1
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555507. [PMID: 37693516 PMCID: PMC10491309 DOI: 10.1101/2023.09.01.555507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Solaguren-Beascoa M, Gámez-Valero A, Escaramís G, Herrero-Lorenzo M, Ortiz AM, Minguet C, Gonzalo R, Bravo MI, Costa M, Martí E. Phospho-RNA-Seq Highlights Specific Small RNA Profiles in Plasma Extracellular Vesicles. Int J Mol Sci 2023; 24:11653. [PMID: 37511412 PMCID: PMC10380198 DOI: 10.3390/ijms241411653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Small RNAs (sRNAs) are bioactive molecules that can be detected in biofluids, reflecting physiological and pathological states. In plasma, sRNAs are found within extracellular vesicles (EVs) and in extravesicular compartments, offering potential sources of highly sensitive biomarkers. Deep sequencing strategies to profile sRNAs favor the detection of microRNAs (miRNAs), the best-known class of sRNAs. Phospho-RNA-seq, through the enzymatic treatment of sRNAs with T4 polynucleotide kinase (T4-PNK), has been recently developed to increase the detection of thousands of previously inaccessible RNAs. In this study, we investigated the value of phospho-RNA-seq on both the EVs and extravesicular plasma subfractions. Phospho-RNA-seq increased the proportion of sRNAs used for alignment and highlighted the diversity of the sRNA transcriptome. Unsupervised clustering analysis using sRNA counts matrices correctly classified the EVs and extravesicular samples only in the T4-PNK treated samples, indicating that phospho-RNA-seq stresses the features of sRNAs in each plasma subfraction. Furthermore, T4-PNK treatment emphasized specific miRNA variants differing in the 5'-end (5'-isomiRs) and certain types of tRNA fragments in each plasma fraction. Phospho-RNA-seq increased the number of tissue-specific messenger RNA (mRNA) fragments in the EVs compared with the extravesicular fraction, suggesting that phospho-RNA-seq favors the discovery of tissue-specific sRNAs in EVs. Overall, the present data emphasizes the value of phospho-RNA-seq in uncovering RNA-based biomarkers in EVs.
Collapse
Affiliation(s)
- Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Georgia Escaramís
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana M Ortiz
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Carla Minguet
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Ricardo Gonzalo
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | | | | | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| |
Collapse
|
4
|
Rozman B, Fisher T, Stern-Ginossar N. Translation-A tug of war during viral infection. Mol Cell 2023; 83:481-495. [PMID: 36334591 DOI: 10.1016/j.molcel.2022.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.
Collapse
Affiliation(s)
- Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Sokolowski DJ, Ahn J, Erdman L, Hou H, Ellis K, Wang L, Goldenberg A, Wilson M. Differential Expression Enrichment Tool (DEET): an interactive atlas of human differential gene expression. NAR Genom Bioinform 2023; 5:lqad003. [PMID: 36694664 PMCID: PMC9869326 DOI: 10.1093/nargab/lqad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the user's gene lists, aiding in hypothesis generation and data-driven literature review.
Collapse
Affiliation(s)
| | - Jedid Ahn
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Lauren Erdman
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kai Ellis
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liangxi Wang
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada,Vector Institute, Toronto, ON, Canada,CIFAR, Toronto, ON, Canada
| | - Michael D Wilson
- To whom correspondence should be addressed. Tel: +1 416 813 7654 (Ext 328699); Fax: +1 416 813 4931;
| |
Collapse
|
6
|
Human Melanoma Cells Differentially Express RNASEL/RNase-L and miR-146a-5p under Sex Hormonal Stimulation. Curr Issues Mol Biol 2022; 44:4790-4802. [PMID: 36286041 PMCID: PMC9601115 DOI: 10.3390/cimb44100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17β-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3′ untranslated region (3′UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17β-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17β-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17β-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17β-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.
Collapse
|
7
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Schwartz SL, Dey D, Tanquary J, Bair CR, Lowen AC, Conn GL. Role of helical structure and dynamics in oligoadenylate synthetase 1 (OAS1) mismatch tolerance and activation by short dsRNAs. Proc Natl Acad Sci U S A 2022; 119:e2107111119. [PMID: 35017296 PMCID: PMC8784149 DOI: 10.1073/pnas.2107111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Julia Tanquary
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Camden R Bair
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| |
Collapse
|
9
|
Chitrakar A, Solorio-Kirpichyan K, Prangley E, Rath S, Du J, Korennykh A. Introns encode dsRNAs undetected by RIG-I/MDA5/interferons and sensed via RNase L. Proc Natl Acad Sci U S A 2021; 118:e2102134118. [PMID: 34772806 PMCID: PMC8609619 DOI: 10.1073/pnas.2102134118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Double-stranded RNA (dsRNA), a hallmark viral material that activates antiviral interferon (IFN) responses, can appear in human cells also in the absence of viruses. We identify phosphorothioate DNAs (PS DNAs) as triggers of such endogenous dsRNA (endo-dsRNA). PS DNAs inhibit decay of nuclear RNAs and induce endo-dsRNA via accumulation of high levels of intronic and intergenic inverted retroelements (IIIR). IIIRs activate endo-dsRNA responses distinct from antiviral defense programs. IIIRs do not turn on transcriptional RIG-I/MDA5/IFN signaling, but they trigger the dsRNA-sensing pathways of OAS3/RNase L and PKR. Thus, nuclear RNA decay and nuclear-cytosolic RNA sorting actively protect from these innate immune responses to self. Our data suggest that the OAS3/RNase L and PKR arms of innate immunity diverge from antiviral IFN responses and monitor nuclear RNA decay by sensing cytosolic escape of IIIRs. OAS3 provides a receptor for IIIRs, whereas RNase L cleaves IIIR-carrying introns and intergenic RNAs.
Collapse
Affiliation(s)
- Alisha Chitrakar
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Sneha Rath
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jin Du
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
10
|
Karasik A, Jones GD, DePass AV, Guydosh NR. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 2021; 49:6007-6026. [PMID: 33556964 DOI: 10.1093/nar/gkab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5' and 3' UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L's cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grant D Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proc Natl Acad Sci U S A 2021; 118:2101713118. [PMID: 34031250 DOI: 10.1073/pnas.2101713118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infection with the flavivirus Zika virus (ZIKV) can result in tissue tropism, disease outcome, and route of transmission distinct from those of other flaviviruses; therefore, we aimed to identify host machinery that exclusively promotes the ZIKV replication cycle, which can inform on differences at the organismal level. We previously reported that deletion of the host antiviral ribonuclease L (RNase L) protein decreases ZIKV production. Canonical RNase L catalytic activity typically restricts viral infection, including that of the flavivirus dengue virus (DENV), suggesting an unconventional, proviral RNase L function during ZIKV infection. In this study, we reveal that an inactive form of RNase L supports assembly of ZIKV replication factories (RFs) to enhance infectious virus production. Compared with the densely concentrated ZIKV RFs generated with RNase L present, deletion of RNase L induced broader subcellular distribution of ZIKV replication intermediate double-stranded RNA (dsRNA) and NS3 protease, two constituents of ZIKV RFs. An inactive form of RNase L was sufficient to contain ZIKV genome and dsRNA within a smaller RF area, which subsequently increased infectious ZIKV release from the cell. Inactive RNase L can interact with cytoskeleton, and flaviviruses remodel cytoskeleton to construct RFs. Thus, we used the microtubule-stabilization drug paclitaxel to demonstrate that ZIKV repurposes RNase L to facilitate the cytoskeleton rearrangements required for proper generation of RFs. During infection with flaviviruses DENV or West Nile Kunjin virus, inactive RNase L did not improve virus production, suggesting that a proviral RNase L role is not a general feature of all flavivirus infections.
Collapse
|
12
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Yang E, Li MMH. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front Immunol 2020; 11:605024. [PMID: 33362792 PMCID: PMC7756014 DOI: 10.3389/fimmu.2020.605024] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Interferon (IFN) signaling induces the expression of a wide array of genes, collectively referred to as IFN-stimulated genes (ISGs) that generally function to inhibit viral replication. RNA viruses are frequently targeted by ISGs through recognition of viral replicative intermediates and molecular features associated with viral genomes, or the lack of molecular features associated with host mRNAs. The ISGs reviewed here primarily inhibit viral replication in an RNA-centric manner, working to sense, degrade, or repress expression of viral RNA. This review focuses on dissecting how these ISGs exhibit multiple antiviral mechanisms, often through use of varied co-factors, highlighting the complexity of the type I IFN response. Specifically, these ISGs can mediate antiviral effects through viral RNA degradation, viral translation inhibition, or both. While the OAS/RNase L pathway globally degrades RNA and arrests translation, ISG20 and ZAP employ targeted RNA degradation and translation inhibition to block viral replication. Meanwhile, SHFL targets translation by inhibiting -1 ribosomal frameshifting, which is required by many RNA viruses. Finally, a number of E3 ligases inhibit viral transcription, an attractive antiviral target during the lifecycle of negative-sense RNA viruses which must transcribe their genome prior to translation. Through this review, we aim to provide an updated perspective on how these ISGs work together to form a complex network of antiviral arsenals targeting viral RNA processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Schwartz SL, Park EN, Vachon VK, Danzy S, Lowen AC, Conn GL. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Res 2020; 48:7520-7531. [PMID: 32678884 PMCID: PMC7367156 DOI: 10.1093/nar/gkaa513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
2′-5′-Oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) and play a critical role in limiting viral infection. dsRNA binding induces allosteric structural changes in OAS1 that reorganize its catalytic center to promote synthesis of 2′-5′-oligoadenylate and thus activation of endoribonuclease L. Specific RNA sequences and structural motifs can also enhance activation of OAS1 through currently undefined mechanisms. To better understand these drivers of OAS activation, we tested the impact of defined sequence changes within a short dsRNA that strongly activates OAS1. Both in vitro and in human A549 cells, appending a 3′-end single-stranded pyrimidine (3′-ssPy) can strongly enhance OAS1 activation or have no effect depending on its location, suggesting that other dsRNA features are necessary for correct presentation of the motif to OAS1. Consistent with this idea, we also find that the dsRNA binding position is dictated by an established consensus sequence (WWN9WG). Unexpectedly, however, not all sequences fitting this consensus activate OAS1 equivalently, with strong dependence on the identity of both partially conserved (W) and non-conserved (N9) residues. A picture thus emerges in which both specific RNA features and the context in which they are presented dictate the ability of short dsRNAs to activate OAS1.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, USA
| | - Esther N Park
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.,Graduate Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Emory University, USA
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Anice C Lowen
- Graduate Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Emory University, USA.,Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, USA.,Graduate Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Emory University, USA
| |
Collapse
|
15
|
RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs. Mol Cell 2019; 75:1203-1217.e5. [PMID: 31494035 DOI: 10.1016/j.molcel.2019.07.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
In response to foreign and endogenous double-stranded RNA (dsRNA), protein kinase R (PKR) and ribonuclease L (RNase L) reprogram translation in mammalian cells. PKR inhibits translation initiation through eIF2α phosphorylation, which triggers stress granule (SG) formation and promotes translation of stress responsive mRNAs. The mechanisms of RNase L-driven translation repression, its contribution to SG assembly, and its regulation of dsRNA stress-induced mRNAs are unknown. We demonstrate that RNase L drives translational shut-off in response to dsRNA by promoting widespread turnover of mRNAs. This alters stress granule assembly and reprograms translation by allowing translation of mRNAs resistant to RNase L degradation, including numerous antiviral mRNAs such as interferon (IFN)-β. Individual cells differentially activate dsRNA responses revealing variation that can affect cellular outcomes. This identifies bulk mRNA degradation and the resistance of antiviral mRNAs as the mechanism by which RNase L reprograms translation in response to dsRNA.
Collapse
|
16
|
Rath S, Prangley E, Donovan J, Demarest K, Wingreen NS, Meir Y, Korennykh A. Concerted 2-5A-Mediated mRNA Decay and Transcription Reprogram Protein Synthesis in the dsRNA Response. Mol Cell 2019; 75:1218-1228.e6. [PMID: 31494033 DOI: 10.1016/j.molcel.2019.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/13/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023]
Abstract
Viral and endogenous double-stranded RNA (dsRNA) is a potent trigger for programmed RNA degradation by the 2-5A/RNase L complex in cells of all mammals. This 2-5A-mediated decay (2-5AMD) is a conserved stress response switching global protein synthesis from homeostasis to production of interferons (IFNs). To understand this mechanism, we examined 2-5AMD in human cells and found that it triggers polysome collapse characteristic of inhibited translation initiation. We determined that translation initiation complexes and ribosomes purified from translation-arrested cells remain functional. However, spike-in RNA sequencing (RNA-seq) revealed cell-wide decay of basal mRNAs accompanied by rapid accumulation of mRNAs encoding innate immune proteins. Our data attribute this 2-5AMD evasion to better stability of defense mRNAs and positive feedback in the IFN response amplified by RNase L-resistant molecules. We conclude that 2-5AMD and transcription act in concert to refill mammalian cells with defense mRNAs, thereby "prioritizing" the synthesis of innate immune proteins.
Collapse
Affiliation(s)
- Sneha Rath
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kaitlin Demarest
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben Gurion University, Beer-Sheva 84105, Israel
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Mitkevich VA, Petrushanko IY, Makarov AA. RNases Disrupt the Adaptive Potential of Malignant Cells: Perspectives for Therapy. Front Pharmacol 2019; 10:922. [PMID: 31474868 PMCID: PMC6707412 DOI: 10.3389/fphar.2019.00922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
Exogenous RNases are selectively toxic to tumor cells. The reasons for this selectivity are not quite clear and should be searched for in the properties that distinguish malignant from normal cells. During onco-transformation, cells acquire properties allowing them to adapt to the altered microenvironment, such as resistance to hypoxia, changes in intracellular pH, disruption of ion transport, reduced adhesion and increased mobility, and production of specific exosomes. These adaptation mechanisms distinguish malignant cells from normal ones and give them a competitive advantage, ensuring survival and spread in the organism. Here, we analyze if the directed cytotoxic effect of exogenous RNases is linked to the disruption of the adaptive potential of tumor cells and how it can be used in anticancer therapy.
Collapse
Affiliation(s)
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
18
|
Estrella MA, Du J, Chen L, Rath S, Prangley E, Chitrakar A, Aoki T, Schedl P, Rabinowitz J, Korennykh A. The metabolites NADP + and NADPH are the targets of the circadian protein Nocturnin (Curled). Nat Commun 2019; 10:2367. [PMID: 31147539 PMCID: PMC6542800 DOI: 10.1038/s41467-019-10125-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Nocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity. To identify the substrate of NOCT, we conducted a mass spectrometry screen and report that NOCT specifically and directly converts the dinucleotide NADP+ into NAD+ and NADPH into NADH. Further, we demonstrate that the Drosophila NOCT ortholog, Curled, has the same enzymatic activity. We obtained the 2.7 Å crystal structure of the human NOCT•NADPH complex, which revealed that NOCT recognizes the chemically unique ribose-phosphate backbone of the metabolite, placing the 2′-terminal phosphate productively for removal. We provide evidence for NOCT targeting to mitochondria and propose that NADP(H) regulation, which takes place at least in part in mitochondria, establishes the molecular link between circadian clock and metabolism. Nocturnin is a rhythmically expressed protein that regulates metabolism under the control of circadian clock proposed to function through the deadenylation of metabolic enzyme mRNAs. Here the authors show that Nocturnin and its fly homolog Curled catalyze the removal of 2′-phosphate from NADP+ and NADPH, providing a direct link to metabolic regulation.
Collapse
Affiliation(s)
- Michael A Estrella
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Jin Du
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Li Chen
- 285 Frick Laboratory, Department of Chemistry, Princeton, NJ, 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA
| | - Sneha Rath
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Eliza Prangley
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Alisha Chitrakar
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Tsutomu Aoki
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Paul Schedl
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA
| | - Joshua Rabinowitz
- 285 Frick Laboratory, Department of Chemistry, Princeton, NJ, 08544, USA. .,Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, USA.
| | - Alexei Korennykh
- 216 Schultz Laboratory, Department of Molecular Biology, Princeton, NJ, 08544, USA.
| |
Collapse
|
19
|
Schwartz SL, Conn GL. RNA regulation of the antiviral protein 2'-5'-oligoadenylate synthetase. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1534. [PMID: 30989826 DOI: 10.1002/wrna.1534] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
The innate immune system is a broad collection of critical intra- and extra-cellular processes that limit the infectivity of diverse pathogens. The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes are important sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection by activating the latent ribonuclease (RNase L) to halt viral replication and establish an antiviral state. Attesting to the importance of the OAS/RNase L pathway, diverse viruses have developed numerous distinct strategies to evade the effects of OAS activation. How OAS proteins are regulated by viral or cellular RNAs is not fully understood but several recent studies have provided important new insights into the molecular mechanisms of OAS activation by dsRNA. Other studies have revealed unanticipated features of RNA sequence and structure that strongly enhance activation of at least one OAS family member. While these discoveries represent important advances, they also underscore the fact that much remains to be learned about RNA-mediated regulation of the OAS/RNase L pathway. In particular, defining the full complement of RNA molecular signatures that activate OAS is essential to our understanding of how these proteins maximize their protective role against pathogens while still accurately discriminating host molecules to avoid inadvertent activation by cellular RNAs. A more complete knowledge of OAS regulation may also serve as a foundation for the development of novel antiviral therapeutic strategies and lead the way to a deeper understanding of currently unappreciated cellular functions of the OAS/RNase L pathway in the absence of infection. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine and Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Atlanta, Georgia
| |
Collapse
|
20
|
Real-time 2-5A kinetics suggest that interferons β and λ evade global arrest of translation by RNase L. Proc Natl Acad Sci U S A 2019; 116:2103-2111. [PMID: 30655338 DOI: 10.1073/pnas.1818363116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here, we developed a biosensor for 2',5'-oligoadenylate (2-5A), the natural activator of RNase L. Using this biosensor, we found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes and secreted IFNs of types I and III (IFN-β and IFN-λ). Our data suggest that IFNs escape from the action of RNase L on translation. We propose that the 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.
Collapse
|
21
|
O'Connell MR. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. J Mol Biol 2019; 431:66-87. [PMID: 29940185 DOI: 10.1016/j.jmb.2018.06.029] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR-Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications.
Collapse
Affiliation(s)
- Mitchell R O'Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Transposable element dysregulation in systemic lupus erythematosus and regulation by histone conformation and Hsp90. Clin Immunol 2018; 197:6-18. [PMID: 30149120 DOI: 10.1016/j.clim.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disease in which activation of the type I interferon pathway leads to dysregulation of tolerance and the generation of autoantibodies directed against nuclear constituents. The mechanisms driving the activation of the interferon pathway in SLE have been the subject of intense investigation but are still incompletely understood. Transposable elements represent an enormous source of RNA that could potentially stimulate the cell intrinsic RNA-recognition pathway, leading to upregulation of interferons. We used RNA-seq to define transposable element families and subfamilies in three cell types in SLE and found diverse effects on transposable element expression in the three cell types and even within a given family of transposable elements. When potential mechanisms were examined, we found that Hsp90 inhibition could drive increased expression of multiple type of transposable elements. Both direct inhibition and the delivery of a heat shock itself, which redirects heat shock regulators (including Hsp90) off of basal expression promoters and onto heat shock-responsive promoters, led to increased transposable element expression. This effect was amplified by the concurrent delivery of a histone deacetylase inhibitor. We conclude that transposable elements are dysregulated in SLE and there are tissue-specific effects and locus-specific effects. The magnitude of RNAs attributable to transposable elements makes their dysregulation of critical interest in SLE where transposable element RNA complexed with proteins has been shown to drive interferon expression.
Collapse
|
23
|
Calderon BM, Conn GL. A human cellular noncoding RNA activates the antiviral protein 2'-5'-oligoadenylate synthetase 1. J Biol Chem 2018; 293:16115-16124. [PMID: 30126839 DOI: 10.1074/jbc.ra118.004747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes sense cytosolic dsRNA, a potent signal of viral infection. In response to dsRNA binding, OAS proteins synthesize the second messenger 2'-5'-linked oligoadenylate that activates the latent ribonuclease L (RNase L). RNase L-mediated degradation of viral and cellular RNAs effectively halts viral replication and further stimulates innate immune responses by inducing type I interferon. The OAS/RNase L pathway is therefore central in innate immune recognition and promotion of antiviral host responses. However, the potential for specific RNA sequences or structures to drive OAS1 activation and the molecular mechanisms by which they act are not currently fully understood. Moreover, the cellular regulators of OAS activity are not well defined. Here, we demonstrate that the human cellular noncoding RNA 886 (nc886) activates OAS1 both in vitro and in human A549 cells. We show that a unique structure present only in one of the two structural conformers adopted by nc886 drives potent OAS1 activation. In contrast, the conformer lacking this unique structure activated OAS1 only very weakly. We also found that formation of this OAS1-activating structural motif depends on the nucleotides in the apical-most loop of nc886 and the adjacent helix. These findings identify a cellular RNA capable of activating the OAS/RNase L pathway in human cells and illustrate the importance of structural elements, and their context, in potentiating OAS1 activity.
Collapse
Affiliation(s)
- Brenda M Calderon
- From the Department of Biochemistry and.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
24
|
Kimura S, Matsumiya T, Shiba Y, Nakanishi M, Hayakari R, Kawaguchi S, Yoshida H, Imaizumi T. The Essential Role of Double-Stranded RNA-Dependent Antiviral Signaling in the Degradation of Nonself Single-Stranded RNA in Nonimmune Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1044-1052. [PMID: 29925678 DOI: 10.4049/jimmunol.1800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/01/2018] [Indexed: 12/25/2022]
Abstract
The recognition of nonself dsRNA by retinoic acid-inducible gene-I (RIG-I) leads to the engagement of RIG-I-like receptor signaling. In addition, nonself dsRNA triggers a robust latent RNase (RNase L) activation and leads to the degradation of ribosomal structures and cell death. In contrast, nonself ssRNA is known to be recognized by TLR 7/8 in immune cells such as plasmacytoid dendritic cells and B cells, but little is known regarding the involvement of nonself ssRNA in antiviral signaling in nonimmune cells, including epithelial cells. Moreover, the fate of intracellular nonself ssRNA remains unknown. To address this issue, we developed a quantitative RT-PCR-based approach that monitors the kinetics of nonself ssRNA cleavage following the transfection of HeLa human cervical carcinoma cells, using model nonself ssRNA. We discovered that the degradation of ssRNA is independent of RIG-I and type I IFN signaling because ssRNA did not trigger RIG-I-mediated antiviral signaling. We also found that the kinetics of self (5'-capped) and nonself ssRNA decay were unaltered, suggesting that nonself ssRNA is not recognized by nonimmune cells. We further demonstrated that the cleavage of nonself ssRNA is accelerated when nonself dsRNA is also introduced into cells. In addition, the cleavage of nonself ssRNA is completely abolished by knockdown of RNase L. Overall, our data demonstrate the important role of dsRNA-RNase L in nonself ssRNA degradation and may partly explain the positive regulation of the antiviral responses in nonimmune cells.
Collapse
Affiliation(s)
- Sayaka Kimura
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Yuko Shiba
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Michi Nakanishi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| |
Collapse
|
25
|
Heck AM, Wilusz J. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:a032839. [PMID: 29311343 PMCID: PMC5932591 DOI: 10.1101/cshperspect.a032839] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
26
|
Sex-specific effect of RNASEL rs486907 and miR-146a rs2910164 polymorphisms' interaction as a susceptibility factor for melanoma skin cancer. Melanoma Res 2018; 27:309-314. [PMID: 28654546 DOI: 10.1097/cmr.0000000000000360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genetics of melanoma is complex and, in addition to environmental influences, numerous genes are involved or contribute toward melanoma predisposition. In this study, we evaluated the possible interaction between miR-146a and one of its putative targets ribonuclease L (RNASEL) in the risk of sporadic melanoma. Polymorphisms rs2910164 in miR-146a and rs486907 in the RNASEL gene have both independently been associated with the risk of different cancers, and an interaction between them has been observed in nonmelanoma skin cancer. Polymorphisms rs2910164 G/C and rs486907 A/G were genotyped by restriction fragment length polymorphism analysis in 304 sporadic melanoma patients and 314 control individuals. Genotype distribution between cases and controls for each of the two polymorphisms was compared using Fisher's exact test. Epistasis between the two polymorphisms was tested by a logistic regression model. In the present study, we observed a sex-specific effect of the miR-146a rs2910164 C allele restricted to individuals carrying the RNASEL rs486907 A allele as well. Men carrying this allelic combination have the highest risk of melanoma, whereas it seems to have no effect or even an opposite relationship to melanoma risk in the female population. The results reported in the present study suggest a sex-specific interaction between miR-146a and RNASEL genes in melanoma skin cancer susceptibility, and could account for possible discordant results in association studies when stratification according to sex is not performed.
Collapse
|
27
|
Oakes SR, Gallego-Ortega D, Stanford PM, Junankar S, Au WWY, Kikhtyak Z, von Korff A, Sergio CM, Law AMK, Castillo LE, Allerdice SL, Young AIJ, Piggin C, Whittle B, Bertram E, Naylor MJ, Roden DL, Donovan J, Korennykh A, Goodnow CC, O’Bryan MK, Ormandy CJ. A mutation in the viral sensor 2'-5'-oligoadenylate synthetase 2 causes failure of lactation. PLoS Genet 2017; 13:e1007072. [PMID: 29117179 PMCID: PMC5695588 DOI: 10.1371/journal.pgen.1007072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023] Open
Abstract
We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation. Using ENU-mutagenesis in mice we discovered a pedigree with lactation failure. Mammary development through puberty and pregnancy appeared normal in mutant animals, but the activation of lactation failed in the immediate post partum period and no milk reached the pups. Failure of lactation was accompanied by greatly diminished milk protein synthesis, decreased epithelial cell proliferation, increased epithelial cell death and a robust interferon response. A non-synonymous mutation in Oas2 (I405N) in the viral sensor Oas2 was found and expression of mutant Oas2 in mammary cells recapitulated these phenotypes. RNase L, the most proximal effector of OAS2 action, was activated in the mammary glands of mutant mice and in mammary cells expressing mutant Oas2. Knockdown of RNase L, or the distal pathway member IRF7, prevented these effects, indicating that the mutation in OAS2 caused activation of the viral signaling pathway. These results show that viral detection in the mammary gland can prevent lactation.
Collapse
Affiliation(s)
- Samantha R. Oakes
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- * E-mail:
| | - David Gallego-Ortega
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Prudence M. Stanford
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Simon Junankar
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Wendy Wing Yee Au
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Zoya Kikhtyak
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Anita von Korff
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Claudio M. Sergio
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Andrew M. K. Law
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Lesley E. Castillo
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Stephanie L. Allerdice
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Adelaide I. J. Young
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Catherine Piggin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Edward Bertram
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Matthew J. Naylor
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Daniel L. Roden
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Moira K. O’Bryan
- The School of Biological Sciences, Monash University, Clayton, Australia
| | - Christopher J. Ormandy
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| |
Collapse
|
28
|
Donovan J, Rath S, Kolet-Mandrikov D, Korennykh A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA (NEW YORK, N.Y.) 2017; 23:1660-1671. [PMID: 28808124 PMCID: PMC5648034 DOI: 10.1261/rna.062000.117] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/06/2017] [Indexed: 05/20/2023]
Abstract
Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest.
Collapse
Affiliation(s)
- Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sneha Rath
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - David Kolet-Mandrikov
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
29
|
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DB, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature 2017; 550:280-284. [PMID: 28976959 PMCID: PMC5706658 DOI: 10.1038/nature24049] [Citation(s) in RCA: 1243] [Impact Index Per Article: 177.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference can efficiently knockdown RNAs, but it is prone to off-target effects, and visualizing RNAs typically relies on the introduction of exogenous tags. Here we demonstrate that the class 2 type VI RNA-guided RNA-targeting CRISPR-Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.
Collapse
Affiliation(s)
- Omar O. Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan S. Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Essletzbichler
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph J. Belanto
- Department of Genetics, Cell Biology &Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Vanessa Verdine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David B.T. Cox
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Max J. Kellner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology &Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alice Y. Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Pillon MC, Stanley RE. Nuclease integrated kinase super assemblies (NiKs) and their role in RNA processing. Curr Genet 2017; 64:183-190. [PMID: 28929238 DOI: 10.1007/s00294-017-0749-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023]
Abstract
Here we highlight the Grc3/Las1 complex, an essential RNA processing machine that is well conserved across eukaryotes and required for processing the pre-ribosomal RNA (pre-rRNA). Las1 is an endoribonuclease that cleaves the pre-rRNA while Grc3 is a polynucleotide kinase that phosphorylates the Las1-cleaved RNA product. Recently we showed that Grc3 and Las1 assemble into a higher-order complex composed of a dimer of Grc3/Las1 heterodimers that is required for nuclease and kinase activity. Unexpectedly, we found that the Grc3/Las1 complex draws numerous parallels with two other eukaryotic nucleases, Ire1 and RNase L. In this perspective we explore the similarities and differences between this family of nuclease integrated kinase super assemblies (NiKs) and their distinct roles in RNA cleavage.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
31
|
McMahon M, Samali A, Chevet E. Regulation of the unfolded protein response by noncoding RNA. Am J Physiol Cell Physiol 2017. [DOI: 10.1152/ajpcell.00293.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are exposed to various intrinsic and extrinsic stresses in both physiological and pathological conditions. To adapt to those conditions, cells have evolved various mechanisms to cope with the disturbances in protein demand, largely through the unfolded protein response (UPR) in the endoplasmic reticulum (ER), but also through the integrated stress response (ISR). Both responses initiate downstream signaling to transcription factors that, in turn, trigger adaptive programs and/or in the case of prolonged stress, cell death mechanisms. Recently, noncoding RNAs, including microRNA and long noncoding RNA, have emerged as key players in the stress responses. These noncoding RNAs act as both regulators and effectors of the UPR and fine-tune the output of the stress signaling pathways. Although much is known about the UPR and the cross talk that exists between pathways, the contribution of small noncoding RNA has not been fully assessed. Herein we bring together and review the current known functions of noncoding RNA in regulating adaptive pathways in both physiological and pathophysiological conditions, illustrating how they operate within the known UPR functions and contribute to diverse cellular outcomes.
Collapse
Affiliation(s)
- Mari McMahon
- INSERM U1242 “Chemistry, Oncogenesis, Stress, Signalling,” Université de Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France; and
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eric Chevet
- INSERM U1242 “Chemistry, Oncogenesis, Stress, Signalling,” Université de Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France; and
| |
Collapse
|
32
|
Li Y, Banerjee S, Goldstein SA, Dong B, Gaughan C, Rath S, Donovan J, Korennykh A, Silverman RH, Weiss SR. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife 2017; 6. [PMID: 28362255 PMCID: PMC5404912 DOI: 10.7554/elife.25687] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
ADAR1 isoforms are adenosine deaminases that edit and destabilize double-stranded RNA reducing its immunostimulatory activities. Mutation of ADAR1 leads to a severe neurodevelopmental and inflammatory disease of children, Aicardi-Goutiéres syndrome. In mice, Adar1 mutations are embryonic lethal but are rescued by mutation of the Mda5 or Mavs genes, which function in IFN induction. However, the specific IFN regulated proteins responsible for the pathogenic effects of ADAR1 mutation are unknown. We show that the cell-lethal phenotype of ADAR1 deletion in human lung adenocarcinoma A549 cells is rescued by CRISPR/Cas9 mutagenesis of the RNASEL gene or by expression of the RNase L antagonist, murine coronavirus NS2 accessory protein. Our result demonstrate that ablation of RNase L activity promotes survival of ADAR1 deficient cells even in the presence of MDA5 and MAVS, suggesting that the RNase L system is the primary sensor pathway for endogenous dsRNA that leads to cell death. DOI:http://dx.doi.org/10.7554/eLife.25687.001
Collapse
Affiliation(s)
- Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Stephen A Goldstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Sneha Rath
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
33
|
Dayal S, Zhou J, Manivannan P, Siddiqui MA, Ahmad OF, Clark M, Awadia S, Garcia-Mata R, Shemshedini L, Malathi K. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells. Int J Mol Sci 2017; 18:ijms18030529. [PMID: 28257035 PMCID: PMC5372545 DOI: 10.3390/ijms18030529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.
Collapse
Affiliation(s)
- Shubham Dayal
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Jun Zhou
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Praveen Manivannan
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Mohammad Adnan Siddiqui
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Omaima Farid Ahmad
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Matthew Clark
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Sahezeel Awadia
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Rafael Garcia-Mata
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Lirim Shemshedini
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Krishnamurthy Malathi
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
34
|
A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis 2016; 7:e2458. [PMID: 27831565 PMCID: PMC5260905 DOI: 10.1038/cddis.2016.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
Ribonuclease L (RNase-L) is an endoribonuclease well known for its roles in innate immunity. Recently it has been shown to regulate several cellular functions by modulating the levels of specific mRNAs. In this study, we investigated whether RNase-L may regulate adipocyte functions. We showed that knockdown of RNase-L reduced 3T3-L1 adipocyte differentiation and lipid accumulation. After mRNA profiling, we found that upregulation of Pref-1 mRNA, an inhibitory regulator of adipogenesis, could explain the reduced adipocyte differentiation with RNase-L downregulation. The signaling molecules downstream to Pref-1, including focal adhesion kinase, extracellular signal-regulated kinases and SRY-box 9, were activated by RNase-L suppression. The presence of Pref-1 mRNA was detected in the mRNP complexes precipitated by anti-RNase-L antibody. Moreover, the Pref-1 mRNA decay rate was raised by elevated RNase-L ribonuclease activity. Finally, in stable cell clones with RNase-L silencing, suppression of Pref-1 mRNA by specific siRNA partially recovered the adipocyte differentiation phenotype. Consistent with our findings, meta-analysis of 45 public array datasets from seven independent studies showed a significant negative relationship between RNase-L and Pref-1 mRNA levels in mouse adipose tissues. Higher RNase-L and lower Pref-1 mRNAs were found in the adipose tissues of high-fat diet mice compared to those of ND mice. In line with this, our animal data also showed that the adipose tissues of obese rats contained higher RNase-L and lower Pref-1 expression in comparison to that of lean rats. This study demonstrated that Pref-1 mRNA is a novel substrate of RNase-L. RNase-L is involved in adipocyte differentiation through destabilizing Pref-1 mRNA, thus offering a new link among RNA metabolism, innate immunity and adipogenesis in obesity progression.
Collapse
|
35
|
Gusho E, Baskar D, Banerjee S. New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling. Cytokine 2016; 133:153847. [PMID: 27595182 PMCID: PMC7128181 DOI: 10.1016/j.cyto.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ever since the discovery of the existence of an interferon (IFN)-regulated ribonuclease, significant advances have been made in understanding the mechanism and associated regulatory effects of its action. What had been studied initially as a "unique" endoribonuclease is currently known as ribonuclease L (RNase L where "L" stands for latent). Some of the key developments include discovery of the RNase L signaling pathway, its structural characterization, and its molecular cloning. RNase L has been implicated in antiviral and antibacterial defense, as well as in hereditary prostate cancer. RNase L is activated by 2'-5' linked oligoadenylates (2-5A), which are synthesized by the oligoadenylate synthetases (OASs), a family of IFN-regulated pathogen recognition receptors that sense double-stranded RNAs. Activated RNase L cleaves single stranded RNAs, including viral RNAs and cellular RNAs. The catalytic activity of RNase L has been found to lead into the activation of several cellular signaling pathways, including those involved in autophagy, apoptosis, IFN-β production, NLRP3 inflammasome activation leading to IL-1β secretion, inhibition of cell migration, and cell adhesion. In this review, we will highlight the newest advances in our understanding of the catalytic role of RNase L in the context of different cellular pathways and extend the scope of these findings to discussion of potential therapeutic targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Elona Gusho
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA
| | - Danika Baskar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA; Pediatrics Division Office, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA(1)
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA.
| |
Collapse
|
36
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|