1
|
Mehra L, Bhowmik S, Makharia GK, Das P. Intestinal stem cell niche: An upcoming area of immense importance in gastrointestinal disorders. Indian J Gastroenterol 2025; 44:8-23. [PMID: 39514159 DOI: 10.1007/s12664-024-01699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
The intestinal stem cell (ISC) niche is vital for maintaining the integrity and function of the intestinal epithelium. ISC populations, characterized by their high proliferation and multipotency, reside within a specialized microenvironment at the base of crypts. Crypt base columnar (CBC) cells at the deepest part of crypts serve as replicating ISCs, while position 4 label-retaining cells (LRCs) located higher up in the crypts are also important for ISC maintenance during experiments. The interplay between CBCs, position 4 LRCs, transient amplifying (TA) cells and other niche components, including the pericrypt stromal cells, ensures a continuous supply of differentiated epithelial cells. Recent advancements in ISC biomarker studies have provided valuable insights into their molecular signatures, regulatory pathways and roles in the pathogenesis of intestinal disorders. Understanding the ISC niche has significant therapeutic implications, as manipulating ISC behaviors and regenerating damaged or diseased intestinal tissue show promise for novel therapeutic approaches. ISC organoids have also provided a platform for studying intestinal diseases and testing personalized therapies. This comprehensive review covers the anatomical composition, physiological regulation, ISC biomarker studies, contribution to intestinal disorder pathogenesis and potential therapeutic implications of the ISC niche.
Collapse
Affiliation(s)
- Lalita Mehra
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Subham Bhowmik
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutritions, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India.
| |
Collapse
|
2
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Jaygude U, Hughes GM, Simpson JC. Exploring the role of the Rab network in epithelial-to-mesenchymal transition. BIOINFORMATICS ADVANCES 2024; 5:vbae200. [PMID: 39736966 PMCID: PMC11684074 DOI: 10.1093/bioadv/vbae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet.
Collapse
Affiliation(s)
- Unmani Jaygude
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Chen LY, Wu DS, Shen YA. Fatty acid synthase inhibitor cerulenin hinders liver cancer stem cell properties through FASN/APP axis as novel therapeutic strategies. J Lipid Res 2024; 65:100660. [PMID: 39332525 PMCID: PMC11539133 DOI: 10.1016/j.jlr.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) poses significant treatment challenges due to high postoperative recurrence rates and the limited effectiveness of targeted medications. Researchers have identified the unique metabolic profiles of cancer stem cells (CSCs) as the primary drivers of cancer recurrence, metastasis, and drug resistance. Therefore, to address the therapeutic conundrum, this study focused on rewinding metabolic reprogramming of CSCs as a novel therapeutic strategy. HCC CSCs exhibited elevated fatty acid (FA) metabolism compared with parental cells. To specifically target FA metabolism in CSCs, we utilized cerulenin, a fatty acid synthase (FASN) inhibitor. Surprisingly, cerulenin can diminish CSC-like characteristics, including stemness gene expression, spherogenicity, tumorigenicity, and metastatic potential. In addition, sorafenib, a multikinase inhibitor used as targeted therapy for advanced HCC, was employed in combination with cerulenin, demonstrating a great synergistic effect, particularly in CSCs. Importantly, our RNA sequencing analysis disclosed that the amyloid protein precursor (APP) is a crucial downstream effector of FASN in regulating CSC properties. We found that APP plays a crucial role in CSCs' characteristics that can be inhibited by cerulenin. By focusing on FA metabolism, this study identified the FASN/APP axis as a viable target to develop a more potent therapy strategy for advanced HCC.
Collapse
Affiliation(s)
- Liang-Yun Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dao-Sian Wu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Ünlü İ, Özdemir İ, Tuncer MC. Napabucasin Inhibits Proliferation and Migration of Glioblastoma Cells (U87) by Regulating JAK2/STAT3 Signaling Pathway. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1715. [PMID: 39459502 PMCID: PMC11509140 DOI: 10.3390/medicina60101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Napabucasin (NP) was discovered as a natural compound that suppresses cancer stemness by inhibiting the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. In this study, the anti-proliferative and apoptotic effects of NP and the chemotherapy agent doxorubicin (DX), a natural compound, on glioblastoma cells (U87) were investigated. Materials and Methods: In this study, the effects of NP and DX on cell viability on the glioblastoma U87 cell line were determined by MTT test. Expressions of Jak2/Stat3 genes were examined by qRT-PCR. Apoptosis was evaluated by Hoescht 33258 staining. Moreover, NP, its antagonistic-synergistic effects and IC50 doses of the combined treatment of DX were determined. Results: Napabucacin and doxorubicin were found to inhibit glioblastoma U87 cell proliferation. It was determined that NP applied in the range of 0.3-1 µM and its combination with DX killed almost all of the glioblastoma cells in 48 h of application. Additionally, it was observed that Jak2/Stat3 expressions downregulated. Conclusions: These results show that NP suppresses the proliferation of glioblastoma cells. It was shown that the combination of NP and DX can prevent invasion of the U87 cell line due to its Jak2/Stat3 inhibitory effect. Since it can suppress Jak2/Stat3, an important cancer cell proliferation pathway in glioblastoma, the combination of NP and DX can be used as an alternative treatment agent. But no synergistic effect of NP and DX on the U87 cells of the glioblastoma cell line was observed.
Collapse
Affiliation(s)
- İlker Ünlü
- Department of Neurosurgery, Faculty of Medicine, Beykent University, İstanbul 34398, Turkey;
| | - İlhan Özdemir
- Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Mehmet Cudi Tuncer
- Department of Anatomy, Faculty of Medicine, Dicle University, Diyarbakır 21280, Turkey
| |
Collapse
|
6
|
ZHANG YE, LIANG YANAN, WU YAN, SONG LIWEN, ZHANG ZUWANG. CircTIAM1 overexpression promotes the progression of papillary thyroid cancer by regulating the miR-338-3p/LASP1 axis. Oncol Res 2024; 32:1747-1763. [PMID: 39449799 PMCID: PMC11497179 DOI: 10.32604/or.2024.030945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/01/2023] [Indexed: 10/26/2024] Open
Abstract
Background Papillary thyroid cancer (PTC) is the most prevalent histological type of differentiated thyroid malignancy. Circular RNAs (circRNAs) have been implicated in the pathogenesis and progression of various cancers. circTIAM1 (hsa_circ_0061406) is a novel circRNA with aberrant expression in PTC. However, its functional roles in PTC progression remain to be investigated. Methods The expression levels of circTIAM1 in the PTC and the matched para-cancerous tissues were detected by quantitative real-time reverse-transcription PCR (qRT-PCR). The subcellular localization of circTIAM1 was examined by fluorescence in-situ hybridization (FISH). Kaplan-Meier plot was used to analyze the association of clinicopathological features with circTIAM1 expression. Bioinformatics databases were utilized to predict the target miRNAs of circTIAM1 and the downstream target mRNAs. RNA pull-down, RIP assay, and dual-luciferase reporter assay were used to confirm the interactions. Functional experiments, such as CCK-8, EDU staining, and apoptosis assays, as well as in vivo xenograft model were employed to explore the impacts of circTIAM1, miR-338-3p, and LIM/SH3 protein 1 (LASP1) on the malignant phenotype of the PTC cells. Results CircTIAM1 was highly expressed in PTC cells. Moreover, circTIAM1 silencing suppressed the proliferation and invasion of PTC cells in vitro and impaired tumorigenesis in vivo. Furthermore, miR-338-3p was verified as a miRNA target of circTIAM1. LASP1 was also identified as a downstream target of miR-338-3p. The anti-tumorigenic effect of miR-338-3p overexpression and the pro-tumorigenic effect of LASP1 was further explored by functional assays, which demonstrated that circTIAM1 modulated the PTC progression through targeting miR-338-3p/LASP1 axis. Conclusion The overexpression of circTIAM1 is associated with the malignant progression of PTC. A high level of circTIAM1 promotes the malignancy of PTC cells via the miR-338-3p/LASP1 axis.
Collapse
Affiliation(s)
- YE ZHANG
- School of Medicine and Health, Jiuzhou Polytechnic, Xuzhou, 221113, China
| | - YANAN LIANG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - YAN WU
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - LIWEN SONG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - ZUWANG ZHANG
- Department of Oncology, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
7
|
Wang Y, Wu S, Song Z, Yang Y, Li Y, Li J. Unveiling the pathological functions of SOCS in colorectal cancer: Current concepts and future perspectives. Pathol Res Pract 2024; 262:155564. [PMID: 39216322 DOI: 10.1016/j.prp.2024.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, marked by increasing incidence and mortality rates in recent years. The pathogenesis of CRC is complex, involving chronic inflammation of the intestinal mucosa, heightened immunoinflammatory responses, and resistance to apoptosis. The suppressor of cytokine signaling (SOCS) family, comprised of key negative regulators within cytokine signaling pathways, plays a crucial role in cell proliferation, growth, and metabolic regulation. Deficiencies in various SOCS proteins can trigger the activation of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) pathways, following the binding of cytokines and growth factors to their receptors. Mounting evidence indicates that SOCS proteins are integral to the development and progression of CRC, positioning them as promising targets for novel anticancer therapies. This review delves into the structure, function, and molecular mechanisms of SOCS family members, examining their roles in cell proliferation, apoptosis, migration, epithelial-mesenchymal transition (EMT), and immune modulation. Additionally, it explores their potential impact on the regulation of CRC immunotherapy, offering new insights and perspectives that may inform the development of innovative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- YuHan Wang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Sha Wu
- Department of Anorectal, Nanchuan Hospital of Traditional Chinese Medicine, Nanchuan, Chongqing, 408400, China
| | - ZhiHui Song
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Yang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YaLing Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Li
- Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Ünlü İ, Tuncer MC, Özdemir İ. Effect of napabucasin and doxorubicin via the Jak2/Stat3 signaling pathway in suppressing the proliferation of neuroblastoma cells. Acta Cir Bras 2024; 39:e396624. [PMID: 39356934 PMCID: PMC11441154 DOI: 10.1590/acb396624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE Napabucasin (NP) is a natural compound that can suppress cancer cell proliferation and cell cycle by inhibition of the signal transducer and activator of transcription 3 (STAT3) gene. We examined the effects of NP on the proliferation and invasion of neuroblastoma cells (SH-SY5Y). METHODS Human neuroblastoma SH-SY5Y cell line was used in this study. NP was administered to groups at the doses of 0.3-1 µM. Cell viability was analyzed by MTT assay. Real-time quantitative reverse transcription polymerase chain reaction and western blot analysis assessed the expressions of interleukin (IL)-6 dependent Jak2/Stat3 signaling pathway. The MTT cell viability method was applied to determine the antagonistic-synergistic effects and inhibitory concentration (IC50) doses of doxorubicin (DX) and NP. RESULTS It was determined that 0.3-1 µM doses of NP killed the cells almost completely after 48 hours, and also that Jak2/Stat3 expressions decreased dose-dependently via IL-6. At the protein level, NP and DX were found to reduce Jak2 and Stat3 levels. CONCLUSIONS NP showed that it suppresses the proliferation of neuroblastoma cells. Due to its inhibitory effect on Jak2 and Stat3, it can be used to prevent invasion of SH-SY5Y cells. NP, which can inactivate Jak2/Stat3, can be used as a treatment agent by combining with DX in proliferation pathway in neuroblastoma.
Collapse
Affiliation(s)
- İlker Ünlü
- Beykent University – Faculty of Medicine – Department of Brain Surgery – Istanbul – Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Faculty of Medicine – Department of Anatomy – Diyarbakir – Turkey
| | - İlhan Özdemir
- Atatürk University – Department of Gynecology and Obstetrics – Faculty of Medicine – Erzurum – Turkey
| |
Collapse
|
9
|
Elimam H, Moussa R, Radwan AF, Hatawsh A, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Aborehab NM, Zaki MB, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Doghish AS. LncRNAs orchestration of gastric cancer - particular emphasis on the etiology, diagnosis, and treatment resistance. Funct Integr Genomics 2024; 24:175. [PMID: 39325107 DOI: 10.1007/s10142-024-01450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Gastric cancer (GC) remains a major public health challenge worldwide. Long non-coding RNAs (lncRNAs) play important roles in the development, progression, and resistance to the treatment of GC, as shown by recent developments in molecular characterization. Still, an in-depth investigation of the lncRNA landscape in GC is absent. However, The objective of this systematic review is to evaluate our present understanding of the role that lncRNA dysregulation plays in the etiology of GC and treatment resistance, with a focus on the underlying mechanisms and clinical implications. Research that described the functions of lncRNA in angiogenesis, stemness, epigenetics, metastasis, apoptosis, development, and resistance to key treatments was given priority. In GC, it has been discovered that a large number of lncRNAs, including MALAT1, HOTAIR, H19, and ANRIL, are aberrantly expressed and are connected with disease-related outcomes. Through various methods such as chromatin remodeling, signal transduction pathways, and microRNA sponging, they modulate hallmark cancer capabilities. Through the activation of stemness programs, epithelial-mesenchymal transition (EMT), and survival signaling, LncRNAs also control resistance to immunotherapy, chemotherapy, and targeted therapies. By clarifying their molecular roles further, we may be able to identify new treatment targets and ways to overcome resistance. This article aims to explore the interplay between lncRNAs, and GC. Specifically, the focus is on understanding how lncRNAs contribute to the etiology of GC and influence treatment resistance in patients with this disease.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nora M Aborehab
- Member of Institutional Animal Care and Use Committee (IACUC), Cairo University, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
10
|
Luo L, Wang F, Xu X, Ma M, Kuang G, Zhang Y, Wang D, Li W, Zhang N, Zhao K. STAT3 promotes NLRP3 inflammasome activation by mediating NLRP3 mitochondrial translocation. Exp Mol Med 2024; 56:1980-1990. [PMID: 39218978 PMCID: PMC11446920 DOI: 10.1038/s12276-024-01298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Recognition of the translocation of NLRP3 to various organelles has provided new insights for understanding how the NLRP3 inflammasome is activated by different stimuli. Mitochondria have already been demonstrated to be the site of NLRP3 inflammasome activation, and the latest research suggests that NLRP3 is first recruited to mitochondria, then disassociated, and subsequently recruited to the Golgi network. Although some mitochondrial factors have been found to contribute to the recruitment of NLRP3 to mitochondria, the detailed process of NLRP3 mitochondrial translocation remains unclear. Here, we identify a previously unknown role for Signal transducer and activator of transcription-3 (STAT3) in facilitating the translocation of NLRP3 to mitochondria. STAT3 interacts with NLRP3 and undergoes phosphorylation at Ser727 in response to several NLRP3 agonists, enabling the translocation of STAT3 and thus the bound NLRP3 to mitochondria. Disruption of the interaction between STAT3 and NLRP3 impairs the mitochondrial localization of NLRP3, specifically suppressing NLRP3 inflammasome activation both in vitro and in vivo. In summary, we demonstrate that STAT3 acts as a transporter for mitochondrial translocation of NLRP3 and provide new insight into the spatial regulation of NLRP3.
Collapse
Affiliation(s)
- Ling Luo
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Fupeng Wang
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Xueming Xu
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Mingliang Ma
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Guangyan Kuang
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Yening Zhang
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Dan Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Wei Li
- Department of Rheumatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000 P, PR China
| | - Ningjie Zhang
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000 P, PR China.
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province, 410000 P, PR China.
| |
Collapse
|
11
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
12
|
Huber A, Allam AH, Dijkstra C, Thiem S, Huynh J, Poh AR, Konecnik J, Jacob SP, Busuttil R, Liao Y, Chisanga D, Shi W, Alorro MG, Forrow S, Tauriello DVF, Batlle E, Boussioutas A, Williams DS, Buchert M, Ernst M, Eissmann MF. Mutant TP53 switches therapeutic vulnerability during gastric cancer progression within interleukin-6 family cytokines. Cell Rep 2024; 43:114616. [PMID: 39128004 PMCID: PMC11372443 DOI: 10.1016/j.celrep.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of KrasG12D;Pik3caH1047R or Trp53R172H and/or ablation of Pten or Trp53. We find that KrasG12D;Pik3caH1047R is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions. An additional challenge with either Trp53 loss- or gain-of-function alleles further accelerated tumor progression and triggered metastatic disease. While tumor-intrinsic STAT3 signaling in response to gp130 family cytokines remained as a gatekeeper for all stages of tumor development, metastatic progression required a mutant Trp53-induced interleukin (IL)-11 to IL-6 dependency switch. Consistent with the poorer survival of patients with high IL-6 expression, we identify IL-6/STAT3 signaling as a therapeutic vulnerability for TP53-mutant gastric cancer.
Collapse
Affiliation(s)
- Anne Huber
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Amr H Allam
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Stefan Thiem
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Joshua Konecnik
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Saumya P Jacob
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Rita Busuttil
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Mariah G Alorro
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia; Department of Anatomical Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia.
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia.
| |
Collapse
|
13
|
Sood A, Jothiswaran V, Singh A, Sharma A. Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1074-1099. [PMID: 39351437 PMCID: PMC11438574 DOI: 10.37349/etat.2024.00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer remains a concern after years of research in this field. Conventional therapies such as chemotherapy, radiation, and surgery are available for cancer treatment, but they are characterized by various side effects. There are several immunological challenges that make it difficult for the immune system and conventional therapies to treat cancer. Some of these challenges include heterogeneity, resistance to medicines, and cancer relapse. Even advanced treatments like immune checkpoint inhibitors (ICIs), which revolutionized cancer treatment, have associated toxicity and resistance further necessitate the exploration of alternative therapies. Anticancer peptides (ACPs) offer promising potential as cancer-fighting agents and address challenges such as treatment resistance, tumor heterogeneity, and metastasis. Although these peptides exist as components of the defense system in various plants, animals, fungi, etc., but can also be created synthetically and used as a new treatment measure. These peptides possess properties that make them appealing for cancer therapy, such as apoptosis induction, inhibition of angiogenesis, and cell membrane breakdown with low toxicity. Their capacity to specifically target cancer cells selectively holds promise for enhancing treatment environments as well as improving patients' quality of life. This review provides detailed insights into the different prospects of ACPs, including their characterization, use as immunomodulatory agents in cancer treatment, and their mechanistic details after addressing various immunological challenges in existing cancer treatment strategies. In conclusion, ACPs have promising potential as novel cancer therapeutics due to their target specificity and fewer side effects than conventional therapies.
Collapse
Affiliation(s)
- Apurva Sood
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - V.V. Jothiswaran
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Amrita Singh
- Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769005, India
| | - Anuradha Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
14
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
15
|
Zhang QY, Ding W, Mo JS, Ou-Yang SM, Lin ZY, Peng KR, Liu GP, Lu JJ, Yue PB, Lei JP, Wang YD, Zhang XL. Novel STAT3 oligonucleotide compounds suppress tumor growth and overcome the acquired resistance to sorafenib in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1701-1714. [PMID: 38609562 PMCID: PMC11272795 DOI: 10.1038/s41401-024-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/03/2024] [Indexed: 04/14/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.
Collapse
Affiliation(s)
- Qi-Yi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen Ding
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Shan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shu-Min Ou-Yang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zi-You Lin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ke-Ren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guo-Pin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pei-Bin Yue
- Department of Medicine, Division of Hematology-Oncology, and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin-Ping Lei
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yan-Dong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Zhou Y, He N, Liu Q, Li R, Yang L, Kang W, Zhang X, Xu X, Yao G, Wang P, Wang CY, Yang J, Liu Z. Structural Optimization of Marine Natural Product Pretrichodermamide B for the Treatment of Colon Cancer by Targeting the JAK/STAT3 Signaling Pathway. J Med Chem 2024; 67:10783-10794. [PMID: 38888591 DOI: 10.1021/acs.jmedchem.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Marine natural product (MNP) pretrichodermamide B (Pre B, 9) was identified as a novel STAT3 inhibitor in our previous work, while its metabolic instability hindered its further development. To address this drawback, ligand structure-based drug design was adopted leading to a series of Pre B derivatives. Among them, MNP trichodermamide B (tri B, 24) obtained by skeletal rearrangement exhibited more potent antiproliferative activity with an IC50 value of 0.12 μM against HCT116. Notably, 24 stood out with improved metabolic stability (T1/2 = 31 min) and more favorable oral bioavailability (F = 37.5%). Further studies indicated that 24 blocked JAK/STAT3 signaling in dose- and time-dependent manner. In vivo, 24 suppressed tumor growth (TGI = 65%) at a dose of 20 mg/kg in a HCT116-derived xenograft mouse model. Overall, 24 might be a promising lead compound for colon cancer and is worthy of further investigation.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Na He
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rui Li
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Lujia Yang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wei Kang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinxin Zhang
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Xiaoyu Xu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Pingyuan Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Zhiqing Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
17
|
Li X, Zhang C, Yue W, Jiang Y. Modulatory effects of cancer stem cell-derived extracellular vesicles on the tumor immune microenvironment. Front Immunol 2024; 15:1362120. [PMID: 38962016 PMCID: PMC11219812 DOI: 10.3389/fimmu.2024.1362120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei, China
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Gigante L, Gaudillière-Le Dain G, Bertaut A, Truntzer C, Ghiringhelli F. Interleukin-1α as a Potential Prognostic Biomarker in Pancreatic Cancer. Biomedicines 2024; 12:1216. [PMID: 38927423 PMCID: PMC11200603 DOI: 10.3390/biomedicines12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE We assessed the prognostic role of pro-inflammatory cytokines of the IL-1 superfamily in patients with pancreatic cancer. METHODS This retrospective study was performed using two independent cohorts of patients with pancreatic cancer: the International Cancer Genome Consortium (ICGC, N = 267) cohort and The Cancer Genome Atlas (TCGA, N = 178) cohort. Univariate Cox regressions were used to identify prognosis-related pro-inflammatory cytokines of the IL-1 superfamily. Cytokines associated with outcome were included in a multivariate Cox model with relevant clinicopathological variables to identify prognostic biomarkers. RESULTS IL-1α was the only pro-inflammatory cytokine of the IL-1 superfamily that was significantly associated with prognosis in both cohorts. In the training cohort (ICGC), the decile of patients with the lowest IL1A expression had better overall survival (HR = 1.99 [1.01-3.93], p = 0.05) and better relapse-free survival (HR = 1.85 [1.02-3.34], p = 0.04) than the group with the highest IL1A expression. The validation cohort (TCGA) confirmed these results: the decile with the lowest IL1A expression had better overall survival (HR = 3.00 [1.14-7.90], p = 0.03) and a lower risk of progression (HR = 3.11 [1.24-7.80], p = 0.01). CONCLUSIONS IL1A is an independent prognostic marker and could be considered a potential therapeutic target in pancreatic cancer patients.
Collapse
Affiliation(s)
- Leonardo Gigante
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Gwladys Gaudillière-Le Dain
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Aurélie Bertaut
- Biostatistics and Methodology Unit, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000 Dijon, France
| |
Collapse
|
19
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
20
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
21
|
Liu Y, Han T, Xu Z, Wu J, Zhou J, Guo J, Miao R, Xing Y, Ge D, Bai Y, Hu D. CDC45 promotes the stemness and metastasis in lung adenocarcinoma by affecting the cell cycle. J Transl Med 2024; 22:335. [PMID: 38589907 PMCID: PMC11000299 DOI: 10.1186/s12967-024-05038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
| | - Jing Wu
- Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, People's Republic of China
| | - Deyong Ge
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, People's Republic of China.
| |
Collapse
|
22
|
Melisi D, Casalino S, Pietrobono S, Quinzii A, Zecchetto C, Merz V. Integration of liposomal irinotecan in the first-line treatment of metastatic pancreatic cancer: try to do not think about the white bear. Ther Adv Med Oncol 2024; 16:17588359241234487. [PMID: 38584763 PMCID: PMC10996353 DOI: 10.1177/17588359241234487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
The approval of novel therapeutic agents remains widely reliant on evidence derived from large phase III randomized controlled trials. Liposomal irinotecan (ONIVYDE®) stands out as the only drug that has demonstrated improved survival both as a first-line therapy in combination with oxaliplatin and 5-fluorouracil/leucovorin (5FU/LV) (NALIRIFOX) compared to the standard gemcitabine plus nab-paclitaxel in the NAPOLI3 trial, and as a second-line treatment in combination with 5FU/LV compared to the standard 5FU/LV in the NAPOLI1 trial. However, just as the white bear of the Dostoevsky's paradox, the judgment of these results is invariably distracted by the intrusive thought of how different they might be if compared to similar regimens containing standard-free irinotecan as FOLFIRINOX or FOLFIRI, respectively. Here, we present and thoroughly discuss the evidence encompassing the pharmacologic, preclinical, and clinical development of liposomal irinotecan that can dispel any intrusive thoughts and foster a rational and well-considered judgment of this agent and its potential integration into the therapeutic strategies for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Davide Melisi
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Piazzale L.A. Scuro, 10, Verona 37134, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Alberto Quinzii
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| |
Collapse
|
23
|
Xu J, Gong J, Li M, Kang Y, Ma J, Wang X, Liang X, Qi X, Yu B, Yang J. Gastric cancer patient-derived organoids model for the therapeutic drug screening. Biochim Biophys Acta Gen Subj 2024; 1868:130566. [PMID: 38244703 DOI: 10.1016/j.bbagen.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a highly heterogeneous disease featuring many various histological and molecular subtypes. Therefore, it is imperative to have well-characterized in vitro models for personalized treatment development. Gastric cancer patient-derived organoids (PDOs), re-capitulating in vivo conditions, exhibit high clinical efficacy in predicting drug sensitivity to facilitate the development of cancer precision medicine. METHODS PDOs were established from surgically resected GC tumor tissues. Histological and molecular characterization of PDOs and primary tissues were performed via IHC and sequencing analysis. We also conducted drug sensitivity tests using PDO cultures with five chemotherapeutic drugs and twenty-two targeted drugs. RESULTS We have successfully constructed a PDOs biobank that included EBV+, intestinal/CIN, diffuse/GS, mixed and Her2+ GC subtypes, and these PDOs captured the pathological and genetic characteristics of corresponding tumors and exhibited different sensitivities to the tested agents. In a clinical case study, we performed an additional drug sensitivity test for a patient who reached an advanced progressive stage after surgery. We discovered that the combination of napabucasin and COTI-2 exhibited a stronger synergistic effect than either drug alone. CONCLUSION PDOs maintained the histological and genetic characteristics of original cancer tissues. PDOs biobank opens up new perspectives for studying cancer cell biology and personalized medicine as a preclinical study platform.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Kang
- MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinrong Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
24
|
Gasparoli L, Virely C, Tsakaneli A, Che N, Edwards D, Bartram J, Hubank M, Pal D, Heidenreich O, Martens JHA, De Boer J, Williams O. Susceptibility of pediatric acute lymphoblastic leukemia to STAT3 inhibition depends on p53 induction. Haematologica 2024; 109:1069-1081. [PMID: 37794795 PMCID: PMC10985450 DOI: 10.3324/haematol.2023.283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.
Collapse
Affiliation(s)
- Luca Gasparoli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Clemence Virely
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Noelia Che
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Darren Edwards
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen
| | - Jasper De Boer
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London.
| |
Collapse
|
25
|
Ruszkowska-Ciastek B, Kwiatkowska K, Marques-da-Silva D, Lagoa R. Cancer Stem Cells from Definition to Detection and Targeted Drugs. Int J Mol Sci 2024; 25:3903. [PMID: 38612718 PMCID: PMC11011379 DOI: 10.3390/ijms25073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers remain the second leading cause of mortality in the world. Preclinical and clinical studies point an important role of cancer/leukaemia stem cells (CSCs/LSCs) in the colonisation at secondary organ sites upon metastatic spreading, although the precise mechanisms for specific actions are still not fully understood. Reviewing the present knowledge on the crucial role of CSCs/LSCs, their plasticity, and population heterogeneity in treatment failures in cancer patients is timely. Standard chemotherapy, which acts mainly on rapidly dividing cells, is unable to adequately affect CSCs with a low proliferation rate. One of the proposed mechanisms of CSC resistance to anticancer agents is the fact that these cells can easily shift between different phases of the cell cycle in response to typical cell stimuli induced by anticancer drugs. In this work, we reviewed the recent studies on CSC/LSC alterations associated with disease recurrence, and we systematised the functional assays, markers, and novel methods for CSCs screening. This review emphasises CSCs' involvement in cancer progression and metastasis, as well as CSC/LSC targeting by synthetic and natural compounds aiming at their elimination or modulation of stemness properties.
Collapse
Affiliation(s)
- Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Katarzyna Kwiatkowska
- Department of Laboratory Diagnostics, Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Dorinda Marques-da-Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
26
|
Weng L, Zhou J, Guo S, Xu N, Ma R. The molecular subtyping and precision medicine in triple-negative breast cancer---based on Fudan TNBC classification. Cancer Cell Int 2024; 24:120. [PMID: 38555429 PMCID: PMC10981301 DOI: 10.1186/s12935-024-03261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive form of breast cancer, occurring more frequently in younger patients and characterized by high heterogeneity, early distant metastases and poor prognosis. Multiple treatment options have failed to achieve the expected therapeutic effects due to the lack of clear molecular targets. Based on genomics, transcriptomics and metabolomics, the multi-omics analysis further clarifies TNBC subtyping, which provides a greater understanding of tumour heterogeneity and targeted therapy sensitivity. For instance, the luminal androgen receptor subtype (LAR) exhibits responsiveness to anti-AR therapy, and the basal-like immune-suppressed subtype (BLIS) tends to benefit from poly (ADP-ribose) polymerase inhibitors (PARPis) and anti-angiogenic therapy. The efficacy of multi-dimensional combination therapy holds immense importance in guiding personalized and precision medicine for TNBC. This review offers a systematic overview of recent FuDan TNBC molecular subtyping and its role in the instruction of clinical precision therapy.
Collapse
Affiliation(s)
- Lijuan Weng
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jianliang Zhou
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shenchao Guo
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Ruishuang Ma
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
27
|
Chen H, Bian A, Zhou W, Miao Y, Ye J, Li J, He P, Zhang Q, Sun Y, Sun Z, Ti C, Chen Y, Yi Z, Liu M. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS CENTRAL SCIENCE 2024; 10:579-594. [PMID: 38559310 PMCID: PMC10979493 DOI: 10.1021/acscentsci.3c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents.
Collapse
Affiliation(s)
- Huang Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Aiwu Bian
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Ying Miao
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiangnan Ye
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiahui Li
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Peng He
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Qiansen Zhang
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yue Sun
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhenliang Sun
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chaowen Ti
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yihua Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhengfang Yi
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Mingyao Liu
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| |
Collapse
|
28
|
Zhang WF, Ruan CW, Wu JB, Wu GL, Wang XG, Chen HJ. Limonin inhibits the stemness of cancer stem-like cells derived from colorectal carcinoma cells potentially via blocking STAT3 signaling. World J Clin Oncol 2024; 15:317-328. [PMID: 38455137 PMCID: PMC10915944 DOI: 10.5306/wjco.v15.i2.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum. It exerts antitumor effects on several kinds of cancer cells. However, whether limonin exerts antitumor effects on colorectal cancer (CRC) cells and cancer stem-like cells (CSCs), a subpopulation responsible for a poor prognosis, is unclear. AIM To evaluate the effects of limonin on CSCs derived from CRC cells. METHODS CSCs were collected by culturing CRC cells in serum-free medium. The cytotoxicity of limonin against CSCs and parental cells (PCs) was determined by cholecystokinin octapeptide-8 assay. The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability. RESULTS As expected, limonin exerted inhibitory effects on CRC cell behaviors, including cell proliferation, migration, invasion, colony formation and tumor formation in soft agar. A relatively low concentration of limonin decreased the expression stemness hallmarks, including Nanog and β-catenin, the proportion of aldehyde dehydrogenase 1-positive CSCs, and the sphere formation rate, indicating that limonin inhibits stemness without presenting cytotoxicity. Additionally, limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice. Moreover, limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression. Inhibition of Nanog and β-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2 μmol/L colievlin. CONCLUSION Taken together, these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.
Collapse
Affiliation(s)
- Wei-Feng Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Cheng-Wei Ruan
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Jun-Bo Wu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang 421000, Hunan Province, China
| | - Guo-Liang Wu
- The First College for Clinical Medicine, Nanjing University Of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao-Gan Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Hong-Jin Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
29
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Liu Y, Liang J, Zhu R, Yang Y, Wang Y, Wei W, Li H, Chen L. Application of PROTACs in Target Identification and Target Validation. ACTA MATERIA MEDICA 2024; 3:72-87. [PMID: 39373008 PMCID: PMC11452161 DOI: 10.15212/amm-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PROTAC, as a novel therapeutic drug model, has received widespread attention from the academic and pharmaceutical industries. At the same time, PROTAC technology has led many researchers to focus on developing chemical biology tool properties due to its unique operating mechanism and protein dynamic regulatory properties. In recent years, the rapid development of PROTAC technology has gradually made it an essential tool for target identification and target validation. To further promote the application of PROTAC tools in drug discovery and basic medical sciences research, this review distinguished between target identification and target validation concepts. It summarized the research progress of PROTAC technology in these aspects.
Collapse
Affiliation(s)
- Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yali Wang
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
31
|
Bose M, Sanders A, Handa A, Vora A, Cardona MR, Brouwer C, Mukherjee P. Molecular crosstalk between MUC1 and STAT3 influences the anti-proliferative effect of Napabucasin in epithelial cancers. Sci Rep 2024; 14:3178. [PMID: 38326371 PMCID: PMC10850135 DOI: 10.1038/s41598-024-53549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| | - Alexa Sanders
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aashna Handa
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aabha Vora
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Manuel R Cardona
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Cory Brouwer
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
32
|
Adesoye T, Tripathy D, Hunt KK, Keyomarsi K. Exploring Novel Frontiers: Leveraging STAT3 Signaling for Advanced Cancer Therapeutics. Cancers (Basel) 2024; 16:492. [PMID: 38339245 PMCID: PMC10854592 DOI: 10.3390/cancers16030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a significant role in diverse physiologic processes, including cell proliferation, differentiation, angiogenesis, and survival. STAT3 activation via phosphorylation of tyrosine and serine residues is a complex and tightly regulated process initiated by upstream signaling pathways with ligand binding to receptor and non-receptor-linked kinases. Through downstream deregulation of target genes, aberrations in STAT3 activation are implicated in tumorigenesis, metastasis, and recurrence in multiple cancers. While there have been extensive efforts to develop direct and indirect STAT3 inhibitors using novel drugs as a therapeutic strategy, direct clinical application remains in evolution. In this review, we outline the mechanisms of STAT3 activation, the resulting downstream effects in physiologic and malignant settings, and therapeutic strategies for targeting STAT3. We also summarize the pre-clinical and clinical evidence of novel drug therapies targeting STAT3 and discuss the challenges of establishing their therapeutic efficacy in the current clinical landscape.
Collapse
Affiliation(s)
- Taiwo Adesoye
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
34
|
Liu Y, Wang H. Biomarkers and targeted therapy for cancer stem cells. Trends Pharmacol Sci 2024; 45:56-66. [PMID: 38071088 PMCID: PMC10842814 DOI: 10.1016/j.tips.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cancer cells with capabilities of self-renewal, differentiation, and tumorigenicity, and play a critical role in driving tumor heterogeneity that evolves insensitivity to therapeutics. For these reasons, extensive efforts have been made to identify and target CSCs to potentially improve the antitumor efficacy of therapeutics. While progress has been made to uncover certain CSC-associated biomarkers, the identification of CSC-specific markers, especially the targetable ones, remains a significant challenge. Here we provide an overview of the unique signaling and metabolic pathways of CSCs, summarize existing CSC biomarkers and CSC-targeted therapies, and discuss strategies to further differentiate CSCs from non-stem cancer cells and healthy cells for the development of enhanced CSC-targeted therapies.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
35
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
36
|
Jalil AT, Abdulhadi MA, Al Jawadri AMH, Talib HA, Al-Azzawi AKJ, Zabibah RS, Ali A. Cancer Stem Cells in Colorectal Cancer: Implications for Targeted Immunotherapies. J Gastrointest Cancer 2023; 54:1046-1057. [PMID: 37247115 DOI: 10.1007/s12029-023-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Colorectal cancers are composed of heterogeneous cell populations in the concepts of genetic and functional degrees that among them cancer stem cells are identified with their self-renewal and stemness capability mediating primary tumorigenesis, metastasize, therapeutic resistance, and tumor recurrence. Therefore, understanding the key mechanisms of stemness in colorectal cancer stem cells (CRCSCs) provides opportunities to discover new treatments or improve existing therapeutic regimens. METHODS We review the biological significance of stemness and the results of potential CRCSC-based targeted immunotherapies. Then, we pointed out the barriers to targeting CRCSCs in vivo and highlight new strategies based on synthetic and biogenic nanocarriers for the development of future anti-CRCSC trials. RESULTS The CSCs' surface markers, antigens, neoantigens, and signaling pathways supportive CRCSCs or immune cells that are interacted with CRCSCs could be targeted by immune monotherapy or in formulation with developed nanocarriers to overcome the resistant mechanisms in immune evader CRCSCs. CONCLUSION Identification molecular and cellular cues supporting stemness in CRCSCs and their targeting by nanoimmunotherpy can improve the efficacy of existed therapies or explore novel therapeutic options in future.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
37
|
Riviere-Cazaux C, Carlstrom LP, Neth BJ, Olson IE, Rajani K, Rahman M, Ikram S, Mansour MA, Mukherjee B, Warrington AE, Short SC, von Zglinicki T, Brown DA, Burma S, Tchkonia T, Schafer MJ, Baker DJ, Kizilbash SH, Kirkland JL, Burns TC. An untapped window of opportunity for glioma: targeting therapy-induced senescence prior to recurrence. NPJ Precis Oncol 2023; 7:126. [PMID: 38030881 PMCID: PMC10687268 DOI: 10.1038/s41698-023-00476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.
Collapse
Affiliation(s)
| | | | | | - Ian E Olson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Rochester, MN, USA
| | - Samar Ikram
- Department of Neurological Surgery, Rochester, MN, USA
| | | | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Rochester, MN, USA
- Department of Neurology, Rochester, MN, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St. James's, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Desmond A Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Rochester, MN, USA
| | | | - James L Kirkland
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Medicine, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Rochester, MN, USA.
| |
Collapse
|
38
|
Wu CC, Hou BC, Yang YH, Li XF, Ma HC, Li BX. Circ_0084188 promotes colorectal cancer progression by sponging miR-654-3p and regulating kruppel-like factor 12. Kaohsiung J Med Sci 2023; 39:1062-1076. [PMID: 37698263 DOI: 10.1002/kjm2.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
To investigate the biological role and mechanism of circ_0084188 in colorectal cancer (CRC). Real-time quantitative polymerase chain reaction and western blot assay were used to detect RNA levels and protein levels in CRC cell lines (HCT116 and SW480), respectively. Cell proliferation was evaluated by Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and colony formation assays. Cell apoptosis was determined using flow cytometry. Cell migration and invasion were measured by transwell assay. Sphere formation efficiency was determined by sphere formation assay. The interaction between microRNA-654-3p (miR-654-3p) and circ_0084188 or Kruppel-like factor 12 (KLF12) was confirmed by a dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Xenograft in CRC mice model was utilized for exploring the role of circ_0084188 in vivo.Circ_0084188 was overexpressed in CRC tissues and cells. Circ_0084188 silencing suppressed cell proliferation, migration, invasion, and stemness and induced apoptosis in CRC cells. Circ_0084188 acted as a sponge for miR-654-3p, and circ_0084188 regulated CRC cell behaviors via sponging miR-654-3p. Moreover, KLF12 was a target of miR-654-3p, and miR-654-3p overexpression inhibited the malignant behaviors of CRC cells by downregulating KLF12. Mechanically, circ_0084188 sponged miR-654-3p to regulate KLF12 expression in CRC cells. In addition, circ_0084188 downregulation inhibited tumor growth in vivo.Circ_0084188 knockdown might repress CRC progression partially via regulating the miR-654-3p/KLF12 axis, providing a novel insight into the pathogenesis of CRC.
Collapse
Affiliation(s)
- Cui-Cui Wu
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| | - Bai-Chun Hou
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| | - Yu-Han Yang
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xue-Feng Li
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hong-Chao Ma
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| | - Bin-Xian Li
- Department of Clinical Laboratory, Affiliated Hospital of Beihua University, Jilin, China
| |
Collapse
|
39
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
41
|
Qiu X, Zhou J, Xu H, Li Y, Ma S, Qiao H, Zeng K, Wang Q, Ouyang J, Liu Y, Ding J, Liu Y, Zhang J, Shi M, Liao Y, Liao W, Lin L. Alcohol reshapes a liver premetastatic niche for cancer by extra- and intrahepatic crosstalk-mediated immune evasion. Mol Ther 2023; 31:2662-2680. [PMID: 37469143 PMCID: PMC10492032 DOI: 10.1016/j.ymthe.2023.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer metastatic organotropism is still a mystery. The liver is known to be susceptible to cancer metastasis and alcoholic injury. However, it is unclear whether and how alcohol facilitates liver metastasis and how to intervene. Here, we show that alcohol preferentially promotes liver metastasis in colon-cancer-bearing mice and post-surgery pancreatic cancer patients. The mechanism is that alcohol triggers an extra- and intrahepatic crosstalk to reshape an immunosuppressive liver microenvironment. In detail, alcohol upregulates extrahepatic IL-6 and hepatocellular IL-6 receptor expression, resulting in hepatocyte STAT3 signaling activation and downstream lipocalin-2 (Lcn2) upregulation. Furthermore, LCN2 promotes T cell-exhaustion neutrophil recruitment and cancer cell epithelial plasticity. In contrast, knocking out hepatocellular Stat3 or systemic Il6 in alcohol-treated mice preserves the liver microenvironment and suppresses liver metastasis. This mechanism is reflected in hepatocellular carcinoma patients, in that alcohol-associated signaling elevation in noncancerous liver tissue indicates adverse prognosis. Accordingly, we discover a novel application for BBI608, a small molecular STAT3 inhibitor that can prevent liver metastasis. BBI608 pretreatment protects the liver and suppresses alcohol-triggered premetastatic niche formation. In conclusion, under extra- and intrahepatic crosstalk, the alcoholic injured liver forms a favorable niche for cancer cell metastasis, while BBI608 is a promising anti-metastatic agent targeting such microenvironments.
Collapse
Affiliation(s)
- Xiaofang Qiu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Xu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hang Qiao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangxin Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiongqiong Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiahe Ouyang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanhan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Ding
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
42
|
Shao Z, Wang H, Ren H, Sun Y, Chen X. The Anticancer Effect of Napabucasin (BBI608), a Natural Naphthoquinone. Molecules 2023; 28:5678. [PMID: 37570646 PMCID: PMC10420168 DOI: 10.3390/molecules28155678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Napabucasin (also known as BBI608) is a natural naphthoquinone originally identified as a cancer cell stemness inhibitor. Accumulated in vitro and in vivo evidence demonstrated that napabucasin showed significant anticancer effects in various types of cancers. Napabucasin inhibits cancer cell proliferation, induces apoptosis and cell cycle arrest, and suppresses metastasis and relapse. Such anticancer activities of napabucasin mainly rely on the inhibition of cancer stemness by targeting signal transducer and activator of transcription 3 (STAT3) and its related gene inhibition. However, several novel molecular targets for napabucasin, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and thioredoxin reductase 1 (TrxR1), have been reported. Napabucasin represents a promising anticancer lead for multiple cancers. In this mini review, the anticancer potential and the molecular mechanism of napabucasin will be briefly highlighted.
Collapse
Affiliation(s)
- Zeyang Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Haiyan Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Yinxiang Sun
- Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Disease, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
43
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
44
|
Mészáros Crow E, López-Gigosos R, Mariscal-López E, Agredano-Sanchez M, García-Casares N, Mariscal A, Gutiérrez-Bedmar M. Psychosocial interventions reduce cortisol in breast cancer patients: systematic review and meta-analysis. Front Psychol 2023; 14:1148805. [PMID: 37441329 PMCID: PMC10333719 DOI: 10.3389/fpsyg.2023.1148805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Cancer initiation, progression and recurrence are intricate mechanisms that depend on various components: genetic, psychophysiological, or environmental. Exposure to chronic stress includes fear of recurrence that can affect biological processes that regulate immune and endocrine systems, increase cancer risk, and influence the survival rate. Previous studies show that psychological interventions might influence the level of cortisol that has been extensively used as a biomarker for measuring hypothalamic-pituitary-adrenal axis functioning and body's immunity response. This meta-analysis aimed to provide a quantitative scrutiny of the effect of certain types of psychosocial interventions on cortisol as a neuroendocrine biomarker in saliva or blood and might predict breast cancer (BC) progression. Methods A literature search was performed in the following databases: PubMed, The Cohrane Library, Scopus, WOS, PsychInfo, Google Scholar, Ovid Science Direct. After methodical selection of originally generated 2.021 studies, the search yielded eight articles that met inclusion criteria. All these studies explored effects of psychosocial interventions that measured cortisol in total of 366 participants with BC, stages 0-IV, in randomized control trial or quasi experimental study design setting. We applied random effects model to conduct meta-analyses on the parameters of salivary and plasma cortisol and used PRISMA Guidelines as validated methodology of investigation to report the results. Results Eight studies selected for meta-analysis have shown the reduction of cortisol level due to applied psychosocial intervention. The random effects model showed that interventions produced large effect sizes in reductions of cortisol in blood (Cohen's d = -1.82, 95% Confidence Interval (CI): -3.03, -0.60) and slightly less in saliva (d = -1.73, 95%CI: -2.68, -0.78) with an overall effect of d = -1.76 (95%CI: -2.46, -1.07). Conclusion Our study concluded that certain types of psychosocial interventions reduce cortisol (indicator of chronic stress) in patients with BC. Application of specific psychosocial support as adjuvant non-invasive therapy for affected females with BC at all phases of treatment could contribute to more cost-effective health care.
Collapse
Affiliation(s)
- Edith Mészáros Crow
- Department of Public Health and Psychiatry, School of Medicine, University of Málaga, Málaga, Spain
| | - Rosa López-Gigosos
- Department of Public Health and Psychiatry, School of Medicine, University of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-IBIMA, Málaga, Spain
| | - Eloisa Mariscal-López
- Department of Public Health and Psychiatry, School of Medicine, University of Málaga, Málaga, Spain
| | - Marina Agredano-Sanchez
- Department of Public Health and Psychiatry, School of Medicine, University of Málaga, Málaga, Spain
| | - Natalia García-Casares
- Biomedical Research Institute of Málaga-IBIMA, Málaga, Spain
- Department of Medicine, School of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigaciones Medico-Sanitarias (C.I.M.E.S), Málaga, Spain
| | - Alberto Mariscal
- Department of Public Health and Psychiatry, School of Medicine, University of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-IBIMA, Málaga, Spain
| | - Mario Gutiérrez-Bedmar
- Department of Public Health and Psychiatry, School of Medicine, University of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-IBIMA, Málaga, Spain
- CIBERCV Cardiovascular Diseases, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
45
|
Wei N, Burnett J, Crocker DL, Huang Y, Li S, Wipf P, Chu E, Schmitz JC. Quassinoid analogs exert potent antitumor activity via reversible protein biosynthesis inhibition in human colorectal cancer. Biochem Pharmacol 2023; 212:115564. [PMID: 37116665 PMCID: PMC11225567 DOI: 10.1016/j.bcp.2023.115564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Cellular protein synthesis is accelerated in human colorectal cancer (CRC), and high expression of protein synthesis regulators in CRC patients is associated with poor prognosis. Thus, inhibition of protein synthesis may be an effective therapeutic strategy for CRC. We previously demonstrated that the quassinoid bruceantinol (BOL) had antitumor activity against CRC. Herein, potent tumor growth suppression (>80%) and STAT3 inhibition was observed in two different mouse models following BOL administration. Loss of body and spleen weight was observed but was eliminated upon nanoparticle encapsulation while maintaining strong antitumor activity. STAT3 siRNA knockdown exhibited modest suppression of cell proliferation. Surprisingly, STAT3 inhibition using a PROTAC degrader (SD-36) had little effect on cancer cell proliferation suggesting the possibility of additional mechanism(s) of action for quassinoids. BOL-resistant (BR) cell lines, HCT116BR and HCA7BR, were equally sensitive to standard CRC therapeutic agents and known STAT3 inhibitors but resistant to homoharringtonine (HHT), a known protein synthesis inhibitor. The ability of quassinoids to inhibit protein synthesis was dependent on the structure of the C15 sidechain. Of note, BOL did not inhibit protein synthesis in normal human colon epithelial cells whereas HHT and napabucasin remained effective in these normal cells. Novel quassinoids were designed, synthesized, and evaluated in pre-clinical CRC models. Treatment with the most potent analog, 5c, resulted in significant inhibition of cell proliferation and protein synthesis at nanomolar concentrations. These quassinoid analogs may represent a novel class of protein synthesis inhibitors for the treatment of human CRC.
Collapse
Affiliation(s)
- Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Montefiore Einstein Cancer Center, Cancer Therapeutics Program, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - James Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Desirae L Crocker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yixian Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edward Chu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Montefiore Einstein Cancer Center, Cancer Therapeutics Program, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John C Schmitz
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States.
| |
Collapse
|
46
|
Zhang C, Yang L, Yang X, Gao Q, Qu Y, Wu L. Design, synthesis, and biological evaluation of novel napabucasin-melatonin hybrids as potent STAT3 inhibitors. Bioorg Chem 2023; 136:106541. [PMID: 37062104 DOI: 10.1016/j.bioorg.2023.106541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
The current work developed diverse novel napabucasin-melatonin hybrids as potent STAT3 inhibitors. Several biological studies have suggested many compounds demonstrating potent inhibition against different tumor cells. Among these, compound 7e depicted enhanced inhibition against HepG2, MDA-MB-231, and A549 cells than napabucasin, with IC50 values of 1.06, 1.38, and 1.3 µM, respectively. Based on fluorescence polarization analysis, compound 7e was bound to the SH2 domain in STAT3, with an IC50 value of 12.95 µM. Molecular docking further confirmed the 7e binding mode inside the SH2 domain of STAT3. Further mechanistic studies indicated that 7e inhibited the activation of STAT3 (Y705), and thus reduced the expression of STAT3 downstream genes (CyclinD1, Bcl-2 and c-Myc) instead of affecting p-STAT1 expression. Meanwhile, the phosphorylation levels of its upstream kinases JAK2 and bypass kinase Erk1/2 remain unaffected. Simultaneously, 7e induced cancer cell apoptosis in a concentration-dependent manner. Significantly, 20 mg/kg (i.p.) compound 7e suppressed the mouse HepG2 xenograft development in vivo without body weight loss, suggesting that it could be an effective antitumor agent.
Collapse
Affiliation(s)
- Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Limin Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan Qu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
47
|
Li Q, Luo H, Dai F, Wang R, Fan X, Luo Y, Deng M, Wang Y, Long T, Guo W, Xu B, Xu C, Jin H. SAMD9 Promotes Postoperative Recurrence of Esophageal Squamous Cell Carcinoma by Stimulating MYH9-Mediated GSK3β/β-Catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203573. [PMID: 36757050 PMCID: PMC10104667 DOI: 10.1002/advs.202203573] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Recurrence is a challenge to survival after the initial treatment of esophageal squamous cell carcinoma (ESCC). But, its mechanism remains elusive and there are currently no biomarkers to predict postoperative recurrence. Here, the possibility of sterile alpha motif domain-containing protein 9 (SAMD9) as a predictor of postoperative recurrence of ESCC is evaluated and the molecular mechanisms by which SAMD9 promotes ESCC recurrence are elucidated. The authors found that the high level of SAMD9 is correlated with postoperative recurrence and poor prognosis of ESCC. Overexpression of SAMD9 promotes tumor stemness, angiogenesis, and EMT, while downregulation of SAMD9 reduced these phenotypes. Mechanistically, it is found that SAMD9 stimulated ubiquitination-mediated glycogen synthase kinase-3 beta (GSK-3β) degradation by interaction with myosin-9 (MYH9) and TNF receptor-associated factor 6 (TRAF6), which in turn activated Wnt/β-catenin pathway. Further, the authors demonstrated that silencing SAMD9 inhibited lung metastasis and tumor formation in vivo. Finally, the authors found that silencing MYH9 or β-catenin, or overexpressing GSK-3β inhibited SAMD9-stimulated ESCC cell stemness, EMT, angiogenesis, metastasis, and tumorigenicity. Together, the findings indicate that the SAMD9/MYH9/GSK3β/β-catenin axis promotes ESCC postoperative recurrence and that SAMD9 is a crucial target for ESCC therapy. Additionally, SAMD9 has the potential as a predictor of postoperative recurrence in ESCC.
Collapse
Affiliation(s)
- Qing Li
- Department of Thoracic SurgeryDaping HospitalArmy Medical UniversityChongqing400042China
| | - Hao Luo
- Cancer CenterDaping HospitalArmy Medical UniversityChongqing400042China
| | - Fu‐Qiang Dai
- Department of Thoracic SurgeryDaping HospitalArmy Medical UniversityChongqing400042China
| | - Ren‐Tao Wang
- College of Pulmonary and Critical Care MedicineChinese PLA General HospitalBeijing100853China
| | - Xiao‐Qing Fan
- Department of Thoracic SurgeryDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yuan‐Yuan Luo
- School of MedicineChongqing UniversityChongqing400030China
| | - Meng‐Sheng Deng
- State Key Laboratory of TraumaResearch Institute of SurgeryArmy Medical UniversityChongqing400042China
| | - Yulun Wang
- Department of Biochemistry and Molecular BiologyNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerTianjin300060China
| | - Tan Long
- Department of Thoracic SurgeryDaping HospitalArmy Medical UniversityChongqing400042China
| | - Wei Guo
- Department of Thoracic SurgeryDaping HospitalArmy Medical UniversityChongqing400042China
| | - Bo Xu
- Department of Biochemistry and Molecular BiologyNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerTianjin300060China
- Chongqing Key Laboratory of Intelligent Oncology for Breast CancerChongqing University Cancer Hospital and Chongqing University School of MedicineChongqing400030China
| | - Cheng‐Xiong Xu
- School of MedicineChongqing UniversityChongqing400030China
| | - Hua Jin
- Department of Thoracic SurgeryDaping HospitalArmy Medical UniversityChongqing400042China
| |
Collapse
|
48
|
Bekaii-Saab T, Okusaka T, Goldstein D, Oh DY, Ueno M, Ioka T, Fang W, Anderson EC, Noel MS, Reni M, Choi HJ, Goldberg JS, Oh SC, Li CP, Tabernero J, Li J, Foos E, Oh C, Van Cutsem E. Napabucasin plus nab-paclitaxel with gemcitabine versus nab-paclitaxel with gemcitabine in previously untreated metastatic pancreatic adenocarcinoma: an adaptive multicentre, randomised, open-label, phase 3, superiority trial. EClinicalMedicine 2023; 58:101897. [PMID: 36969338 PMCID: PMC10036520 DOI: 10.1016/j.eclinm.2023.101897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Compared with normal cells, tumour cells contain elevated levels of reactive oxygen species (ROS). Increased levels of the antioxidant protein NAD(P)H:quinone oxidoreductase 1 (NQO1) and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) correlate negatively with the survival of patients with pancreatic cancer. Napabucasin is an investigational, orally administered ROS generator bioactivated by NQO1. METHODS In the open-label, phase 3 CanStem111P study (NCT02993731), adults with previously untreated metastatic pancreatic adenocarcinoma (mPDAC) were randomised (1:1) to napabucasin plus nab-paclitaxel with gemcitabine or nab-paclitaxel with gemcitabine alone. The primary endpoint was overall survival (OS). In exploratory analyses, OS was evaluated in the subgroup of patients with tumours positive for pSTAT3 (biomarker-positive). FINDINGS Between 30 January 2017 and 20 February 2019, a total of 1779 patients were screened across 165 study sites in Austria, Australia, Belgium, Canada, China, Czech Republic, France, Germany, Italy, Japan, Korea, Netherlands, Poland, Portugal, Russia, Singapore, Spain, Taiwan, Ukraine, and the US. Of the 565 and 569 patients randomised to the napabucasin and control treatment arms, respectively, 206 and 176 were biomarker-positive. Median (95% confidence interval [CI]) OS in the napabucasin and control treatment arms was 11.4 (10.5-12.2) and 11.7 (10.7-12.7) months, respectively (hazard ratio, 1.07; 95% CI, 0.93-1.23). Due to the lack of OS improvement in the napabucasin arm, CanStem111P was terminated due to futility. In the biomarker-positive subgroup, no difference between treatment arms was found for OS. Grade ≥3 adverse events were reported in 85.4% and 83.9% of napabucasin-treated and control-treated patients, respectively. The incidence of gastrointestinal-related grade ≥3 events was higher with napabucasin (diarrhoea: 11.6% vs 4.9%; abdominal pain: 10.0% vs 4.8%). INTERPRETATION Our findings suggested that although the addition of napabucasin to nab-paclitaxel with gemcitabine did not improve efficacy in patients with previously untreated mPDAC, the safety profile of napabucasin was consistent with previous reports. CanStem111P represents the largest cohort of patients with mPDAC administered nab-paclitaxel with gemcitabine in the clinical trial setting. Our data reinforce the value of nab-paclitaxel plus gemcitabine as a platform for novel therapeutics approaches in mPDAC. FUNDING The Sumitomo Pharma Oncology, Inc.
Collapse
Affiliation(s)
- Tanios Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Corresponding author. Medical Oncology, Mayo Clinic Cancer Center, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Weijia Fang
- Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Eric C. Anderson
- Division of Hematology/Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Marcus S. Noel
- Department of Medicine, Division of Medical Oncology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Michele Reni
- Department of Oncology, Pancreas Center, IRCCS Ospedale, San Raffaele Scientific Institute, Milan, Italy
| | - Hye Jin Choi
- Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Sang Cheul Oh
- Department of Medical Oncology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chung-Pin Li
- Division of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | - Jian Li
- Clinical Development, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Emma Foos
- Biostatistics, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Cindy Oh
- Clinical Operations, Sumitomo Pharma Oncology, Inc., Cambridge, MA, USA
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Gasthuisberg, Leuven & KULeuven, Leuven, Belgium
| |
Collapse
|
49
|
Zhang Y, Chen J, Mi D, Ling J, Li H, He P, Liu N, Chen Q, Chen Y, Huang L. Discovery of YH677 as a cancer stemness inhibitor that suppresses triple-negative breast cancer growth and metastasis by regulating the TGFβ signaling pathway. Cancer Lett 2023; 560:216142. [PMID: 36965539 DOI: 10.1016/j.canlet.2023.216142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis due to the lack of specific and highly effective therapeutic agents. Cancer stem cells (CSCs) are one of the main factors contributing to TNBC relapse and metastasis. Therefore, targeting CSCs selectively with small molecules is a novel strategy for drug development. In this study, the natural product harmine (HM) was identified as a hit compound from 2632 natural product monomers based on phenotypic screening of a 2D assay and patient-derived organoid (PDO) model that was established from a patient who had multiple drug resistance and various visceral and contralateral breast metastases. Next, harmine was further modified and optimized to obtain a lead compound (YH677) with a tetrahydro-β-carboline scaffold. YH677 showed potent antiproliferative and antimigratory activities against several TNBC cell lines in vitro. In addition, YH677 inhibited epithelial mesenchymal transition (EMT) and stem cell marker expression in a dose-dependent manner. More importantly, YH677 suppressed breast cancer growth and metastasis in orthotopic, metastatic xenograft and patient-derived xenograft (PDX) models in vivo. Mechanistic studies showed that YH677 inhibits the expansion of CSCs by regulating the TGFβ/Smad signaling pathway. These preclinical data provide a basis for the development of YH677 as a lead compound for TNBC treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jun Ling
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Huachao Li
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Peng He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ning Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
50
|
Usutani H, Yamamoto K, Hashimoto K. Process Intensification of a Napabucasin Manufacturing Method Utilizing Microflow Chemistry. ACS OMEGA 2023; 8:10373-10382. [PMID: 36969467 PMCID: PMC10034843 DOI: 10.1021/acsomega.2c07997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Microflow chemistry is one of the newest and most efficient technologies used today for the safe and effective production of medicines. In this paper, we show the use of this technology in the development of a manufacturing method for napabucasin, which has potential in the treatment of colorectal and pancreatic cancers. In conventional "batch-type" reactor systems, the generation of side products can be controlled with traditional techniques such as reagent reverse-addition and temperature control. However, there is a limitation to which the yield and purity can be improved by these methods, as both are constrained by the efficiency of heat/mass transfer. Applying microflow chemistry technology alters the parameters of the constraint through the use of precise mixing in a microchannel, which offers increased possibility for improving yields and process intensification of the napabucasin process. Reported herein is a proof-of-concept study for the scale-up production of napabucasin using microflow chemistry techniques for manufacturing at the kilogram scale.
Collapse
|