective population size, congruent with reduced nucleotide and S-locus diversity in the two independently derived self-compatible species.
Collapse
|
22
|
Wu L, Williams JS, Sun L, Kao TH. Sequence analysis of the Petunia inflata S-locus region containing 17 S-Locus F-Box genes and the S-RNase gene involved in self-incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1348-1368. [PMID: 33048387 DOI: 10.1111/tpj.15005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Self-incompatibility in Petunia is controlled by the polymorphic S-locus, which contains S-RNase encoding the pistil determinant and 16-20 S-locus F-box (SLF) genes collectively encoding the pollen determinant. Here we sequenced and assembled approximately 3.1 Mb of the S2 -haplotype of the S-locus in Petunia inflata using bacterial artificial chromosome clones collectively containing all 17 SLF genes, SLFLike1, and S-RNase. Two SLF pseudogenes and 28 potential protein-coding genes were identified, 20 of which were also found at the S-loci of both the S6a -haplotype of P. inflata and the SN -haplotype of self-compatible Petunia axillaris, but not in the S-locus remnants of self-compatible potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Comparative analyses of S-locus sequences of these three S-haplotypes revealed potential genetic exchange in the flanking regions of SLF genes, resulting in highly similar flanking regions between different types of SLF and between alleles of the same type of SLF of different S-haplotypes. The high degree of sequence similarity in the flanking regions could often be explained by the presence of similar long terminal repeat retroelements, which were enriched at the S-loci of all three S-haplotypes and in the flanking regions of all S-locus genes examined. We also found evidence of the association of transposable elements with SLF pseudogenes. Based on the hypothesis that SLF genes were derived by retrotransposition, we identified 10 F-box genes as putative SLF parent genes. Our results shed light on the importance of non-coding sequences in the evolution of the S-locus, and on possible evolutionary mechanisms of generation, proliferation, and deletion of SLF genes.
Collapse
Affiliation(s)
- Lihua Wu
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Justin S Williams
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Linhan Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Teh-Hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
23
|
Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC. Intraspecific Genetic Variation Underlying Postmating Reproductive Barriers between Species in the Wild Tomato Clade (Solanum sect. Lycopersicon). J Hered 2020; 111:216-226. [PMID: 32072169 DOI: 10.1093/jhered/esaa003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
A goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase-the S-locus protein involved in SI pollen rejection-in their styles had much more rapid UI responses compared with those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci-in this case at loci that prevent self-fertilization-can contribute to variation in the expression of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such intraspecific variation can provide insight into the accumulation of these barriers between diverging lineages.
Collapse
Affiliation(s)
| | - Simo V Zhang
- Department of Biology, Indiana University, Bloomington, IN
| | | | | | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
24
|
Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC. Intraspecific Genetic Variation Underlying Postmating Reproductive Barriers between Species in the Wild Tomato Clade (Solanum sect. Lycopersicon). J Hered 2020. [PMID: 32072169 DOI: 10.1101/718544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
A goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase-the S-locus protein involved in SI pollen rejection-in their styles had much more rapid UI responses compared with those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci-in this case at loci that prevent self-fertilization-can contribute to variation in the expression of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such intraspecific variation can provide insight into the accumulation of these barriers between diverging lineages.
Collapse
Affiliation(s)
| | - Simo V Zhang
- Department of Biology, Indiana University, Bloomington, IN
| | | | | | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
25
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
26
|
Chetelat RT, Qin X, Tan M, Burkart-Waco D, Moritama Y, Huo X, Wills T, Pertuzé R. Introgression lines of Solanum sitiens, a wild nightshade of the Atacama Desert, in the genome of cultivated tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:836-850. [PMID: 31323151 DOI: 10.1111/tpj.14460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The wild tomato relative Solanum sitiens is a xerophyte endemic to the Atacama Desert of Chile and a potential source of genes for tolerance to drought, salinity and low-temperature stresses. However, until recently, strong breeding barriers prevented its hybridization and introgression with cultivated tomato, Solanum lycopersicum L. We overcame these barriers using embryo rescue, bridging lines and allopolyploid hybrids, and synthesized a library of introgression lines (ILs) that captures the genome of S. sitiens in the background of cultivated tomato. The IL library consists of 56 overlapping introgressions that together represent about 93% of the S. sitiens genome: 65% in homozygous and 28% in heterozygous (segregating) ILs. The breakpoints of each segment and the gaps in genome coverage were mapped by single nucleotide polymorphism (SNP) genotyping using the SolCAP SNP array. Marker-assisted selection was used to backcross selected introgressions into tomato, to recover a uniform genetic background, to isolate recombinant sub-lines with shorter introgressions and to select homozygous genotypes. Each IL contains a single S. sitiens chromosome segment, defined by markers, in the genetic background of cv. NC 84173, a fresh market inbred line. Large differences were observed between the lines for both qualitative and quantitative morphological traits, suggesting that the ILs contain highly divergent allelic variation. Several loci contributing to unilateral incompatibility or hybrid necrosis were mapped with the lines. This IL population will facilitate studies of the S. sitiens genome and expands the range of genetic variation available for tomato breeding and research.
Collapse
Affiliation(s)
- Roger T Chetelat
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xiaoqiong Qin
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Meilian Tan
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Diana Burkart-Waco
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yosuke Moritama
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xiuwen Huo
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tim Wills
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ricardo Pertuzé
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Fujii S, Tsuchimatsu T, Kimura Y, Ishida S, Tangpranomkorn S, Shimosato-Asano H, Iwano M, Furukawa S, Itoyama W, Wada Y, Shimizu KK, Takayama S. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. NATURE PLANTS 2019; 5:731-741. [PMID: 31263241 DOI: 10.1038/s41477-019-0444-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Pre-zygotic interspecies incompatibility in angiosperms is a male-female relationship that inhibits the formation of hybrids between two species. Here, we report on the identification of STIGMATIC PRIVACY 1 (SPRI1), an interspecies barrier gene in Arabidopsis thaliana. We show that the rejection activity of this stigma-specific plasma membrane protein is effective against distantly related Brassicaceae pollen tubes and is independent of self-incompatibility. Point-mutation experiments and functional tests of synthesized hypothetical ancestral forms of SPRI1 suggest evolutionary decay of SPRI1-controlled interspecies incompatibility in self-compatible A. thaliana. Hetero-pollination experiments indicate that SPRI1 ensures intraspecific fertilization in the pistil when pollen from other species are present. Our study supports the idea that SPRI1 functions as a barrier mechanism that permits entrance of pollen with an intrinsic signal from self species.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, Japan.
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuka Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Ishida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hiroko Shimosato-Asano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shoko Furukawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Wakana Itoyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Yuko Wada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
28
|
Guo H, Halitschke R, Wielsch N, Gase K, Baldwin IT. Mate Selection in Self-Compatible Wild Tobacco Results from Coordinated Variation in Homologous Self-Incompatibility Genes. Curr Biol 2019; 29:2020-2030.e5. [PMID: 31178322 DOI: 10.1016/j.cub.2019.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 11/22/2022]
Abstract
In flowering plants, intraspecific mate preference is frequently related to mating systems: the rejection of self pollen in self-incompatible (SI) plants that prevents inbreeding is one of the best described examples. However, in other mating systems, more nuanced patterns of pollen rejection occur. In the self-compatible (SC) Nicotiana attenuata, in which SI is not found and all crosses are compatible, certain pollen genotypes are consistently selected in mixed pollinations. However, the molecular mechanisms of this polyandrous mate selection remain unknown. Style-expressed NaS-like-RNases and pollen-expressed NaSLF-like genes, homologous to SI factors in Solanaceae, were identified and examined for a role in N. attenuata's mate selection. A comparison of two NaS-like-RNases and six NaSLF-like genes among 26 natural accessions revealed specific combinations of co-expression and direct protein-protein interactions. To evaluate their role in mate selection, we silenced the expression of specific NaS-like-RNases and NaSLF-like proteins and conducted diagnostic binary mixed pollinations and mixed pollinations with 14 different non-self pollen donors. Styles expressing particular combinations of NaS-like-RNases selected mates from plants with corresponding NaS-like-RNase expression patterns, while styles lacking NaS-like-RNase expression were non-selective in their fertilizations, which reflected the genotype ratios of pollen mixtures deposited on the stigmas. DNA methylation could account for some of the observed variation in stylar NaS-like-RNase patterns. We conclude that the S-RNase-SLF recognition mechanism plays a central role in polyandrous mate selection in this self-compatible species. These results suggest that after the SI-SC transition, natural variation of SI homologous genes was repurposed to mediate intraspecific mate selection.
Collapse
Affiliation(s)
- Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745 Jena, Germany.
| |
Collapse
|
29
|
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y, Li Q, Guo H, Li J, Song Y, Zhang Y, Copsey L, Li Y, Li X, Qi M, Wang J, Chen Y, Wang D, Zhao J, Liu G, Wu B, Yu L, Xu C, Li J, Zhao S, Zhang Y, Hu S, Liang C, Yin Y, Coen E, Xue Y. Genome structure and evolution of Antirrhinum majus L. NATURE PLANTS 2019; 5:174-183. [PMID: 30692677 PMCID: PMC6784882 DOI: 10.1038/s41477-018-0349-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China.
| | | | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y, Li Q, Guo H, Li J, Song Y, Zhang Y, Copsey L, Li Y, Li X, Qi M, Wang J, Chen Y, Wang D, Zhao J, Liu G, Wu B, Yu L, Xu C, Li J, Zhao S, Zhang Y, Hu S, Liang C, Yin Y, Coen E, Xue Y. Genome structure and evolution of Antirrhinum majus L. NATURE PLANTS 2019. [PMID: 30692677 DOI: 10.1038/s41477-018-0349-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China.
| | | | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D. Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. FRONTIERS IN PLANT SCIENCE 2019; 10:376. [PMID: 31001300 PMCID: PMC6454193 DOI: 10.3389/fpls.2019.00376] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/12/2019] [Indexed: 05/19/2023]
Abstract
Potato breeding can be redirected to a diploid inbred/F1 hybrid variety breeding strategy if self-compatibility can be introduced into diploid germplasm. However, the majority of diploid potato clones (Solanum spp.) possess gametophytic self-incompatibility that is primarily controlled by a single multiallelic locus called the S-locus which is composed of tightly linked genes, S-RNase (S-locus RNase) and multiple SLFs (S-locus F-box proteins), which are expressed in the style and pollen, respectively. Using S-RNase genes known to function in the Solanaceae gametophytic SI mechanism, we identified S-RNase alleles with flower-specific expression in two diploid self-incompatible potato lines using genome resequencing data. Consistent with the location of the S-locus in potato, we genetically mapped the S-RNase gene using a segregating population to a region of low recombination within the pericentromere of chromosome 1. To generate self-compatible diploid potato lines, a dual single-guide RNA (sgRNA) strategy was used to target conserved exonic regions of the S-RNase gene and generate targeted knockouts (KOs) using a Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (Cas9) approach. Self-compatibility was achieved in nine S-RNase KO T0 lines which contained bi-allelic and homozygous deletions/insertions in both genotypes, transmitting self compatibility to T1 progeny. This study demonstrates an efficient approach to achieve stable, consistent self-compatibility through S-RNase KO for use in diploid potato breeding approaches.
Collapse
Affiliation(s)
- Felix Enciso-Rodriguez
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
- *Correspondence: David Douches,
| |
Collapse
|
32
|
Roda F, Hopkins R. Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower. THE NEW PHYTOLOGIST 2019; 221:553-564. [PMID: 29992588 DOI: 10.1111/nph.15340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Selection to prevent interspecific mating can cause an increase or a decrease in self-pollination in sympatric populations. Characterizing the geographical variation in self and interspecific incompatibilities within a species can reveal if and how the evolution of self and interspecific mate choice are linked. We used controlled pollinations to characterize the variation in self and interspecific incompatibility across 29 populations of Phlox drummondii. We evaluated seed set from these pollinations and described the developmental timing of variation in pollen-pistil compatibility. There is extensive quantitative variation in self-incompatibility and interspecific-incompatibility with its close congener P. cuspidata. Phlox drummondii populations that co-occur and hybridize with P. cuspidata have significantly higher interspecific incompatibility and self-incompatibility than geographically isolated P. drummondii populations. The strength of self and interspecific incompatibility is significantly correlated among individuals and the strength of both incompatibilities is explained by the success of pollen adhesion to the stigma. The correlated strength of self and interspecific incompatibility across the range of P. drummondii and the concurrent developmental timing of the pollen-pistil interaction, suggests these incompatibilities have an overlapping molecular mechanism. The geographical distribution of variation in incompatibilities indicates that this mechanistic link between incompatibilities may affect the evolution of mate choice in plants.
Collapse
Affiliation(s)
- Federico Roda
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, 1300 Centre St, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, 1300 Centre St, Boston, MA, 02131, USA
| |
Collapse
|
33
|
Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying gametophyte factor 2-Mediated Cross-Incompatibility in Maize. Int J Mol Sci 2018; 19:ijms19061757. [PMID: 29899298 PMCID: PMC6032218 DOI: 10.3390/ijms19061757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
In maize (Zea mays L.), unilateral cross-incompatibility (UCI) is controlled by Gametophyte factors (Ga), including Ga1, Ga2, and Tcb1; however, the molecular mechanisms underpinning this process remain unexplored. Here, we report the pollination phenotype of an inbred line, 511L, which carries a near-dominant Ga2-S allele. We performed a high-throughput RNA sequencing (RNA-Seq) analysis of the compatible and incompatible crosses between 511L and B73, to identify the transcriptomic differences associated with Ga2-mediated UCI. An in vivo kinetics analysis revealed that the growth of non-self pollen tubes was blocked at the early stages after pollination in 511L, maintaining the UCI barrier in Ga2. In total, 25,759 genes were expressed, of which, 2063 differentially expressed genes (DEGs) were induced by pollination (G_GG, G_GB, B_BB, B_BG). A gene ontology (GO) enrichment analysis revealed that these genes were specifically enriched in functions involved in cell wall strength and pectic product modification. Moreover, 1839, 4382, and 5041 genes were detected to differentially express under same pollination treatments, including B_G, BG_GG, and BB_GB, respectively. A total of 1467 DEGs were constitutively expressed between the two inbred lines following pollination treatments, which were enriched in metabolic processes, flavonoid biosynthesis, cysteine biosynthesis, and vacuole functions. Furthermore, we confirmed 14 DEGs related to cell wall modification and stress by qRT-PCR, which might be involved in Ga2-S-mediated UCI. Our results provide a comprehensive foundation for the molecular mechanisms involved in silks of UCI mediated by Ga2-S.
Collapse
|
34
|
Li L, Liu B, Deng X, Zhao H, Li H, Xing S, Fetzer DD, Li M, Nasrallah ME, Nasrallah JB, Liu P. Evolution of interspecies unilateral incompatibility in the relatives of Arabidopsis thaliana. Mol Ecol 2018; 27:2742-2753. [PMID: 29717521 DOI: 10.1111/mec.14707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 11/26/2022]
Abstract
The evolutionary concurrence of intraspecies self-incompatibility (SI) and explosive angiosperm radiation in the Cretaceous have led to the hypothesis that SI was one of the predominant drivers of rapid speciation in angiosperms. Interspecies unilateral incompatibility (UI) usually occurs when pollen from a self-compatible (SC) species is rejected by the pistils of a SI species, while the reciprocal pollination is compatible (UC). Although this SI × SC type UI is most prevalent and viewed as a prezygotic isolation barrier to promote incipient speciation of angiosperms, comparative evidence to support such a role is lacking. We show that SI × SI type UI in SI species pairs is also common in the well-characterized accessions representing the four major lineages of the Arabidopsis genus and is developmentally regulated. This allowed us to reveal a strong correlation between UI strength and species divergence in these representative accessions. In addition, analyses of a SC accession and the pseudo-self-compatible (psc) spontaneous mutant of Arabidopsis lyrata indicate that UI shares, at least, common pollen rejection pathway with SI. Furthermore, genetic and genomic analyses of SI × SI type UI in A. lyrata × A. arenosa species pair showed that two major-effect quantitative trait loci are the stigma and pollen-side determinant of UI, respectively, which could be involved in heterospecies pollen discrimination. By revealing a close link between UI and SI pathway, particularly between UI and species divergence in these representative accessions, our findings establish a connection between SI and speciation. Thus, the pre-existence of SI system would have facilitated the evolution of UI and accordingly promote speciation.
Collapse
Affiliation(s)
- Ling Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Bo Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiaomei Deng
- Beijing Engineering and Technological Research Center of Plant Tissue Culture, Beijing, China
| | - Hainan Zhao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hongyan Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Shilai Xing
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Della D Fetzer
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Qin X, Li W, Liu Y, Tan M, Ganal M, Chetelat RT. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:417-430. [PMID: 29206320 DOI: 10.1111/tpj.13796] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 05/25/2023]
Abstract
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self-incompatible (SI) and the male parent self-compatible (SC) (the 'SI × SC rule'). Additional, as yet unknown, UI mechanisms are independent of self-incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen-side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S-RNase, the pistil determinant of S-specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18-fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9-generated knockout mutants (fps2) in S. pennelliiLA0716 are self-sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2-based pollen selectivity does not involve S-RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.
Collapse
Affiliation(s)
- Xiaoqiong Qin
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Wentao Li
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Yang Liu
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Meilian Tan
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Martin Ganal
- Trait Genetics GmbH, Am Schwabeplan 1B, 06466, Gatersleben, Germany
| | - Roger T Chetelat
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| |
Collapse
|
36
|
McCormick S. Unilateral incompatibility is linked to reduced pollen expression of a farnesyl pyrophosphate synthase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:415-416. [PMID: 29352523 DOI: 10.1111/tpj.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
37
|
Markova DN, Petersen JJ, Yam SE, Corral A, Valle MJ, Li W, Chetelat RT. Evolutionary history of two pollen self-incompatibility factors reveals alternate routes to self-compatibility within Solanum. AMERICAN JOURNAL OF BOTANY 2017; 104:1904-1919. [PMID: 29212768 DOI: 10.3732/ajb.1700196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Self-incompatibility (SI) prevents self-fertilization and reduces inbreeding. While SI is common in plants, transitions to self-compatibility (SC) occur frequently. Little is known about the genetic changes and evolutionary steps underlying these shifts. METHODS In the Solanaceae, SI is gametophytic, with specificity determined by S-RNases in the pistil and S-locus F-box proteins (SLFs) in pollen. We examined the role of two pollen factors, Cullin1 (CUL1) and SLF-23, in SI → SC transitions in wild tomato species from the Arcanum species group (Solanum arcanum, S. neorickii, and S. chmielewskii). Pollen compatibility was assessed on tester lines that reject pollen lacking functional SLF-23 or CUL1. Complementation tests, gene sequencing, and phylogenetic analyses were used to characterize both functional and nonfunctional alleles. KEY RESULTS We found evidence for multiple independent SI → SC transitions. In S. arcanum and S. chmielewskii, SC is caused by loss of pistil S-RNase activity, while in S. neorickii SC is associated with expression of a functional SLF-23 that recognizes the S9 type S-RNase expressed in its pistils. Interestingly, we found identical deletion mutations in CUL1 exon 7 of S. chmielewskii as previously seen in S. habrochaites. CONCLUSIONS Mating system transitions in the Arcanum group have occurred via both pistil loss-of-function and pollen gain-of-function SC mutations. Mutations common to S. chmielewskii and S. habrochaites must have arisen in a common ancestor, possibly to the entire tomato clade, then became fixed in different lineages after loss of pistil-side SI function.
Collapse
Affiliation(s)
- Dragomira N Markova
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | | | - Sarah E Yam
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Adryanna Corral
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Matthew J Valle
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | | | - Roger T Chetelat
- C. M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| |
Collapse
|
38
|
Two Loci Contribute Epistastically to Heterospecific Pollen Rejection, a Postmating Isolating Barrier Between Species. G3-GENES GENOMES GENETICS 2017; 7:2151-2159. [PMID: 28512086 PMCID: PMC5499124 DOI: 10.1534/g3.117.041673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.
Collapse
|
39
|
Takada Y, Murase K, Shimosato-Asano H, Sato T, Nakanishi H, Suwabe K, Shimizu KK, Lim YP, Takayama S, Suzuki G, Watanabe M. Duplicated pollen-pistil recognition loci control intraspecific unilateral incompatibility in Brassica rapa. NATURE PLANTS 2017. [PMID: 28650458 DOI: 10.1038/nplants.2017.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In plants, cell-cell recognition is a crucial step in the selection of optimal pairs of gametes to achieve successful propagation of progeny. Flowering plants have evolved various genetic mechanisms, mediated by cell-cell recognition, to enable their pistils to reject self-pollen, thus preventing inbreeding and the consequent reduced fitness of progeny (self-incompatibility, SI), and to reject foreign pollen from other species, thus maintaining species identity (interspecific incompatibility)1. In the genus Brassica, the SI system is regulated by an S-haplotype-specific interaction between a stigma-expressed female receptor (S receptor kinase, SRK) and a tapetum cell-expressed male ligand (S locus protein 11, SP11), encoded by their respective polymorphic genes at the S locus2-6. However, the molecular mechanism for recognition of foreign pollen, leading to reproductive incompatibility, has not yet been identified. Here, we show that recognition between a novel pair of proteins, a pistil receptor SUI1 (STIGMATIC UNILATERAL INCOMPATIBILITY 1) and a pollen ligand PUI1 (POLLEN UNILATERAL INCOMPATIBILITY 1), triggers unilateral reproductive incompatibility between plants of two geographically distant self-incompatible Brassica rapa lines, even though crosses would be predicted to be compatible based on the S haplotypes of pollen and stigma. Interestingly, SUI1 and PUI1 are similar to the SI genes, SRK and SP11, respectively, and are maintained as cryptic incompatibility genes in these two populations. The duplication of the SRK and SP11 followed by reciprocal loss in different populations would provide a molecular mechanism of the emergence of a reproductive barrier in allopatry.
Collapse
Affiliation(s)
- Yoshinobu Takada
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kohji Murase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Shimosato-Asano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takahiro Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Honoka Nakanishi
- Division of Natural Science, Osaka Kyoiku University, Kashiwara 582-8582, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich CH-8057, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara 582-8582, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
40
|
Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC PLANT BIOLOGY 2017; 17:81. [PMID: 28438120 PMCID: PMC5402651 DOI: 10.1186/s12870-017-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. RESULTS We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. CONCLUSIONS Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | | | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117 USA
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
41
|
Tovar-Méndez A, Lu L, McClure B. HT proteins contribute to S-RNase-independent pollen rejection in Solanum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:718-729. [PMID: 27862494 DOI: 10.1111/tpj.13416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 05/27/2023]
Abstract
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self-incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S-RNase and HT protein function in a pistil-side IRB that causes rejection of pollen from self-compatible (SC) red/orange-fruited species in the tomato clade. However, S-RNase-independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S-RNase-independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S-RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S-RNase, and then used RNAi to test whether they also function in S-RNase-independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S-RNase-dependent and S-RNase-independent pollen rejection. The results support the view that overall compatibility results from multiple pollen-pistil interactions with additive effects.
Collapse
Affiliation(s)
- Alejandro Tovar-Méndez
- Division of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Lu Lu
- Division of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Bruce McClure
- Division of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| |
Collapse
|
42
|
Broz AK, Randle AM, Sianta SA, Tovar-Méndez A, McClure B, Bedinger PA. Mating system transitions in Solanum habrochaites impact interactions between populations and species. THE NEW PHYTOLOGIST 2017; 213:440-454. [PMID: 27516156 DOI: 10.1111/nph.14130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 05/23/2023]
Abstract
In plants, transitions in mating system from outcrossing to self-fertilization are common; however, the impact of these transitions on interspecific and interpopulation reproductive barriers is not fully understood. We examined the consequences of mating system transition for reproductive barriers in 19 populations of the wild tomato species Solanum habrochaites. We identified S. habrochaites populations with self-incompatible (SI), self-compatible (SC) and mixed population (MP) mating systems, and characterized pollen-pistil interactions among S. habrochaites populations and between S. habrochaites and other tomato species. We examined the relationship between mating system, floral morphology, interspecific and interpopulation compatibility and pistil SI factors. We documented five distinct phenotypic groups by combining reproductive behavior with molecular data. Transitions from SI to MP were not associated with weakened interspecific reproductive barriers or loss of known pistil SI factors. However, transitions to SC at the northern range margin were accompanied by loss of S-RNase, smaller flowers, and weakened (or absent) interspecific pollen-pistil barriers. Finally, we identified a subset of SC populations that exhibited a partial interpopulation reproductive barrier with central SI populations. Our results support the hypothesis that shifts in mating system, followed by additional loss-of-function mutations, impact reproductive barriers within and between species.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - April M Randle
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA, 94117, USA
| | - Shelley A Sianta
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
43
|
Bedinger PA, Broz AK, Tovar-Mendez A, McClure B. Pollen-Pistil Interactions and Their Role in Mate Selection. PLANT PHYSIOLOGY 2017; 173:79-90. [PMID: 27899537 PMCID: PMC5210727 DOI: 10.1104/pp.16.01286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/27/2016] [Indexed: 05/20/2023]
Abstract
Pollen-pistil interactions contribute to mate selection at the postmating, prezygotic level.
Collapse
Affiliation(s)
- Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878 (P.A.B., A.K.B.); and
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (A.T.-M., B.M.)
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878 (P.A.B., A.K.B.); and
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (A.T.-M., B.M.)
| | - Alejandro Tovar-Mendez
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878 (P.A.B., A.K.B.); and
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (A.T.-M., B.M.)
| | - Bruce McClure
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878 (P.A.B., A.K.B.); and
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (A.T.-M., B.M.)
| |
Collapse
|
44
|
Baek YS, Royer SM, Broz AK, Covey PA, López-Casado G, Nuñez R, Kear PJ, Bonierbale M, Orillo M, van der Knaap E, Stack SM, McClure B, Chetelat RT, Bedinger PA. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). AMERICAN JOURNAL OF BOTANY 2016; 103:1964-1978. [PMID: 27864262 DOI: 10.3732/ajb.1600356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Suzanne M Royer
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Gloria López-Casado
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Reynaldo Nuñez
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
| | - Philip J Kear
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Merideth Bonierbale
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Matilde Orillo
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| |
Collapse
|
45
|
Markova DN, Petersen JJ, Qin X, Short DR, Valle MJ, Tovar-Méndez A, McClure BA, Chetelat RT. Mutations in two pollen self-incompatibility factors in geographically marginal populations of Solanum habrochaites impact mating system transitions and reproductive isolation. AMERICAN JOURNAL OF BOTANY 2016; 103:1847-1861. [PMID: 27793860 DOI: 10.3732/ajb.1600208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/29/2016] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Self-incompatibility (SI) is a mechanism that prevents inbreeding in many plant species. The mutational breakdown of SI occurs frequently, yet relatively little is known about the evolutionary steps involved in the progressive loss of pistil and pollen SI function. METHODS In Solanaceae, SI is the S-RNase-based gametophytic type. We used SI and SC populations of the wild tomato species Solanum habrochaites to study natural variation for two pollen SI factors: a Cullin1 (CUL1) protein and an S-locus F-box protein (SLF-23). Pollen compatibility was assessed on an allotriploid tester line encoding an S-RNase recognized by SLF-23. Both pollen factors are required for compatibility on this tester line. Complementation tests and gene sequencing were used to identify mutations in CUL1 or SLF-23. KEY RESULTS We detected loss-of-function mutations in CUL1 and/or SLF-23 in SC populations collected near the northern and southern geographic margins of this taxon's natural range. Nonmarginal SC and all SI accessions expressed mostly functional alleles of these pollen factors. Comparison of the CUL1 sequences identified several shared deletion mutations present in both northern and southern margin SC accessions. CONCLUSIONS Loss-of-function mutations in CUL1 and SLF-23 likely became fixed relatively late during SI to SC transitions, after loss of pistil SI function. Mutations in CUL1 establish unilateral incompatibility with SI populations and strengthen reproductive isolation. Point mutations common to northern and southern SC biotypes likely derive from shared ancestral variants found in more central SI populations.
Collapse
Affiliation(s)
- Dragomira N Markova
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Jennifer J Petersen
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Xiaoqiong Qin
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Daniel R Short
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Matthew J Valle
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Alejandro Tovar-Méndez
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211 USA
| | - Bruce A McClure
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211 USA
| | - Roger T Chetelat
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| |
Collapse
|
46
|
Fujii S, Kubo KI, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. NATURE PLANTS 2016; 2:16130. [PMID: 27595657 DOI: 10.1038/nplants.2016.130] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/22/2016] [Indexed: 05/25/2023]
Abstract
The mechanisms by which flowering plants choose their mating partners have interested researchers for a long time. Recent findings on the molecular mechanisms of non-self-recognition in some plant species have provided new insights into self-incompatibility (SI), the trait used by a wide range of plant species to avoid self-fertilization and promote outcrossing. In this Review, we compare the known SI systems, which can be largely classified into non-self- or self-recognition systems with respect to their molecular mechanisms, their evolutionary histories and their modes of evolution. We review previous controversies on haplotype evolution in the gametophytic SI system of Solanaceae species in light of a recently elucidated non-self-recognition model. In non-self-recognition SI systems, the transition from self-compatibility (SC) to SI may be more common than previously thought. Reversible transition between SI and SC in plants may have contributed to their adaptation to diverse and fluctuating environments.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ken-Ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
47
|
Kuligowska K, Lütken H, Müller R. Towards development of new ornamental plants: status and progress in wide hybridization. PLANTA 2016; 244:1-17. [PMID: 26969022 DOI: 10.1007/s00425-016-2493-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 05/21/2023]
Abstract
The present review provides insights into the key findings of the hybridization process, crucial factors affecting the adaptation of new technologies within wide hybridization of ornamental plants and presents perspectives of further development of this strategy. Wide hybridization is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance is typically depicted as one of the most important factors influencing cross-compatibility in hybridization processes. Furthermore, molecular marker systems are frequently applied for verification of hybrid state of the progeny. The flow cytometry and genomic in situ hybridization are used in the assessment of hybridization partners and characterization of hybrid progeny in relation to genome stabilization as well as genome recombination and introgression. In the future, new research and technologies are likely to provide more detailed information about genes and pathways responsible for interspecific reproductive isolation. Ultimately, this knowledge will enable development of strategies for obtaining compatible lines for hybrid production. Recent development in sequencing technologies and availability of sequence data will also facilitate creation of new molecular markers that will advance marker-assisted selection in hybridization process.
Collapse
Affiliation(s)
- Katarzyna Kuligowska
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark.
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| |
Collapse
|
48
|
Tonosaki K, Osabe K, Kawanabe T, Fujimoto R. The importance of reproductive barriers and the effect of allopolyploidization on crop breeding. BREEDING SCIENCE 2016; 66:333-49. [PMID: 27436943 PMCID: PMC4902455 DOI: 10.1270/jsbbs.15114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/25/2016] [Indexed: 05/04/2023]
Abstract
Inter-specific hybrids are a useful source for increasing genetic diversity. Some reproductive barriers before and/or after fertilization prevent production of hybrid plants by inter-specific crossing. Therefore, techniques to overcome the reproductive barrier have been developed, and have contributed to hybridization breeding. In recent studies, identification of molecules involved in plant reproduction has been studied to understand the mechanisms of reproductive barriers. Revealing the molecular mechanisms of reproductive barriers may allow us to overcome reproductive barriers in inter-specific crossing, and to efficiently produce inter-specific hybrids in cross-combinations that cannot be produced through artificial techniques. Inter-specific hybrid plants can potentially serve as an elite material for plant breeding, produced through the merging of genomes of parental species by allopolyploidization. Allopolyploidization provides some benefits, such as heterosis, increased genetic diversity and phenotypic variability, which are caused by dynamic changes of the genome and epigenome. Understanding of allopolyploidization mechanisms is important for practical utilization of inter-specific hybrids as a breeding material. This review discusses the importance of reproductive barriers and the effect of allopolyploidization in crop breeding programs.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University,
641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813,
Japan
- Corresponding author (e-mail: )
| | - Kenji Osabe
- Okinawa Institute of Science and Technology,
1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495,
Japan
| | - Takahiro Kawanabe
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe 657-8501,
Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe 657-8501,
Japan
| |
Collapse
|
49
|
Bao Z, Meng F, Strickler SR, Dunham DM, Munkvold KR, Martin GB. Identification of a Candidate Gene in Solanum habrochaites for Resistance to a Race 1 Strain of Pseudomonas syringae pv. tomato. THE PLANT GENOME 2015; 8:eplantgenome2015.02.0006. [PMID: 33228271 DOI: 10.3835/plantgenome2015.02.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/01/2015] [Indexed: 06/11/2023]
Abstract
Bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst) is a persistent problem on tomato (Solanum lycopersicum L.). Resistance against race 0 Pst strains is conferred by the Pto protein, which recognizes either of two pathogen effectors: AvrPto or AvrPtoB. However, current tomato varieties do not have resistance to the increasingly common race 1 strains, which lack these effectors. We identified accessions of Solanum habrochaites S. Knapp & D. M. Spooner that are resistant to the race 1 strain T1. Genome sequence comparisons of T1 and two Pst strains that are virulent on these accessions suggested that known microbe-associated molecular patterns (MAMPs) or effectors are not involved in the resistance. We developed an F2 population from a cross between one T1-resistant accession, LA2109, and a susceptible tomato cultivar to investigate the genetic basis of this resistance. Linkage analysis using whole-genome sequence of 58 F2 plants identified quantitative trait loci (QTL), qRph1, in a 5.8-Mb region on chromosome 2, and qRph2, in a 52.4-Mb region on chromosome 8, which account for 24 and 26% of the phenotypic variability, respectively. High-resolution mapping of qRph1 confirmed it contributed to T1 resistance and delimited it to a 1060-kb region containing 139 genes, including three encoding receptor-like proteins (RLPs) and 17 encoding receptor-like protein kinases (RLKs). One RLK gene, Solyc02g072470, is a promising candidate for qRph1, as it is highly expressed in LA2109 and induced on treatment with MAMPs. qRph1 might be useful for enhancing resistance to race 1 strains and its future characterization could provide insights into the plant immune system.
Collapse
Affiliation(s)
- Zhilong Bao
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
| | - Fanhong Meng
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
| | | | - Diane M Dunham
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
| | | | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853
| |
Collapse
|