1
|
Corbin JPM, Best RJ, Garthwaite IJ, Cooper HF, Doughty CE, Gehring CA, Hultine KR, Allan GJ, Whitham TG. Hyperspectral Leaf Reflectance Detects Interactive Genetic and Environmental Effects on Tree Phenotypes, Enabling Large-Scale Monitoring and Restoration Planning Under Climate Change. PLANT, CELL & ENVIRONMENT 2025; 48:1842-1857. [PMID: 39497286 PMCID: PMC11788971 DOI: 10.1111/pce.15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf-level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6-year-old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%-98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%-23% of spectral variation within populations and 14%-48% of the variation across all populations. Second, we found gene by environment interactions leading to population-specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.
Collapse
Affiliation(s)
- Jaclyn P. M. Corbin
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca J. Best
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Iris J. Garthwaite
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Hillary F. Cooper
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Christopher E. Doughty
- School of Informatics, Computing and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Catherine A. Gehring
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kevin R. Hultine
- Department of Research, Conservation and CollectionsDesert Botanical GardenPhoenixArizonaUSA
| | - Gerard J. Allan
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
2
|
Kay ER, Philbin CS, Richards LA, Forister ML, Jeffrey C, Dyer LA. Effects of Water and Wind Stress on Phytochemical Diversity, Cannabinoid Composition, and Arthropod Diversity in Hemp. PLANTS (BASEL, SWITZERLAND) 2025; 14:474. [PMID: 39943036 PMCID: PMC11819868 DOI: 10.3390/plants14030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Phytochemical diversity is increasingly appreciated as an important attribute of plants that affects their interactions with other organisms and can have substantial effects on arthropod communities, but this axis of diversity is less studied for agricultural plants. For both managed and natural systems, understanding how extreme weather events, such as droughts, floods, and extreme wind, affect phytochemical diversity is an important part of predicting responses of plant-arthropod interactions to climate change. In an outdoor field experiment with two distinct varieties of hemp (Cannabis sativa L., Cannabaceae), we investigated the effects of simulated water stress from reduced water availability and flooding, along with an unplanned extreme wind event on phytochemical diversity and cannabinoid profiles. We also examined how changes in chemistry affected the diversity of the associated arthropods. Our results indicate that both genetic variety and environmental stress have substantial effects on variation in hemp phytochemical diversity and cannabinoid composition, and these effects cascaded to alter the arthropod communities on flowers. The largest differences in chemistry were found between different varieties, which accounted for over 10% of the variation in phytochemical diversity. Stress from wind and floods reduced the phytochemical diversity of flowers, wind had negative effects on cannabidiol (CBD) concentrations, and both water deficit and flooding caused subtle shifts in cannabinoid composition. The subsequent cascading effects of chemistry depended on how it was characterized, with increases in CBD causing higher arthropod richness, while increased phytochemical diversity reduced arthropod diversity. These results provide insights into the potential effects of extreme weather on hemp chemistry, as well as the consequences of hemp phytochemical diversity on colonizing arthropods.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee A. Dyer
- Department of Biology, University of Nevada Reno, 1664 N Virginia St., Reno, NV 89557, USA; (E.R.K.); (C.S.P.); (L.A.R.); (M.L.F.); (C.J.)
| |
Collapse
|
3
|
López-Goldar X, Zhang X, Hastings AP, Duplais C, Agrawal AA. Plant chemical diversity enhances defense against herbivory. Proc Natl Acad Sci U S A 2024; 121:e2417524121. [PMID: 39661060 DOI: 10.1073/pnas.2417524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Multiple hypotheses have been put forth to understand why defense chemistry in individual plants is so diverse. A major challenge has been teasing apart the importance of concentration vs. composition of defense compounds and resolving the mechanisms of diversity effects that determine plant resistance against herbivores. Accordingly, we first outline nonexclusive mechanisms by which phytochemical diversity may increase toxicity of a mixture compared to the average effect of each compound alone. We then leveraged independent in vitro, in vivo transgenic, and organismal experiments to test the effect of equimolar concentrations of purified milkweed toxins in isolation vs. mixtures on the specialist and sequestering monarch butterfly. We show that cardenolide toxin mixtures from milkweed plants enhance resistance against this herbivore compared to equal concentrations of single compounds. In mixtures, highly potent toxins dominated the inhibition of the monarch's target enzyme (Na+/K+-ATPase) in vitro, revealing toxin-specific affinity for the adapted enzyme in the absence of other physiological adaptations of the monarch. Mixtures also caused increased mortality in CRISPR-edited adult Drosophila melanogaster with the monarch enzyme in vivo, whereas wild-type flies showed lower survival regardless of mixture type. Finally, although experimentally administered mixtures were not more toxic to monarch caterpillars than single compounds overall, increasing caterpillar sequestration from mixtures resulted in an increasing burden for growth compared to single compounds. Phytochemical diversity likely provides an economical plant defense by acting on multiple aspects of herbivore physiology and may be particularly effective against sequestering specialist herbivores.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Xuening Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
- Department of Entomology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Glassmire AE, Salgado AL, Diaz R, Johnston J, Meyerson LA, Snook JS, Cronin JT. The Effects of Anthropogenic Stressors on Above- and Belowground Phytochemical Diversity of the Wetland Grass, Phragmites australis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3133. [PMID: 39599342 PMCID: PMC11597171 DOI: 10.3390/plants13223133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Coastal wetlands face threats from climate change-induced flooding and biological invasions. Plants respond to these stressors through changes in their phytochemical metabolome, but it is unclear whether stressors affecting one tissue compartment (e.g., leaves) create vulnerabilities in others (e.g., roots) or elicit similar responses across tissues. Additionally, responses to multiple simultaneous stressors remain poorly understood due to the focus on individual metabolites in past studies. This study aims to elucidate how the phytochemical metabolome of three Phragmites australis (Cav.) lineages, common in the Mississippi River Delta, responds to flooding and infestation by the non-native scale insect Nipponaclerda biwakoensis (Kuwana). Among these lineages, one is non-native and poses a threat to North American wetlands. Results indicate that metabolomic responses are highly specific, varying with lineage, tissue type, stressor type, and the presence of multiple stressors. Notably, the non-native lineage displayed high chemical evenness, while the other two showed stressor-dependent responses. The 10 most informative features identified by a machine learning model showed less than 1% overlap with known metabolites linked to water and herbivory stress, underscoring gaps in our understanding of plant responses to environmental stressors. Our metabolomic approach offers a valuable tool for identifying candidate plant genotypes for wetland restoration.
Collapse
Affiliation(s)
- Andrea E. Glassmire
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.L.S.); (J.J.); (J.T.C.)
| | - Ana L. Salgado
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.L.S.); (J.J.); (J.T.C.)
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA; (R.D.); (J.S.S.)
| | - Joseph Johnston
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.L.S.); (J.J.); (J.T.C.)
| | - Laura A. Meyerson
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA;
| | - Joshua S. Snook
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA; (R.D.); (J.S.S.)
| | - James T. Cronin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (A.L.S.); (J.J.); (J.T.C.)
| |
Collapse
|
5
|
Hauri KC, Schilmiller AL, Darling E, Howland AD, Douches DS, Szendrei Z. Constitutive Level of Specialized Secondary Metabolites Affects Plant Phytohormone Response to Above- and Belowground Herbivores. J Chem Ecol 2024; 50:549-561. [PMID: 39186175 PMCID: PMC11493795 DOI: 10.1007/s10886-024-01538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Plants defend themselves chemically against herbivory through secondary metabolites and phytohormones. Few studies have investigated how constitutive variation in secondary metabolites contributes to systemic herbivory response. We hypothesized that plants with lower constitutive defenses would induce a stronger phytohormone response to spatially separated herbivory than plants with high constitutive defense. We used growth chamber bioassays to investigate how aboveground herbivory by Colorado potato beetle (Leptinotarsa decemlineata, CPB) and belowground herbivory by northern root-knot nematode (Meloidogyne hapla, RKN) altered phytohormones and glycoalkaloids in roots and shoots of two lines of wild potato (Solanum chacoense). These lines had different constitutive levels of chemical defense, particularly leptine glycoalkaloids, which are only present in aboveground tissues. We also determined how these differences influenced the preference and performance of CPB. The susceptible wild potato line responded to aboveground damage by CPB through induction of jasmonic acid (JA) and OPDA. However, when challenged by both RKN and CPB, the susceptible line retained high levels of JA, but not OPDA. Beetles gained more mass after feeding on the susceptible line compared to the resistant line, but were not affected by nematode presence. Belowground, JA, JA-Isoleucine, and OPDA were higher in the resistant line compared to the susceptible line, and some compounds demonstrated response to local herbivory. In contrast, the susceptible line did not induce phytohormone defenses belowground. These findings allow us to predict that constitutive level of defense may influence the threshold of herbivory that may lead to plant-mediated effects on spatially separated herbivores.
Collapse
Affiliation(s)
- Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, MI, USA.
| | - Anthony L Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | | | - Amanda D Howland
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - David S Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Felisberto JS, Machado DB, Assunção JAS, Massau SAS, de Queiroz GA, Guimarães EF, Ramos YJ, Moreira DDL. Spatio-Temporal Variations of Volatile Metabolites as an Eco-Physiological Response of a Native Species in the Tropical Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:2599. [PMID: 39339574 PMCID: PMC11435382 DOI: 10.3390/plants13182599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This study evaluates the essential oil (EO) composition of Piper rivinoides Kunth, a shrub native to the Brazilian tropical rainforest, across different plant parts and developmental phases. The aim was to explore the chemical diversity of EO and its reflection in the plant's ecological interactions and adaptations. Plant organs (roots, stems, branches, and leaves) at different developmental phases were subjected to hydrodistillation followed by chemical analysis using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID). The results revealed a relevant variation in EO yield and composition among different plant parts and developmental phases. Leaves showed the highest yield and chemical diversity, with α-pinene and β-pinene as major constituents, while roots and stems were characterized by a predominance of arylpropanoids, particularly apiol. The chemical diversity in leaves increased with plant maturity, indicating a dynamic adaptation to environmental interactions. The study underscores the importance of considering the ontogeny of plant parts in understanding the ecological roles and potential applications of P. rivinoides in medicine and agriculture. The findings contribute to the overall knowledge of Piperaceae chemodiversity and ecological adaptations, offering insights into the plant's interaction with its environment and its potential uses based on chemical composition.
Collapse
Affiliation(s)
- Jéssica Sales Felisberto
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Daniel B. Machado
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Jeferson A. S. Assunção
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Samik A. S. Massau
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - George A. de Queiroz
- Department of Pharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, RJ, Brazil;
| | - Elsie F. Guimarães
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Ygor J. Ramos
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Davyson de Lima Moreira
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| |
Collapse
|
7
|
Guidosse Q, Roy M, Lassois L, Doucet JL. Adapted molecular methods to unravel the recalcitrant mycorrhizal associations of Aucoumea klaineana Pierre. J Microbiol Methods 2024; 224:107000. [PMID: 39029594 DOI: 10.1016/j.mimet.2024.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Understanding the role of root microbiota is crucial in sustainable forest management but remains challenging, especially for tropical trees. We developed an efficient and low-toxicity method to extract and amplify the fungal DNA associated with Aucoumea klaineana Pierre fine roots. To improve DNA quality, we optimized a commercial extraction kit by incorporating activated charcoal and modifying incubation periods. This enhanced protocol, combined with bovine serum albumin during PCR, effectively mitigated inhibitors present in A. klaineana tree root samples. This approach opens new perspectives for studying the microbiota of tropical trees.
Collapse
Affiliation(s)
- Quentin Guidosse
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Mélanie Roy
- University Paul-Sabatier Toulouse III, Toulouse, France; IRL IFAECI Instituto Franco-Argentino para el Estudio del Clima y sus Impactos, CNRS, CONICET, UBA, IRD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ludivine Lassois
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jean-Louis Doucet
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
8
|
Sun L, He Y, Cao M, Wang X, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol 2024; 8:1426-1436. [PMID: 38937611 DOI: 10.1038/s41559-024-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
A long-standing but poorly tested hypothesis in plant ecology and evolution is that biotic interactions play a more important role in producing and maintaining species diversity in the tropics than in the temperate zone. A core prediction of this hypothesis is that tropical plants deploy a higher diversity of phytochemicals within and across communities because they experience more herbivore pressure than temperate plants. However, simultaneous comparisons of phytochemical diversity and herbivore pressure in plant communities from the tropical to the temperate zone are lacking. Here we provide clear support for this prediction by examining phytochemical diversity and herbivory in 60 tree communities ranging from species-rich tropical rainforests to species-poor subalpine forests. Using a community metabolomics approach, we show that phytochemical diversity is higher within and among tropical tree communities than within and among subtropical and subalpine communities, and that herbivore pressure and specialization are highest in the tropics. Furthermore, we show that the phytochemical similarity of trees has little phylogenetic signal, indicating rapid divergence between closely related species. In sum, we provide several lines of evidence from entire tree communities showing that biotic interactions probably play an increasingly important role in generating and maintaining tree diversity in the lower latitudes.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Xiang Zhou
- School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
9
|
Liao LH, Wu WY, Berenbaum MR. Variation in Pesticide Toxicity in the Western Honey Bee (Apis mellifera) Associated with Consuming Phytochemically Different Monofloral Honeys. J Chem Ecol 2024; 50:397-408. [PMID: 38760625 PMCID: PMC11399171 DOI: 10.1007/s10886-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Jia X, Lin S, Zhang Q, Wang Y, Hong L, Li M, Zhang S, Wang T, Jia M, Luo Y, Ye J, Wang H. The Ability of Different Tea Tree Germplasm Resources in South China to Aggregate Rhizosphere Soil Characteristic Fungi Affects Tea Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:2029. [PMID: 39124147 PMCID: PMC11314174 DOI: 10.3390/plants13152029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
It is generally recognized that the quality differences in plant germplasm resources are genetically determined, and that only a good "pedigree" can have good quality. Ecological memory of plants and rhizosphere soil fungi provides a new perspective to understand this phenomenon. Here, we selected 45 tea tree germplasm resources and analyzed the rhizosphere soil fungi, nutrient content and tea quality. We found that the ecological memory of tea trees for soil fungi led to the recruitment and aggregation of dominant fungal populations that were similar across tea tree varieties, differing only in the number of fungi. We performed continuous simulation and validation to identify four characteristic fungal genera that determined the quality differences. Further analysis showed that the greater the recruitment and aggregation of Saitozyma and Archaeorhizomyces by tea trees, the greater the rejection of Chaetomium and Trechispora, the higher the available nutrient content in the soil and the better the tea quality. In summary, our study presents a new perspective, showing that ecological memory between tea trees and rhizosphere soil fungi leads to differences in plants' ability to recruit and aggregate characteristic fungi, which is one of the most important determinants of tea quality. The artificial inoculation of rhizosphere fungi may reconstruct the ecological memory of tea trees and substantially improve their quality.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Shuqi Zhang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Yangxin Luo
- College of Life Science, Longyan University, Longyan 364012, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
11
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
12
|
Zhang Y, Worthy SJ, Xu S, He Y, Wang X, Song X, Cao M, Yang J. Phytochemical diversity and their adaptations to abiotic and biotic pressures in fine roots across a climatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172051. [PMID: 38565347 DOI: 10.1016/j.scitotenv.2024.172051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Shijia Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| |
Collapse
|
13
|
Champati BB, Das PK, Sahoo C, Ray A, Jena S, Sahoo A, Nayak S, Lata S, Panda PC. Chemical fingerprinting and multicomponent quantitative analysis for quality control of Cinnamomum tamala collected from Western Himalaya by HPLC-DAD. Heliyon 2024; 10:e30361. [PMID: 38737243 PMCID: PMC11088263 DOI: 10.1016/j.heliyon.2024.e30361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Cinnamomum tamala, commonly known as "Indian bay leaf" or "Tejpat", is an economically important plant widely used in medicine, food and cosmetic industries. Growing demand for its leaf and bark in the herbal trade and non-availability of quality materials lead to large-scale species admixture and adulteration in the global market. The present study aims at developing a validated HPLC-DAD (High-performance liquid chromatography coupled with diode array detection) method and multiple markers-based chemical fingerprints for quality evaluation of C. tamala leaf extracts. Five bioactive compounds, viz., coumarin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and cinnamyl acetate, were identified and quantified in 28 samples collected from the western Himalayan region of India. The chromatographic separation was achieved on Shimadzu Shimpak C18 column (dimension 250 × 4.6 mm, pore size 5 μm) with a gradient elution of mobile phase using acetonitrile and 0.1 percent phosphate buffer and the chromatograms were obtained at a wavelength of 265 nm. The method validation was done by analyzing the linearity, LOD, LOQ, precision, stability, repeatability and recovery rates of standard compounds for quantitative analysis. The values of coefficient of correlation (R2) were found to be close to 1 for linearity and similarity analysis; and standard deviation was less than 3 percent in case of precision, stability, repeatability and recovery rates. The content of target compounds such as coumarin, cinnamyl alcohol, cinnamic acid, cinnamaldehyde and cinnamyl acetate varied in the range of 0-1.09, 0-0.05, 0.07-0.51, 0.39-1.27 and 0-0.27 percent, respectively. In the chemical fingerprint of C. tamala leaves, a total of 13 peaks were assigned as common peaks. The results of the study indicated that the HPLC method now developed combining chemical fingerprint with quantification of analytes could serve as a useful tool for quality evaluation of herbal raw materials of C. tamala and a valuable reference for further study.
Collapse
Affiliation(s)
- Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Prabhat Kumar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Chiranjibi Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Swaran Lata
- ICFRE-Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, 171 013, Himachal Pradesh, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| |
Collapse
|
14
|
Reinecke A, Flaig IC, Lozano YM, Rillig MC, Hilker M. Drought induces moderate, diverse changes in the odour of grassland species. PHYTOCHEMISTRY 2024; 221:114040. [PMID: 38428627 DOI: 10.1016/j.phytochem.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).
Collapse
Affiliation(s)
- Andreas Reinecke
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Isabelle C Flaig
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Yudi M Lozano
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
15
|
Gallon ME, Muchoney ND, Smilanich AM. Viral Infection Induces Changes to the Metabolome, Immune Response and Development of a Generalist Insect Herbivore. J Chem Ecol 2024; 50:152-167. [PMID: 38353894 DOI: 10.1007/s10886-024-01472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 04/25/2024]
Abstract
Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.
Collapse
Affiliation(s)
- Marilia Elias Gallon
- Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Ribeirão Preto, SP, 14040-903, Brazil.
| | | | | |
Collapse
|
16
|
Rivest S, Muralidhar M, Forrest JRK. Pollen chemical and mechanical defences restrict host-plant use by bees. Proc Biol Sci 2024; 291:20232298. [PMID: 38471551 PMCID: PMC10932708 DOI: 10.1098/rspb.2023.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Plants produce an array of chemical and mechanical defences that provide protection against many herbivores and pathogens. Putatively defensive compounds and structures can even occur in floral rewards: for example, the pollen of some plant taxa contains toxic compounds or possesses conspicuous spines. Yet little is known about whether pollen defences restrict host-plant use by bees. In other words, do bees, like other insect herbivores, tolerate the defences of their specific host plants while being harmed by non-host defences? To answer this question, we compared the effects of a chemical defence from Lupinus (Fabaceae) pollen and a putative mechanical defence (pollen spines) from Asteraceae pollen on larval survival of nine bee species in the tribe Osmiini (Megachilidae) varying in their pollen-host use. We found that both types of pollen defences reduce larval survival rate in some bee species. These detrimental effects were, however, mediated by host-plant associations, with bees being more tolerant of the pollen defences of their hosts, relative to the defences of plant taxa exploited by other species. This pattern strongly suggests that bees are adapted to the pollen defences of their hosts, and that host-plant use by bees is constrained by their ability to tolerate such defences.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | | | - Jessica R. K. Forrest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
17
|
Bastin S, Reyes-Betancort JA, Siverio de la Rosa F, Percy DM. Origins of the central Macaronesian psyllid lineages (Hemiptera; Psylloidea) with characterization of a new island radiation on endemic Convolvulus floridus (Convolvulaceae) in the Canary Islands. PLoS One 2024; 19:e0297062. [PMID: 38277393 PMCID: PMC10817144 DOI: 10.1371/journal.pone.0297062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024] Open
Abstract
A molecular survey of native and adventive psyllids in the central Macaronesian islands provides the first comprehensive phylogenetic assessment of the origins of the psyllid fauna of the Canary and Madeira archipelagos. We employ a maximum likelihood backbone constraint analysis to place the central Macaronesian taxa within the Psylloidea mitogenome phylogeny. The native psyllid fauna in these central Macaronesian islands results from an estimated 26 independent colonization events. Island host plants are predicted by host plants of continental relatives in nearly all cases and six plant genera have been colonized multiple times (Chamaecytisus, Convolvulus, Olea, Pistacia, Rhamnus, and Spartocytisus) from the continent. Post-colonization diversification varies from no further cladogenesis (18 events, represented by a single native taxon) to modest in situ diversification resulting in two to four native taxa and, surprisingly, given the diverse range of islands and habitats, only one substantial species radiation with more than four native species. Specificity to ancestral host plant genera or family is typically maintained during in situ diversification both within and among islands. Characterization of a recently discovered island radiation consisting of four species on Convolvulus floridus in the Canary Islands shows patterns and rates of diversification that reflect island topographic complexity and geological dynamism. Although modest in species diversity, this radiation is atypical in diversification on a single host plant species, but typical in the primary role of allopatry in the diversification process.
Collapse
Affiliation(s)
- Saskia Bastin
- Instituto Canario de Investigaciones Agrarias, Unidad de Protección Vegetal, La Laguna, Tenerife, Spain
| | - J. Alfredo Reyes-Betancort
- Instituto Canario de Investigaciones Agrarias, Jardín de Aclimatación de La Oratava, Puerto de la Cruz, Tenerife, Spain
| | - Felipe Siverio de la Rosa
- Instituto Canario de Investigaciones Agrarias, Unidad de Protección Vegetal, La Laguna, Tenerife, Spain
| | - Diana M. Percy
- Botany Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Wen H, Zhang S, Liu Y, Hu Z, Zhu C, Zeng J, Song Z, Chen J, Xu J. Screening Universal Stress-Response Terpenoids and Their Biosynthetic Genes via Volatile and Transcriptomic Profiling in Citrus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:351-362. [PMID: 38115585 DOI: 10.1021/acs.jafc.3c06109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Volatile terpenoids accumulate in citrus and play important roles in plant defense against various stressors. However, the broad-spectrum response of terpenoid biosynthesis to ubiquitous stressors in citrus has not been comparatively investigated. In this study, volatile terpenoids were profiled under six stressors: high temperature, citrus miner, citrus red mite, citrus canker, Alternaria brown spot, and huanglongbing (HLB). Significant content changes in 15 terpenoids, including β-ocimene, were observed in more than four of the six stressors, implying their possibly universal stress-response effects. Notably, the emission of terpenoids, including β-caryophyllene, β-ocimene, and nerolidol glucoside, was significantly increased by HLB in HLB-tolerant "Shatian" pomelo leaves. The upregulation of CgTPS1 and CgTPS2 and their characterization in vivo identified them as mono- or sesquiterpenoid biosynthetic genes. This study provides a foundation for determining stress resistance mechanisms in citrus and biopesticide designations for future industrial applications.
Collapse
Affiliation(s)
- Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Sining Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Congyi Zhu
- Guangdong Fruit Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiwu Zeng
- Guangdong Fruit Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhiqing Song
- Jiangxi Metallurgical Vocational and Technical College, Xinyu 338015, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Torres CA, Barrios H, Pinzon-Navarro S, Berkov A. Wood trait preferences of Neotropical xylophagous beetles (Coleoptera: Cerambycidae). Biotropica 2024; 56:98-108. [PMID: 38855501 PMCID: PMC11156264 DOI: 10.1111/btp.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/10/2023] [Indexed: 06/11/2024]
Abstract
Tree life history strategies are correlated with functional plant traits, such as wood density, moisture content, bark thickness, and nitrogen content; these traits affect the nutrients available to xylophagous insects. Cerambycid beetles feed on substrates that vary in these traits, but little is known about how they affect community composition. The goal of this project is to explore the community composition of two cerambycid subfamilies (Cerambycinae and Lamiinae) according to the wood traits in the wood they eat. In a salvage project conducted adjacent to the Panama Canal, trees were felled and exposed to Cerambycidae for oviposition. Disks from branches of differing thickness from the same plant individuals were used to calculate wood density, moisture content, and bark thickness in the field; nitrogen data were acquired offsite. Thick and thin branches tended to differ in wood trait values; therefore, data were analyzed separately in subsequent analyses. In thin branches, cerambycid abundance and species richness were higher in samples with less dense, moister wood, and thicker bark. Thick branches showed similar trends, but the wood traits accounted for little variability in beetle abundance or species richness. There were no significant regressions between beetle data and nitrogen. Cerambycines emerged more slowly, and from denser, drier wood, than lamiines. Cerambycines might be more drought-tolerant than lamiines, and therefore more resistant to the longer, more severe dry seasons that are predicted to occur due to climate change.
Collapse
Affiliation(s)
- Christina Ann Torres
- Department of Biology, City College and the Graduate Center, The City University of New York, Convent Avenue @ 138 St., New York, NY 10031, U.S.A
- Department of Mathematics, Science, and Technology, Teachers College, Columbia University, 525 W 120 street, New York, NY 10027, U.S.A
| | - Héctor Barrios
- Maestría de Entomología, Universidad de Panama, Panama City, Republic of Panama
| | - Sara Pinzon-Navarro
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Balboa Ancon, Panamá, República de Panamá
| | - Amy Berkov
- Department of Biology, City College and the Graduate Center, The City University of New York, Convent Avenue @ 138 St., New York, NY 10031, U.S.A
- Division of Invertebrate Zoology, American Museum of Natural History. Central Park West @ 81 St., New York, NY 10024, U.S.A
| |
Collapse
|
20
|
Wood TJ, Müller A, Praz C, Michez D. Elevated rates of dietary generalization in eusocial lineages of the secondarily herbivorous bees. BMC Ecol Evol 2023; 23:67. [PMID: 37986035 PMCID: PMC10662511 DOI: 10.1186/s12862-023-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Within the Hymenoptera, bees are notable for their relationship with flowering plants, being almost entirely dependent on plant pollen and nectar. Though functionally herbivorous, as a result of their role as pollinators, bees have received comparatively little attention as models for insect herbivory. Bees often display dietary specialization, but quantitative comparison against other herbivorous insects has not previously been conducted. RESULTS In the most comprehensive analysis to date for 860 bee species, dietary specialization amounted to 50.1% of studied species collecting pollen from between 1 and 2 botanical families with a relatively long tail of dietary generalists, with 11.1% of species collecting from more than 10 botanical families. This distribution deviated from the truncated Pareto distribution of dietary breadth seen in other herbivorous insect lineages. However, this deviation was predominantly due to eusocial bee lineages, which show a range of dietary breadths that conformed to a normal distribution, while solitary bees show a typical truncated distribution not strongly different from other herbivorous insects. We hypothesize that the relatively low level of dietary specialization in bees as a whole reflects the relaxation of the constraints typically observed in herbivorous insects with a comparatively reduced importance of plant chemistry and comparatively increased importance of phenology and foraging efficiency. The long flight periods of eusocial bees that are necessary to allow overlapping generations both allows and necessitates the use of multiple flowering resources, whereas solitary bees with short flight periods have more limited access to varied resources within a constrained activity period. CONCLUSIONS Collectively, solitary bees show slightly lower specialization compared to other herbivorous insects, possibly due to their balanced relationship with plants, rather than direct antagonism such as seen in the direct consumption of plant tissues. An additional factor may be the mediocre diversity of bees at low latitudes combined with low levels of dietary specialization, whereas these areas typically display a high rate of specialization by herbivorous insects in general. Though the most important factors structuring dietary specialization in bees appear to differ from many other herbivorous insects, solitary bees show a surprisingly similar overall pattern of dietary specialization.
Collapse
Affiliation(s)
- T J Wood
- University of Mons, Research Institute for Biosciences, Laboratory of Zoology, Place du parc 20, 7000, Mons, Belgium.
| | - A Müller
- ETH Zurich, Institute of Agricultural Sciences, Biocommunication and Entomology, Schmelzbergstrasse 9/LFO, 8092, Zurich, Switzerland
| | - C Praz
- University of Neuchâtel, Institute of Biology, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- InfoFauna - Swiss Zoological Records Center, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - D Michez
- University of Mons, Research Institute for Biosciences, Laboratory of Zoology, Place du parc 20, 7000, Mons, Belgium
| |
Collapse
|
21
|
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J. Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecol Lett 2023; 26:1898-1910. [PMID: 37776563 DOI: 10.1111/ele.14308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.
Collapse
Affiliation(s)
- Xuezhao Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, China
| | - Yunyun He
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Texas, Austin, USA
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Lu Jin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuejun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Suphanee Glomglieng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Cao
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianhong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Indiana, Notre Dame, USA
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Guo L, Qiao X, Haji D, Zhou T, Liu Z, Whiteman NK, Huang J. Convergent resistance to GABA receptor neurotoxins through plant-insect coevolution. Nat Ecol Evol 2023; 7:1444-1456. [PMID: 37460839 PMCID: PMC10482695 DOI: 10.1038/s41559-023-02127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/22/2023] [Indexed: 09/08/2023]
Abstract
The molecular mechanisms of coevolution between plants and insects remain elusive. GABA receptors are targets of many neurotoxic terpenoids, which represent the most diverse array of natural products known. Over deep evolutionary time, as plant terpene synthases diversified in plants, so did plant terpenoid defence repertoires. Here we show that herbivorous insects and their predators evolved convergent amino acid changing substitutions in duplicated copies of the Resistance to dieldrin (Rdl) gene that encodes the GABA receptor, and that the evolution of duplicated Rdl and terpenoid-resistant GABA receptors is associated with the diversification of moths and butterflies. These same substitutions also evolved in pests exposed to synthetic insecticides that target the GABA receptor. We used in vivo genome editing in Drosophila melanogaster to evaluate the fitness effects of each putative resistance mutation and found that pleiotropy both facilitates and constrains the evolution of GABA receptor resistance. The same genetic changes that confer resistance to terpenoids across 300 Myr of insect evolution have re-evolved in response to synthetic analogues over one human lifespan.
Collapse
Affiliation(s)
- Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Diler Haji
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Tianhao Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhihan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Albrecht J, Wappler T, Fritz SA, Schleuning M. Fossil leaves reveal drivers of herbivore functional diversity during the Cenozoic. Proc Natl Acad Sci U S A 2023; 120:e2300514120. [PMID: 37523540 PMCID: PMC10410718 DOI: 10.1073/pnas.2300514120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Herbivorous arthropods are the most diverse group of multicellular organisms on Earth. The most discussed drivers of their inordinate taxonomic and functional diversity are high niche availability associated with the diversity of host plants and dense niche packing due to host partitioning among herbivores. However, the relative contributions of these two factors to dynamics in the diversity of herbivores throughout Earth's history remain unresolved. Using fossil data on herbivore-induced leaf damage from across the Cenozoic, we infer quantitative bipartite interaction networks between plants and functional feeding types of herbivores. We fit a general model of diversity to these interaction networks and discover that host partitioning among functional groups of herbivores contributed twice as much to herbivore functional diversity as host diversity. These findings indicate that niche packing primarily shaped the dynamics in the functional diversity of herbivores during the past 66 my. Our study highlights how the fossil record can be used to test fundamental theories of biodiversity and represents a benchmark for assessing the drivers of herbivore functional diversity in modern ecosystems.
Collapse
Affiliation(s)
- Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main60325, Germany
| | - Torsten Wappler
- Natural History Department, Hessian State Museum, Darmstadt64283, Germany
- Department of Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn53115, Germany
| | - Susanne A. Fritz
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main60438, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main60325, Germany
| |
Collapse
|
24
|
Salgado AL, Glassmire AE, Sedio BE, Diaz R, Stout MJ, Čuda J, Pyšek P, Meyerson LA, Cronin JT. Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass. J Chem Ecol 2023; 49:437-450. [PMID: 37099216 DOI: 10.1007/s10886-023-01425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.
Collapse
Affiliation(s)
- Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado, 0843-03092, Republic of Panama
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael J Stout
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jan Čuda
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, CZ -128 44, Czech Republic
| | - Laura A Meyerson
- Department of Natural Resource Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
25
|
Xie K, Chang S, Ning J, Guo Y, Zhang C, Yan T, Hou F. Dietary supplementation of Allium mongolicum modulates rumen-hindgut microbial community structure in Simmental calves. Front Microbiol 2023; 14:1174740. [PMID: 37350783 PMCID: PMC10284144 DOI: 10.3389/fmicb.2023.1174740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of Allium mongolicum on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups (n = 4). All calves were fed a basal ration containing roughage (alfalfa and oats) and mixed concentrate in a ratio of 60:40 on dry matter basis. In each group, the basal ration was supplemented with Allium mongolicum 0 (SL0), 200 (SL200), 400 (SL400), and 800 (SL800) mg/kg BW. The experiment lasted for 58 days. Rumen fluid and feces in rectum were collected, Rumen fluid and hindgut fecal were collected for analyzing bacterial community. In the rumen, Compared with SL0, there was a greater relative abundance of phylum Proteobacteria (p < 0.05) and genera Rikenellaceae_RC9_gut_group (p < 0.01) in SL800 treatment. In hindgut, compared with SL0, supplementation of A. mongolicum (SL200, SL400, or SL800) decreased in the relative abundances of Ruminococcaceae_UCG-014 (p < 0.01), Ruminiclostridium_5 (p < 0.01), Eubacterium_coprostanoligenes_group (p < 0.05), and Alistipes (p < 0.05) in feces; Whereas, the relative abundances of Christensenellaceae_R-7_group (p < 0.05), and Prevotella_1 (p < 0.01) in SL800 were higher in feces, to maintain hindgut stability. This study provided evidence that A. mongolicum affects the gastrointestinal of calves, by influencing microbiota in their rumen and feces.
Collapse
Affiliation(s)
- Kaili Xie
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jiao Ning
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yarong Guo
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Cheng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Tianhai Yan
- Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Moghe G, Irfan M, Sarmah B. Dangerous sugars: Structural diversity and functional significance of acylsugar-like defense compounds in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102348. [PMID: 36842412 DOI: 10.1016/j.pbi.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/10/2023]
Abstract
Acylsugars constitute a diverse class of secondary metabolites found in many flowering plant families. Comprising sugar cores and acyl groups connected by ester and/or ether linkages, acylsugar structures vary considerably at all taxonomic levels - from populations of the same species to across species of the same family and across flowering plants, with some species producing hundreds of acylsugars in a single organ. Acylsugars have been most well-studied in the Solanaceae family, but structurally analogous compounds have also been reported in the Convolvulaceae, Martyniaceae, Geraniaceae, Rubiaceae, Rosaceae and Caryophyllaceae families. Focusing on Solanaceae and Convolvulaceae acylsugars, this review highlights their structural diversity, the potential biosynthetic mechanisms that produce this diversity, and its functional significance. Finally, we also discuss the possibility that some of this diversity is merely "noise", arising out of enzyme promiscuity and/or non-adaptive evolutionary mechanisms.
Collapse
Affiliation(s)
- Gaurav Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam 785013, India
| |
Collapse
|
27
|
Glassmire AE, Carson WP, Smilanich AM, Richards LA, Jeffrey CS, Dodson CD, Philbin CS, Humberto GL, Dyer LA. Multiple and contrasting pressures determine intraspecific phytochemical variation in a tropical shrub. Oecologia 2023; 201:991-1003. [PMID: 37042994 DOI: 10.1007/s00442-023-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/12/2023] [Indexed: 04/13/2023]
Abstract
Intraspecific phytochemical variation across a landscape can cascade up trophic levels, potentially mediating the composition of entire insect communities. Surprisingly, we have little understanding of the processes that regulate and maintain phytochemical variation within species, likely because these processes are complex and operate simultaneously both temporally and spatially. To assess how phytochemistry varies within species, we tested the degree to which resource availability, contrasting soil type, and herbivory generate intraspecific chemical variation in growth and defense of the tropical shrub, Piper imperiale (Piperaceae). We quantified changes in both growth (e.g., nutritional protein, above- and below-ground biomass) and defense (e.g., imide chemicals) of individual plants using a well-replicated fully factorial shade-house experiment in Costa Rica. We found that plants grown in high light, nutrient- and richer old alluvial soil had increased biomass. High light was also important for increasing foliar protein. Thus, investment into growth was determined by resource availability and soil composition. Surprisingly, we found that chemical defenses decreased in response to herbivory. We also found that changes in plant protein were more plastic compared to plant defense, indicating that constitutive defenses may be relatively fixed, and thus an adaptation to chronic herbivory that is common in tropical forests. We demonstrate that intraspecific phytochemical variation of P. imperiale is shaped by resource availability from light and soil type. Because environmental heterogeneity occurs over small spatial scales (tens of meters), herbivores may be faced with a complex phytochemical landscape that may regulate how much damage any individual plant sustains.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Walter P Carson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lora A Richards
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
| | - Christopher S Jeffrey
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Craig D Dodson
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Casey S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
- Department of Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Garcia L Humberto
- Organization for Tropical Studies, La Selva Research Station, Costa Rica, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
28
|
Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. THE NEW PHYTOLOGIST 2023; 237:2478-2492. [PMID: 36527232 DOI: 10.1111/nph.18685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Plants produce large numbers of phytochemical compounds affecting plant physiology and interactions with their biotic and abiotic environment. Recently, chemodiversity has attracted considerable attention as an ecologically and evolutionary meaningful way to characterize the phenotype of a mixture of phytochemical compounds. Currently used measures of phytochemical diversity, and related measures of phytochemical dissimilarity, generally do not take structural or biosynthetic properties of compounds into account. Such properties can be indicative of the compounds' function and inform about their biosynthetic (in)dependence, and should therefore be included in calculations of these measures. We introduce the R package chemodiv, which retrieves biochemical and structural properties of compounds from databases and provides functions for calculating and visualizing chemical diversity and dissimilarity for phytochemicals and other types of compounds. Our package enables calculations of diversity that takes the richness, relative abundance and - most importantly - structural and/or biosynthetic dissimilarity of compounds into account. We illustrate the use of the package with examples on simulated and real datasets. By providing the R package chemodiv for quantifying multiple aspects of chemodiversity, we hope to facilitate investigations of how chemodiversity varies across levels of biological organization, and its importance for the ecology and evolution of plants and other organisms.
Collapse
Affiliation(s)
- Hampus Petrén
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
29
|
Gallon ME, Smilanich AM. Effects of Host Plants on Development and Immunity of a Generalist Insect Herbivore. J Chem Ecol 2023; 49:142-154. [PMID: 36763248 DOI: 10.1007/s10886-023-01410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Secondary plant chemistry mediates a variety of communication signals among species, playing a fundamental role in the evolutionary diversification of communities and ecosystems. Herein, we explored diet-mediated host plant effects on development and immune response of a generalist insect herbivore. Vanessa cardui (Nymphalidae) caterpillars were reared on leaves of three host plants that vary in secondary metabolites, Plantago lanceolata (Plantaginaceae), Taraxacum officinale (Asteraceae) and Tithonia diversifolia (Asteraceae). Insect development was evaluated by larval and pupal viabilities, survivorship, and development rate. Immune response was measured as phenoloxidase (PO) activity. Additionally, chemical profiles of the host plants were obtained by liquid chromatograph-mass spectrometry (LC-MS) and the discriminant metabolites were determined using a metabolomic approach. Caterpillars reared on P. lanceolata exhibited the highest larval and pupal viabilities, as well as PO activity, and P. lanceolata leaves were chemically characterized by the presence of iridoid glycosides, phenylpropanoids and flavonoids. Taraxacum officinale leaves were characterized mainly by the presence of phenylpropanoids, flavones O-glycoside and germacranolide-type sesquiterpene lactones; caterpillars reared on this host plant fully developed to the adult stage, however they exhibited lower larval and pupal viabilities compared to individuals reared on P. lanceolata. Conversely, caterpillars reared on T. diversifolia leaves, which contain phenylpropanoids, flavones and diverse furanoheliangolide-type sesquiterpene lactones, were not able to complete larval development and exhibited the lowest PO activity. These findings suggested that V. cardui have adapted to tolerate potentially toxic metabolites occurring in P. lanceolata (iridoid glycosides), however caterpillars were not able to cope with potentially detrimental metabolites occurring in T. diversifolia (furanoheliangolides). Therefore, we suggest that furanoheliangolide-type sesquiterpene lactones were responsible for the poor development and immune response observed for caterpillars reared on T. diversifolia.
Collapse
Affiliation(s)
- Marilia Elias Gallon
- Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA. .,Núcleo de Pesquisa em Produtos Naturais e Sintéticos, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Ribeirão Preto, SP, 14040-903, Brazil.
| | | |
Collapse
|
30
|
Matsunaga C, Kanazawa N, Takatsuka Y, Fujii T, Ohta S, Ômura H. Polyhydroxy Acids as Fabaceous Plant Components Induce Oviposition of the Common Grass Yellow Butterfly, Eurema Mandarina. J Chem Ecol 2023; 49:67-76. [PMID: 36484901 DOI: 10.1007/s10886-022-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The common grass yellow butterfly, Eurema mandarina is a Fabaceae-feeding species, the females of which readily oviposit on Albizia julibrissin and Lespedeza cuneata in mainland Japan. We previously demonstrated that the methanolic leaf extracts of these plants, and their highly polar aqueous fractions strongly elicit female oviposition. Furthermore, the three subfractions obtained by ion-exchange chromatographic separation of the aqueous fraction have been found to be less effective alone, but synergistically stimulate female oviposition when combined. This indicates that female butterflies respond to multiple compounds with different acidity. We have previously identified d-pinitol from the neutral/amphoteric subfractions and glycine betaine from the basic subfractions as oviposition stimulants of E. mandarina. The present study aimed to identify active compounds in the remaining acidic subfractions of A. julibrissin and L. cuneata leaf extracts. GC-MS analyses of trimethylsilyl-derivatized samples revealed the presence of six compounds in the acidic subfractions. In bioassays using these authentic chemicals, erythronic acid (EA) and threonic acid (TA) were moderately active in eliciting oviposition responses in E. mandarina, with their d-isomers showing slightly higher activity than their l-isomers. Female responsiveness differed between d-EA and l-TA, the major isomers of these compounds in plants, with the response to d-EA reaching a plateau at concentrations above 0.005% and that to l-TA peaking at a concentration of 0.01%. The natural concentrations of d-EA and l-TA in fresh A. julibrissin and L. cuneata leaves were sufficient to stimulate oviposition. Furthermore, mixing 0.001% d-EA or 0.001% l-TA, to which females are mostly unresponsive, with 0.1% d-pinitol resulted in a synergistic enhancement of the oviposition response. These findings demonstrate that E. mandarina females utilize both polyhydroxy acids, EA and TA, as chemical cues for oviposition.
Collapse
Affiliation(s)
- Chisato Matsunaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739- 8528, Higashihiroshima, Japan
| | - Naoki Kanazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739- 8528, Higashihiroshima, Japan
| | - Yuta Takatsuka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739- 8528, Higashihiroshima, Japan
| | - Takeshi Fujii
- Faculty of Agriculture, Setsunan University, 573-0101, Hirakata, Osaka, Japan
| | - Shinji Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739- 8528, Higashihiroshima, Japan
| | - Hisashi Ômura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739- 8528, Higashihiroshima, Japan.
| |
Collapse
|
31
|
González C. Evolution of the concept of ecological integrity and its study through networks. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
32
|
Forrister DL, Endara MJ, Soule AJ, Younkin GC, Mills AG, Lokvam J, Dexter KG, Pennington RT, Kidner CA, Nicholls JA, Loiseau O, Kursar TA, Coley PD. Diversity and divergence: evolution of secondary metabolism in the tropical tree genus Inga. THE NEW PHYTOLOGIST 2023; 237:631-642. [PMID: 36263711 DOI: 10.1111/nph.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.
Collapse
Affiliation(s)
- Dale L Forrister
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - María-José Endara
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS - Universidad de las Américas, 170513, Quito, Ecuador
| | - Abrianna J Soule
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Gordon C Younkin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Mills
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - John Lokvam
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Kyle G Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - R Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Catherine A Kidner
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JW, UK
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James A Nicholls
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Insect Collection (ANIC), Building 101, Clunies Ross Street, Black Mountain, ACT, 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - Thomas A Kursar
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Phyllis D Coley
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
33
|
Ziaja D, Müller C. Intraspecific chemodiversity provides plant individual- and neighbourhood-mediated associational resistance towards aphids. FRONTIERS IN PLANT SCIENCE 2023; 14:1145918. [PMID: 37082343 PMCID: PMC10111025 DOI: 10.3389/fpls.2023.1145918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Some plant species express an extraordinarily high intraspecific diversity in phytochemicals (= chemodiversity). As discussed for biodiversity, higher chemodiversity may provide better protection against environmental stress, including herbivory. However, little is known about whether the resistance of a plant individual towards herbivores is mostly governed by its own chemodiversity or by associational resistance provided by conspecific neighbours. To investigate the role of chemodiversity in plant-aphid interactions, we used the Asteraceae Tanacetum vulgare, whose individuals differ pronouncedly in the composition of leaf terpenoids, forming distinct chemotypes. Plants were set up in a field consisting of plots containing five individuals of either the same or different chemotypes. Presence of winged aphids, indicating attraction, and abundance of winged and unwinged aphids, indicating fitness, were counted weekly on each plant. During the peak abundance of aphids, leaf samples were taken from all plants for re-analyses of the terpenoid composition and quantification of terpenoid chemodiversity, calculated on an individual plant (Shannon index, Hsind, also considered as α-chemodiversity) and plot level (Hsplot, = β-chemodiversity). Aphid attraction was neither influenced by chemotype nor plot-type. The real-time odour environment may be very complex in this setting, impeding clear preferences. In contrast, the abundance was affected by both chemotype and plot-type. On average, more Uroleucon tanaceti aphids were found on plants of two of the chemotypes growing in homogenous compared to heterogenous plots, supporting the associational resistance hypothesis. For Macrosiphoniella tanacetaria aphids, the probability of presence differed between plot-types on one chemotype. Terpenoid chemodiversity expressed as a gradient revealed negative Hsplot effects on U. tanaceti, but a positive correlation of Hsind with M. tanacetaria abundance. Aphids of M. fuscoviride were not affected by any level of chemodiversity. In conclusion, this study shows that not only the chemotype and chemodiversity of individual plants but also that of conspecific neighbours can influence certain plant-herbivore interactions. These effects are highly specific with regard to the plant chemotype and differ between aphid species and their morphs (winged vs. unwinged). Furthermore, our results highlight the importance of analysing chemodiversity at different levels.
Collapse
|
34
|
Rubiano-Buitrago P, Pradhan S, Paetz C, Rowland HM. New Structures, Spectrometric Quantification, and Inhibitory Properties of Cardenolides from Asclepias curassavica Seeds. Molecules 2022; 28:molecules28010105. [PMID: 36615300 PMCID: PMC9822358 DOI: 10.3390/molecules28010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-β-allopyranosyl coroglaucigenin (1), 3-[4'-O-β-glucopyranosyl-β-allopyranosyl] coroglaucigenin (2), 3'-O-β-glucopyranosyl-15-β-hydroxycalotropin (3), and 3-O-β-glucopyranosyl-12-β-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-β-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.
Collapse
Affiliation(s)
- Paola Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| | - Shrikant Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
| | - Hannah M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745 Jena, Germany
- Correspondence: (P.R.-B.); (H.M.R.)
| |
Collapse
|
35
|
Rotter MC, Christie K, Holeski LM. Climate and the biotic community structure plant resistance across biogeographic groups of yellow monkeyflower. Ecol Evol 2022; 12:e9520. [PMID: 36440318 PMCID: PMC9682197 DOI: 10.1002/ece3.9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing correlates of phytochemical resistance trait variation across a landscape can provide insight into the ecological factors that have shaped the evolution of resistance arsenals. Using field-collected data and a greenhouse common garden experiment, we assessed the relative influences of abiotic and biotic drivers of genetic-based defense trait variation across 41 yellow monkeyflower populations from western and eastern North America and the United Kingdom. Populations experience different climates, herbivore communities, and neighboring vegetative communities, and have distinct phytochemical resistance arsenals. Similarities in climate as well as herbivore and vegetative communities decline with increasing physical distance separating populations, and phytochemical resistance arsenal composition shows a similarly decreasing trend. Of the abiotic and biotic factors examined, temperature and the neighboring vegetation community had the strongest relative effects on resistance arsenal differentiation, whereas herbivore community composition and precipitation have relatively small effects. Rather than simply controlling for geographic proximity, we jointly assessed the relative strengths of both geographic and ecological variables on phytochemical arsenal compositional dissimilarity. Overall, our results illustrate how abiotic conditions and biotic interactions shape plant defense traits in natural populations.
Collapse
Affiliation(s)
- Michael C. Rotter
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of BiologyUtah Valley UniversityOremUtahUSA
| | - Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
36
|
Oduor AMO. Invasive plant species that experience lower herbivory pressure may evolve lower diversities of chemical defense compounds in the exotic range. AMERICAN JOURNAL OF BOTANY 2022; 109:1382-1393. [PMID: 36000500 DOI: 10.1002/ajb2.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Invasive plant species often escape from specialist herbivores and are more likely to be attacked by generalist herbivores in the exotic range. Consequently, the shifting defense hypothesis predicts that invasive plants will produce higher concentrations of qualitative defense compounds to deter dominant generalist herbivores in the exotic range. Here, I additionally propose a reduced chemical diversity hypothesis (RCDH), which predicts that reduced herbivory pressure will select for invasive plant genotypes that produce lower diversities of chemical defense compounds in the exotic range. METHODS I tested whether (1) invasive Brassica nigra populations express a lower diversity and an overall higher concentration of glucosinolate compounds than native-range B. nigra; (2) Brassica nigra individuals that express high diversities and concentrations of glucosinolate compounds are more attractive to specialist and deterrent to generalist herbivores; and (3) tissues of invasive B. nigra are less palatable than tissues of native-range B. nigra to the generalist herbivores Theba pisana and Helix aspersa. RESULTS Invasive B. nigra populations produced a significantly lower diversity of glucosinolate compounds, a marginally higher concentration of total glucosinolates, and a significantly higher concentration of sinigrin (the dominant glucosinolate). Leaf tissues of invasive B. nigra were significantly less palatable to T. pisana and marginally less so to H. aspersa. Brassica nigra individuals that expressed high concentrations of total glucosinolate compounds were visited by a low diversity of generalist herbivore species in the field. CONCLUSIONS In line with the RCDH, the lower diversity of glucosinolate compounds produced by invasive B. nigra populations likely resulted from selection imposed by reduced herbivory pressure in the exotic range.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
37
|
Maynard LD, Moureau E, Bader MY, Salazar D, Zotz G, Whitehead SR. Effects of climate change on plant resource allocation and herbivore interactions in a Neotropical rainforest shrub. Ecol Evol 2022. [DOI: 10.1002/ece3.9198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lauren D. Maynard
- Department of Biological Sciences Virginia Tech Blacksburg Virginia USA
| | - Elodie Moureau
- Faculty of Geography University of Marburg Marburg Germany
| | | | - Diego Salazar
- Department of Biological Sciences, Institute of Environment Florida International University Miami Florida USA
| | - Gerhard Zotz
- Institute for Biology and Environmental Sciences Carl von Ossietzky University Oldenburg Oldenburg Germany
| | | |
Collapse
|
38
|
Tan Y, Liu Q, Wang Z, Pu Q, Shi S, Su J. Plateau zokors (Eospalax baileyi) respond to secondary metabolites from the roots of Stellera chamaejasme by enhancing hepatic inflammatory factors and metabolic pathway genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109368. [PMID: 35589064 DOI: 10.1016/j.cbpc.2022.109368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
Herbivores rarely consume toxic plants. An increase in the proportion of toxic plant secondary metabolites (PSMs) in poisonous plants can promote detoxification and related metabolic capacity of animals. Poisonous plants with thick taproots like Stellera chamaejasme (SC) are important stored food for the plateau zokor (Eospalax baileyi) during the winter and promote the development of detoxification mechanisms in this animal. In this study, plateau zokors were administered gavages of 0.2, 1.05, and 2.10 ml/kg SC water extracts. Serum samples were collected from plateau zokors to measure the levels of transaminases and oxidative stress. Transcriptome analysis was conducted to evaluate the differential genes of multiple metabolic pathways to investigate the relationship between the physiological processes and metabolic adaptation capacity of these animals in response to SC. After SC administration, plateau zokors showed significant hepatic granular degeneration and inflammatory reactions in the liver and aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels increased in a dose-dependent manner. Further, differential expression was also found in the plateau zokor livers, with most enrichment in inflammation and detoxification metabolism pathways. The metabolic adaptation responses in P450 xenobiotic clearance, bile secretion, and pancreatic secretion (Gusb, Hmgcr, Gstm1, Gstp1, and Eobag004630005095) were verified by mRNA network analysis as key factors related to the mechanism. Plateau zokors respond to SC PSMs through changes in liver physiology, biochemistry, and genes in multiple metabolic pathways, validating our hypothesis that plateau zokors can metabolize PSMs when they ingest toxic plants.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Pu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China.
| |
Collapse
|
39
|
Li J, Baldwin IT, Li D. Harmonizing biosynthesis with post-ingestive modifications to understand the ecological functions of plant natural products. Nat Prod Rep 2022; 39:1383-1392. [PMID: 35575224 PMCID: PMC9298679 DOI: 10.1039/d2np00019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022The recent dramatic advances in our understanding of the biosynthetic pathways that produce diverse bouquets of plant-derived natural products have far surpassed our understanding of the function of these compounds for plants: how they influence a plant's Darwinian fitness in nature. Our understanding of their mechanisms, the life-processes targeted by these compounds, is similarly poorly resolved. Many plant specialized metabolites (PSMs) are further modified after ingestion by herbivores, and these post-ingestive modifications are frequently essential for PSM function. Here we summarize the biosynthesis and functional mechanisms of 17-hydroxygeranyllinalool diterpene glycosides in the ecological model plant Nicotiana attenuata, and summarize the post-ingestive modifications known from other two-component PSMs. We propose that parallel comparisons of plant natural product biosynthetic pathways and insect post-ingestive metabolism of the same plant tissues ("frassomics") will facilitate the often-elusive identification of the molecular targets of these effective chemical defenses, contribute to elucidations of post-ingestive metabolite interactions in insect guts, and predicate the rapid evolutions of resistance against insecticides inspired by PSMs. We highlight the value of conducting these parallel investigations at the level of the entire metabolome so as to include the multiple interacting pathways in both natural product biosynthesis as well as their post-ingestive processing. We introduce the concept of frass metabolite QTL (fmQTL) analysis that integrates powerful forward genetic approaches with frassomics, and suggest that insect-guided high-throughput forward- and reverse-genetics approaches in natural habitats will advance our understanding of PSM biosynthesis and function.
Collapse
Affiliation(s)
- Jiancai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany.
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China.
| |
Collapse
|
40
|
Rosa GM, Perez R, Richards LA, Richards‐Zawacki CL, Smilanich AM, Reinert LK, Rollins‐Smith LA, Wetzel DP, Voyles J. Seasonality of host immunity in a tropical disease system. Ecosphere 2022. [DOI: 10.1002/ecs2.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gonçalo M. Rosa
- Department of Biology University of Nevada, Reno Reno Nevada USA
- Institute of Zoology Zoological Society of London London UK
- Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| | - Rachel Perez
- Department of Biology New Mexico Institute of Mining and Technology Socorro New Mexico USA
| | - Lora A. Richards
- Department of Biology University of Nevada, Reno Reno Nevada USA
| | | | | | - Laura K. Reinert
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Louise A. Rollins‐Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Daniel P. Wetzel
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jamie Voyles
- Department of Biology University of Nevada, Reno Reno Nevada USA
| |
Collapse
|
41
|
Salazar D, Marquis RJ. Testing the role of local plant chemical diversity on plant-herbivore interactions and plant species coexistence. Ecology 2022; 103:e3765. [PMID: 35611398 DOI: 10.1002/ecy.3765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Accumulating evidence suggests that herbivorous insects influence local composition and richness of Neotropical plant species, particularly in species-rich genera. Species richness, phylogenetic diversity, and chemical diversity all influence the ability of insect herbivores to find and utilize their hosts. The relative impact of these components of diversity on species coexistence and plant-herbivore interactions is not well understood. We constructed 60 local communities of up to 13 species of Piper (Piperaceae) in native, mature forest at a lowland wet forest location in Costa Rica. Species composition of each community was chosen such that species richness, phylogenetic diversity, and GCMS-based chemical diversity were varied independently among communities. We predicted that chemical diversity would most strongly affect the communities across time, with smaller effects of taxonomic and phylogenetic diversity. Thirteen months after the experimental planting, we assessed survivorship of each cutting, measured total leaf area loss of the survivors, leaf area loss to generalist and specialist herbivorous insect species, and local extinction of species. Generalist and specialist herbivory decreased with increasing levels of species richness and phylogenetic diversity, respectively. Surprisingly, there was no independent effect of chemical diversity on any of the three measures of herbivore damage. Nevertheless, plots with a higher chemical and phylogenetic diversity showed decreased plant mortality and local species extinction. Overall, our results suggest that both chemical and phylogenetic similarity are important factors in the assembly and maintenance of tropical plant communities. The fact that chemical diversity influences plant mortality suggests that leaf herbivores, and possibly other plant natural enemies, could increase plant diversity via selective mortality of similar chemotypes.
Collapse
Affiliation(s)
- Diego Salazar
- International Center for Tropical Botany, Institute of Environment, Department of Biological Sciences, Florida International University
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO, United States
| |
Collapse
|
42
|
Massad TJ, Richards LA, Philbin C, Fumiko Yamaguchi L, Kato MJ, Jeffrey CS, Oliveira C, Ochsenrider K, M de Moraes M, Tepe EJ, Cebrian Torrejon G, Sandivo M, Dyer LA. The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology 2022; 103:e3762. [PMID: 35593436 DOI: 10.1002/ecy.3762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant-herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant-insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1 H-NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity among Piper plants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity of Piper leaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant-insect interactions and tropical plant species richness.
Collapse
Affiliation(s)
- Tara Joy Massad
- Department of Scientific Services, Gorongosa National Park, Sofala, Mozambique.,Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Lora A Richards
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.,Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA
| | - Casey Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA.,Department of Chemistry, University of Nevada, Reno, NV, USA
| | | | - Massuo J Kato
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Christopher S Jeffrey
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA.,Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Celso Oliveira
- Department of Chemistry, University of Nevada, Reno, NV, USA
| | | | - Marcílio M de Moraes
- Departamento de Química, Universidade Federal Rural de Pernambuco, Pernambuco, Pernambuco, Brasil
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Lee A Dyer
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.,Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, USA
| |
Collapse
|
43
|
Campos-Moreno DF, Gates MW, Zhang YM, Pérez-Lachaud G, Dyer LA, Whitfield JB, Pozo C. Aximopsis gabrielae sp. nov.: a gregarious parasitoid (Hymenoptera: Eurytomidae) of the skipper Quadrus cerialis (Lepidoptera: Hesperiidae) feeding on Piper amalago in southern Mexico. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2025940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Diego F. Campos-Moreno
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Mexico
| | - Michael W. Gates
- Systematic Entomology Laboratory, USDA, c/o National Museum of Natural History, Washington, DC, USA
| | - Y. Miles Zhang
- Systematic Entomology Laboratory, USDA, c/o National Museum of Natural History, Washington, DC, USA
| | - Gabriela Pérez-Lachaud
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Mexico
| | - Lee A. Dyer
- Biology Department, University of Nevada, Reno, NV, USA
| | | | - Carmen Pozo
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR), Chetumal, Mexico
| |
Collapse
|
44
|
Bravo-Monzón ÁE, Montiel-González C, Benítez-Malvido J, Arena-Ortíz ML, Flores-Puerto JI, Chiappa-Carrara X, Avila-Cabadilla LD, Alvarez-Añorve MY. The Assembly of Tropical Dry Forest Tree Communities in Anthropogenic Landscapes: The Role of Chemical Defenses. PLANTS 2022; 11:plants11040516. [PMID: 35214850 PMCID: PMC8877018 DOI: 10.3390/plants11040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
The effect of anthropogenic disturbance on plant community traits and tradeoffs remains poorly explored in tropical forests. In this study, we aimed to identify tradeoffs between defense and other plant functions related to growth processes in order to detect potential aboveground and edaphic environmental conditions modulating traits variation on plant communities, and to find potential assembly rules underlying species coexistence in secondary (SEF) and old-growth forests (OGF). We measured the foliar content of defense phytochemicals and leaf traits related to fundamental functions on 77 species found in SEF and OGF sites in the Jalisco dry forest ecoregion, Mexico, and we explored (1) the trait-trait and trait-habitat associations, (2) the intra and interspecies trait variation, and (3) the traits-environment associations. We found that phytochemical content was associated with high leaf density and leaf fresh mass, resulting in leaves resistant to drought and high radiation, with chemical and physical defenses against herbivore/pathogen attack. The phytochemicals and chlorophyll concentrations were negatively related, matching the predictions of the Protein Competition Model. The phylogenetic signal in functional traits, suggests that abundant clades share the ability to resist the harsh biotic and abiotic conditions and face similar tradeoffs between productive and defensive functions. Environmental filters could modulate the enhanced expression of defensive phytochemicals in SEF, while, in OGFs, we found a stronger filtering effect driving community assembly. This could allow for the coexistence of different defensive strategies in OGFs, where a greater species richness could dilute the prevalence of pathogens/herbivores. Consequently, anthropogenic disturbance could alter TDF ecosystem properties/services and functioning.
Collapse
Affiliation(s)
- Ángel E. Bravo-Monzón
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
| | - Cristina Montiel-González
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
| | - Julieta Benítez-Malvido
- Laboratorio de Ecología de Hábitats Alterados, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, Mexico;
| | - María Leticia Arena-Ortíz
- Laboratorio de Ecogenómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico, Mérida 97302, Yucatán, Mexico;
| | - José Israel Flores-Puerto
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
| | - Xavier Chiappa-Carrara
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico;
| | - Luis Daniel Avila-Cabadilla
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
- Correspondence: (L.D.A.-C.); (M.Y.A.-A.)
| | - Mariana Yolotl Alvarez-Añorve
- Laboratorio de Ecología Funcional de Ecosistemas Terrestres, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Yucatán, Mexico; (Á.E.B.-M.); (C.M.-G.); (J.I.F.-P.)
- Correspondence: (L.D.A.-C.); (M.Y.A.-A.)
| |
Collapse
|
45
|
Kalske A, Luntamo N, Salminen JP, Ramula S. Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractIntraspecific variation in growth and defence among plant populations can be driven by differences in (a)biotic conditions, such as herbivory and resources. Introduction of species to novel environments affects simultaneously herbivory encountered by a plant and resource availability both directly and via altered competitive environment. Here, we address the question of how growth (leaf mass per area (LMA), plant size) and resistance traits (leaf alkaloids, leaf trichomes, resistance to a generalist snail) vary and covary between native and introduced populations of the garden lupine, Lupinus polyphyllus. We focused specifically on evolved differences among populations by measuring traits from plants grown from seed in a common environment. Plants from the introduced populations were more resistant against the generalist snail, Arianta arbustorum, and they had more leaf trichomes and higher LMA than plants from the native populations. The composition of alkaloids differed between native and introduced populations, with the native populations having more diversity in alkaloids among them. Resistance was positively associated with plant size and LMA across all populations. Other trait associations differed between native and introduced areas, implying that certain trade-offs may be fundamentally different between native and introduced populations. Our results suggest that, for the introduced populations, the loss of native herbivores and the alterations in resource availability have led to a lower diversity in leaf alkaloids among populations and may facilitate the evolution of novel trait optima without compensatory trade-offs. Such phytochemical similarity among introduced populations provides novel insights into mechanisms promoting successful plant invasions.
Collapse
|
46
|
Gericke O, Fowler RM, Heskes AM, Bayly MJ, Semple SJ, Ndi CP, Stærk D, Løland CJ, Murphy DJ, Buirchell BJ, Møller BL. Navigating through chemical space and evolutionary time across the Australian continent in plant genus Eremophila. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:555-578. [PMID: 34324744 PMCID: PMC9292440 DOI: 10.1111/tpj.15448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 05/13/2023]
Abstract
Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemo-evolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution), and medicinal properties (traditional medicinal uses and antibacterial studies), augmenting our understanding of complex interactions in biological systems.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Rachael M. Fowler
- School of BioSciencesThe University of MelbourneParkvilleVic.3010Australia
| | - Allison M. Heskes
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Michael J. Bayly
- School of BioSciencesThe University of MelbourneParkvilleVic.3010Australia
| | - Susan J. Semple
- Quality Use of Medicines and Pharmacy Research CentreSchool of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSA5000Australia
| | - Chi P. Ndi
- Quality Use of Medicines and Pharmacy Research CentreSchool of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSA5000Australia
| | - Dan Stærk
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Claus J. Løland
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | | | | | - Birger Lindberg Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| |
Collapse
|
47
|
Thöming G. Behavior Matters-Future Need for Insect Studies on Odor-Mediated Host Plant Recognition with the Aim of Making Use of Allelochemicals for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10469-10479. [PMID: 34482687 DOI: 10.1021/acs.jafc.1c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Allelochemicals, chemical cues that, among other things, mediate insect-plant interactions, such as host plant recognition, have attracted notable interest as tools for ecological control of pest insects. Advances have recently been made in methods for sampling and analyzing volatile compounds and technology for tracking insects in their natural habitat. However, progress in odor-mediated behavioral bioassays of insects has been relatively slow. This perspective highlights this odor-mediated insect behavior, particularly in a natural setting and considering the whole behavioral sequence involved in the host location, which is the key to understanding the mechanisms underlying host plant recognition. There is thus a need to focus on elaborate behavioral bioassays in future studies, particularly if the goal is to use allelochemicals in pest control. Future directions for research are discussed.
Collapse
Affiliation(s)
- Gunda Thöming
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| |
Collapse
|
48
|
Sculfort O, Gérard M, Gekière A, Nonclercq D, Gerbaux P, Duez P, Vanderplanck M. Specialized Metabolites in Floral Resources: Effects and Detection in Buff-Tailed Bumblebees. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.669352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selection of appropriate food resources by bees is a critical aspect for the maintenance of their populations, especially in the current context of global change and pollinator decline. Wild bees have a sophisticated ability to forage selectively on specific resources, and can assess the quality of pollen using contact chemosensory perception (taste). While numerous studies have investigated the detection of pollen macronutrients in bees and their impact on bee health and reproductive success, only a few studies have described the gustatory responses of bees toward specialized metabolites. In addition, these studies mostly focused on the response to nectar and neglected pollen, which is the main food resource for both bee imagines and larvae. Whether bees have the ability to detect specialized toxic metabolites in pollen and then rapidly adapt their foraging behavior to avoid them is very little studied. In this study, we tested whether pollen specialized metabolites affect bumblebees at both the micro-colony and individual levels (i.e., bioassays using supplemented pollen), and whether foragers detect these specialized metabolites and potentially display an avoidance behavior (i.e., preference tests using supplemented syrup). Bumblebees were fed with either amygdalin-, scopolamine- or sinigrin-supplemented pollen diets in ratios that mimic 50%, 100%, and 200% of naturally occurring concentrations. We found no effect of these specialized metabolites on resource collection, reproductive success and stress response at the micro-colony level. At the individual level, bumblebees fed on 50%-amygdalin or 50%-scopolamine diets displayed the highest scores for damage to their digestive systems. Interestingly, during the preference tests, the solution with 50%-scopolamine displayed a phagostimulatory activity, whereas solution with 50%-amygdalin had a deterrent effect and could trigger an active avoidance behavior in bumblebees, with a faster proboscis retraction. Our results suggest that regulation of toxin intake is not as well-established and effective as the regulation of nutrient intake in bees. Bees are therefore not equally adapted to all specialized pollen metabolites that they can come into contact with.
Collapse
|
49
|
Njovu HK, Steffan-Dewenter I, Gebert F, Schellenberger Costa D, Kleyer M, Wagner T, Peters MK. Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro. Ecology 2021; 102:e03521. [PMID: 34449883 DOI: 10.1002/ecy.3521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 01/16/2023]
Abstract
Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages.
Collapse
Affiliation(s)
- Henry K Njovu
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Friederike Gebert
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - David Schellenberger Costa
- Friedrich Schiller University Jena, Institute of Ecology and Evolution, Dornburger Strasse 159, 07743, Jena, Germany.,Institute of Biology and Environmental Sciences, University Oldenburg, Oldenburg, 26111, Germany
| | - Michael Kleyer
- Institute of Biology and Environmental Sciences, University Oldenburg, Oldenburg, 26111, Germany
| | - Thomas Wagner
- Institute of Integrated Sciences - Biology - University Str. 1, University of Koblenz-Landau, Koblenz, 56070, Germany
| | - Marcell K Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
50
|
Uckele KA, Jahner JP, Tepe EJ, Richards LA, Dyer LA, Ochsenrider KM, Philbin CS, Kato MJ, Yamaguchi LF, Forister ML, Smilanich AM, Dodson CD, Jeffrey CS, Parchman TL. Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Sci Rep 2021; 11:17247. [PMID: 34446754 PMCID: PMC8390663 DOI: 10.1038/s41598-021-96431-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the gain or loss of a class was dependent on the other's state. Overall, the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Joshua P Jahner
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Lora A Richards
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Lee A Dyer
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
- Sección Invertebrados, Museo Ecuatoriano de Ciencias Naturales, Quito, Ecuador
| | | | - Casey S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Massuo J Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lydia F Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Craig D Dodson
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| | - Christopher S Jeffrey
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| | - Thomas L Parchman
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|