1
|
Garg M, Sharma D, Kaur G, Rawat J, Goyal B, Kumar S, Kumar R. Factor defining the effects of tetraalkylammonium chloride on stability, folding, and dynamics of horse cytochrome c. Int J Biol Macromol 2024; 276:133713. [PMID: 38986993 DOI: 10.1016/j.ijbiomac.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This article describes the molecular mechanism by which tetraalkylammonium chloride ([R4N]Cl: R- = methyl (Me), ethyl (Et), propyl (Pr),butyl (Bu)) modulates the stability, folding, and dynamics of cytochrome c (Cyt c). Analysis of [R4N]Cl effects on thermal/chemical denaturations, millisecond refolding/unfolding kinetics, and slow CO-association kinetics of Cyt c without and with denaturant providing some significant results: (i) [R4N]Cl decreasing the unfolding free energy estimated by thermodynamic and kinetic analysis of thermal/chemical denaturation curves and kinetic chevrons (Log kobs-[GdmCl]) of Cyt c, respectively (ii) hydrophobicity of R-group of [R4N]Cl, preferential inclusion of [R4N]Cl at the protein surface, and destabilizing enthalpic attractive interactions of [Me4N]Cl and steric entropic interactions of [Et4N]Cl,[Pr4N]Cl and [Bu4N]Cl with protein contribute to [R4N]Cl-induced decrease thermodynamic stability of Cyt c (iii) [R4N]Cl exhibits an additive effect with denaturant to decrease thermodynamic stability and refolding rates of Cyt c (iv) low concentrations of [R4N]Cl (≤ 0.5 M) constrain the motional dynamics while the higher concentrations (>0.75 M [R4N]Cl) enhance the structural-fluctuations that denture protein (v) hydrophobicity of R-group of [R4N]Cl alters the [denaturant]-dependent conformational stability, refolding-unfolding kinetics, and CO-association kinetics of Cyt c. Furthermore, the MD simulations depicted that the addition of 1.0 M of [R4N]Cl increased the conformational fluctuations in Cyt c leading to decreased structural stability in the order [Me4N]Cl < [Et4N]Cl < [Pr4N]Cl < [Bu4N]Cl consistent with the experimental results.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Academy of Scientific & Innovative Research, Chandigarh, India
| | - Gurmeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jayanti Rawat
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sumit Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
2
|
Khusainov G, Standfuss J, Weinert T. The time revolution in macromolecular crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:020901. [PMID: 38616866 PMCID: PMC11015943 DOI: 10.1063/4.0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Macromolecular crystallography has historically provided the atomic structures of proteins fundamental to cellular functions. However, the advent of cryo-electron microscopy for structure determination of large and increasingly smaller and flexible proteins signaled a paradigm shift in structural biology. The extensive structural and sequence data from crystallography and advanced sequencing techniques have been pivotal for training computational models for accurate structure prediction, unveiling the general fold of most proteins. Here, we present a perspective on the rise of time-resolved crystallography as the new frontier of macromolecular structure determination. We trace the evolution from the pioneering time-resolved crystallography methods to modern serial crystallography, highlighting the synergy between rapid detection technologies and state-of-the-art x-ray sources. These innovations are redefining our exploration of protein dynamics, with high-resolution crystallography uniquely positioned to elucidate rapid dynamic processes at ambient temperatures, thus deepening our understanding of protein functionality. We propose that the integration of dynamic structural data with machine learning advancements will unlock predictive capabilities for protein kinetics, revolutionizing dynamics like macromolecular crystallography revolutionized structural biology.
Collapse
Affiliation(s)
- Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
3
|
Gardner AM, Gardner PR. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J Inorg Biochem 2023; 245:112257. [PMID: 37229820 DOI: 10.1016/j.jinorgbio.2023.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
4
|
Malla TN, Schmidt M. Transient state measurements on proteins by time-resolved crystallography. Curr Opin Struct Biol 2022; 74:102376. [DOI: 10.1016/j.sbi.2022.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
|
5
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
6
|
Eaton WA. Impact of Conformational Substates and Energy Landscapes on Understanding Hemoglobin Kinetics and Function. J Biol Phys 2021; 47:337-353. [PMID: 34762226 PMCID: PMC8603986 DOI: 10.1007/s10867-021-09588-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Hans Frauenfelder's discovery of conformational substates in studies of myoglobin carbon monoxide geminate rebinding kinetics at cryogenic temperatures (Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, & Gunsalus IC (1975) Dynamics of Ligand Binding to Myoglobin. Biochemistry 14(24):5355-5373) followed by his introduction of energy landscape theory with Peter Wolynes (Frauenfelder H, Sligar SG, & Wolynes PG (1991) The Energy Landscapes and Motions of Proteins. Science 254(5038):1598-1603) marked the beginning of a new era in the physics and physical chemistry of proteins. Their work played a major role in demonstrating the power and importance of dynamics and of Kramers reaction rate theory for understanding protein function. The biggest impact of energy landscape theory has been in the protein folding field, which is well-known and has been documented in numerous articles and reviews, including a recent one of my own (Eaton WA (2021) Modern Kinetics and Mechanism of Protein Folding: a Retrospective. J. Phys. Chem. B. 125(14):3452-3467). Here I will describe the much less well-known impact of their modern view of proteins on both experimental and theoretical studies of hemoglobin kinetics and function. I will first describe how Frauenfelder's experiments motivated and influenced my own research on myoglobin, which were key ingredients to my work on understanding hemoglobin.
Collapse
Affiliation(s)
- William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5/104, Bethesda, MD, 20892-0520, United States.
| |
Collapse
|
7
|
Schmidt M. Macromolecular movies, storybooks written by nature. Biophys Rev 2021; 13:1191-1197. [PMID: 35059037 PMCID: PMC8724502 DOI: 10.1007/s12551-021-00846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022] Open
Abstract
Twelve years ago, the first free electron laser for hard X-rays (XFEL), the Linac Coherent Light Source (LCLS), came online. Due to the extreme brilliance and the ultrashort pulse duration of their X-ray radiation, XFELs are exceptionally well positioned to conduct time-resolved studies on biological macromolecules. Here, some of the pioneering experiments and recent results are summarized.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin Milwaukee, Milwaukee, WI 53211 USA
| |
Collapse
|
8
|
Terrill NJ, Dent AJ, Dobson B, Beale AM, Allen L, Bras W. Past, present and future-sample environments for materials research studies in scattering and spectroscopy; a UK perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:483002. [PMID: 34479225 DOI: 10.1088/1361-648x/ac2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Small angle x-ray scattering and x-ray absorption fine structure are two techniques that have been employed at synchrotron sources ever since their inception. Over the course of the development of the techniques, the introduction of sample environments for added value experiments has grown dramatically. This article reviews past successes, current developments and an exploration of future possibilities for these two x-ray techniques with an emphasis on the developments in the United Kingdom between 1980-2020.
Collapse
Affiliation(s)
| | - Andrew J Dent
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Barry Dobson
- Sagentia Ltd, Harston Mill, Harston Mill, CB22 7GG, United Kingdom
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
- The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Lisa Allen
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
- The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, One Bethel Valley Road TN 37831, United States of America
| |
Collapse
|
9
|
Bacellar C, Kinschel D, Cannelli O, Sorokin B, Katayama T, Mancini GF, Rouxel JR, Obara Y, Nishitani J, Ito H, Ito T, Kurahashi N, Higashimura C, Kudo S, Cirelli C, Knopp G, Nass K, Johnson PJM, Wach A, Szlachetko J, Lima FA, Milne CJ, Yabashi M, Suzuki T, Misawa K, Chergui M. Femtosecond X-ray spectroscopy of haem proteins. Faraday Discuss 2021; 228:312-328. [PMID: 33565544 DOI: 10.1039/d0fd00131g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Boris Sorokin
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jeremy R Rouxel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yuki Obara
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hironori Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Terumasa Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Kurahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, 7-1, Chiyoda, 102-8554 Tokyo, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shotaro Kudo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kazuhiko Misawa
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci 2021; 5:127-149. [PMID: 33969867 DOI: 10.1042/etls20200316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.
Collapse
|
11
|
Ramirez-Mondragon CA, Nguyen ME, Milicaj J, Hassan BA, Tucci FJ, Muthyala R, Gao J, Taylor EA, Sham YY. Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics. Int J Mol Sci 2021; 22:ijms22094619. [PMID: 33924837 PMCID: PMC8124905 DOI: 10.3390/ijms22094619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022] Open
Abstract
It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the “closed” state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase’s function and new modality to modulate enzymatic efficiency.
Collapse
Affiliation(s)
- Carlos A. Ramirez-Mondragon
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
| | - Megin E. Nguyen
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
| | - Jozafina Milicaj
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
| | - Bakar A. Hassan
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
| | - Frank J. Tucci
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
| | - Ramaiah Muthyala
- Department of Experimental and Clinical Pharmacology, College Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jiali Gao
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
- Department of Chemistry, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Erika A. Taylor
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
- Correspondence: (E.A.T.); (Y.Y.S.); Tel.: +1-(860)-685-2739 (E.A.T.); +1-(612)-625-6255 (Y.Y.S.); Fax: +1-(860)-685-2211 (E.A.T.); +1-(612)-625-5149 (Y.Y.S.)
| | - Yuk Y. Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (E.A.T.); (Y.Y.S.); Tel.: +1-(860)-685-2739 (E.A.T.); +1-(612)-625-6255 (Y.Y.S.); Fax: +1-(860)-685-2211 (E.A.T.); +1-(612)-625-5149 (Y.Y.S.)
| |
Collapse
|
12
|
Gardner AM, Gardner PR. Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin. J Biol Chem 2020; 296:100186. [PMID: 33310705 PMCID: PMC7948479 DOI: 10.1074/jbc.ra120.016637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH2 to reduce the ferric iron, which forms the stable ferric–superoxide–TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 1010 M−1 s−1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Chemistry and Biochemistry Department, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
13
|
Linscott EB, Cole DJ, Hine NDM, Payne MC, Weber C. ONETEP + TOSCAM: Uniting Dynamical Mean Field Theory and Linear-Scaling Density Functional Theory. J Chem Theory Comput 2020; 16:4899-4911. [PMID: 32433876 DOI: 10.1021/acs.jctc.0c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce the unification of dynamical mean field theory (DMFT) and linear-scaling density functional theory (DFT), as recently implemented in ONETEP, a linear-scaling DFT package, and TOSCAM, a DMFT toolbox. This code can account for strongly correlated electronic behavior while simultaneously including the effects of the environment, making it ideally suited for studying complex and heterogeneous systems that contain transition metals and lanthanides, such as metalloproteins. We systematically introduce the necessary formalism, which must account for the nonorthogonal basis set used by ONETEP. In order to demonstrate the capabilities of this code, we apply it to carbon monoxide ligated iron porphyrin and explore the distinctly quantum-mechanical character of the iron 3d electrons during the process of photodissociation.
Collapse
Affiliation(s)
- Edward B Linscott
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Michael C Payne
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Cédric Weber
- Theory and Simulation of Condensed Matter, King's College London, The Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
14
|
Dejoie C, Tamura N. Pattern-matching indexing of Laue and monochromatic serial crystallography data for applications in materials science. J Appl Crystallogr 2020; 53:824-836. [PMID: 32684897 PMCID: PMC7312145 DOI: 10.1107/s160057672000521x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/13/2020] [Indexed: 11/11/2022] Open
Abstract
Serial crystallography data can be challenging to index, as each frame is processed individually, rather than being processed as a whole like in conventional X-ray single-crystal crystallography. An algorithm has been developed to index still diffraction patterns arising from small-unit-cell samples. The algorithm is based on the matching of reciprocal-lattice vector pairs, as developed for Laue microdiffraction data indexing, combined with three-dimensional pattern matching using a nearest-neighbors approach. As a result, large-bandpass data (e.g. 5-24 keV energy range) and monochromatic data can be processed, the main requirement being prior knowledge of the unit cell. Angles calculated in the vicinity of a few theoretical and experimental reciprocal-lattice vectors are compared, and only vectors with the highest number of common angles are selected as candidates to obtain the orientation matrix. Global matching on the entire pattern is then checked. Four indexing options are available, two for the ranking of the theoretical reciprocal-lattice vectors and two for reducing the number of possible candidates. The algorithm has been used to index several data sets collected under different experimental conditions on a series of model samples. Knowing the crystallographic structure of the sample and using this information to rank the theoretical reflections based on the structure factors helps the indexing of large-bandpass data for the largest-unit-cell samples. For small-bandpass data, shortening the candidate list to determine the orientation matrix should be based on matching pairs of reciprocal-lattice vectors instead of triplet matching.
Collapse
Affiliation(s)
- Catherine Dejoie
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Abstract
Direct visualization of electronic and molecular events during biochemical reactions is essential to mechanistic insights. This Letter presents an in-depth analysis of the serial crystallographic data sets collected by Barends and Schlichting et al. ( Science 2015 , 350 , 445 ) that probe the ligand photodissociation in carbonmonoxy myoglobin. This analysis reveals electron density changes caused by the formation of high-spin 3d atomic orbitals of the heme iron upon photolysis and their dynamic behaviors within the first few picoseconds. The heme iron is found popping out of and recoiling back into the heme plane in succession. These findings provide long-awaited visual validations for previous works using ultrafast spectroscopy and molecular dynamics simulations. Electron density variations are also found largely in the solvent during the first period of a low-frequency oscillation. This work demonstrates the importance of the analytical methods in detecting and isolating weak, transient signals of electronic changes arising from chemical reactions.
Collapse
|
16
|
Martin-Garcia JM, Zhu L, Mendez D, Lee MY, Chun E, Li C, Hu H, Subramanian G, Kissick D, Ogata C, Henning R, Ishchenko A, Dobson Z, Zhang S, Weierstall U, Spence JCH, Fromme P, Zatsepin NA, Fischetti RF, Cherezov V, Liu W. High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source. IUCRJ 2019; 6:412-425. [PMID: 31098022 PMCID: PMC6503920 DOI: 10.1107/s205225251900263x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 05/29/2023]
Abstract
Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Å using 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.
Collapse
Affiliation(s)
- Jose M. Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Derek Mendez
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Ming-Yue Lee
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Eugene Chun
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Chufeng Li
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Hao Hu
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Ganesh Subramanian
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Craig Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Zachary Dobson
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Shangji Zhang
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Uwe Weierstall
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - John C. H. Spence
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Nadia A. Zatsepin
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, 550 East Tyler Drive, Tempe, AZ 85287, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 90439, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Schmidt M. Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources. Int J Mol Sci 2019; 20:ijms20061401. [PMID: 30897736 PMCID: PMC6470897 DOI: 10.3390/ijms20061401] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/30/2022] Open
Abstract
The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
18
|
Scheidt WR, Li J, Sage JT. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes. Chem Rev 2017; 117:12532-12563. [PMID: 28921972 PMCID: PMC5639469 DOI: 10.1021/acs.chemrev.7b00295] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Nuclear resonance
vibrational spectroscopy (NRVS; also known as
nuclear inelastic scattering, NIS) is a synchrotron-based method that
reveals the full spectrum of vibrational dynamics for Mössbauer
nuclei. Another major advantage, in addition to its completeness (no
arbitrary optical selection rules), is the unique selectivity of NRVS.
The basics of this recently developed technique are first introduced
with descriptions of the experimental requirements and data analysis
including the details of mode assignments. We discuss the use of NRVS
to probe 57Fe at the center of heme and heme protein derivatives
yielding the vibrational density of states for the iron. The application
to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode
character. The availability of the complete vibrational spectrum of
iron allows the identification of modes not available by other techniques.
This permits the correlation of frequency with other physical properties.
A significant example is the correlation we find between the Fe–Im
stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im)
bond distance, not possible previously. NRVS also provides uniquely
quantitative insight into the dynamics of the iron. For example, it
provides a model-independent means of characterizing the strength
of iron coordination. Prediction of the temperature-dependent mean-squared
displacement from NRVS measurements yields a vibrational “baseline”
for Fe dynamics that can be compared with results from techniques
that probe longer time scales to yield quantitative insights into
additional dynamical processes.
Collapse
Affiliation(s)
- W Robert Scheidt
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556 United States
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences , YanQi Lake, HuaiRou District, Beijing 101408, China
| | - J Timothy Sage
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University , 120 Forsyth Street, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Abstract
Time-resolved X-ray diffraction provides direct information on three-dimensional structures of reacting molecules and thus can be used to elucidate structural dynamics of chemical and biological reactions. In this review, we discuss time-resolved X-ray diffraction on small molecules and proteins with particular emphasis on its application to crystalline (crystallography) and liquid-solution (liquidography) samples. Time-resolved X-ray diffraction has been used to study picosecond and slower dynamics at synchrotrons and can now access even femtosecond dynamics with the recent arrival of X-ray free-electron lasers.
Collapse
Affiliation(s)
- Hosung Ki
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; , , .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Key Young Oang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; , , .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, South Korea;
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea; , , .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea
| |
Collapse
|
20
|
Arbelo-Lopez HD, Simakov NA, Smith JC, Lopez-Garriga J, Wymore T. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme. J Phys Chem B 2016; 120:7319-31. [DOI: 10.1021/acs.jpcb.6b02839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hector D. Arbelo-Lopez
- Chemistry
Department, University of Puerto Rico, Mayagüez Campus, Mayagüez 00681, Puerto Rico
| | - Nikolay A. Simakov
- Center
for Computational Research, University of Buffalo, Buffalo, New York 14203, United States
| | - Jeremy C. Smith
- UT/ORNL
Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Juan Lopez-Garriga
- Chemistry
Department, University of Puerto Rico, Mayagüez Campus, Mayagüez 00681, Puerto Rico
| | - Troy Wymore
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
21
|
Unusual effects of crowders on heme retention in myoglobin. FEBS Lett 2015; 589:3807-15. [DOI: 10.1016/j.febslet.2015.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 11/24/2022]
|
22
|
NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy. Proc Natl Acad Sci U S A 2015; 112:12922-7. [PMID: 26438842 DOI: 10.1073/pnas.1424446112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.
Collapse
|
23
|
Na H, Song G. Quantitative delineation of how breathing motions open ligand migration channels in myoglobin and its mutants. Proteins 2015; 83:757-70. [PMID: 25645487 DOI: 10.1002/prot.24770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/01/2015] [Accepted: 01/14/2015] [Indexed: 11/09/2022]
Abstract
Ligand migration and binding are central to the biological functions of many proteins such as myoglobin (Mb) and it is widely thought that protein breathing motions open up ligand channels dynamically. However, how a protein exerts its control over the opening and closing of these channels through its intrinsic dynamics is not fully understood. Specifically, a quantitative delineation of the breathing motions that are needed to open ligand channels is lacking. In this work, we present and apply a novel normal mode-based method to quantitatively delineate what and how breathing motions open ligand migration channels in Mb and its mutants. The motivation behind this work springs from the observation that normal mode motions are closely linked to the breathing motions that are thought to open ligand migration channels. In addition, the method provides a direct and detailed depiction of the motions of each and every residue that lines a channel and can identify key residues that play a dominating role in regulating the channel. The all-atom model and the full force-field employed in the method provide a realistic energetics on the work cost required to open a channel, and as a result, the method can be used to efficiently study the effects of mutations on ligand migration channels and on ligand entry rates. Our results on Mb and its mutants are in excellent agreement with MD simulation results and experimentally determined ligand entry rates.
Collapse
Affiliation(s)
- Hyuntae Na
- Department of Computer Science, Iowa State University, Ames, Iowa, 50011
| | | |
Collapse
|
24
|
Ries J, Schwarze S, Johnson CM, Neuweiler H. Microsecond Folding and Domain Motions of a Spider Silk Protein Structural Switch. J Am Chem Soc 2014; 136:17136-44. [DOI: 10.1021/ja508760a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Julia Ries
- Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simone Schwarze
- Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christopher M. Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Hannes Neuweiler
- Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Lima FA, Penfold TJ, van der Veen RM, Reinhard M, Abela R, Tavernelli I, Rothlisberger U, Benfatto M, Milne CJ, Chergui M. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy. Phys Chem Chem Phys 2014; 16:1617-31. [PMID: 24317683 DOI: 10.1039/c3cp53683a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an iron K-edge X-ray absorption study of carboxymyoglobin (MbCO), nitrosylmyoglobin (MbNO), oxymyoglobin (MbO2), cyanomyoglobin (MbCN), aquomet myoglobin (metMb) and unligated myoglobin (deoxyMb) in physiological media. The analysis of the XANES region is performed using the full-multiple scattering formalism, implemented within the MXAN package. This reveals trends within the heme structure, absent from previous crystallographic and X-ray absorption analysis. In particular, the iron-nitrogen bond lengths in the porphyrin ring converge to a common value of about 2 Å, except for deoxyMb whose bigger value is due to the doming of the heme. The trends of the Fe-Nε (His93) bond length is found to be consistent with the effect of ligand binding to the iron, with the exception of MbNO, which is explained in terms of the repulsive trans effect. We derive a high resolution description of the relative geometry of the ligands with respect to the heme and quantify the magnitude of the heme doming in the deoxyMb form. Finally, time-dependent density functional theory is used to simulate the pre-edge spectra and is found to be in good agreement with the experiment. The XAS spectra typically exhibit one pre-edge feature which arises from transitions into the unoccupied dσ and dπ - πligand* orbitals. 1s → dπ transitions contribute weakly for MbO2, metMb and deoxyMb. However, despite this strong Fe d contribution these transitions are found to be dominated by the dipole (1s → 4p) moment due to the low symmetry of the heme environment.
Collapse
Affiliation(s)
- Frederico A Lima
- École Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, CH, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Collingwood JF, Davidson MR. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light. Front Pharmacol 2014; 5:191. [PMID: 25191270 PMCID: PMC4137459 DOI: 10.3389/fphar.2014.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Friedreich's ataxia, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Joanna F Collingwood
- Warwick Engineering in Biomedicine, School of Engineering, University of Warwick Coventry, UK ; Materials Science and Engineering, University of Florida Gainesville, FL, USA
| | - Mark R Davidson
- Materials Science and Engineering, University of Florida Gainesville, FL, USA ; The Tech Toybox, Gainesville FL, USA
| |
Collapse
|
27
|
Membrane-induced changes in the holomyoglobin tertiary structure: interplay with function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:317-29. [DOI: 10.1007/s00249-014-0964-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
|
28
|
Lepeshkevich SV, Parkhats MV, Stasheuski AS, Britikov VV, Jarnikova ES, Usanov SA, Dzhagarov BM. Photosensitized Singlet Oxygen Luminescence from the Protein Matrix of Zn-Substituted Myoglobin. J Phys Chem A 2014; 118:1864-78. [DOI: 10.1021/jp501615h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergei V. Lepeshkevich
- B.I.
Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Marina V. Parkhats
- B.I.
Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Alexander S. Stasheuski
- B.I.
Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Vladimir V. Britikov
- Institute
of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5 Academician V.F. Kuprevich Street, Minsk 220141, Belarus
| | - Ekaterina S. Jarnikova
- B.I.
Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Sergey A. Usanov
- Institute
of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5 Academician V.F. Kuprevich Street, Minsk 220141, Belarus
| | - Boris M. Dzhagarov
- B.I.
Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| |
Collapse
|
29
|
Kumar S, Sharma D, Kumar R. Effect of urea and alkylureas on the stability and structural fluctuation of the M80-containing Ω-loop of horse cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:641-55. [DOI: 10.1016/j.bbapap.2014.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/27/2022]
|
30
|
Matsumura H, Hayashi T, Chakraborty S, Lu Y, Moënne-Loccoz P. The production of nitrous oxide by the heme/nonheme diiron center of engineered myoglobins (Fe(B)Mbs) proceeds through a trans-iron-nitrosyl dimer. J Am Chem Soc 2014; 136:2420-31. [PMID: 24432820 PMCID: PMC4004238 DOI: 10.1021/ja410542z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Denitrifying NO reductases are transmembrane
protein complexes
that are evolutionarily related to heme/copper terminal oxidases.
They utilize a heme/nonheme diiron center to reduce two NO molecules
to N2O. Engineering a nonheme FeB site within
the heme distal pocket of sperm whale myoglobin has offered well-defined
diiron clusters for the investigation of the mechanism of NO reduction
in these unique active sites. In this study, we use FTIR spectroscopy
to monitor the production of N2O in solution and to show
that the presence of a distal FeBII is not sufficient
to produce the expected product. However, the addition of a glutamate
side chain peripheral to the diiron site allows for 50% of a productive
single-turnover reaction. Unproductive reactions are characterized
by resonance Raman spectroscopy as dinitrosyl complexes, where one
NO molecule is bound to the heme iron to form a five-coordinate low-spin
{FeNO}7 species with ν(FeNO)heme and ν(NO)heme at 522 and 1660 cm–1, and a second NO
molecule is bound to the nonheme FeB site with a ν(NO)FeB at 1755 cm–1. Stopped-flow UV–vis
absorption coupled with rapid-freeze-quench resonance Raman spectroscopy
provide a detailed map of the reaction coordinates leading to the
unproductive iron-nitrosyl dimer. Unexpectedly, NO binding to FeB is kinetically favored and occurs prior to the binding of
a second NO to the heme iron, leading to a (six-coordinate low-spin
heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl complex
with characteristic ν(FeNO)heme at 570 ± 2 cm–1 and ν(NO)FeB at 1755 cm–1. Without the addition of a peripheral glutamate, the dinitrosyl
complex is converted to a dead-end product after the dissociation
of the proximal histidine of the heme iron, but the added peripheral
glutamate side chain in FeBMb2 lowers the rate of dissociation
of the promixal histidine which in turn allows the (six-coordinate
low-spin heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl
complex to decay with production of N2O at a rate of 0.7
s–1 at 4 °C. Taken together, our results support
the proposed trans mechanism of NO reduction in NORs.
Collapse
Affiliation(s)
- Hirotoshi Matsumura
- Divison of Environmental & Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | | | | | | | | |
Collapse
|
31
|
Petitgirard S, Salamat A, Beck P, Weck G, Bouvier P. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:89-96. [PMID: 24365921 PMCID: PMC4861204 DOI: 10.1107/s1600577513027434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/06/2013] [Indexed: 05/30/2023]
Abstract
An overview of several innovations regarding in situ laser-heating techniques in the diamond anvil cell at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility is presented. Pyrometry measurements have been adapted to allow simultaneous double-sided temperature measurements with the installation of two additional online laser systems: a CO2 and a pulsed Nd:YAG laser system. This reiteration of laser-heating advancements at ID27 is designed to pave the way for a new generation of state-of-the-art experiments that demand the need for synchrotron diffraction techniques. Experimental examples are provided for each major development. The capabilities of the double pyrometer have been tested with the Nd:YAG continuous-wave lasers but also in a time-resolved configuration using the nanosecond-pulsed Nd:YAG laser on a Fe sample up to 180 GPa and 2900 K. The combination of time-resolved X-ray diffraction with in situ CO2 laser heating is shown with the crystallization of a high-pressure phase of the naturally found pyrite mineral MnS2 (11 GPa, 1100-1650 K).
Collapse
Affiliation(s)
- Sylvain Petitgirard
- ID27, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France
- Bayerisches GeoInstitut (BGI), University of Bayreuth, 95444 Bayreuth, Germany
| | - Ashkan Salamat
- ID27, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France
- Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Beck
- UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d’Astrophysique de Grenoble (IPAG), 414 rue de la Piscine, 38000 Grenoble, France
| | - Gunnar Weck
- Commissariat à l’Energie Atomique (CEA), DPTA, 91680 Bruyères le Châtel, France
| | - Pierre Bouvier
- Laboratoire des Materiaux et du Genie Physique, CNRS, Grenoble Institute of Technology, 3 parvis Louis Neel, F-38016 Grenoble, France
| |
Collapse
|
32
|
Dejoie C, McCusker LB, Baerlocher C, Kunz M, Tamura N. Can Laue microdiffraction be used to solve and refine complex inorganic structures? J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813026307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The white-beam Laue diffraction experiment is an attractive alternative to the more conventional monochromatic one for single-crystal structure analysis, because it takes full advantage of the X-ray energy spectrum of a synchrotron source and requires no rotation of the crystal in the beam. Therefore, it could be used for structural characterizations underin situoroperandoconditions. The potential of Laue diffraction was recognized and exploited by the protein community many years ago, and the methodology, which involved positioning and rotating the crystal in the beam, has been successfully applied to the determination of both protein and small-molecule crystal structures. Here, it is proposed that the specificities of Laue diffraction are exploited to study randomly oriented stationary microcrystals of inorganic materials. In order to determine the best strategy for collecting a reasonable quantity of data from stationary crystals, a series of simulations on four model structures for three experimental setups have been performed. It is shown that the structures of the four samples can be solved with the dual-space method inSHELX, even though the data sets are highly incomplete and much of the low-resolution part is missing. The experimental setup and data collection strategy for measuring such microcrystals have been developed on BL12.3.2 at the Advanced Light Source in Berkeley. The intensities of reflections with one and two harmonics can be extracted reliably by exploiting the tunable low-energy threshold of a Pilatus detector. In this way, the number of usable reflections can be increased from 75 to 95%. Such Laue microdiffraction data have been measured and used successfully to refine the structures of the model samples.
Collapse
|
33
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
34
|
Scorciapino MA, Spiga E, Vezzoli A, Mrakic-Sposta S, Russo R, Fink B, Casu M, Gussoni M, Ceccarelli M. Structure–Function Paradigm in Human Myoglobin: How a Single-Residue Substitution Affects NO Reactivity at Low pO2. J Am Chem Soc 2013; 135:7534-44. [DOI: 10.1021/ja400213t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Alessandra Vezzoli
- Institute for Bioimaging and
Molecular Physiology, Consiglio Nazionale delle Ricerche (CNR), Segrate (MI), Italy
| | - Simona Mrakic-Sposta
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Rosaria Russo
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Bruno Fink
- Noxygen Science Transfer and Diagnostics GmbH, Elzach, Germany
| | | | - Maristella Gussoni
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
- Institute for Macromolecular
Studies, CNR, Milan, Italy
| | - Matteo Ceccarelli
- Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), UOS, Cagliari, Italy
| |
Collapse
|
35
|
Krokhotin A, Niemi AJ, Peng X. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics. J Chem Phys 2013; 138:175101. [PMID: 23656161 DOI: 10.1063/1.4801330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden.
| | | | | |
Collapse
|
36
|
Small ligand-globin interactions: reviewing lessons derived from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1722-38. [PMID: 23470499 DOI: 10.1016/j.bbapap.2013.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
37
|
Nienhaus K, Olson JS, Nienhaus GU. An engineered heme-copper center in myoglobin: CO migration and binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1824-31. [PMID: 23459127 DOI: 10.1016/j.bbapap.2013.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
Abstract
We have investigated CO migration and binding in CuBMb, a copper-binding myoglobin double mutant (L29H-F43H), by using Fourier transform infrared spectroscopy and flash photolysis over a wide temperature range. This mutant was originally engineered with the aim to mimic the catalytic site of heme-copper oxidases. Comparison of the wild-type protein Mb and CuBMb shows that the copper ion in the distal pocket gives rise to significant effects on ligand binding to the heme iron. In Mb and copper-free CuBMb, primary and secondary ligand docking sites are accessible upon photodissociation. In copper-bound CuBMb, ligands do not migrate to secondary docking sites but rather coordinate to the copper ion. Ligands entering the heme pocket from the outside normally would not be captured efficiently by the tight distal pocket housing the two additional large imidazole rings. Binding at the Cu ion, however, ensures efficient trapping in CuBMb. The Cu ion also restricts the motions of the His64 side chain, which is the entry/exit door for ligand movement into the active site, and this restriction results in enhanced geminate and slow bimolecular CO rebinding. These results support current mechanistic views of ligand binding in hemoglobins and the role of the CuB in the active of heme-copper oxidases. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Boechi L, Arrar M, Martí MA, Olson JS, Roitberg AE, Estrin DA. Hydrophobic effect drives oxygen uptake in myoglobin via histidine E7. J Biol Chem 2013; 288:6754-62. [PMID: 23297402 DOI: 10.1074/jbc.m112.426056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the elucidation of the myoglobin (Mb) structure, a histidine residue on the E helix (His-E7) has been proposed to act as a gate with an open or closed conformation controlling access to the active site. Although it is believed that at low pH, the His-E7 gate is in its open conformation, the full relationship between the His-E7 protonation state, its conformation, and ligand migration in Mb is hotly debated. We used molecular dynamics simulations to first address the effect of His-E7 protonation on its conformation. We observed the expected shift from the closed to the open conformation upon protonation, but more importantly, noted a significant difference between the conformations of the two neutral histidine tautomers. We further computed free energy profiles for oxygen migration in each of the possible His-E7 states as well as in two instructive Mb mutants: Ala-E7 and Trp-E7. Our results show that even in the closed conformation, the His-E7 gate does not create a large barrier to oxygen migration and permits oxygen entry with only a small rotation of the imidazole side chain and movement of the E helix. We identify, instead, a hydrophobic site in the E7 channel that can accommodate an apolar diatomic ligand and enhances ligand uptake particularly in the open His-E7 conformation. This rate enhancement is diminished in the closed conformation. Taken together, our results provide a new conceptual framework for the histidine gate hypothesis.
Collapse
Affiliation(s)
- Leonardo Boechi
- Departamento de Química Inorgánica, Analítica, y Química Física/Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Rebinding kinetics of dissociated amino acid ligand and carbon monoxide to ferrous microperoxidase-11 in aqueous solution. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Ohta T, Liu JG, Saito M, Kobayashi Y, Yoda Y, Seto M, Naruta Y. Axial Ligand Effects on Vibrational Dynamics of Iron in Heme Carbonyl Studied by Nuclear Resonance Vibrational Spectroscopy. J Phys Chem B 2012; 116:13831-8. [DOI: 10.1021/jp304398g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiro Ohta
- Institute
for Materials Chemistry
and Engineering and International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, Fukuoka 812-8581, Japan
- JST, ACT-C, Saitama 332-0012,
Japan
| | - Jin-Gang Liu
- Institute
for Materials Chemistry
and Engineering and International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, Fukuoka 812-8581, Japan
- Department of Chemistry, East China University of Science and Technology, 130
Meilong Rd, 200237, Shanghai, P. R. China
| | - Makina Saito
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Yasuhiro Kobayashi
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
- Japan Atomic Energy Agency, Hyogo 679-5148, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yoshinori Naruta
- Institute
for Materials Chemistry
and Engineering and International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, Fukuoka 812-8581, Japan
- JST, ACT-C, Saitama 332-0012,
Japan
| |
Collapse
|
41
|
Bocahut A, Derrien V, Bernad S, Sebban P, Sacquin-Mora S, Guittet E, Lescop E. Heme orientation modulates histidine dissociation and ligand binding kinetics in the hexacoordinated human neuroglobin. J Biol Inorg Chem 2012; 18:111-22. [PMID: 23135388 PMCID: PMC3535368 DOI: 10.1007/s00775-012-0956-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/21/2012] [Indexed: 11/05/2022]
Abstract
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.
Collapse
Affiliation(s)
- Anthony Bocahut
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris-Sud 11, Bât. 350, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Nienhaus K, Zosel F, Nienhaus GU. Ligand binding to heme proteins: a comparison of cytochrome c variants with globins. J Phys Chem B 2012; 116:12180-8. [PMID: 22978708 DOI: 10.1021/jp306775n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have studied the binding of carbon monoxide (CO) in mutants of Cyt c having its methionine at position 80 replaced by alanine, aspartate, and arginine, so that the sixth coordination is available for ligand binding. We have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy to examine interactions of the heme-bound and photolyzed CO (and also nitric oxide, NO) in the small heme pocket created by the mutations. By using FTIR temperature derivative spectroscopy (TDS) and nanosecond flash photolysis, the enthalpy barrier distributions for CO rebinding were determined. In flash photolysis experiments, the majority of ligands rebind to the heme iron on picosecond time scales so that only the high-barrier tail of the distributions is visible on the nanosecond scale. By continuous wave excitation prior to TDS characterization of the barriers, however, each Cyt c molecule is photoexcited multiple times and complete photodissociation can be achieved, which likely arises from a rotation of the CO within the heme pocket so that the oxygen faces the heme iron. Apparently, reorientation prior to rebinding constitutes an additional and significant contribution to the rebinding barrier. Our experiments reveal that the compact, rigid structure of Cyt c offers no alternative binding sites for photodissociated ligands in the protein matrix. A comparison of ligand binding in these Cyt c mutants and hemoglobins underscores the importance of internal ligand docking sites and ligand migration routes for conveying a ligand binding function to heme proteins.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|
43
|
Levantino M, Spilotros A, Cammarata M, Schirò G, Ardiccioni C, Vallone B, Brunori M, Cupane A. The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin. Proc Natl Acad Sci U S A 2012; 109:14894-9. [PMID: 22927385 PMCID: PMC3443182 DOI: 10.1073/pnas.1205809109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The acknowledged success of the Monod-Wyman-Changeux (MWC) allosteric model stems from its efficacy in accounting for the functional behavior of many complex proteins starting with hemoglobin (the paradigmatic case) and extending to channels and receptors. The kinetic aspects of the allosteric model, however, have been often neglected, with the exception of hemoglobin and a few other proteins where conformational relaxations can be triggered by a short and intense laser pulse, and monitored by time-resolved optical spectroscopy. Only recently the application of time-resolved wide-angle X-ray scattering (TR-WAXS), a direct structurally sensitive technique, unveiled the time scale of hemoglobin quaternary structural transition. In order to test the generality of the MWC kinetic model, we carried out a TR-WAXS investigation in parallel on adult human hemoglobin and on a recombinant protein (HbYQ) carrying two mutations at the active site [Leu(B10)Tyr and His(E7)Gln]. HbYQ seemed an ideal test because, although exhibiting allosteric properties, its kinetic and structural properties are different from adult human hemoglobin. The structural dynamics of HbYQ unveiled by TR-WAXS can be quantitatively accounted for by the MWC kinetic model. Interestingly, the main structural change associated with the R-T allosteric transition (i.e., the relative rotation and translation of the dimers) is approximately 10-fold slower in HbYQ, and the drop in the allosteric transition rate with ligand saturation is steeper. Our results extend the general validity of the MWC kinetic model and reveal peculiar thermodynamic properties of HbYQ. A possible structural interpretation of the characteristic kinetic behavior of HbYQ is also discussed.
Collapse
Affiliation(s)
- Matteo Levantino
- Department of Physics, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | - Alessandro Spilotros
- Department of Physics, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | - Marco Cammarata
- Institut de Physique de Rennes, Centre National de la Recherche Scientifique, 263 Avenue Général Leclerc, 35042 Rennes, France; and
| | - Giorgio Schirò
- Department of Physics, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | - Chiara Ardiccioni
- Department of Biochemical Sciences, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza—University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza—University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Maurizio Brunori
- Department of Biochemical Sciences, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza—University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonio Cupane
- Department of Physics, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| |
Collapse
|
44
|
Kim S, Lim M. Protein Conformation-Controlled Rebinding Barrier of NO and Its Binding Trajectories in Myoglobin and Hemoglobin at Room Temperature. J Phys Chem B 2012; 116:5819-30. [DOI: 10.1021/jp300176q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Seongheun Kim
- Department of Chemistry and Chemistry Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
45
|
Kim K, Muniyappan S, Oang KY, Kim JG, Nozawa S, Sato T, Koshihara SY, Henning R, Kosheleva I, Ki H, Kim Y, Kim TW, Kim J, Adachi SI, Ihee H. Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering. J Am Chem Soc 2012; 134:7001-8. [PMID: 22494177 PMCID: PMC3337689 DOI: 10.1021/ja210856v] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Indexed: 01/11/2023]
Abstract
Proteins serve as molecular machines in performing their biological functions, but the detailed structural transitions are difficult to observe in their native aqueous environments in real time. For example, despite extensive studies, the solution-phase structures of the intermediates along the allosteric pathways for the transitions between the relaxed (R) and tense (T) forms have been elusive. In this work, we employed picosecond X-ray solution scattering and novel structural analysis to track the details of the structural dynamics of wild-type homodimeric hemoglobin (HbI) from the clam Scapharca inaequivalvis and its F97Y mutant over a wide time range from 100 ps to 56.2 ms. From kinetic analysis of the measured time-resolved X-ray solution scattering data, we identified three structurally distinct intermediates (I(1), I(2), and I(3)) and their kinetic pathways common for both the wild type and the mutant. The data revealed that the singly liganded and unliganded forms of each intermediate share the same structure, providing direct evidence that the ligand photolysis of only a single subunit induces the same structural change as the complete photolysis of both subunits does. In addition, by applying novel structural analysis to the scattering data, we elucidated the detailed structural changes in the protein, including changes in the heme-heme distance, the quaternary rotation angle of subunits, and interfacial water gain/loss. The earliest, R-like I(1) intermediate is generated within 100 ps and transforms to the R-like I(2) intermediate with a time constant of 3.2 ± 0.2 ns. Subsequently, the late, T-like I(3) intermediate is formed via subunit rotation, a decrease in the heme-heme distance, and substantial gain of interfacial water and exhibits ligation-dependent formation kinetics with time constants of 730 ± 120 ns for the fully photolyzed form and 5.6 ± 0.8 μs for the partially photolyzed form. For the mutant, the overall kinetics are accelerated, and the formation of the T-like I(3) intermediate involves interfacial water loss (instead of water entry) and lacks the contraction of the heme-heme distance, thus underscoring the dramatic effect of the F97Y mutation. The ability to keep track of the detailed movements of the protein in aqueous solution in real time provides new insights into the protein structural dynamics.
Collapse
Affiliation(s)
- Kyung
Hwan Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Srinivasan Muniyappan
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Key Young Oang
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Jong Goo Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Shunsuke Nozawa
- Photon Factory,
Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801, Japan
| | - Tokushi Sato
- Photon Factory,
Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801, Japan
| | - Shin-ya Koshihara
- Department
of Chemistry and Materials
Science, Tokyo Institute of Technology and
CREST, Japan Science and Technology Agency (JST), Meguro-ku, Tokyo 152-8551, Japan
| | - Robert Henning
- Center for Advanced Radiation
Sources, The University of Chicago, Chicago,
Illinois 60637, United States
| | - Irina Kosheleva
- Center for Advanced Radiation
Sources, The University of Chicago, Chicago,
Illinois 60637, United States
| | - Hosung Ki
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Youngmin Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Tae Wu Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Jeongho Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Shin-ichi Adachi
- Photon Factory,
Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801, Japan
- PRESTO, Japan Science
and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
| | - Hyotcherl Ihee
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| |
Collapse
|
46
|
Kim TW, Lee JH, Choi J, Kim KH, van Wilderen LJ, Guerin L, Kim Y, Jung YO, Yang C, Kim J, Wulff M, van Thor JJ, Ihee H. Protein structural dynamics of photoactive yellow protein in solution revealed by pump-probe X-ray solution scattering. J Am Chem Soc 2012; 134:3145-53. [PMID: 22304441 DOI: 10.1021/ja210435n] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Photoreceptor proteins play crucial roles in receiving light stimuli that give rise to the responses required for biological function. However, structural characterization of conformational transition of the photoreceptors has been elusive in their native aqueous environment, even for a prototype photoreceptor, photoactive yellow protein (PYP). We employ pump-probe X-ray solution scattering to probe the structural changes that occur during the photocycle of PYP in a wide time range from 3.16 μs to 300 ms. By the analysis of both kinetics and structures of the intermediates, the structural progression of the protein in the solution phase is vividly visualized. We identify four structurally distinct intermediates and their associated five time constants and reconstructed the molecular shapes of the four intermediates from time-independent, species-associated difference scattering curves. The reconstructed structures of the intermediates show the large conformational changes such as the protrusion of N-terminus, which is restricted in the crystalline phase due to the crystal contact and thus could not be clearly observed by X-ray crystallography. The protrusion of the N-terminus and the protein volume gradually increase with the progress of the photocycle and becomes maximal in the final intermediate, which is proposed to be the signaling state. The data not only reveal that a common kinetic mechanism is applicable to both the crystalline and the solution phases, but also provide direct evidence for how the sample environment influences structural dynamics and the reaction rates of the PYP photocycle.
Collapse
Affiliation(s)
- Tae Wu Kim
- Center for Time-Resolved Diffraction, Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Carroll MJ, Mauldin RV, Gromova AV, Singleton SF, Collins EJ, Lee AL. Evidence for dynamics in proteins as a mechanism for ligand dissociation. Nat Chem Biol 2012; 8:246-52. [PMID: 22246400 PMCID: PMC3288659 DOI: 10.1038/nchembio.769] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/23/2011] [Indexed: 01/16/2023]
Abstract
Signal transduction, regulatory processes, and pharmaceutical responses are highly dependent upon ligand residence times. Gaining insight into how physical factors influence residence times, or koff, should enhance our ability to manipulate biological interactions. We report experiments that yield structural insight into koff for a series of eight 2,4-diaminopyrimidine inhibitors of dihydrofolate reductase that vary by six orders of magnitude in binding affinity. NMR relaxation dispersion experiments revealed a common set of residues near the binding site that undergo a concerted, millisecond-timescale switching event to a previously unidentified conformation. The rate of switching from ground to excited conformations correlates exponentially with Ki and koff, suggesting that protein dynamics serves as a mechanical initiator of ligand dissociation within this series and potentially for other macromolecule-ligand systems. Although kconf,forward is faster than koff, use of the ligand series allowed for connections to be drawn between kinetic events on different timescales.
Collapse
Affiliation(s)
- Mary J Carroll
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
48
|
Thielges MC, Axup JY, Wong D, Lee HS, Chung JK, Schultz PG, Fayer MD. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J Phys Chem B 2011; 115:11294-304. [PMID: 21823631 PMCID: PMC3261801 DOI: 10.1021/jp206986v] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Y. Axup
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daryl Wong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peter G. Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Graber T, Anderson S, Brewer H, Chen YS, Cho HS, Dashdorj N, Henning RW, Kosheleva I, Macha G, Meron M, Pahl R, Ren Z, Ruan S, Schotte F, Srajer V, Viccaro PJ, Westferro F, Anfinrud P, Moffat K. BioCARS: a synchrotron resource for time-resolved X-ray science. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:658-70. [PMID: 21685684 PMCID: PMC3121234 DOI: 10.1107/s0909049511009423] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/11/2011] [Indexed: 05/02/2023]
Abstract
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ~4 × 10(10) photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.
Collapse
Affiliation(s)
- T Graber
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin TL, Song G. Efficient mapping of ligand migration channel networks in dynamic proteins. Proteins 2011; 79:2475-90. [DOI: 10.1002/prot.23071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/01/2011] [Accepted: 04/19/2011] [Indexed: 11/07/2022]
|