1
|
Tang J, Liu H, Li J, Zhang Y, Yao S, Yang K, You Z, Qiao X, Song Y. Regulation of post-translational modification of PD-L1 and associated opportunities for novel small-molecule therapeutics. Future Med Chem 2024; 16:1583-1599. [PMID: 38949857 PMCID: PMC11370925 DOI: 10.1080/17568919.2024.2366146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.
Collapse
Affiliation(s)
- Jinglin Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Jinze Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Yibo Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Suyang Yao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- Key Laboratory of Medicinal Chemistry & Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- Key Laboratory of Medicinal Chemistry & Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- State Key Laboratory of New Pharmaceutical Preparations & Excipients, Hebei University, Baoding, Hebei071002, China
| |
Collapse
|
2
|
Gök C, Fuller W. Rise of palmitoylation: A new trick to tune NCX1 activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119719. [PMID: 38574822 DOI: 10.1016/j.bbamcr.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The cardiac Na+/Ca2+ Exchanger (NCX1) controls transmembrane calcium flux in numerous tissues. The only reversible post-translational modification established to regulate NCX1 is palmitoylation, which alters the ability of the exchanger to inactivate. Palmitoylation creates a binding site for the endogenous XIP domain, a region of the NCX1 intracellular loop established to inactivate NCX1. The binding site created by NCX1 palmitoylation sensitizes the transporter to XIP. Herein we summarize our recent knowledge on NCX1 palmitoylation and its association with cardiac pathologies, and discuss these findings in the light of the recent cryo-EM structures of human NCX1.
Collapse
Affiliation(s)
- Caglar Gök
- School of Cardiovascular and Metabolic Health (SCMH), Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - William Fuller
- School of Cardiovascular and Metabolic Health (SCMH), Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Essandoh K, Teuber JP, Brody MJ. Regulation of cardiomyocyte intracellular trafficking and signal transduction by protein palmitoylation. Biochem Soc Trans 2024; 52:41-53. [PMID: 38385554 PMCID: PMC10903464 DOI: 10.1042/bst20221296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Despite the well-established functions of protein palmitoylation in fundamental cellular processes, the roles of this reversible post-translational lipid modification in cardiomyocyte biology remain poorly studied. Palmitoylation is catalyzed by a family of 23 zinc finger and Asp-His-His-Cys domain-containing S-acyltransferases (zDHHC enzymes) and removed by select thioesterases of the lysophospholipase and α/β-hydroxylase domain (ABHD)-containing families of serine hydrolases. Recently, studies utilizing genetic manipulation of zDHHC enzymes in cardiomyocytes have begun to unveil essential functions for these enzymes in regulating cardiac development, homeostasis, and pathogenesis. Palmitoylation co-ordinates cardiac electrophysiology through direct modulation of ion channels and transporters to impact their trafficking or gating properties as well as indirectly through modification of regulators of channels, transporters, and calcium handling machinery. Not surprisingly, palmitoylation has roles in orchestrating the intracellular trafficking of proteins in cardiomyocytes, but also dynamically fine-tunes cardiomyocyte exocytosis and natriuretic peptide secretion. Palmitoylation has emerged as a potent regulator of intracellular signaling in cardiomyocytes, with recent studies uncovering palmitoylation-dependent regulation of small GTPases through direct modification and sarcolemmal targeting of the small GTPases themselves or by modification of regulators of the GTPase cycle. In addition to dynamic control of G protein signaling, cytosolic DNA is sensed and transduced into an inflammatory transcriptional output through palmitoylation-dependent activation of the cGAS-STING pathway, which has been targeted pharmacologically in preclinical models of heart disease. Further research is needed to fully understand the complex regulatory mechanisms governed by protein palmitoylation in cardiomyocytes and potential emerging therapeutic targets.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
| | - James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, U.S.A
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, U.S.A
| |
Collapse
|
4
|
Rogers HT, Roberts DS, Larson EJ, Melby JA, Rossler KJ, Carr AV, Brown KA, Ge Y. Comprehensive Characterization of Endogenous Phospholamban Proteoforms Enabled by Photocleavable Surfactant and Top-down Proteomics. Anal Chem 2023; 95:13091-13100. [PMID: 37607050 PMCID: PMC10597709 DOI: 10.1021/acs.analchem.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modifications (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs, and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS method on a quadrupole time-of-flight MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Moreover, we applied our method to characterize PLN in disease and reported the significant reduction of PLN phosphorylation in human failing hearts with ischemic cardiomyopathy. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.
Collapse
Affiliation(s)
- Holden T. Rogers
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Austin V. Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Rogers HT, Roberts DS, Larson EJ, Melby JA, Rossler KJ, Carr AV, Brown KA, Ge Y. Comprehensive Characterization of Endogenous Phospholamban Proteoforms Enabled by Photocleavable Surfactant and Top-down Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536120. [PMID: 37090578 PMCID: PMC10120617 DOI: 10.1101/2023.04.12.536120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modification (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS (LC-MS/MS) method on a quadrupole time-of-flight (Q-TOF) MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance (FTICR) MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.
Collapse
|
6
|
Jia Z, Long D, Yu Y. Dynamic Expression of Palmitoylation Regulators across Human Organ Development and Cancers Based on Bioinformatics. Curr Issues Mol Biol 2022; 44:4472-4489. [PMID: 36286021 PMCID: PMC9600046 DOI: 10.3390/cimb44100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein palmitoylation is a reversible modification process that links palmitate to cysteine residues via a reversible thioester bond. Palmitoylation exerts an important role in human organ development and tumor progression. However, a comprehensive landscape regarding the dynamic expression of palmitoylation regulators in human organ development remains unclear. In this study, we analyzed the dynamic expression of palmitoylation regulators in seven organ development and eight cancer types based on bioinformatics. We found that the expression levels of most palmitoylation regulators were altered after birth. In particular, ZDHHC7/20/21 exhibited converse expression patterns in multiple cancer types. Survival analysis showed that the poor prognosis in patients with kidney renal clear carcinoma (KIRC) is related to low expression of ZDHHC7/20/21, and a high expression of ZDHHC7/20/21 is related to worse survival in patients with liver hepatocellular carcinoma (LIHC). Furthermore, we found that the expression of ZDHHC7 is associated with infiltration levels of some types of immune cells in the tumor microenvironment (TME), and we explored the relationship between ZDHHC7 expression and immune checkpoint (ICP) genes across 33 cancer types. In addition, gene set enrichment analysis (GSEA) results indicated that ZDHHC7 might regulate different genes to mediate the same pathway in different organs. In summary, the comprehensive analysis of palmitoylation regulators reveals their functions in human organ development and cancer, which may provide new insights for developing new tumor markers.
Collapse
Affiliation(s)
- Zixian Jia
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Deyu Long
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yingcui Yu
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
7
|
Tang F, Liu Z, Chen X, Yang J, Wang Z, Li Z. Current knowledge of protein palmitoylation in gliomas. Mol Biol Rep 2022; 49:10949-10959. [PMID: 36044113 DOI: 10.1007/s11033-022-07809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Malignant tumor cells can obtain proliferative benefits from deviant metabolic networks. Emerging evidence suggests that lipid metabolism are dramatically altered in gliomas and excessive fatty acd accumulation is detrimentally correlated with the prognosis of glioma patients. Glioma cells possess remarkably high levels of free fatty acids, which, in turn, enhance post-translational modifications (e.g. palmitoylation). Our and other groups found that palmitoylational modification is essential for remaining intracellular homeostasis and cell survival. Disrupting the balance between palmitoylation and depalmitoylation affects glioma cell viability, apoptosis, invasion, self-renew and pyroptosis. In this review, we focused on summarizing roles and relevant mechanisms of protein palmitoylational modification in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zhenyuan Liu
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Jinzhou Yang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhiqiang Li
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Drown BS, Jooß K, Melani RD, Lloyd-Jones C, Camarillo JM, Kelleher NL. Mapping the Proteoform Landscape of Five Human Tissues. J Proteome Res 2022; 21:1299-1310. [PMID: 35413190 PMCID: PMC9087339 DOI: 10.1021/acs.jproteome.2c00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A functional understanding of the human body requires structure-function studies of proteins at scale. The chemical structure of proteins is controlled at the transcriptional, translational, and post-translational levels, creating a variety of products with modulated functions within the cell. The term "proteoform" encapsulates this complexity at the level of chemical composition. Comprehensive mapping of the proteoform landscape in human tissues necessitates analytical techniques with increased sensitivity and depth of coverage. Here, we took a top-down proteomics approach, combining data generated using capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (RPLC) hyphenated to mass spectrometry to identify and characterize proteoforms from the human lungs, heart, spleen, small intestine, and kidneys. CZE and RPLC provided complementary post-translational modification and proteoform selectivity, thereby enhancing the overall proteome coverage when used in combination. Of the 11,466 proteoforms identified in this study, 7373 (64%) were not reported previously. Large differences in the protein and proteoform level were readily quantified, with initial inferences about proteoform biology operative in the analyzed organs. Differential proteoform regulation of defensins, glutathione transferases, and sarcomeric proteins across tissues generate hypotheses about how they function and are regulated in human health and disease.
Collapse
Affiliation(s)
- Bryon S Drown
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin Jooß
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Cameron Lloyd-Jones
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeannie M Camarillo
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
SEDT2 palmitoylation mediated by ZDHHC16 in EGFR-mutated glioblastoma promotes ionizing radiation-induced DNA damage. Int J Radiat Oncol Biol Phys 2022; 113:648-660. [DOI: 10.1016/j.ijrobp.2022.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/16/2022] [Accepted: 02/12/2022] [Indexed: 11/19/2022]
|
10
|
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J 2021; 289:861-882. [PMID: 33624421 DOI: 10.1111/febs.15781] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
11
|
Miles MR, Seo J, Jiang M, Wilson ZT, Little J, Hao J, Andrade J, Ueberheide B, Tseng GN. Global identification of S-palmitoylated proteins and detection of palmitoylating (DHHC) enzymes in heart. J Mol Cell Cardiol 2021; 155:1-9. [PMID: 33636221 DOI: 10.1016/j.yjmcc.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
High-throughput experiments suggest that almost 20% of human proteins may be S-palmitoylatable, a post-translational modification (PTM) whereby fatty acyl chains, most commonly palmitoyl chain, are linked to cysteine thiol groups that impact on protein trafficking, distribution and function. In human, protein S-palmitoylation is mediated by a group of 23 palmitoylating 'Asp-His-His-Cys' domain-containing (DHHC) enzymes. There is no information on the scope of protein S-palmitoylation, or the pattern of DHHC enzyme expression, in the heart. We used resin-assisted capture to pull down S-palmitoylated proteins from human, dog, and rat hearts, followed by proteomic search to identify proteins in the pulldowns. We identified 454 proteins present in at least 2 species-specific pulldowns. These proteins are operationally called 'cardiac palmitoylome'. Enrichment analysis based on Gene Ontology terms 'cellular component' indicated that cardiac palmitoylome is involved in cell-cell and cell-substrate junctions, plasma membrane microdomain organization, vesicular trafficking, and mitochondrial enzyme organization. Importantly, cardiac palmitoylome is uniquely enriched in proteins participating in the organization and function of t-tubules, costameres and intercalated discs, three microdomains critical for excitation-contraction coupling and intercellular communication of cardiomyocytes. We validated antibodies targeting DHHC enzymes, and detected eleven of them expressed in hearts across species. In conclusion, we provide resources useful for investigators interested in studying protein S-palmitoylation and its regulation by DHHC enzymes in the heart. We also discuss challenges in these efforts, and suggest methods and tools that should be developed to overcome these challenges.
Collapse
Affiliation(s)
- Madeleine R Miles
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - John Seo
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Min Jiang
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Zachary T Wilson
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Janay Little
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - Jon Hao
- Poochon Scientific, Frederick, MD, United States
| | - Joshua Andrade
- Proteomics Laboratory, Division of Advance Research Technology, New York University, School School of Medicine, New York, NY, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advance Research Technology, New York University, School School of Medicine, New York, NY, United States; Department of Biochemistry and Molecular Pharmacology, New York University, School of Medicine, New York, NY, United States; Department of Neurology, New York University, School of Medicine, New York, NY, United States
| | - Gea-Ny Tseng
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
12
|
Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Transl Psychiatry 2021; 11:65. [PMID: 33462194 PMCID: PMC7813841 DOI: 10.1038/s41398-020-01194-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.
Collapse
|
13
|
Montigny C, Huang DL, Beswick V, Barbot T, Jaxel C, le Maire M, Zheng JS, Jamin N. Sarcolipin alters SERCA1a interdomain communication by impairing binding of both calcium and ATP. Sci Rep 2021; 11:1641. [PMID: 33452371 PMCID: PMC7810697 DOI: 10.1038/s41598-021-81061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.
Collapse
Affiliation(s)
- Cédric Montigny
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Dong Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Veronica Beswick
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Department of Physics, Evry-Val-d'Essonne University, 91025, Evry, France
| | - Thomas Barbot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christine Jaxel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc le Maire
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Nadège Jamin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
15
|
Gök C, Fuller W. Topical review: Shedding light on molecular and cellular consequences of NCX1 palmitoylation. Cell Signal 2020; 76:109791. [DOI: 10.1016/j.cellsig.2020.109791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
|
16
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
17
|
Plain F, Howie J, Kennedy J, Brown E, Shattock MJ, Fraser NJ, Fuller W. Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase. Commun Biol 2020; 3:411. [PMID: 32737405 PMCID: PMC7395175 DOI: 10.1038/s42003-020-01145-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.
Collapse
Affiliation(s)
- Fiona Plain
- School of Medicine, University of Dundee, Dundee, UK
| | - Jacqueline Howie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Elaine Brown
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, King's College London, London, UK
| | | | - William Fuller
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
18
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Hakem Zadeh F, Teng ACT, Kuzmanov U, Chambers PJ, Tupling AR, Gramolini AO. AKAP6 and phospholamban colocalize and interact in HEK-293T cells and primary murine cardiomyocytes. Physiol Rep 2019; 7:e14144. [PMID: 31325238 PMCID: PMC6642276 DOI: 10.14814/phy2.14144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Phospholamban (PLN) is an important Ca2+ modulator at the sarcoplasmic reticulum (SR) of striated muscles. It physically interacts and inhibits sarcoplasmic reticulum Ca2+ATPase (SERCA2) function, whereas a protein kinase A (PKA)‐dependent phosphorylation at its serine 16 reverses the inhibition. The underlying mechanism of this post‐translational modification, however, remains not fully understood. Using publicly available databases, we identified A‐kinase anchoring protein 6 (AKAP6) as a candidate that might play some roles in PLN phosphorylation. Immunofluorescence showed colocalization between GFP‐AKAP6 and PLN in transfected HEK‐293T cells and cultured mouse neonatal cardiomyocytes (CMNCs). Co‐immunoprecipitation confirmed the functional interaction between AKAP6 and PLN in HEK‐293T and isolated adult rat cardiomyocytes in response to isoproterenol stimulation. Functionally, AKAP6 promoted Ca2+ uptake activity of SERCA1 in cotransfected HEK‐293T cells despite the presence of PLN. These results were further confirmed in adult rat cardiomyocytes. Immunofluorescence showed colocalization of both proteins around the perinuclear region, while protein–protein interaction was corroborated by immunoprecipitation of the nucleus‐enriched fraction of rat hearts. Our findings suggest AKAP6 as a novel interacting partner to PLN in HEK‐293T and murine cardiomyocytes.
Collapse
Affiliation(s)
- Farigol Hakem Zadeh
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Allen C T Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Uros Kuzmanov
- Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario
| | - Allan R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario
| | - Anthony O Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| |
Collapse
|
20
|
Valberg SJ, Soave K, Williams ZJ, Perumbakkam S, Schott M, Finno CJ, Petersen JL, Fenger C, Autry JM, Thomas DD. Coding sequences of sarcoplasmic reticulum calcium ATPase regulatory peptides and expression of calcium regulatory genes in recurrent exertional rhabdomyolysis. J Vet Intern Med 2019; 33:933-941. [PMID: 30720217 PMCID: PMC6430904 DOI: 10.1111/jvim.15425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sarcolipin (SLN), myoregulin (MRLN), and dwarf open reading frame (DWORF) are transmembrane regulators of the sarcoplasmic reticulum calcium transporting ATPase (SERCA) that we hypothesized played a role in recurrent exertional rhabdomyolysis (RER). Objectives Compare coding sequences of SLN, MRLN, DWORF across species and between RER and control horses. Compare expression of muscle Ca2+ regulatory genes between RER and control horses. Animals Twenty Thoroughbreds (TB), 5 Standardbreds (STD), 6 Quarter Horses (QH) with RER and 39 breed‐matched controls. Methods Sanger sequencing of SERCA regulatory genes with comparison of amino acid (AA) sequences among control, RER horses, human, mouse, and rabbit reference genomes. In RER and control gluteal muscle, quantitative real‐time polymerase chain reaction of SERCA regulatory peptides, the calcium release channel (RYR1), and its accessory proteins calsequestrin (CASQ1), and calstabin (FKBP1A). Results The SLN gene was the highest expressed horse SERCA regulatory gene with a uniquely truncated AA sequence (29 versus 31) versus other species. Coding sequences of SLN, MRLN, and DWORF were identical in RER and control horses. A sex‐by‐phenotype effect occurred with lower CASQ1 expression in RER males versus control males (P < .001) and RER females (P = .05) and higher FKBP1A (P = .01) expression in RER males versus control males. Conclusions and Clinical Importance The SLN gene encodes a uniquely truncated peptide in the horse versus other species. Variants in the coding sequence of SLN, MLRN, or DWORF were not associated with RER. Males with RER have differential gene expression that could reflect adaptations to stabilize RYR1.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kaitlin Soave
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Zoë J Williams
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Sudeep Perumbakkam
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Melissa Schott
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California-Davis, Davis, California
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Clara Fenger
- Equine Integrated Medicine, PLC, Lexington, Kentucky
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
21
|
Detection of S-palmitoylated Proteins in Mouse Heart Tissue Based on Different Precipitation Methods. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(18)61134-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
23
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
24
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Haines RJ, Wang CY, Yang CGY, Eitnier RA, Wang F, Wu MH. Targeting palmitoyl acyltransferase ZDHHC21 improves gut epithelial barrier dysfunction resulting from burn-induced systemic inflammation. Am J Physiol Gastrointest Liver Physiol 2017; 313:G549-G557. [PMID: 28838985 PMCID: PMC5814670 DOI: 10.1152/ajpgi.00145.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/11/2017] [Accepted: 08/18/2017] [Indexed: 01/31/2023]
Abstract
Clinical studies in burn patients demonstrate a close association between leaky guts and increased incidence or severity of sepsis and other complications. Severe thermal injury triggers intestinal inflammation that contributes to intestinal epithelial hyperpermeability, which exacerbates systemic response leading to multiple organ failure and sepsis. In this study, we identified a significant function of a particular palmitoyl acyltransferase, zinc finger DHHC domain-containing protein-21 (ZDHHC21), in mediating signaling events required for gut hyperpermeability induced by inflammation. Using quantitative PCR, we show that ZDHHC21 mRNA production was enhanced twofold when intestinal epithelial cells were treated with TNF-α-IFN-γ in vitro. In addition, pharmacological targeting of palmitoyl acyltransferases with 2-bromopalmitate (2-BP) showed significant improvement in TNF-α-IFN-γ-mediated epithelial barrier dysfunction by using electric cell-substrate impedance-sensing assays, as well as FITC-labeled dextran permeability assays. Using acyl-biotin exchange assay and click chemistry, we show that TNF-α-IFN-γ treatment of intestinal epithelial cells results in enhanced detection of total palmitoylated proteins and this response is inhibited by 2-BP. Using ZDHHC21-deficient mice or wild-type mice treated with 2-BP, we showed that mice with impaired ZDHHC21 expression or pharmacological inhibition resulted in attenuated intestinal barrier dysfunction caused by thermal injury. Moreover, hematoxylin and eosin staining of the small intestine, as well as transmission electron microscopy, showed that mice with genetic interruption of ZDHHC21 had attenuated villus structure disorganization associated with thermal injury-induced intestinal barrier damage. Taken together, these results suggest an important role of ZDHHC21 in mediating gut hyperpermeability resulting from thermal injury.NEW & NOTEWORTHY Increased mucosal permeability in the gut is one of the major complications following severe burn. Here we report the novel finding that zinc finger DHHC domain-containing protein-21 (ZDHHC21) mediates gut epithelial hyperpermeability resulting from an experimental model of thermal injury. The hyperpermeability response was significantly attenuated with a pharmacological inhibitor of palmitoyl acyltransferases and in mice with genetic ablation of ZDHHC21. These findings suggest that ZDHHC21 may serve as a novel therapeutic target for treating burn-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- R. J. Haines
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - C. Y. Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - C. G. Y. Yang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - R. A. Eitnier
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - F. Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - M. H. Wu
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
26
|
Abrami L, Dallavilla T, Sandoz PA, Demir M, Kunz B, Savoglidis G, Hatzimanikatis V, van der Goot FG. Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. eLife 2017; 6:27826. [PMID: 28826475 PMCID: PMC5582869 DOI: 10.7554/elife.27826] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC palmitoyltransferase family is still limited. Here we show that human ZDHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, ZDHHC16, revealing the first palmitoylation cascade. The combination of site specific mutagenesis of the three ZDHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the eight differentially palmitoylated ZDHHC6 species. We found that species rapidly interconvert through the action of ZDHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly tune its ZDHHC6 activity.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tiziano Dallavilla
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick A Sandoz
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mustafa Demir
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Georgios Savoglidis
- Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Profile of Yi-Han Chen. SCIENCE CHINA. LIFE SCIENCES 2017; 60:345-347. [PMID: 28349305 DOI: 10.1007/s11427-017-9007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
28
|
Cao N, Li JK, Rao YQ, Liu H, Wu J, Li B, Zhao P, Zeng L, Li J. A potential role for protein palmitoylation and zDHHC16 in DNA damage response. BMC Mol Biol 2016; 17:12. [PMID: 27159997 PMCID: PMC4862184 DOI: 10.1186/s12867-016-0065-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells respond to DNA damage by activating the phosphatidylinositol-3 kinase-related kinases, p53 and other pathways to promote cell cycle arrest, apoptosis, and/or DNA repair. Here we report that protein palmitoylation, a modification carried out by protein acyltransferases with zinc-finger and Asp-His-His-Cys domains (zDHHC), is required for proper DNA damage responses. RESULTS Inhibition of protein palmitoylation compromised DNA damage-induced activation of Atm, induction and activation of p53, cell cycle arrest at G2/M phase, and DNA damage foci assembly/disassembly in primary mouse embryonic fibroblasts. Furthermore, knockout of zDHHC16, a palmitoyltransferase gene identified as an interacting protein for c-Abl, a non-receptor tyrosine kinase involved in DNA damage response, reproduced most of the defects in DNA damage responses produced by the inhibition of protein palmitoylation. CONCLUSIONS Our results revealed critical roles for protein palmitoylation and palmitoyltransferase zDHHC16 in early stages of DNA damage responses and in the regulation of Atm activation.
Collapse
Affiliation(s)
- Na Cao
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jia-Kai Li
- />Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qing Rao
- />Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Liu
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ji Wu
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Baojie Li
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Peiquan Zhao
- />Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zeng
- />Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433 Singapore
| | - Jing Li
- />Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|