1
|
Serafini RA, Farzinpour Z, Patel V, Kelley AM, Estill M, Pryce KD, Sakloth F, Teague CD, Torres-Berrio A, Nestler EJ, Shen L, Akbarian S, Karkhanis AN, Blitzer RD, Zachariou V. Nucleus accumbens myocyte enhancer factor 2C mediates the maintenance of peripheral nerve injury-induced physiological and behavioral maladaptations. Pain 2024; 165:2733-2748. [PMID: 38985454 DOI: 10.1097/j.pain.0000000000003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
ABSTRACT Preclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling. Mef2c overexpression also reversed SNI-induced potentiation of phasic dopamine release and neuronal hyperexcitability in the NAc. Transcriptional changes induced by Mef2c overexpression were different than those observed after desipramine treatment, suggesting a mechanism of action different from antidepressants. Overall, we show that interventions in MEF2C-regulated mechanisms in the NAc are sufficient to disrupt the maintenance of chronic pain states, providing potential new treatment avenues for neuropathic pain.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Zahra Farzinpour
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| | - Vishwendra Patel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abigail M Kelley
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kerri D Pryce
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farhana Sakloth
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angelica Torres-Berrio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anushree N Karkhanis
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, MA, United States
| |
Collapse
|
2
|
WU Z, ZHU Q, KONG L, SONG P, ZHOU X, GUO G, ZHANG S, HE T, CHENG Y, FANG M. Tuina alleviates neuropathic pain through regulate the activation of microglia and the secretion of inflammatory cytokine in spinal cord. J TRADIT CHIN MED 2024; 44:762-769. [PMID: 39066537 PMCID: PMC11337246 DOI: 10.19852/j.cnki.jtcm.20240515.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To observe the analgesic effects of Tuina on neuropathic pain (NPP) and the underlying mechanisms. METHODS Forty-eight Sprague-Dawley (SD) rats were assigned by random into three treatment groups: sham, chronic constriction injury (CCI), and Tuina. Each group contained sixteen rats. CCI model was generated by ligating the right sciatic nerve. Behavioral changes of CCI were assessed by the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, biochemical techniques such as immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to profile levels of microglia activation and inflammatory factors in the spinal dorsal horn (SDH) of rats. Tuina (clockwise pressing and rubbing) was performed at Chengshan (BL57) to observe the analgesic effects on CCI rats and the underlying mechanisms. RESULTS Rats with CCI experienced significant reduction in the PWT and PWL of the right hind paw relative to CCI group at day 3. Tuina treatment rescued this situation significantly on days 10 and 14. Besides, Iba-1, microglia M1 receptor CD68, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were higher in the right SDH for CCI group compared to the sham group on day 14. As expected, Tuina partially downregulated the CCI-induced overexpressed Iba-1, CD68, TNF-α, and IL-1β in the SDH of CCI model. CONCLUSION Tuina induces a time-dependent cumulative analgesic effect in CCI rats by inhibiting the activation of microglia and the secretion of IL-1β and TNF-α in SDH.
Collapse
Affiliation(s)
- Zhiwei WU
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qingguang ZHU
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lingjun KONG
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Pengfei SONG
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xin ZHOU
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guangxin GUO
- 4 Department of Acupuncture and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuaipan ZHANG
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Tianxiang HE
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Yanbin CHENG
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Min FANG
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
3
|
Zvozilova A, Bukatova S, Koprdova R, Mach M. Evaluation of New Approaches to Depression Treatment Using an Animal Model of Pharmacoresistant Depression. Int J Mol Sci 2024; 25:5265. [PMID: 38791304 PMCID: PMC11121040 DOI: 10.3390/ijms25105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Depression is emerging as the predominant psychiatric disorder globally. Despite the wide availability of antidepressants, up to 30% of patients exhibit poor response to treatment, falling into the category of treatment-resistant depression (TRD). This underscores the need for the exploration of novel therapeutic options. Our work aims to study the effect of chronic administration of the pyridoindole derivative SMe1EC2M3, a triple reuptake inhibitor, and the combination of zoletil and venlafaxine under conditions of stress induced by a 4-week chronic mild stress (CMS) procedure in Wistar-Kyoto male rats as an animal model of TRD. Therefore, we investigated the possible effect of the selected compounds in four experimental groups, i.e., stress + vehicle, stress + venlafaxine, stress + zoletil + venlafaxine and stress + SMe1EC2M3. The following variables were assessed: anhedonia in sucrose preference test (SPT), spontaneous locomotion and exploration in open field test (OF), anxiety-like behavior in elevated plus maze test (EPM), motivation and depressive-like behavior in forced swim test (FST) and nociception in tail flick test. We also evaluated cognition, particularly recognition memory, in the novel object recognition test (NOR). Sucrose preference was significantly increased in the SMe1EC2M3 group (p < 0.05) in comparison with the venlafaxine animals. In the OF, we observed a significantly higher number of entries into both the central and peripheral zones in the venlafaxine (p < 0.05 central zone; p ≤ 0.05 periphery zone) and SMe1EC2M3 (p < 0.05 central zone; p < 0.05 periphery zone) groups compared to the venlafaxine + zoletil group. SMe1EC2M3 was able to significantly increase the time of climbing in FST (p < 0.05) in comparison with the venlafaxine and control groups. The NOR test revealed a significantly higher discrimination ratio in the SMe1EC2M3 group (p < 0.05) compared to the control and venlafaxine groups. Analyses of the tail flick test showed a significant increase in reaction time to painful stimuli in the SMe1EC2M3 group (p < 0.05) in comparison to both the control and venlafaxine groups. Our findings suggest that SMe1EC2M3 has the potential to ameliorate some behavioral changes associated with TRD, and the venlafaxine + zoletil combination treatment was not a promising treatment alternative in the animal model of TRD.
Collapse
Affiliation(s)
- Alexandra Zvozilova
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (A.Z.); (S.B.); (R.K.)
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Stanislava Bukatova
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (A.Z.); (S.B.); (R.K.)
| | - Romana Koprdova
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (A.Z.); (S.B.); (R.K.)
| | - Mojmir Mach
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovakia; (A.Z.); (S.B.); (R.K.)
| |
Collapse
|
4
|
Wang Y, Ma Y, Zhong Q, Song B, Liu Q. Transcriptomic analysis of rat brain response to alternating current electrical stimulation: unveiling insights via single-nucleus RNA sequencing. MedComm (Beijing) 2024; 5:e514. [PMID: 38495123 PMCID: PMC10943177 DOI: 10.1002/mco2.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Electrical brain stimulation (EBS) has gained popularity for laboratory and clinical applications. However, comprehensive characterization of cellular diversity and gene expression changes induced by EBS remains limited, particularly with respect to specific brain regions and stimulation sites. Here, we presented the initial single-nucleus RNA sequencing profiles of rat cortex, hippocampus, and thalamus subjected to intracranial alternating current stimulation (iACS) at 40 Hz. The results demonstrated an increased number of neurons in all three regions in response to iACS. Interestingly, less than 0.1% of host gene expression in neurons was significantly altered by iACS. In addition, we identified Rgs9, a known negative regulator of dopaminergic signaling, as a unique downregulated gene in neurons. Unilateral iACS produced a more focused local effect in attenuating the proportion of Rgs9+ neurons in the ipsilateral compared to bilateral iACS treatment. The results suggested that unilateral iACS at 40 Hz was an efficient approach to increase the number of neurons and downregulate Rgs9 gene expression without affecting other cell types or genes in the brain. Our study presented the direct evidence that EBS could boost cerebral neurogenesis and enhance neuronal sensitization to dopaminergic drugs and agonists, through its downregulatory effect on Rgs9 in neurons.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yongchao Ma
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qiuling Zhong
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Bing Song
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qian Liu
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
5
|
Mitsi V, Ruiz A, Polizu C, Farzinpour Z, Ramakrishnan A, Serafini RA, Parise EM, Floodstrand M, Sial OK, Gaspari S, Tang CY, Nestler EJ, Schmidt EF, Shen L, Zachariou V. RGS4 Actions in Mouse Prefrontal Cortex Modulate Behavioral and Transcriptomic Responses to Chronic Stress and Ketamine. Mol Pharmacol 2024; 105:272-285. [PMID: 38351270 PMCID: PMC10949159 DOI: 10.1124/molpharm.123.000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Claire Polizu
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Zahra Farzinpour
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Madeline Floodstrand
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Omar K Sial
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Sevasti Gaspari
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Cheuk Y Tang
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric F Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| |
Collapse
|
6
|
Song Q, Wei A, Xu H, Gu Y, Jiang Y, Dong N, Zheng C, Wang Q, Gao M, Sun S, Duan X, Chen Y, Wang B, Huo J, Yao J, Wu H, Li H, Wu X, Jing Z, Liu X, Yang Y, Hu S, Zhao A, Wang H, Cheng X, Qin Y, Qu Q, Chen T, Zhou Z, Chai Z, Kang X, Wei F, Wang C. An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat Neurosci 2024; 27:272-285. [PMID: 38172439 DOI: 10.1038/s41593-023-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2023] [Indexed: 01/05/2024]
Abstract
The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.
Collapse
Affiliation(s)
- Qian Song
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Huadong Xu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Gu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Nan Dong
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Chaowen Zheng
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Min Gao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xueting Duan
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Huo
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingyu Yao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hua Li
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xuanang Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Zexin Jing
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Liu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Yang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shaoqin Hu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Anran Zhao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Chen
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
- College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry; Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA.
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China.
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Serafini RA, Estill M, Pekarskaya EA, Sakloth F, Shen L, Javitch JA, Zachariou V. Tianeptine promotes lasting antiallodynic effects in a mouse model of neuropathic pain. Neuropsychopharmacology 2023; 48:1680-1689. [PMID: 37474762 PMCID: PMC10517169 DOI: 10.1038/s41386-023-01645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Tricyclic antidepressants (TCAs), such as desipramine (DMI), are effective at managing neuropathic pain symptoms but often take several weeks to become effective and also lead to considerable side effects. Tianeptine (TIAN) is an atypical antidepressant that activates the mu-opioid receptor but does not produce analgesic tolerance or withdrawal in mice, nor euphoria in humans, at clinically-relevant doses. Here, we evaluate the efficacy of TIAN at persistently alleviating mechanical allodynia in the spared nerve injury (SNI) model of neuropathic pain, even well after drug clearance. After finding an accelerated onset of antiallodynic action compared to DMI, we used genetically modified mice to gain insight into RGS protein-associated pathways that modulate the efficacy of TIAN relative to DMI in models of neuropathic pain. Because we observed similar behavioral responses to both TIAN and DMI treatment in RGS4, RGSz1, and RGS9 knockout mice, we performed RNA sequencing on the NAc of TIAN- and DMI-treated mice after prolonged SNI to further clarify potential mechanisms underlying TIANs faster therapeutic actions. Our bioinformatic analysis revealed distinct transcriptomic signatures between the two drugs, with TIAN more directly reversing SNI-induced differentially expressed genes, and further predicted several upstream regulators that may be implicated in onset of action. This new understanding of the molecular pathways underlying TIAN action may enable the development of novel and more efficacious pharmacological approaches for the management of neuropathic pain.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine at Boston University, Boston, MA, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth A Pekarskaya
- Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Farhana Sakloth
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology, Physiology and Biophysics, Chobanian & Avedisian School of Medicine at Boston University, Boston, MA, USA.
| |
Collapse
|
8
|
Pandey M, Zhang JH, Adikaram PR, Kittock C, Lue N, Awe A, Degner K, Jacob N, Staples J, Thomas R, Kohnen AB, Ganesan S, Kabat J, Chen CK, Simonds WF. Specific regulation of mechanical nociception by Gβ5 involves GABA-B receptors. JCI Insight 2023; 8:e134685. [PMID: 37219953 PMCID: PMC10371342 DOI: 10.1172/jci.insight.134685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gβ5-dependent regulatory pathway within mechanical nociceptors that restrains antinociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of the gene that encodes Gβ5 (Gnb5) targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/- Gnb5fl/fl mice but not in Rgs9-Cre+/- Gnb5fl/fl mice, suggesting that Gβ5 might specifically regulate mechanical pain in regulator of G protein signaling 7-positive (Rgs7+) cells. Additionally, Gβ5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gβ5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the G protein-coupled receptor Mrgprd agonist β-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/- Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gβ5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.
Collapse
Affiliation(s)
- Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Poorni R. Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claire Kittock
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nicole Lue
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adam Awe
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Katherine Degner
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jenna Staples
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Allison B. Kohnen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ching-Kang Chen
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
9
|
Pryce KD, Serafini RA, Ramakrishnan A, Nicolais A, Giosan IM, Polizu C, Torres-Berrío A, Vuppala S, Kronman H, Ruiz A, Gaspari S, Peña CJ, Sakloth F, Mitsi V, van Duzer J, Mazitschek R, Jarpe M, Shen L, Nestler EJ, Zachariou V. Oxycodone withdrawal induces HDAC1/HDAC2-dependent transcriptional maladaptations in the reward pathway in a mouse model of peripheral nerve injury. Nat Neurosci 2023; 26:1229-1244. [PMID: 37291337 PMCID: PMC10752505 DOI: 10.1038/s41593-023-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The development of physical dependence and addiction disorders due to misuse of opioid analgesics is a major concern with pain therapeutics. We developed a mouse model of oxycodone exposure and subsequent withdrawal in the presence or absence of chronic neuropathic pain. Oxycodone withdrawal alone triggered robust gene expression adaptations in the nucleus accumbens, medial prefrontal cortex and ventral tegmental area, with numerous genes and pathways selectively affected by oxycodone withdrawal in mice with peripheral nerve injury. Pathway analysis predicted that histone deacetylase (HDAC) 1 is a top upstream regulator in opioid withdrawal in nucleus accumbens and medial prefrontal cortex. The novel HDAC1/HDAC2 inhibitor, Regenacy Brain Class I HDAC Inhibitor (RBC1HI), attenuated behavioral manifestations of oxycodone withdrawal, especially in mice with neuropathic pain. These findings suggest that inhibition of HDAC1/HDAC2 may provide an avenue for patients with chronic pain who are dependent on opioids to transition to non-opioid analgesics.
Collapse
Affiliation(s)
- Kerri D Pryce
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilinca M Giosan
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Claire Polizu
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sreeya Vuppala
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Ruiz
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sevasti Gaspari
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Farhana Sakloth
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Li Shen
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
10
|
Sakloth F, Sanchez-Reyes OB, Ruiz A, Nicolais A, Serafini RA, Pryce KD, Bertherat F, Torres-Berrío A, Gomes I, Devi LA, Wacker D, Zachariou V. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward. Mol Pharmacol 2023; 103:1-8. [PMID: 36310031 PMCID: PMC11033942 DOI: 10.1124/molpharm.122.000528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics exert their therapeutic and adverse effects by activating μ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Omar B Sanchez-Reyes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Ivone Gomes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Lakshmi A Devi
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Daniel Wacker
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| |
Collapse
|
11
|
Pramipexole treatment attenuates mechanical hypersensitivity in male rats experiencing chronic inflammatory pain. Neuropharmacology 2022; 208:108976. [PMID: 35085583 PMCID: PMC10171400 DOI: 10.1016/j.neuropharm.2022.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/23/2022]
Abstract
Opioids are commonly prescribed for pain despite growing evidence of their low efficacy in the treatment of chronic inflammatory pain and the high potential for misuse. There is a clear need to investigate non-opioid alternatives for the treatment of pain. In the present study, we tested the hypothesis that acute and repeated dopamine agonist treatment would attenuate mechanical hypersensitivity in male Long-Evans rats experiencing chronic inflammatory pain. We used two clinically available therapeutics, l-DOPA (precursor of dopamine biosynthesis) and pramipexole (dopamine D2/3 receptor agonist), to examine the functional role of dopamine signaling on mechanical hypersensitivity using an animal model of chronic inflammatory pain (complete Freund's adjuvant, CFA). We found that both acute and repeated pramipexole treatment attenuated hyperalgesia-like behavior in CFA-treated animals but exhibited no analgesic effects in control animals. In contrast, there was no effect of acute or repeated l-DOPA treatment on mechanical hypersensitivity in either CFA- or saline-treated animals. Notably, we discovered some extended effects of l-DOPA and pramipexole on decreasing pain-like behavior at three days and one week post-drug treatment. We also examined the effects of pramipexole treatment on glutamatergic and presynaptic signaling in pain- and reward-related brain regions including the nucleus accumbens (NAc), dorsal striatum (DS), ventral tegmental area (VTA), cingulate cortex (CC), central amygdala (CeA), and periaqueductal gray (PAG). We found that pramipexole treatment decreased AMPA receptor phosphorylation (pGluR1845) in the NAc and DS but increased pGluR1845 in the CC and CeA. A marker of presynaptic vesicle release, pSynapsin, was also increased in the DS, VTA, CC, CeA, and PAG following pramipexole treatment. Interestingly, pramipexole increased pSynapsin in the NAc of saline-treated animals, but not CFA-treated animals, suggesting blunted presynaptic vesicle release in the NAc of CFA-treated animals following pramipexole treatment. To examine the functional implications of impaired presynaptic signaling in the NAc of CFA animals, we used ex vivo electrophysiology to examine the effects of pramipexole treatment on the intrinsic excitability of NAc neurons in CFA- and saline-treated animals. We found that pramipexole treatment reduced NAc intrinsic excitability in saline-treated animals but produced no change in NAc intrinsic excitability in CFA-treated animals. These findings indicate alterations in dopamine D2/3 receptor signaling in the NAc of animals with a history of chronic pain in association with the anti-hyperalgesic effects of pramipexole treatment.
Collapse
|
12
|
Zhang XH, Feng CC, Pei LJ, Zhang YN, Chen L, Wei XQ, Zhou J, Yong Y, Wang K. Electroacupuncture Attenuates Neuropathic Pain and Comorbid Negative Behavior: The Involvement of the Dopamine System in the Amygdala. Front Neurosci 2021; 15:657507. [PMID: 34025342 PMCID: PMC8137986 DOI: 10.3389/fnins.2021.657507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NeuP) is an important clinical problem accompanying negative mood symptoms. Neuroinflammation in the amygdala is critically involved in NeuP, and the dopamine (DA) system acts as an important endogenous anti-inflammatory pathway. Electroacupuncture (EA) can improve the clinical outcomes in NeuP, but the underlying mechanisms have not been fully elucidated. This study was designed to assess the effectiveness of EA on pain and pain-related depressive-like and anxiety-like behaviors and explore the role of the DA system in the effects of EA. Male Sprague-Dawley rats were subjected to the chronic constrictive injury (CCI) model to induce NeuP. EA treatment was carried out for 30 min once every other day for 3 weeks. The results showed that CCI caused mechanical hyperalgesia and depressive and anxiety-like behaviors in rats and neuroinflammation in the amygdala, such as an increased protein level of TNFα and IL-1β and activation of astrocytes. EA treatment significantly improved mechanical allodynia and the emotional dysfunction induced by CCI. The effects of EA were accompanied by markedly decreased expression of TNFα, IL-1β, and glial fibrillary acid protein (GFAP) in the amygdala. Moreover, EA treatment reversed CCI-induced down-regulation of DA concentration, tyrosine hydroxylase (TH) expression, and DRD1 and DRD2 receptors. These results suggest that EA-ameliorated NeuP may possibly be associated with the DA system to inhibit the neuroinflammation in the amygdala.
Collapse
Affiliation(s)
- Xue-Hui Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Chen Feng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jian Pei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Nan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Chen
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yong
- Department of Anesthesiology and Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhuang X, Huang L, Gu Y, Wang L, Zhang R, Zhang M, Li F, Shi Y, Mo Y, Dai Q, Wei C, Wang J. The anterior cingulate cortex projection to the dorsomedial striatum modulates hyperalgesia in a chronic constriction injury mouse model. Arch Med Sci 2021; 17:1388-1399. [PMID: 34522268 PMCID: PMC8425248 DOI: 10.5114/aoms.2019.85202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the study was to study the role of the anterior cingulate cortex (ACC)-dorsal midbrain striatum (DMS) in neuropathic pain in mice. MATERIAL AND METHODS Optogenetics has been increasingly used in neuroscience research to selectively and precisely control the activity of a defined group of central neurons to determine their roles in behavioral functions in animals. The most important opsins are blue-sensitive ChR2 and yellow-sensitive NpHR. Calcium-calmodulin dependent protein kinase Iiα (CaMKIIα) is mostly expressed in the pyramidal excitatory neurons. Mice were injected with AAV2/9-CamKII-ChR2-mCherry, AAV2/9-CamKII-eNpHR3.0-GFP or AAV2/9-CamKII-mCherry virus in the ACC region, and the optical fiber implantation was performed in the ACC or DMS region. Mice were then followed up for 2 to 8 weeks and behavioral tests were carried out in the presence or absence of the blue/yellow light (473 nm/589 nm). Pain behavioral tests with or without the blue/yellow light at the same time were performed on the third and the seventh day after the chronic constriction injury of sciatic nerve model (CCI) was established. The pain thresholds of left and right hind limbs of mice in all groups were measured. RESULTS No matter whether activating the neurons in ACC or DMS, compared with normal mice in the ChR2-off-right group, and the mCherry-on-right group, the thermal pain threshold and mechanical pain threshold of the normal mice in the ChR2-on-right group were significantly lower. When inhibiting the neurons in the ACC or DMS, on day 3 and day 7 after CCI operation, the thermal pain threshold and mechanical pain threshold of the CCI mice of the NpHR-on-right group were significantly higher compared with the NpHR-off-right and mCherry-on-right groups. CONCLUSIONS The anterior cingulate cortex-dorsal midbrain striatum may be involved in the regulation of neuropathic pain in mice.
Collapse
Affiliation(s)
- Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Luping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yixiao Gu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Rong Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Minyuan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Fei Li
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Chaoyi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Wencheng Country People’s Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res 2020; 160:105148. [PMID: 32858121 DOI: 10.1016/j.phrs.2020.105148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.
Collapse
|
15
|
Sakloth F, Manouras L, Avrampou K, Mitsi V, Serafini RA, Pryce KD, Cogliani V, Berton O, Jarpe M, Zachariou V. HDAC6-selective inhibitors decrease nerve-injury and inflammation-associated mechanical hypersensitivity in mice. Psychopharmacology (Berl) 2020; 237:2139-2149. [PMID: 32388618 PMCID: PMC7470631 DOI: 10.1007/s00213-020-05525-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Lefteris Manouras
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Valeria Cogliani
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Olivier Berton
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
- Division of Neuroscience & Behavior, National institute on Drug Abuse (NIDA), 6001 Executive Blvd, Rm 4289, Rockville, MD, 20852, USA
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, Zachariou V, Guo L, Zhang B, He X, Friedel RH, Zou H. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci 2020; 23:337-350. [PMID: 32112058 PMCID: PMC7412870 DOI: 10.1038/s41593-020-0597-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue repair after spinal cord injury requires the mobilization of immune and glial cells to form a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment and matrix compaction. This process involves corralling, wherein phagocytic immune cells become confined to the necrotic core, which is surrounded by an astrocytic border. Here we elucidate a temporally distinct gene signature in injury-activated microglia and macrophages (IAMs) that engages axon guidance pathways. Plexin-B2 is upregulated in IAMs and is required for motor sensory recovery after spinal cord injury. Plexin-B2 deletion in myeloid cells impairs corralling, leading to diffuse tissue damage, inflammatory spillover and hampered axon regeneration. Corralling begins early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 promotes microglia motility, steers IAMs away from colliding cells and facilitates matrix compaction. Our data therefore establish Plexin-B2 as an important link that integrates biochemical cues and physical interactions of IAMs with the injury microenvironment during wound healing.
Collapse
Affiliation(s)
- Xiang Zhou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shalaka Wahane
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie-Sophie Friedl
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Kluge
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an International Medical Center, Xi'an, China
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Serafini RA, Pryce KD, Zachariou V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities. Biol Psychiatry 2020; 87:64-73. [PMID: 31806085 PMCID: PMC6954000 DOI: 10.1016/j.biopsych.2019.10.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Chronic pain is a complex neuropsychiatric disorder characterized by sensory, cognitive, and affective symptoms. Over the past 2 decades, researchers have made significant progress toward understanding the impact of mesolimbic dopamine circuitry in acute and chronic pain. These efforts have provided insights into the circuits and intracellular pathways in the brain reward center that are implicated in sensory and affective manifestations of chronic pain. Studies have also identified novel therapeutic targets as well as factors that affect treatment responsiveness. Dysregulation of dopamine function in the brain reward center may further promote comorbid mood disorders and vulnerability to addiction. This review discusses recent clinical and preclinical findings on the neuroanatomical and neurochemical adaptations triggered by prolonged pain states in the brain reward pathway. Furthermore, this discussion highlights evidence of mechanisms underlying comorbidities among pain, depression, and addiction.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
19
|
Coussens NP, Sittampalam GS, Jonson SG, Hall MD, Gorby HE, Tamiz AP, McManus OB, Felder CC, Rasmussen K. The Opioid Crisis and the Future of Addiction and Pain Therapeutics. J Pharmacol Exp Ther 2019; 371:396-408. [PMID: 31481516 DOI: 10.1124/jpet.119.259408] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Opioid misuse and addiction are a public health crisis resulting in debilitation, deaths, and significant social and economic impact. Curbing this crisis requires collaboration among academic, government, and industrial partners toward the development of effective nonaddictive pain medications, interventions for opioid overdose, and addiction treatments. A 2-day meeting, The Opioid Crisis and the Future of Addiction and Pain Therapeutics: Opportunities, Tools, and Technologies Symposium, was held at the National Institutes of Health (NIH) to address these concerns and to chart a collaborative path forward. The meeting was supported by the NIH Helping to End Addiction Long-TermSM (HEAL) Initiative, an aggressive, trans-agency effort to speed scientific solutions to stem the national opioid crisis. The event was unique in bringing together two research disciplines, addiction and pain, in order to create a forum for crosscommunication and collaboration. The output from the symposium will be considered by the HEAL Initiative; this article summarizes the scientific presentations and key takeaways. Improved understanding of the etiology of acute and chronic pain will enable the discovery of novel targets and regulatable pain circuits for safe and effective therapeutics, as well as relevant biomarkers to ensure adequate testing in clinical trials. Applications of improved technologies including reagents, assays, model systems, and validated probe compounds will likely increase the delivery of testable hypotheses and therapeutics to enable better health outcomes for patients. The symposium goals were achieved by increasing interdisciplinary collaboration to accelerate solutions for this pressing public health challenge and provide a framework for focused efforts within the research community. SIGNIFICANCE STATEMENT: This article summarizes key messages and discussions resulting from a 2-day symposium focused on challenges and opportunities in developing addiction- and pain-related medications. Speakers and attendees came from 40 states in the United States and 15 countries, bringing perspectives from academia, industry, government, and healthcare by researchers, clinicians, regulatory experts, and patient advocates.
Collapse
Affiliation(s)
- Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Samantha G Jonson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Heather E Gorby
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Amir P Tamiz
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Owen B McManus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Christian C Felder
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Kurt Rasmussen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| |
Collapse
|
20
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
21
|
Zhou H, Martinez E, Lin HH, Yang R, Dale JA, Liu K, Huang D, Wang J. Inhibition of the Prefrontal Projection to the Nucleus Accumbens Enhances Pain Sensitivity and Affect. Front Cell Neurosci 2018; 12:240. [PMID: 30150924 PMCID: PMC6099095 DOI: 10.3389/fncel.2018.00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Cortical mechanisms that regulate acute or chronic pain remain poorly understood. The prefrontal cortex (PFC) exerts crucial control of sensory and affective behaviors. Recent studies show that activation of the projections from the PFC to the nucleus accumbens (NAc), an important pathway in the brain's reward circuitry, can produce inhibition of both sensory and affective components of pain. However, it is unclear whether this circuit is endogenously engaged in pain regulation. To answer this question, we disrupted this circuit using an optogenetic strategy. We expressed halorhodopsin in pyramidal neurons from the PFC, and then selectively inhibited the axonal projection from these neurons to neurons in the NAc core. Our results reveal that inhibition of the PFC or its projection to the NAc, heightens both sensory and affective symptoms of acute pain in naïve rats. Inhibition of this corticostriatal pathway also increased nociceptive sensitivity and the aversive response in a chronic neuropathic pain model. Finally, corticostriatal inhibition resulted in a similar aversive phenotype as chronic pain. These results strongly suggest that the projection from the PFC to the NAc plays an important role in endogenous pain regulation, and its impairment contributes to the pathology of chronic pain.
Collapse
Affiliation(s)
- Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China.,Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Harvey H Lin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Runtao Yang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Jahrane Antonio Dale
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Kevin Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, Langone Medical Center, School of Medicine, New York University, New York, NY, United States.,Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
22
|
Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/β-catenin pathway. Proc Natl Acad Sci U S A 2018; 115:E2085-E2094. [PMID: 29440403 DOI: 10.1073/pnas.1707887115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/β-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gαz complexes near the membrane and promotes β-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gαz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction.
Collapse
|
23
|
Doyen PJ, Vergouts M, Pochet A, Desmet N, van Neerven S, Brook G, Hermans E. Inflammation-associated regulation of RGS in astrocytes and putative implication in neuropathic pain. J Neuroinflammation 2017; 14:209. [PMID: 29078779 PMCID: PMC5658970 DOI: 10.1186/s12974-017-0971-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes. Methods In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2, RGS3, RGS4, and RGS7 messenger RNA (mRNA) was examined up to 3 weeks after the lesion. Changes in the expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols or to inflammatory cytokines. Results We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1β, interleukin-6, or tumor necrosis factor α caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators. Conclusion Changes in the environment of astrocytes mimicking the inflammation observed in the model of neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.
Collapse
Affiliation(s)
- Pierre J Doyen
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Maxime Vergouts
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Amandine Pochet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Nathalie Desmet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Sabien van Neerven
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Gary Brook
- Institute for Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Emmanuel Hermans
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium.
| |
Collapse
|
24
|
Zhang H, Qian YL, Li C, Liu D, Wang L, Wang XY, Liu MJ, Liu H, Zhang S, Guo XY, Yang JX, Ding HL, Koo JW, Mouzon E, Deisseroth K, Nestler EJ, Zachariou V, Han MH, Cao JL. Brain-Derived Neurotrophic Factor in the Mesolimbic Reward Circuitry Mediates Nociception in Chronic Neuropathic Pain. Biol Psychiatry 2017; 82:608-618. [PMID: 28390647 PMCID: PMC5788809 DOI: 10.1016/j.biopsych.2017.02.1180] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mesolimbic reward system plays a critical role in modulating nociception; however, its underlying molecular, cellular, and neural circuitry mechanisms remain unknown. METHODS Chronic constrictive injury (CCI) of the sciatic nerve was used to model neuropathic pain. Projection-specific in vitro recordings in mouse brain slices and in vivo recordings from anesthetized animals were used to measure firing of dopaminergic neurons in the ventral tegmental area (VTA). The role of VTA-nucleus accumbens (NAc) circuitry in nociceptive regulation was assessed using optogenetic and pharmacological manipulations, and the underlying molecular mechanisms were investigated by Western blotting, enzyme-linked immunosorbent assays, and conditional knockdown techniques. RESULTS c-Fos expression in and firing of contralateral VTA-NAc dopaminergic neurons were elevated in CCI mice, and optogenetic inhibition of these neurons reversed CCI-induced thermal hyperalgesia. CCI increased the expression of brain-derived neurotrophic factor (BDNF) protein but not messenger RNA in the contralateral NAc. This increase was reversed by pharmacological inhibition of VTA dopaminergic neuron activity, which induced an antinociceptive effect that was neutralized by injecting exogenous BDNF into the NAc. Moreover, inhibition of BDNF synthesis in the VTA with anisomycin or selective knockdown of BDNF in the VTA-NAc pathway was antinociceptive in CCI mice. CONCLUSIONS These results reveal a novel mechanism of nociceptive modulation in the mesolimbic reward circuitry and provide new insight into the neural circuits involved in the processing of nociceptive information.
Collapse
Affiliation(s)
- Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Yi-Ling Qian
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chen Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Di Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lei Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mei-Jun Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - He Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Song Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao-Yun Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ja Wook Koo
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Ezekiell Mouzon
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
25
|
Gaspari S, Cogliani V, Manouras L, Anderson EM, Mitsi V, Avrampou K, Carr FB, Zachariou V. RGS9-2 Modulates Responses to Oxycodone in Pain-Free and Chronic Pain States. Neuropsychopharmacology 2017; 42:1548-1556. [PMID: 28074831 PMCID: PMC5436127 DOI: 10.1038/npp.2017.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022]
Abstract
Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Valeria Cogliani
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Ethan M Anderson
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Vasiliki Mitsi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Kleopatra Avrampou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Venetia Zachariou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| |
Collapse
|
26
|
Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YHE, Shen L, Zachariou V. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal 2017; 10:10/471/eaaj1549. [PMID: 28325815 DOI: 10.1126/scisignal.aaj1549] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex chronic condition characterized by various sensory, cognitive, and affective symptoms. A large percentage of patients with neuropathic pain are also afflicted with depression and anxiety disorders, a pattern that is also seen in animal models. Furthermore, clinical and preclinical studies indicate that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major risk factor for depression. We investigated whether chronic pain and stress affect similar molecular mechanisms and whether chronic pain can affect gene expression patterns that are involved in depression. Using two mouse models of neuropathic pain and depression [spared nerve injury (SNI) and chronic unpredictable stress (CUS)], we performed next-generation RNA sequencing and pathway analysis to monitor changes in gene expression in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal gray (PAG). In addition to finding unique transcriptome profiles across these regions, we identified a substantial number of signaling pathway-associated genes with similar changes in expression in both SNI and CUS mice. Many of these genes have been implicated in depression, anxiety, and chronic pain in patients. Our study provides a resource of the changes in gene expression induced by long-term neuropathic pain in three distinct brain regions and reveals molecular connections between pain and chronic stress.
Collapse
Affiliation(s)
- Giannina Descalzi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vasiliki Mitsi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevasti Gaspari
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kleopatra Avrampou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
27
|
A new model of nerve injury in the rat reveals a role of Regulator of G protein Signaling 4 in tactile hypersensitivity. Exp Neurol 2016; 286:1-11. [PMID: 27641322 DOI: 10.1016/j.expneurol.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
Abstract
Tactile hypersensitivity is one of the most debilitating symptoms of neuropathic pain syndromes. Clinical studies have suggested that its presence at early postoperative stages may predict chronic (neuropathic) pain after surgery. Currently available animal models are typically associated with consistent tactile hypersensitivity and are therefore limited to distinguish between mechanisms that underlie tactile hypersensitivity as opposed to mechanisms that protect against it. In this study we have modified the rat model of spared nerve injury, restricting the surgical lesion to a single peripheral branch of the sciatic nerve. This modification reduced the prevalence of tactile hypersensitivity from nearly 100% to approximately 50%. With this model, we here also demonstrated that the Regulator of G protein Signaling 4 (RGS4) was specifically up-regulated in the lumbar dorsal root ganglia and dorsal horn of rats developing tactile hypersensitivity. Intrathecal delivery of the RGS4 inhibitor CCG63802 was found to reverse tactile hypersensitivity for a 1h period. Moreover, tactile hypersensitivity after modified spared nerve injury was most frequently persistent for at least four weeks and associated with higher reactivity of glial cells in the lumbar dorsal horn. Based on these data we suggest that this new animal model of nerve injury represents an asset in understanding divergent neuropathic pain outcomes, so far unravelling a role of RGS4 in tactile hypersensitivity. Whether this model also holds promise in the study of the transition from acute to chronic pain will have to be seen in future investigations.
Collapse
|
28
|
Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016; 338:183-206. [PMID: 27401055 DOI: 10.1016/j.neuroscience.2016.06.057] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023]
Abstract
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system. It is generally chronic and challenging to treat. The recommended pharmacotherapy for neuropathic pain includes the use of some antidepressants, such as tricyclic antidepressants (TCAs) (amitriptyline…) or serotonin and noradrenaline re-uptake inhibitors (duloxetine…), and/or anticonvulsants such as the gabapentinoids gabapentin or pregabalin. Antidepressant drugs are not acute analgesics but require a chronic treatment to relieve neuropathic pain, which suggests the recruitment of secondary downstream mechanisms as well as long-term molecular and neuronal plasticity. Noradrenaline is a major actor for the action of antidepressant drugs in a neuropathic pain context. Mechanistic hypotheses have implied the recruitment of noradrenergic descending pathways as well as the peripheral recruitment of noradrenaline from sympathetic fibers sprouting into dorsal root ganglia; and importance of both α2 and β2 adrenoceptors have been reported. These monoamine re-uptake inhibitors may also indirectly act as anti-proinflammatory cytokine drugs; and their therapeutic action requires the opioid system, particularly the mu (MOP) and/or delta (DOP) opioid receptors. Gabapentinoids, which target the voltage-dependent calcium channels α2δ-1 subunit, inhibit calcium currents, thus decreasing the excitatory transmitter release and spinal sensitization. Gabapentinoids also activate the descending noradrenergic pain inhibitory system coupled to spinal α2 adrenoceptors. Gabapentinoid treatment may also indirectly impact on neuroimmune actors, like proinflammatory cytokines. These drugs are effective against neuropathic pain both with acute administration at high dose and with repeated administration. This review focuses on mechanistic knowledge concerning chronic antidepressant treatment and gabapentinoid treatment in a neuropathic pain context.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France.
| |
Collapse
|
29
|
Mitsi V, Zachariou V. Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience 2016; 338:81-92. [PMID: 27189881 DOI: 10.1016/j.neuroscience.2016.05.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
The midbrain dopamine center comprises a key network for reward, salience, motivation, and mood. Evidence from various clinical and preclinical settings points to the midbrain dopamine circuit as an important modulator of pain perception and pain-induced anxiety and depression. This review summarizes recent findings that shed light to the neuroanatomical, electrophysiological and molecular adaptations that chronic pain conditions promote in the mesolimbic dopamine system. Chronic pain states induce changes in neuronal plasticity and functional connectivity in several parts of the brain reward center, including nucleus accumbens, the ventral tegmental area and the prefrontal cortex. Here, we discuss recent findings on the mechanisms involved in the perception of chronic pain, in pain-induced anxiety and depression, as well as in pain-killer addiction vulnerability. Several new studies also show that the mesolimbic dopamine circuit potently modulates responsiveness to opioids and antidepressants used for the treatment of chronic pain. We discuss recent data supporting a role of the brain reward pathway in treatment efficacy and we summarize novel findings on intracellular adaptations in the brain reward circuit under chronic pain states.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
30
|
Muntean BS, Martemyanov KA. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily. J Biol Chem 2016; 291:7195-204. [PMID: 26811338 PMCID: PMC4807299 DOI: 10.1074/jbc.m115.713446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity.
Collapse
Affiliation(s)
- Brian S Muntean
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
31
|
Xu D, Su C, Lin HY, Manders T, Wang J. Persistent neuropathic pain increases synaptic GluA1 subunit levels in core and shell subregions of the nucleus accumbens. Neurosci Lett 2015; 609:176-81. [PMID: 26477778 DOI: 10.1016/j.neulet.2015.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022]
Abstract
The nucleus accumbens (NAc) is a key component of the brain reward system, and it is composed of core and shell subregions. Glutamate transmission through AMPA-type receptors in both core and shell of the NAc has been shown to regulate reward- and aversion-type behaviors. Previous studies have additionally demonstrated a role for AMPA receptor signaling in the NAc in chronic pain states. Here, we show that persistent neuropathic pain, modeled by spared nerve injury (SNI), selectively increases the numbers of GluA1 subunits of AMPA receptors at the synapse of both core and shell subregions. Such increases are not observed, however, for the GluA2 subunits. Furthermore, we find that phosphorylation at Ser845-GluA1 is increased by SNI at both core and shell subregions. These results demonstrate that persistent neuropathic pain increases AMPA receptor delivery to the synapse in both NAc core and shell, implying a role for AMPA receptor signaling in these regions in pain states.
Collapse
Affiliation(s)
- Duo Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Chen Su
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Hau-Yueh Lin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Toby Manders
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|