1
|
Javanshad R, Nguyen TTA, Azaria RD, Li W, Edmison D, Gong LW, Gowrishankar S, Lieberman AP, Schultz ML, Cologna SM. Endogenous Protein-Protein Interaction Network of the NPC Cholesterol Transporter 1 in the Cerebral Cortex. J Proteome Res 2024; 23:3174-3187. [PMID: 38686625 DOI: 10.1021/acs.jproteome.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
NPC intracellular cholesterol transporter 1 (NPC1) is a multipass, transmembrane glycoprotein mostly recognized for its key role in facilitating cholesterol efflux. Mutations in the NPC1 gene result in Niemann-Pick disease, type C (NPC), a fatal, lysosomal storage disease. Due to the progressively expanding implications of NPC1-related disorders, we investigated endogenous NPC1 protein-protein interactions in the mouse cortex and human-derived iPSCs neuronal models of the disease through coimmunoprecipitation-coupled with LC-MS based proteomics. The current study investigated protein-protein interactions specific to the wild-type and the most prevalent NPC1 mutation (NPC1I1061T) while filtering out any protein interactor identified in the Npc1-/- mouse model. Additionally, the results were matched across the two species to map the parallel interactome of wild-type and mutant NPC1I1061T. Most of the identified wild-type NPC1 interactors were related to cytoskeleton organization, synaptic vesicle activity, and translation. We found many putative NPC1 interactors not previously reported, including two SCAR/WAVE complex proteins that regulate ARP 2/3 complex actin nucleation and multiple membrane proteins important for neuronal activity at synapse. Moreover, we identified proteins important in trafficking specific to wild-type and mutant NPC1I1061T. Together, the findings are essential for a comprehensive understanding of NPC1 biological functions in addition to its classical role in sterol efflux.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Mark L Schultz
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Narvaez-Ortiz HY, Lynch MJ, Liu SL, Fries A, Nolen BJ. Both Las17-binding sites on Arp2/3 complex are important for branching nucleation and assembly of functional endocytic actin networks in S. cerevisiae. J Biol Chem 2024; 300:105766. [PMID: 38367669 PMCID: PMC10944109 DOI: 10.1016/j.jbc.2024.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.
Collapse
Affiliation(s)
- Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael J Lynch
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Su-Ling Liu
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Adam Fries
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
3
|
Ghasemi F, Cao L, Mladenov M, Guichard B, Way M, Jégou A, Romet-Lemonne G. Regeneration of actin filament branches from the same Arp2/3 complex. SCIENCE ADVANCES 2024; 10:eadj7681. [PMID: 38277459 PMCID: PMC10816697 DOI: 10.1126/sciadv.adj7681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Branched actin filaments are found in many key cellular structures. Branches are nucleated by the Arp2/3 complex activated by nucleation-promoting factor (NPF) proteins and bound to the side of preexisting "mother" filaments. Over time, branches dissociate from their mother filament, leading to network reorganization and turnover, but this mechanism is less understood. Here, using microfluidics and purified proteins, we examined the dissociation of individual branches under controlled biochemical and mechanical conditions. We observe that the Arp2/3 complex remains bound to the mother filament after most debranching events, even when accelerated by force. Strikingly, this surviving Arp2/3 complex readily nucleates a new actin filament branch, without being activated anew by an NPF: It simply needs to exchange its nucleotide and bind an actin monomer. The protein glia maturation factor (GMF), which accelerates debranching, prevents branch renucleation. Our results suggest that actin filament renucleation can provide a self-repair mechanism, helping branched networks to sustain mechanical stress in cells over extended periods of time.
Collapse
Affiliation(s)
- Foad Ghasemi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - LuYan Cao
- The Francis Crick Institute, London, UK
| | | | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michael Way
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | |
Collapse
|
4
|
Stromberg KA, Spain T, Tomlin SA, Powell J, Amarillo KD, Schroeder CM. Evolutionary diversification reveals distinct somatic versus germline cytoskeletal functions of the Arp2 branched actin nucleator protein. Curr Biol 2023; 33:5326-5339.e7. [PMID: 37977138 PMCID: PMC10785674 DOI: 10.1016/j.cub.2023.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Branched actin networks are critical in many cellular processes, including cell motility and division. Arp2, a protein within the seven-membered Arp2/3 complex, is responsible for generating branched actin. Given its essential roles, Arp2 evolves under stringent sequence conservation throughout eukaryotic evolution. We unexpectedly discovered recurrent evolutionary diversification of Arp2 in Drosophila, yielding independently arising paralogs Arp2D in obscura species and Arp2D2 in montium species. Both paralogs are unusually testis-enriched in expression relative to Arp2. We investigated whether their sequence divergence from canonical Arp2 led to functional specialization by replacing Arp2 in D. melanogaster with either Arp2D or Arp2D2. Despite their divergence, we surprisingly found that both complement Arp2's essential function in somatic tissue, suggesting they have preserved the ability to polymerize branched actin even in a non-native species. However, we found that Arp2D- and Arp2D2-expressing males display defects throughout sperm development, with Arp2D resulting in more pronounced deficiencies and subfertility, suggesting the Arp2 paralogs are cross-species incompatible in the testis. We focused on Arp2D and pinpointed two highly diverged structural regions-the D-loop and C terminus-and found that they contribute to germline defects in D. melanogaster sperm development. However, while the Arp2D C terminus is suboptimal in the D. melanogaster testis, it is essential for Arp2D somatic function. Testis cytology of the paralogs' native species revealed striking differences in germline actin structures, indicating unique cytoskeletal requirements. Our findings suggest canonical Arp2 function differs between somatic versus germline contexts, and Arp2 paralogs may have recurrently evolved for species-specialized actin branching in the testis.
Collapse
Affiliation(s)
- Kaitlin A Stromberg
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Tristan Spain
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Sarah A Tomlin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Jordan Powell
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Kristen Dominique Amarillo
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Courtney M Schroeder
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Fregoso FE, Boczkowska M, Rebowski G, Carman PJ, van Eeuwen T, Dominguez R. Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins. Nat Commun 2023; 14:6894. [PMID: 37898612 PMCID: PMC10613254 DOI: 10.1038/s41467-023-42229-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023] Open
Abstract
Cortactin coactivates Arp2/3 complex synergistically with WASP-family nucleation-promoting factors (NPFs) and stabilizes branched networks by linking Arp2/3 complex to F-actin. It is poorly understood how cortactin performs these functions. We describe the 2.89 Å resolution cryo-EM structure of cortactin's N-terminal domain (Cort1-76) bound to Arp2/3 complex. Cortactin binds Arp2/3 complex through an inverted Acidic domain (D20-V29), which targets the same site on Arp3 as the Acidic domain of NPFs but with opposite polarity. Sequences N- and C-terminal to cortactin's Acidic domain do not increase its affinity for Arp2/3 complex but contribute toward coactivation with NPFs. Coactivation further increases with NPF dimerization and for longer cortactin constructs with stronger binding to F-actin. The results suggest that cortactin contributes to Arp2/3 complex coactivation with NPFs in two ways, by helping recruit the complex to F-actin and by stabilizing the short-pitch (active) conformation, which are both byproducts of cortactin's core function in branch stabilization.
Collapse
Affiliation(s)
- Fred E Fregoso
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Zhou F, Ouyang L, Xie J, Liu S, Li Q, Yang S, Li J, Su R, Rao S, Yan L, Wan X, Cheng H, Liu P, Li L, Zhu Y, Du G, Feng C, Fan G. Co-exposure to low-dose lead, cadmium, and mercury promotes memory deficits in rats: Insights from the dynamics of dendritic spine pruning in brain development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115425. [PMID: 37660527 DOI: 10.1016/j.ecoenv.2023.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Sisi Liu
- Jiangxi Academy of Medical Science, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
7
|
Singh Y, Hocky GM, Nolen BJ. Molecular dynamics simulations support a multistep pathway for activation of branched actin filament nucleation by Arp2/3 complex. J Biol Chem 2023; 299:105169. [PMID: 37595874 PMCID: PMC10514467 DOI: 10.1016/j.jbc.2023.105169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Actin-related protein 2/3 complex (Arp2/3 complex) catalyzes the nucleation of branched actin filaments that push against membranes in processes like cellular motility and endocytosis. During activation by WASP proteins, the complex must bind WASP and engage the side of a pre-existing (mother) filament before a branched filament is nucleated. Recent high-resolution structures of activated Arp2/3 complex revealed two major sets of activating conformational changes. How these activating conformational changes are triggered by interactions of Arp2/3 complex with actin filaments and WASP remains unclear. Here we use a recent high-resolution structure of Arp2/3 complex at a branch junction to design all-atom molecular dynamics simulations that elucidate the pathway between the active and inactive states. We ran a total of ∼4.6 microseconds of both unbiased and steered all-atom molecular dynamics simulations starting from three different binding states, including Arp2/3 complex within a branch junction, bound only to a mother filament, and alone in solution. These simulations indicate that the contacts with the mother filament are mostly insensitive to the massive rigid body motion that moves Arp2 and Arp3 into a short pitch helical (filament-like) arrangement, suggesting actin filaments alone do not stimulate the short pitch conformational change. In contrast, contacts with the mother filament stabilize subunit flattening in Arp3, an intrasubunit change that converts Arp3 from a conformation that mimics an actin monomer to one that mimics a filamentous actin subunit. Our results support a multistep activation pathway that has important implications for understanding how WASP-mediated activation allows Arp2/3 complex to assemble force-producing actin networks.
Collapse
Affiliation(s)
| | - Glen M Hocky
- Department of Chemistry, New York University; Simons Center for Computational Physical Chemistry, New York University.
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon.
| |
Collapse
|
8
|
van Eeuwen T, Boczkowska M, Rebowski G, Carman PJ, Fregoso FE, Dominguez R. Transition State of Arp2/3 Complex Activation by Actin-Bound Dimeric Nucleation-Promoting Factor. Proc Natl Acad Sci U S A 2023; 120:e2306165120. [PMID: 37549294 PMCID: PMC10434305 DOI: 10.1073/pnas.2306165120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/03/2023] [Indexed: 08/09/2023] Open
Abstract
Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament. Several cofactors drive the transition toward the active state, including ATP binding to the Arps, WASP-family nucleation-promoting factors (NPFs), actin monomers, and binding of Arp2/3 complex to the mother filament. The precise contribution of each cofactor to activation is poorly understood. We report the 3.32-Å resolution cryo-electron microscopy structure of a transition state of Arp2/3 complex activation with bound constitutively dimeric NPF. Arp2/3 complex-binding region of the NPF N-WASP was fused C-terminally to the α and β subunits of the CapZ heterodimer. One arm of the NPF dimer binds Arp2 and the other binds actin and Arp3. The conformation of the complex is intermediate between those of inactive and active Arp2/3 complex. Arp2, Arp3, and actin also adopt intermediate conformations between monomeric (G-actin) and filamentous (F-actin) states, but only actin hydrolyzes ATP. In solution, the transition complex is kinetically shifted toward the short-pitch conformation and has higher affinity for F-actin than inactive Arp2/3 complex. The results reveal how all the activating cofactors contribute in a coordinated manner toward Arp2/3 complex activation.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Peter J. Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Fred E. Fregoso
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
9
|
Stromberg KA, Spain T, Tomlin SA, Amarillo KD, Schroeder CM. Evolutionary diversification reveals distinct somatic versus germline cytoskeletal functions of the Arp2 branched actin nucleator protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530036. [PMID: 36909544 PMCID: PMC10002617 DOI: 10.1101/2023.02.25.530036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Branched actin networks are critical in many cellular processes, including cell motility and division. Arp2, a protein within the 7-membered Arp2/3 complex, is responsible for generating branched actin. Given its essential roles, Arp2 evolves under stringent sequence conservation throughout eukaryotic evolution. We unexpectedly discovered recurrent evolutionary diversification of Arp2 in Drosophila, yielding independently arising paralogs Arp2D in obscura species and Arp2D2 in montium species. Both paralogs are unusually testis-enriched in expression relative to Arp2. We investigated whether their sequence divergence from canonical Arp2 led to functional specialization by replacing Arp2 in D. melanogaster with either Arp2D or Arp2D2. Despite their divergence, we surprisingly found both complement Arp2's essential function in the soma, suggesting they have preserved the ability to polymerize branched actin even in a non-native species. However, we found that Arp2D-expressing males are subfertile and display many defects throughout sperm development. We pinpointed two highly diverged structural regions in Arp2D that contribute to these defects: subdomain 2 and the C-terminus. We expected that germline function would be rescued by replacing Arp2D's long and charged C-terminus with Arp2's short C-terminus, yet surprisingly, the essential somatic function of Arp2D was lost. Therefore, while Arp2D's structural divergence is incompatible with D. melanogaster sperm development, its unique C-terminus has evolved a critical role in actin polymerization. Our findings suggest canonical Arp2's function differs between somatic versus germline contexts, and Arp2 paralogs have recurrently evolved and specialized for actin branching in the testis.
Collapse
Affiliation(s)
| | - Tristan Spain
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX
| | - Sarah A. Tomlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | |
Collapse
|
10
|
Chou SZ, Chatterjee M, Pollard TD. Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structureof the branch junction. Proc Natl Acad Sci U S A 2022; 119:e2206722119. [PMID: 36442092 PMCID: PMC9894260 DOI: 10.1073/pnas.2206722119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
We reconstructed the structure of actin filament branch junctions formed by fission yeast Arp2/3 complex at 3.5 Å resolution from images collected by electron cryo-microscopy. During specimen preparation, all of the actin subunits and Arp3 hydrolyzed their bound adenosine triphosphate (ATP) and dissociated the γ-phosphate, but Arp2 retained the γ-phosphate. Binding tightly to the side of the mother filament and nucleating the daughter filament growing as a branch requires Arp2/3 complex to undergo a dramatic conformational change where two blocks of structure rotate relative to each other about 25° to align Arp2 and Arp3 as the first two subunits in the branch. During branch formation, Arp2/3 complex acquires more than 8,000 Å2 of new buried surface, accounting for the stability of the branch. Inactive Arp2/3 complex binds only transiently to the side of an actin filament, because its conformation allows only a subset of the interactions found in the branch junction.
Collapse
Affiliation(s)
- Steven Z. Chou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06520
| | - Moon Chatterjee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06520
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
- Department of Cell Biology, Yale University, New Haven, CT06520
| |
Collapse
|
11
|
Illig D, Kotlarz D. Dysregulated inflammasome activity in intestinal inflammation - Insights from patients with very early onset IBD. Front Immunol 2022; 13:1027289. [PMID: 36524121 PMCID: PMC9744759 DOI: 10.3389/fimmu.2022.1027289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by imbalances of the microbiome and immune dysregulations in genetically susceptible individuals. Several mouse and human studies have demonstrated that multimeric inflammasomes are critical regulators of host defense and gut homeostasis by modulating immune responses to pathogen- or damage-associated molecular patterns. In the context of IBD, excessive production of pro-inflammatory Interleukin-1β has been detected in patient-derived intestinal tissues and correlated with the disease severity or failure to respond to anti-tumor necrosis factor therapy. Correspondingly, genome-wide association studies have suggested that single nucleotide polymorphisms in inflammasome components might be associated with risk of IBD development. The relevance of inflammasomes in controlling human intestinal homeostasis has been further exemplified by the discovery of very early onset IBD (VEO-IBD) patients with monogenic defects affecting different molecules in the complex regulatory network of inflammasome activity. This review provides an overview of known causative monogenic entities of VEO-IBD associated with altered inflammasome activity. A better understanding of the molecular mechanisms controlling inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues for rare and common inflammatory diseases.
Collapse
Affiliation(s)
- David Illig
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,*Correspondence: Daniel Kotlarz,
| |
Collapse
|
12
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
13
|
Structure of Arp2/3 complex at a branched actin filament junction resolved by single-particle cryo-electron microscopy. Proc Natl Acad Sci U S A 2022; 119:e2202723119. [PMID: 35622886 DOI: 10.1073/pnas.2202723119] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SignificanceActin filament nucleation by Arp2/3 complex must be triggered by activators like WASP family proteins. Understanding how WASP proteins activate Arp2/3 complex has been a major challenge due to a lack of high-resolution structures of the complex in an activated state. We determined a high-resolution (∼3.9 Å) structure of the WASP-activated Arp2/3 complex at a branch junction and used biochemical, cell biological, and molecular dynamic simulations to understand the mechanism of WASP-mediated activation. This work shows in detail the contacts between the fully activated Arp2/3 complex, the nucleated daughter actin filament, and the mother actin filament and provides important insights into how conformational rearrangements in the Arp2/3 complex are stimulated during activation.
Collapse
|
14
|
Narvaez-Ortiz HY, Nolen BJ. Unconcerted conformational changes in Arp2/3 complex integrate multiple activating signals to assemble functional actin networks. Curr Biol 2022; 32:975-987.e6. [PMID: 35090589 PMCID: PMC8930562 DOI: 10.1016/j.cub.2022.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Arp2/3 complex nucleates branched actin filaments important for processes such as DNA repair, endocytosis, and cellular motility. Multiple factors are required to activate branching nucleation by Arp2/3 complex, including a WASP family protein and a pre-existing actin filament. Activation is achieved through two major conformational changes-subunit flattening and movement into the short pitch conformation-that allow the actin-related proteins (Arps) within the complex (Arp2 and Arp3) to mimic filamentous actin subunits, thereby templating new filament assembly. Some models suggest that these changes are concerted and stimulated cooperatively by WASP and actin filaments, but how Arp2/3 complex integrates signals from multiple factors to drive switch-like activation of branching nucleation has been unknown. Here, we use biochemical assays to show that instead of a concerted mechanism, signal integration by Arp2/3 complex occurs via distinct and unconcerted conformational changes; WASP stimulates the short pitch arrangement of Arp2 and Arp3, while actin filaments trigger a different activation step. An engineered Arp2/3 complex that bypasses the need for WASP but not actin filaments in activation potently assembles isotropic actin networks but fails to assemble sustained force-producing actin networks in bead motility assays. The engineered complex, which is crosslinked into the short pitch conformation, fails to target nucleation to the surface of the bead, creating unproductive branching events that deplete unpolymerized actin and halt assembly. Together, our data demonstrate the requirement for multifactor signal integration by Arp2/3 complex and highlight the importance of both the WASP- and actin filament-mediated activation steps in the assembly of functional actin networks.
Collapse
Affiliation(s)
- Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
15
|
Cytoskeleton regulation: Distinct steps in Arp2/3 complex activation. Curr Biol 2022; 32:R220-R222. [DOI: 10.1016/j.cub.2022.01.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Autism, heparan sulfate and potential interventions. Exp Neurol 2022; 353:114050. [DOI: 10.1016/j.expneurol.2022.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
|
17
|
Phan QT, Lin J, Solis NV, Eng M, Swidergall M, Wang F, Li S, Gaffen SL, Chou TF, Filler SG. The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. mBio 2021; 12:e0271621. [PMID: 34724825 PMCID: PMC8561387 DOI: 10.1128/mbio.02716-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1β (IL-1β) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1β, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V. Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Michael Eng
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Marc Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Feng Wang
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Shan Li
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tsui-Fen Chou
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
18
|
Law AL, Jalal S, Pallett T, Mosis F, Guni A, Brayford S, Yolland L, Marcotti S, Levitt JA, Poland SP, Rowe-Sampson M, Jandke A, Köchl R, Pula G, Ameer-Beg SM, Stramer BM, Krause M. Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration. Nat Commun 2021; 12:5687. [PMID: 34584076 PMCID: PMC8478917 DOI: 10.1038/s41467-021-25916-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.
Collapse
Affiliation(s)
- Ah-Lai Law
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- School of Life Sciences, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Shamsinar Jalal
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Tommy Pallett
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Fuad Mosis
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Ahmad Guni
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Simon Brayford
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Lawrence Yolland
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Stefania Marcotti
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - James A Levitt
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Simon P Poland
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Maia Rowe-Sampson
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Anett Jandke
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Robert Köchl
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giordano Pula
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg (UKE), Martinistrasse 52, O26, 20246, Hamburg, Germany
| | - Simon M Ameer-Beg
- Ameer-Beg Group, Richard Dimbleby Cancer Research Laboratories, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Brian Marc Stramer
- Stramer Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Matthias Krause
- Krause Group, Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
19
|
Actin filament debranching regulates cell polarity during cell migration and asymmetric cell division. Proc Natl Acad Sci U S A 2021; 118:2100805118. [PMID: 34507987 DOI: 10.1073/pnas.2100805118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 01/10/2023] Open
Abstract
The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.
Collapse
|
20
|
Mughees M, Bano F, Wajid S. Mechanism of WASP and WAVE family proteins in the progression of prostate cancer. PROTOPLASMA 2021; 258:683-693. [PMID: 33471226 DOI: 10.1007/s00709-021-01608-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed and third lethal cause of death from cancer in men worldwide. Despite the availability of vast treatment procedures, still the high occurrence of invasion and metastasis of PCa are reported in cancer patients. The WASP (Wiskott-Aldrich syndrome protein) and WAVE (WASP family verprolin homologous protein) family of proteins are actin cytoskeleton regulatory proteins, reported to enhance cancer cell invasion and migration in prostate cancer. Hence, this review sheds light on the studies that explored the potential role of WASP and WAVE family of proteins in invasion and metastasis of prostate cancer. The research articles explored for the completion of this review were mostly from PubMed and Google Scholar by using the appropriate keywords for indexing. The conserved function of WASP and WAVE protein family is to receive the upstream signals from the Rho GTPase family and transmit them to activate the Arp2/3 complex that leads to rapid actin polymerization at leading edge of cells, which is crucial for PCa metastasis. Therefore, targeting these proteins could reflect a very interesting therapeutic opportunity to combat prostate cancer.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faizia Bano
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
21
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
22
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
23
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
24
|
Fäßler F, Dimchev G, Hodirnau VV, Wan W, Schur FKM. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nat Commun 2020; 11:6437. [PMID: 33353942 PMCID: PMC7755917 DOI: 10.1038/s41467-020-20286-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, United States of America
| | - Florian K M Schur
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
25
|
Balzer CJ, James ML, Narvaez-Ortiz HY, Helgeson LA, Sirotkin V, Nolen BJ. Synergy between Wsp1 and Dip1 may initiate assembly of endocytic actin networks. eLife 2020; 9:60419. [PMID: 33179595 PMCID: PMC7707826 DOI: 10.7554/elife.60419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
The actin filament nucleator Arp2/3 complex is activated at cortical sites in Schizosaccharomyces pombe to assemble branched actin networks that drive endocytosis. Arp2/3 complex activators Wsp1 and Dip1 are required for proper actin assembly at endocytic sites, but how they coordinately control Arp2/3-mediated actin assembly is unknown. Alone, Dip1 activates Arp2/3 complex without preexisting actin filaments to nucleate ‘seed’ filaments that activate Wsp1-bound Arp2/3 complex, thereby initiating branched actin network assembly. In contrast, because Wsp1 requires preexisting filaments to activate, it has been assumed to function exclusively in propagating actin networks by stimulating branching from preexisting filaments. Here we show that Wsp1 is important not only for propagation but also for initiation of endocytic actin networks. Using single molecule total internal reflection fluorescence microscopy we show that Wsp1 synergizes with Dip1 to co-activate Arp2/3 complex. Synergistic co-activation does not require preexisting actin filaments, explaining how Wsp1 contributes to actin network initiation in cells.
Collapse
Affiliation(s)
- Connor J Balzer
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Michael L James
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Luke A Helgeson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|
26
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
27
|
Shaaban M, Chowdhury S, Nolen BJ. Cryo-EM reveals the transition of Arp2/3 complex from inactive to nucleation-competent state. Nat Struct Mol Biol 2020; 27:1009-1016. [PMID: 32839613 DOI: 10.1038/s41594-020-0481-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
Arp2/3 complex, a crucial actin filament nucleator, undergoes structural rearrangements during activation by nucleation-promoting factors (NPFs). However, the conformational pathway leading to the nucleation-competent state is unclear due to lack of high-resolution structures of the activated state. Here we report a ~3.9 Å resolution cryo-EM structure of activated Schizosaccharomyces pombe Arp2/3 complex bound to the S. pombe NPF Dip1 and attached to the end of the nucleated actin filament. The structure reveals global and local conformational changes that allow the two actin-related proteins in Arp2/3 complex to mimic a filamentous actin dimer and template nucleation. Activation occurs through a clamp-twisting mechanism, in which Dip1 forces two core subunits in Arp2/3 complex to pivot around one another, shifting half of the complex into a new activated position. By showing how Dip1 stimulates activation, the structure reveals how NPFs can activate Arp2/3 complex in diverse cellular processes.
Collapse
Affiliation(s)
- Mohammed Shaaban
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
28
|
Grikscheit K, Dolnik O, Takamatsu Y, Pereira AR, Becker S. Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells 2020; 9:cells9071728. [PMID: 32707734 PMCID: PMC7407605 DOI: 10.3390/cells9071728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
The intracellular transport of nucleocapsids of the highly pathogenic Marburg, as well as Ebola virus (MARV, EBOV), represents a critical step during the viral life cycle. Intriguingly, a population of these nucleocapsids is distributed over long distances in a directed and polar fashion. Recently, it has been demonstrated that the intracellular transport of filoviral nucleocapsids depends on actin polymerization. While it was shown that EBOV requires Arp2/3-dependent actin dynamics, the details of how the virus exploits host actin signaling during intracellular transport are largely unknown. Here, we apply a minimalistic transfection system to follow the nucleocapsid-like structures (NCLS) in living cells, which can be used to robustly quantify NCLS transport in live cell imaging experiments. Furthermore, in cells co-expressing LifeAct, a marker for actin dynamics, NCLS transport is accompanied by pulsative actin tails appearing on the rear end of NCLS. These actin tails can also be preserved in fixed cells, and can be visualized via high resolution imaging using STORM in transfected, as well as EBOV infected, cells. The application of inhibitory drugs and siRNA depletion against actin regulators indicated that EBOV NCLS utilize the canonical Arp2/3-Wave1-Rac1 pathway for long-distance transport in cells. These findings highlight the relevance of the regulation of actin polymerization during directed EBOV nucleocapsid transport in human cells.
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
| | - Yuki Takamatsu
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
29
|
Zimmet A, Van Eeuwen T, Boczkowska M, Rebowski G, Murakami K, Dominguez R. Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism. SCIENCE ADVANCES 2020; 6:6/23/eaaz7651. [PMID: 32917641 PMCID: PMC7274804 DOI: 10.1126/sciadv.aaz7651] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/16/2020] [Indexed: 05/12/2023]
Abstract
Actin-related protein (Arp) 2/3 complex nucleates branched actin networks that drive cell motility. It consists of seven proteins, including two actin-related subunits (Arp2 and Arp3). Two nucleation-promoting factors (NPFs) bind Arp2/3 complex during activation, but the order, specific interactions, and contribution of each NPF to activation are unresolved. Here, we report the cryo-electron microscopy structure of recombinantly expressed human Arp2/3 complex with two WASP family NPFs bound and address the mechanism of activation. A cross-linking assay that captures the transition of the Arps into the activated filament-like conformation shows that actin binding to NPFs favors this transition. Actin-NPF binding to Arp2 precedes binding to Arp3 and is sufficient to promote the filament-like conformation but not activation. Structure-guided mutagenesis of the NPF-binding sites reveals their distinct roles in activation and shows that, contrary to budding yeast Arp2/3 complex, NPF-mediated delivery of actin at the barbed end of both Arps is required for activation of human Arp2/3 complex.
Collapse
Affiliation(s)
- Austin Zimmet
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor Van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Kabrawala S, Zimmer MD, Campellone KG. WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility. PLoS Genet 2020; 16:e1008694. [PMID: 32196488 PMCID: PMC7112243 DOI: 10.1371/journal.pgen.1008694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 02/22/2020] [Indexed: 12/27/2022] Open
Abstract
Cell motility is governed by cooperation between the Arp2/3 complex and nucleation-promoting factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X chromosome of a subset of mammals, including mice. Murine WHIMP promotes Arp2/3-dependent actin assembly, but is less potent than other nucleation factors. Nevertheless, WHIMP-mediated Arp2/3 activation enhances both plasma membrane ruffling and wound healing migration, whereas WHIMP depletion impairs protrusion and slows motility. WHIMP expression also increases Src-family kinase activity, and WHIMP-induced ruffles contain the additional nucleation-promoting factors WAVE1, WAVE2, and N-WASP, but not JMY or WASH. Perturbing the function of Src-family kinases, WAVE proteins, or Arp2/3 complex inhibits WHIMP-driven ruffling. These results suggest that WHIMP-associated actin assembly plays a direct role in membrane protrusion, but also results in feedback control of tyrosine kinase signaling to modulate the activation of multiple WASP-family members. The actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Sophisticated cytoskeletal regulators called nucleation-promoting factors ensure that actin polymerizes when and where it is needed, and many of these factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Several of the 8 known WASP-family proteins function in cell motility, but how the different factors collaborate with one another is not well understood. In this study, we identified WHIMP, a new WASP-family member that is encoded on the X chromosome of a variety of mammals. In mouse cells, WHIMP enhances cell motility by assembling actin filaments that push the plasma membrane forward. Unexpectedly, WHIMP also activates tyrosine kinases, enzymes that stimulate multiple WASP-family members during motility. Our results open new avenues of research into how nucleation factors cooperate during movement and how the molecular activities that underlie motility differ in distinct cell types and organisms.
Collapse
Affiliation(s)
- Shail Kabrawala
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Margaret D. Zimmer
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Actin polymerization is essential for cells to migrate, as well as for various cell biological processes such as cytokinesis and vesicle traffic. This brief review describes the mechanisms underlying its different roles and recent advances in our understanding. Actin usually requires "nuclei"-preformed actin filaments-to start polymerizing, but, once initiated, polymerization continues constitutively. The field therefore has a strong focus on nucleators, in particular the Arp2/3 complex and formins. These have different functions, are controlled by contrasting mechanisms, and generate alternate geometries of actin networks. The Arp2/3 complex functions only when activated by nucleation-promoting factors such as WASP, Scar/WAVE, WASH, and WHAMM and when binding to a pre-existing filament. Formins can be individually active but are usually autoinhibited. Each is controlled by different mechanisms and is involved in different biological roles. We also describe the processes leading to actin disassembly and their regulation and conclude with four questions whose answers are important for understanding actin dynamics but are currently unanswered.
Collapse
Affiliation(s)
- Simona Buracco
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Sophie Claydon
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1BD, UK
| |
Collapse
|
32
|
Balzer CJ, Wagner AR, Helgeson LA, Nolen BJ. Single-Turnover Activation of Arp2/3 Complex by Dip1 May Balance Nucleation of Linear versus Branched Actin Filaments. Curr Biol 2019; 29:3331-3338.e7. [PMID: 31564494 DOI: 10.1016/j.cub.2019.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023]
Abstract
Arp2/3 complex nucleates branched actin filaments important for cellular motility, endocytosis, meiosis, and cellular differentiation [1-4]. Wiskott-Aldrich syndrome proteins (WASPs), the prototypical Arp2/3 complex activators, activate Arp2/3 complex only once it is bound to the side of an actin filament [5, 6]. This ensures WASP-activated Arp2/3 complex only nucleates branched actin filaments but means branched actin networks must be seeded with an initial preformed filament. Dip1 and other WISH/DIP/SPIN90 family proteins activate Arp2/3 complex without preformed filaments [7], creating seed filaments that activate WASP-bound Arp2/3 complex [8]. Importantly, Dip1-mediated activation of Arp2/3 complex creates linear filaments instead of branches [7]. Cells may therefore need to limit Dip1 activity relative to WASP to preserve the dendritic nature of actin networks, although it is unclear whether such regulatory mechanisms exist. Here, we use total internal reflection fluorescence (TIRF) microscopy to show that Dip1 causes actin assembled with WASP and Arp2/3 complex to form disconnected networks with many linear filaments rather than highly branched arrays. We discover a key biochemical difference between Dip1 and WASP that may limit linear filament nucleation in cells; although WASP must be released for nucleation, Dip1 stays associated with Arp2/3 complex on the pointed ends of nucleated actin filaments, so Dip1 is consumed in the reaction. Using live-cell imaging of fission yeast, we provide evidence that Dip1 is a single-turnover activator of Arp2/3 complex in vivo, revealing a mechanism by which Dip1 can initiate branched actin networks at endocytic sites without disrupting their branched architectures.
Collapse
Affiliation(s)
- Connor J Balzer
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Andrew R Wagner
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Luke A Helgeson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
33
|
Wilton KM, Overlee BL, Billadeau DD. NKG2D-DAP10 signaling recruits EVL to the cytotoxic synapse to generate F-actin and promote NK cell cytotoxicity. J Cell Sci 2019; 133:jcs.230508. [PMID: 31235500 DOI: 10.1242/jcs.230508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells eliminate abnormal cells through the release of cytolytic granule contents. In this process, NK cells must adhere to target cells through integrin-mediated adhesion, which is highly dependent on the generation of F-actin. Ena/VASP-like (EVL) is an actin regulatory protein previously shown to regulate integrin-mediated adhesion in other cell types, but its role in NK cell biology is not known. Herein, we show that EVL is recruited to the NK cell cytotoxic synapse and is required for NK cell cytotoxicity. Significantly, EVL is involved in the generation of F-actin at the cytotoxic synapse, antibody-stimulated spreading, and NK cell-target cell adhesion. EVL interacts with WASP (also known as WAS) and VASP and is required for localization of both proteins to the synapse. Recruitment of EVL to points of cellular activation occurs through the receptor NKG2D-DAP10 (also known as KLRK1 and HCST, respectively) via a binding site previously implicated in VAV1 and Grb2 recruitment. Taken together, this study implicates DAP10-mediated Grb2 and VAV1 signaling in the recruitment of an EVL-containing actin regulatory complex to the cytotoxic synapse where it can promote F-actin nucleation leading to NK cell-mediated killing.
Collapse
Affiliation(s)
- Katelynn M Wilton
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Medical Scientist Training Program, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Brittany L Overlee
- Division of Oncology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA .,Division of Oncology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Gomig THB, Cavalli IJ, Souza RLRD, Vieira E, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, de Andrade Urban C, Cavalli LR, Ribeiro EMDSF. Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer. J Proteomics 2019; 199:1-14. [PMID: 30772490 DOI: 10.1016/j.jprot.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
Abstract
Proteins play an essential role in the biological processes associated with cancer. Their altered expression levels can deregulate critical cellular pathways and interactive networks. In this study, the mass spectrometry-based label-free quantification followed by functional annotation was performed to investigate the most significant deregulated proteins among tissues of primary breast tumor (PT) and axillary metastatic lymph node (LN) and corresponding non-tumor tissues contralateral (NCT) and adjacent (ANT) from patients diagnosed with invasive ductal carcinoma. A total of 462 proteins was observed as differentially expressed (DEPs) among the groups analyzed. A high level of similarity was observed in the proteome profile of both non-tumor breast tissues and DEPs (n = 12) were mainly predicted in the RNA metabolism. The DEPs among the malignant and non-tumor breast tissues [n = 396 (PTxNCT) and n = 410 (LNxNCT)] were related to pathways of the LXR/RXR, NO, eNOS, eIF2 and sirtuins, tumor-related functions, fatty acid metabolism and oxidative stress. Remarkable similarity was observed between both malignant tissues, which the DEPs were related to metastatic capabilities. Altogether, our findings revealed differential proteomic profiles that affected cancer associated and interconnected signaling processes. Validation studies are recommended to demonstrate the potential of individual proteins and/or pathways as biological markers in breast cancer. SIGNIFICANCE: The proteomic analysis of this study revealed high similarity in the proteomic profile of the contralateral and adjacent non-tumor breast tissues. Significant differences were identified among the proteome of the malignant and non-tumor tissue groups of the same patients, providing relevant insights into the hallmarks, signaling pathways, biological functions, and interactive protein networks that act during tumorigenesis and breast cancer progression. These proteins are suggested as targets of relevant interest to be explored as potential biological markers related to tumor development and metastatic progression in the breast cancer disease.
Collapse
Affiliation(s)
| | | | | | - Evelyn Vieira
- Genetics Department, Federal University of Parana, Curitiba, Brazil
| | | | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | - Fabricio Klerynton Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | | | | | - Luciane Regina Cavalli
- Research Institute Pele Pequeno Principe, Curitiba, Brazil; Lombardi Comprehensive Cancer Center, Georgetown University, USA
| | | |
Collapse
|
35
|
Balzer CJ, Wagner AR, Helgeson LA, Nolen BJ. Dip1 Co-opts Features of Branching Nucleation to Create Linear Actin Filaments that Activate WASP-Bound Arp2/3 Complex. Curr Biol 2018; 28:3886-3891.e4. [PMID: 30471998 DOI: 10.1016/j.cub.2018.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
When activated by Wiskott-Aldrich syndrome proteins (WASP), Arp2/3 complex nucleates branched actin filaments important for processes like cellular motility and endocytosis [1]. WASP-mediated activation of Arp2/3 complex requires a preformed actin filament, ensuring that activation by WASP creates branched instead of linear filaments. However, this biochemical requirement also means that assembly of branched actin networks must be primed with an initial seed filament [2-4]. We recently described a class of activators called WISH/DIP/SPIN90 (WDS) proteins, which, unlike WASP, activate Arp2/3 complex without a preformed filament [4]. Although this property may allow WDS proteins to serve as seed filament generators, it is unknown whether actin filaments nucleated by WDS-activated Arp2/3 complex can activate WASP-bound Arp2/3 complex. Further, despite their potential importance as branched actin network initiators, little is known about how WDS proteins turn on Arp2/3 complex. Here, we use two-color single-molecule total internal reflection fluorescence (TIRF) microscopy to show that Dip1, the S. pombe WDS protein [5], co-opts features of branching nucleation to activate Arp2/3 complex. Specifically, it activates Arp2/3 complex to nucleate linear filaments analogous to the branch created by WASP-mediated activation. The barbed ends of Dip1-Arp2/3 nucleated filaments are free to elongate, and their pointed ends remain anchored to Dip1-bound Arp2/3 complex. The linear filaments nucleated by Dip1-bound Arp2/3 complex activate WASP-bound Arp2/3 complex as potently as spontaneously nucleated or branched actin filaments. These observations provide important insights into the regulation of Arp2/3 complex by its activators and the molecular basis for initiation of branched actin networks.
Collapse
Affiliation(s)
- Connor J Balzer
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Andrew R Wagner
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Luke A Helgeson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
36
|
Luan Q, Liu SL, Helgeson LA, Nolen BJ. Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex. EMBO J 2018; 37:embj.2018100005. [PMID: 30322896 DOI: 10.15252/embj.2018100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Unlike the WASP family of Arp2/3 complex activators, WISH/DIP/SPIN90 (WDS) family proteins activate actin filament nucleation by the Arp2/3 complex without the need for a preformed actin filament. This allows WDS proteins to initiate branched actin network assembly by providing seed filaments that activate WASP-bound Arp2/3 complex. Despite their important role in actin network initiation, it is unclear how WDS proteins drive the activating steps that require both WASP and pre-existing actin filaments during WASP-mediated nucleation. Here, we show that SPIN90 folds into an armadillo repeat domain that binds a surface of Arp2/3 complex distinct from the two WASP sites, straddling a hinge point that may stimulate movement of the Arp2 subunit into the activated short-pitch conformation. SPIN90 binds a surface on Arp2/3 complex that overlaps with actin filament binding, explaining how it could stimulate the same structural rearrangements in the complex as pre-existing actin filaments. By revealing how WDS proteins activate the Arp2/3 complex, these data provide a molecular foundation to understand initiation of dendritic actin networks and regulation of Arp2/3 complex by its activators.
Collapse
Affiliation(s)
- Qing Luan
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Su-Ling Liu
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Luke A Helgeson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| |
Collapse
|
37
|
Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF. Nat Commun 2018; 9:2895. [PMID: 30042427 PMCID: PMC6057921 DOI: 10.1038/s41467-018-05260-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Formation and turnover of branched actin networks underlies cell migration and other essential force-driven processes. Type I nucleation-promoting factors (NPFs) such as WASP recruit actin monomers to Arp2/3 complex to stimulate nucleation. In contrast, mechanisms of type II NPFs such as Abp1 (also known as HIP55 and Drebrin-like protein) are less well understood. Here, we use single-molecule analysis to investigate yeast Abp1 effects on Arp2/3 complex, and find that Abp1 strongly enhances Arp2/3-dependent branch nucleation by stabilizing Arp2/3 on sides of mother filaments. Abp1 binds dynamically to filament sides, with sub-second lifetimes, yet associates stably with branch junctions. Further, we uncover a role for Abp1 in protecting filament junctions from GMF-induced debranching by competing with GMF for Arp2/3 binding. These data, combined with EM structures of Abp1 dimers bound to Arp2/3 complex in two different conformations, expand our mechanistic understanding of type II NPFs. Abp1, a type II actin nucleation promoting factor, is a known component of branched actin networks but its mechanism remains poorly understood. Here, the authors find that Abp1 enhances Arp2/3-mediated actin branch formation, and blocks ‘debranching’ by GMF, making it a pro-branching factor.
Collapse
|
38
|
Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex. Proc Natl Acad Sci U S A 2018; 115:E1409-E1418. [PMID: 29386393 DOI: 10.1073/pnas.1716622115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.
Collapse
|
39
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
40
|
Somech R, Lev A, Lee YN, Simon AJ, Barel O, Schiby G, Avivi C, Barshack I, Rhodes M, Yin J, Wang M, Yang Y, Rhodes J, Marcus N, Garty BZ, Stein J, Amariglio N, Rechavi G, Wiest DL, Zhang Y. Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in ARPC1B. THE JOURNAL OF IMMUNOLOGY 2017; 199:4036-4045. [PMID: 29127144 DOI: 10.4049/jimmunol.1700460] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for normal development and function of the immune system, as evidenced by the severe immune abnormalities exhibited by patients bearing inactivating mutations in the Wiskott-Aldrich syndrome protein (WASP), a key regulator of actin dynamics. WASP exerts its effects on actin dynamics through a multisubunit complex termed Arp2/3. Despite the critical role played by Arp2/3 as an effector of WASP-mediated control over actin polymerization, mutations in protein components of the Arp2/3 complex had not previously been identified as a cause of immunodeficiency. Here, we describe two brothers with hematopoietic and immunologic symptoms reminiscent of Wiskott-Aldrich syndrome (WAS). However, these patients lacked mutations in any of the genes previously associated with WAS. Whole-exome sequencing revealed a homozygous 2 bp deletion, n.c.G623DEL-TC (p.V208VfsX20), in Arp2/3 complex component ARPC1B that causes a frame shift resulting in premature termination. Modeling of the disease in zebrafish revealed that ARPC1B plays a critical role in supporting T cell and thrombocyte development. Moreover, the defects in development caused by ARPC1B loss could be rescued by the intact human ARPC1B ortholog, but not by the p.V208VfsX20 variant identified in the patients. Moreover, we found that the expression of ARPC1B is restricted to hematopoietic cells, potentially explaining why a mutation in ARPC1B has now been observed as a cause of WAS, whereas mutations in other, more widely expressed, components of the Arp2/3 complex have not been observed.
Collapse
Affiliation(s)
- Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Yu Nee Lee
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Amos J Simon
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Michele Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jiejing Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jennifer Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Nufar Marcus
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Ben-Zion Garty
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel; and
| | - Ninette Amariglio
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| |
Collapse
|
41
|
Avenarius MR, Krey JF, Dumont RA, Morgan CP, Benson CB, Vijayakumar S, Cunningham CL, Scheffer DI, Corey DP, Müller U, Jones SM, Barr-Gillespie PG. Heterodimeric capping protein is required for stereocilia length and width regulation. J Cell Biol 2017; 216:3861-3881. [PMID: 28899994 PMCID: PMC5674897 DOI: 10.1083/jcb.201704171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Control of the dimensions of actin-rich processes like filopodia, lamellipodia, microvilli, and stereocilia requires the coordinated activity of many proteins. Each of these actin structures relies on heterodimeric capping protein (CAPZ), which blocks actin polymerization at barbed ends. Because dimension control of the inner ear's stereocilia is particularly precise, we studied the CAPZB subunit in hair cells. CAPZB, present at ∼100 copies per stereocilium, concentrated at stereocilia tips as hair cell development progressed, similar to the CAPZB-interacting protein TWF2. We deleted Capzb specifically in hair cells using Atoh1-Cre, which eliminated auditory and vestibular function. Capzb-null stereocilia initially developed normally but later shortened and disappeared; surprisingly, stereocilia width decreased concomitantly with length. CAPZB2 expressed by in utero electroporation prevented normal elongation of vestibular stereocilia and irregularly widened them. Together, these results suggest that capping protein participates in stereocilia widening by preventing newly elongating actin filaments from depolymerizing.
Collapse
MESH Headings
- Animals
- Auditory Threshold
- Behavior, Animal
- Brain Stem/metabolism
- Brain Stem/physiopathology
- CapZ Actin Capping Protein/deficiency
- CapZ Actin Capping Protein/genetics
- CapZ Actin Capping Protein/metabolism
- Chick Embryo
- Cilia/metabolism
- Cilia/ultrastructure
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression Regulation, Developmental
- Genotype
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/ultrastructure
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mass Spectrometry
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Otoacoustic Emissions, Spontaneous
- Phenotype
- Vestibular Evoked Myogenic Potentials
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/physiopathology
Collapse
Affiliation(s)
- Matthew R Avenarius
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Rachel A Dumont
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Clive P Morgan
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Connor B Benson
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | | | | | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Ulrich Müller
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR
| |
Collapse
|