1
|
Larsen K, Lindberg U, Ozenne B, McCulloch DE, Armand S, Madsen MK, Johansen A, Stenbæk DS, Knudsen GM, Fisher PM. Acute psilocybin and ketanserin effects on cerebral blood flow: 5-HT2AR neuromodulation in healthy humans. J Cereb Blood Flow Metab 2025:271678X251323364. [PMID: 40007438 PMCID: PMC11863199 DOI: 10.1177/0271678x251323364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Psilocin, the active metabolite of psilocybin, is a psychedelic and agonist at the serotonin 2A receptor (5-HT2AR) that has shown positive therapeutic effects for brain disorders such as depression. To elucidate the brain effects of psilocybin, we directly compared the acute effects of 5-HT2AR agonist (psilocybin) and antagonist (ketanserin) on cerebral blood flow (CBF) using pseudo-continuous arterial spin labeling magnetic resonance imaging (MRI) in a single-blind, cross-over study in 28 healthy participants. We evaluated associations between plasma psilocin level (PPL) or subjective drug intensity (SDI) and CBF. We also evaluated drug effects on internal carotid artery (ICA) diameter using time-of-flight MRI angiography. PPL and SDI were significantly negatively associated with regional and global CBF (∼11.6% at peak drug effect, p < 0.0001). CBF did not significantly change following ketanserin (2.3%, p = 0.35). Psilocybin induced a significantly greater decrease in CBF compared to ketanserin in the parietal cortex (pFWER < 0.0001). ICA diameter was significantly decreased following psilocybin (10.5%, p < 0.0001) but not ketanserin (-0.02%, p = 0.99). Our data support an asymmetric 5-HT2AR modulatory effect on CBF and provide the first in vivo human evidence that psilocybin constricts the ICA, which has important implications for understanding the neurophysiological mechanisms underlying its acute effects.
Collapse
Affiliation(s)
- Kristian Larsen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Drummond E McCulloch
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Armand
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Martin K Madsen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Psychiatry, University Hospital Svendborg, Svendborg, Denmark
| | - Annette Johansen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dost D, Benyamina A, Karila L. [Neuroimaging correlates of classical psychedelics effects: A systematic review]. L'ENCEPHALE 2025; 51:74-86. [PMID: 38724430 DOI: 10.1016/j.encep.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2025]
Abstract
BACKGROUND Current scientific literature supports classical psychedelic efficacy in many psychiatric disorders. However, less attention has been given to the neurological effects of these substances. The aim of this medical thesis was to conduct a systematic review examining the neuroimaging correlates of the effects of psychedelics. METHOD We performed an electronic research through Medline and Science Direct databases. A comprehensive search yielded 460 articles published up to May 2022. After a cautious screening process, we selected 49 scientific papers for further analysis. RESULTS Major findings included reduced functional network integration, increased between-network functional connectivity, and expansion of functional connectivity patterns repertoire under psychedelics. Thalamic gating and emotional processing were also impaired. These results positively correlated with symptom improvement in pathological populations. CONCLUSION To this day, our knowledge concerning psychedelic effects remains partial. Several neurocognitive theories have been developed in recent years to model psychedelic phenomenology, but no unifying theory has emerged. Studies involving larger populations investigating various psychiatric disorders, including several neuroimaging modalities and considering medium- and long-term effects, would be necessary to deepen current knowledge.
Collapse
Affiliation(s)
- Doriane Dost
- Unité de formation et de recherche en santé, université de la Réunion, 97400 Saint-Denis, Réunion; Département de psychiatrie et d'addictologie, hôpital Paul-Brousse, AP-HP, 94800 Villejuif, France
| | - Amine Benyamina
- Département de psychiatrie et d'addictologie, hôpital Paul-Brousse, AP-HP, 94800 Villejuif, France; Unité psychiatrie-comorbidités-addictions, unité de recherche PSYCOMADD 4872, université Paris Saclay, Paris, France
| | - Laurent Karila
- Département de psychiatrie et d'addictologie, hôpital Paul-Brousse, AP-HP, 94800 Villejuif, France; Unité psychiatrie-comorbidités-addictions, unité de recherche PSYCOMADD 4872, université Paris Saclay, Paris, France.
| |
Collapse
|
3
|
Ferreira AE, Reis-Pina P. Exploring the role of psychedelic-assisted therapy in enhancing spirituality and mystical experiences in patients with life-threatening illnesses: A systematic review. J Psychosom Res 2025; 189:112020. [PMID: 39705901 DOI: 10.1016/j.jpsychores.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Psychedelic-Assisted Therapy (PAT) is gaining traction as a novel approach to addressing the psychological and existential distress experienced by patients. OBJECTIVES This systematic review aimed to investigate the impact of PAT on spirituality, mystical experiences, and spiritual well-being (SpWB) in patients with life-threatening, incurable, or terminal illnesses. METHODS A comprehensive search was conducted across PubMed, Web of Science, and Cochrane databases to identify relevant studies published between 2013 and 2023. The study population comprised patients diagnosed with life-threatening illnesses. Various forms of PAT, encompassing both typical and atypical psychedelic substances, were considered as interventions, with no specific comparators outlined. The primary outcomes of interest included spirituality, mystical experience, and SpWB. Risk of bias assessment was performed using Cochrane's tools. RESULTS Six studies with a high risk of bias were included in the review, all conducted in the United States of America, involving 140 patients, the majority of whom had cancer (99 %). PAT, especially with psilocybin, demonstrated significant enhancements in spirituality, mystical experiences, and SpWB. Notably, SpWB showed improvements in all studies which assessed this spiritual outcome following PAT. Mystical experiences were correlated with improvements in spirituality in one study. CONCLUSIONS This systematic review underscores the potential of PAT to address unmet spiritual needs and enhance SpWB in patients with life-threatening illnesses. However, further research is needed to elucidate the mechanisms underlying these therapeutic effects. Rigorous evaluation of healthcare practitioners' role in guiding patients through PAT protocols is essential to ensure safe and effective implementation in palliative care settings.
Collapse
Affiliation(s)
| | - Paulo Reis-Pina
- Faculty of Medicine, University of Lisbon, Lisboa, Portugal; Bento Menni Palliative Care Unit, Sintra, Portugal.
| |
Collapse
|
4
|
Murphy RJ, Sumner RL, Godfrey K, Mabidikama A, Roberts RP, Sundram F, Muthukumaraswamy S. Multimodal creativity assessments following acute and sustained microdosing of lysergic acid diethylamide. Psychopharmacology (Berl) 2025; 242:337-351. [PMID: 39235512 PMCID: PMC11775047 DOI: 10.1007/s00213-024-06680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Enhanced creativity is often cited as an effect of microdosing (taking repeated low doses of a psychedelic drug). There have been recent efforts to validate the reported effects of microdosing, however creativity remains a difficult construct to quantify. OBJECTIVES The current study aimed to assess microdosing's effects on creativity using a multimodal battery of tests as part of a randomised controlled trial of microdosing lysergic acid diethylamide (LSD). METHODS Eighty healthy adult males were given 10 µg doses of LSD or placebo every third day for six weeks (14 total doses). Creativity tasks were administered at a drug-free baseline session, at a first dosing session during the acute phase of the drug's effects, and in a drug-free final session following the six-week microdosing regimen. Creativity tasks were the Alternate Uses Test (AUT), Remote Associates Task (RAT), Consensual Assessment Technique (CAT), and an Everyday Problem-Solving Questionnaire (EPSQ). RESULTS No effect of drug by time was found on the AUT, RAT, CAT, or EPSQ. Baseline vocabulary skill had a significant effect on AUT and RAT scores. CONCLUSIONS Despite participants reporting feeling more creative on dose days, objective measurement found no acute or durable effects of the microdosing protocol on creativity. Possible explanations of these null findings are that laboratory testing conditions may negatively affect ability to detect naturalistic differences in creative performance, the tests available do not capture the facets of creativity that are anecdotally affected by microdosing, or that reported enhancements of creativity are placebo effects.
Collapse
Affiliation(s)
- Robin J Murphy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Rachael L Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Acima Mabidikama
- School of Psychology, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Reece P Roberts
- School of Psychology, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Zeifman RJ, Spriggs MJ, Kettner H, Lyons T, Rosas FE, Mediano PAM, Erritzoe D, Carhart-Harris RL. From relaxed beliefs under psychedelics (REBUS) to revised beliefs after psychedelics (REBAS). Sci Rep 2025; 15:3651. [PMID: 39881126 PMCID: PMC11779827 DOI: 10.1038/s41598-023-28111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2025] Open
Abstract
The Relaxed Beliefs Under pSychedelics (REBUS) model proposes that serotonergic psychedelics decrease the precision weighting of neurobiologically-encoded beliefs. We conducted a preliminary examination of two psychological assumptions of REBUS: (a) psychedelics foster acute relaxation and post-acute revision of confidence in mental-health-relevant beliefs; which (b) facilitate positive therapeutic outcomes and are associated with the entropy of EEG signals. Healthy individuals (N = 11) were administered 1 mg and 25 mg psilocybin 4-weeks apart. Confidence ratings for personally held beliefs were obtained before, during, and 4-weeks post-psilocybin. Acute entropy and subjective experiences were measured, as was well-being (before and 4-weeks post-psilocybin). Confidence in negative self-beliefs decreased following 25 mg psilocybin. Entropy and subjective effects under 25 mg psilocybin correlated with decreases in negative self-belief confidence (acutely and at 4-weeks). Particularly strong evidence was seen for a relationship between decreases in negative self-belief confidence and increases in well-being. We report the first empirical evidence that the relaxation and revision of negative self-belief confidence mediates psilocybin's positive psychological outcomes, and provide tentative evidence for a neuronal mechanism, namely, increased neuronal entropy. Replication within larger and clinical samples is necessary. We also introduce a new measure for examining the robustness of these preliminary findings and the utility of the REBUS model.
Collapse
Affiliation(s)
- Richard J Zeifman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
- NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, 1 Park Avenue, Floor 8, New York, NY, 10016, USA.
| | - Meg J Spriggs
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Hannes Kettner
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California, San Francisco, USA
| | - Taylor Lyons
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California, San Francisco, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California, San Francisco, USA
| |
Collapse
|
6
|
Greco A, Rastelli C, Ubaldi A, Riva G. Immersive exposure to simulated visual hallucinations modulates high-level human cognition. Conscious Cogn 2025; 128:103808. [PMID: 39862735 DOI: 10.1016/j.concog.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Psychedelic drugs offer valuable insights into consciousness, but disentangling their causal effects on perceptual and high-level cognition is nontrivial. Technological advances in virtual reality (VR) and machine learning have enabled the immersive simulation of visual hallucinations. However, comprehensive experimental data on how these simulated hallucinations affects high-level human cognition is lacking. Here, we exposed human participants to VR panoramic videos and their psychedelic counterparts generated by the DeepDream algorithm. Participants exhibited reduced task-switching costs after simulated psychedelic exposure compared to naturalistic exposure, consistent with increased cognitive flexibility. No significant differences were observed between naturalistic and simulated psychedelic exposure in linguistic automatic association tasks at word and sentence levels. Crucially, visually grounded high-level cognitive processes were modulated by exposure to simulated hallucinations. Our results provide insights into the interdependence of bottom-up and top-down cognitive processes and altered states of consciousness without pharmacological intervention, potentially informing both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Antonino Greco
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Centre for Integrative Neuroscience, University of Tübingen, Germany; MEG Center, University of Tübingen, Germany.
| | - Clara Rastelli
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; MEG Center, University of Tübingen, Germany; Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Italy
| | - Andrea Ubaldi
- Humane Technology Lab, Catholic University of Sacred Heart, Milan, Italy; Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giuseppe Riva
- Humane Technology Lab, Catholic University of Sacred Heart, Milan, Italy; Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano IRCCS, Milan, Italy.
| |
Collapse
|
7
|
Melani A, Bonaso M, Biso L, Zucchini B, Conversano C, Scarselli M. Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications. Pharmaceuticals (Basel) 2025; 18:130. [PMID: 39861191 PMCID: PMC11769142 DOI: 10.3390/ph18010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome. The most relevant clinical trials of 3,4-methylenedioxymethamphetamine (MDMA), psilocybin, and lysergic acid diethylamide (LSD) demonstrate significant efficacy in treating treatment-resistant psychiatric conditions such as post-traumatic stress disorder (PTSD), depression, and anxiety, with favorable safety profiles. Despite these advancements, critical gaps remain in linking psychedelics' molecular actions to their clinical efficacy. This review highlights the need for further research to integrate mechanistic insights and optimize psychedelics as tools for both therapy and understanding human cognition.
Collapse
Affiliation(s)
- Alice Melani
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Marco Bonaso
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| | - Letizia Biso
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| | - Benedetta Zucchini
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Marco Scarselli
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| |
Collapse
|
8
|
Powers A, Angelos PA, Bond A, Farina E, Fredericks C, Gandhi J, Greenwald M, Hernandez-Busot G, Hosein G, Kelley M, Mourgues C, Palmer W, Rodriguez-Sanchez J, Seabury R, Toribio S, Vin R, Weleff J, Woods S, Benrimoh D. A Computational Account of the Development and Evolution of Psychotic Symptoms. Biol Psychiatry 2025; 97:117-127. [PMID: 39260466 PMCID: PMC11634669 DOI: 10.1016/j.biopsych.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The mechanisms of psychotic symptoms such as hallucinations and delusions are often investigated in fully formed illness, well after symptoms emerge. These investigations have yielded key insights but are not well positioned to reveal the dynamic forces underlying symptom formation itself. Understanding symptom development over time would allow us to identify steps in the pathophysiological process leading to psychosis, shifting the focus of psychiatric intervention from symptom alleviation to prevention. We propose a model for understanding the emergence of psychotic symptoms within the context of an adaptive, developing neural system. We make the case for a pathophysiological process that begins with cortical hyperexcitability and bottom-up noise transmission, which engenders inappropriate belief formation via aberrant prediction error signaling. We argue that this bottom-up noise drives learning about the (im)precision of new incoming sensory information because of diminished signal-to-noise ratio, causing a compensatory relative overreliance on prior beliefs. This overreliance on priors predisposes to hallucinations and covaries with hallucination severity. An overreliance on priors may also lead to increased conviction in the beliefs generated by bottom-up noise and drive movement toward conversion to psychosis. We identify predictions of our model at each stage, examine evidence to support or refute those predictions, and propose experiments that could falsify or help select between alternative elements of the overall model. Nesting computational abnormalities within longitudinal development allows us to account for hidden dynamics among the mechanisms driving symptom formation and to view established symptoms as a point of equilibrium among competing biological forces.
Collapse
Affiliation(s)
- Albert Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut.
| | - Phillip A Angelos
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Alexandria Bond
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Emily Farina
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Carolyn Fredericks
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Jay Gandhi
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Maximillian Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Gabriela Hernandez-Busot
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Gabriel Hosein
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Megan Kelley
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - William Palmer
- Department of Psychology, Yale University, New Haven, Connecticut
| | | | - Rashina Seabury
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Silmilly Toribio
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Raina Vin
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Jeremy Weleff
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - Scott Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, Connecticut
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Chowdhury A, Bianciardi M, Chapdelaine E, Riaz OS, Timmermann C, van Lutterveld R, Sparby T, Sacchet MD. Multimodal neurophenomenology of advanced concentration absorption meditation: An intensively sampled case study of Jhana. Neuroimage 2025; 305:120973. [PMID: 39681243 PMCID: PMC11770875 DOI: 10.1016/j.neuroimage.2024.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Using a combination of fMRI, EEG, and phenomenology ratings, we examined the neurophenomenology of advanced concentrative absorption meditation, namely jhanas (ACAM-J), in a practitioner with over 23,000 h of meditation practice. Our study shows that ACAM-J states induce reliable changes in conscious experience and that these experiences are related to neural activity. Using resting-state fMRI functional connectivity, we found that ACAM-J is associated with decreased within-network modularity, increased global functional connectivity (GFC), and desegregation of the default mode and visual networks. Compared to control tasks, the ACAM-J were also related to widespread decreases in broadband EEG oscillatory power and increases in Lempel-Ziv complexity (LZ, a measure of brain entropy). Some fMRI findings varied by the control task used, while EEG results remained consistent, emphasizing both shared and unique neural features of ACAM-J. These differences in fMRI and EEG-measured neurophysiological properties correlated with specific changes in phenomenology - and especially with ACAM-J-induced states of bliss - enriching our understanding of these advanced meditative states. Our results show that advanced meditation practices markedly dysregulate high-level brain systems via practices of enhanced attention to sensations, corroborating recent neurocognitive theories of meditation as the deconstruction of the brain's cortical hierarchy. Overall, our results suggest that ACAM-J is associated with the modulation of large-scale brain networks in both fMRI and EEG, with potential implications for understanding the mechanisms of deep concentration practices and their effects on subjective experience.
Collapse
Affiliation(s)
- Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Depression and Anxiety Centre for Discovery and Treatment, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA.
| | - Marta Bianciardi
- Brainstem Imaging Lab, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Chapdelaine
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar S Riaz
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Remko van Lutterveld
- Brain Research and Innovation Centre, Dutch Ministry of Defence; Department of Psychiatry, University Medical Center, Utrecht, the Netherlands
| | - Terje Sparby
- Rudolf Steiner University College, Oslo, Norway; Department of Psychology and Psychotherapy, Witten/Herdecke University, Witten, Germany; Integrated Curriculum for Anthroposophic Psychology, Witten/Herdecke University, Witten, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Varley TF, Havert D, Fosque L, Alipour A, Weerawongphrom N, Naganobori H, O’Shea L, Pope M, Beggs J. The serotonergic psychedelic N,N-dipropyltryptamine alters information-processing dynamics in in vitro cortical neural circuits. Netw Neurosci 2024; 8:1421-1438. [PMID: 39735490 PMCID: PMC11674936 DOI: 10.1162/netn_a_00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/08/2024] [Indexed: 12/31/2024] Open
Abstract
Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats. Three hours of spontaneous activity were recorded: an hour of predrug control, an hour of exposure to 10-μM DPT solution, and a final hour of washout, once again under control conditions. We found that DPT reversibly alters information dynamics in multiple ways: First, the DPT condition was associated with a higher entropy of spontaneous firing activity and reduced the amount of time information was stored in individual neurons. Second, DPT also reduced the reversibility of neural activity, increasing the entropy produced and suggesting a drive away from equilibrium. Third, DPT altered the structure of neuronal circuits, decreasing the overall information flow coming into each neuron, but increasing the number of weak connections, creating a dynamic that combines elements of integration and disintegration. Finally, DPT decreased the higher order statistical synergy present in sets of three neurons. Collectively, these results paint a complex picture of how psychedelics regulate information processing in mesoscale neuronal networks in cortical tissue. Implications for existing hypotheses of psychedelic action, such as the entropic brain hypothesis, are discussed.
Collapse
Affiliation(s)
- Thomas F. Varley
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
| | - Daniel Havert
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Leandro Fosque
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | | | | | | | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
11
|
Noah S, Shen M, Erowid E, Erowid F, Silver M. A novel method for quantitative analysis of subjective experience reports: application to psychedelic visual experiences. Front Psychol 2024; 15:1397064. [PMID: 39712538 PMCID: PMC11663017 DOI: 10.3389/fpsyg.2024.1397064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Psychedelic compounds such as LSD, psilocybin, mescaline, and DMT can dramatically alter visual perception. However, the extent to which visual effects of psychedelics consistently vary for different substances is an open question. The visual effects of a given psychedelic compound can range widely both across and within individuals, so datasets with large numbers of participants and descriptions of qualitative effects are required to adequately address this question with the necessary sensitivity. Methods Here we present an observational study with narrative self-report texts, leveraging the massive scale of the Erowid experience report dataset. We analyzed reports associated with 103 different psychoactive substances, with a median of 217 reports per substance. Thirty of these substances are standardly characterized as psychedelics, while 73 substances served as comparison substances. To quantitatively analyze these semantic data, we associated each sentence in the self-report dataset with a vector representation using an embedding model from OpenAI, and then we trained a classifier to identify which sentences described visual effects, based on the sentences' embedding vectors. Results We observed that the proportion of sentences describing visual effects varies significantly and consistently across substances, even within the group of psychedelics. We then analyzed the distributions of psychedelics' visual effect sentences across different categories of effects (for example, movement, color, or pattern), again finding significant and consistent variation. Discussion Overall, our findings indicate reliable variation across psychedelic substances' propensities to affect vision and in their qualitative effects on visual perception.
Collapse
Affiliation(s)
- Sean Noah
- UC Berkeley Center for the Science of Psychedelics, University of California, Berkeley, Berkeley, CA, United States
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Miranda Shen
- UC Berkeley Center for the Science of Psychedelics, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Earth Erowid
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Fire Erowid
- Erowid Center, Grass Valley, CA, United States
| | - Michael Silver
- UC Berkeley Center for the Science of Psychedelics, University of California, Berkeley, Berkeley, CA, United States
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
12
|
Shinozuka K, Jerotic K, Mediano P, Zhao AT, Preller KH, Carhart-Harris R, Kringelbach ML. Synergistic, multi-level understanding of psychedelics: three systematic reviews and meta-analyses of their pharmacology, neuroimaging and phenomenology. Transl Psychiatry 2024; 14:485. [PMID: 39632810 PMCID: PMC11618481 DOI: 10.1038/s41398-024-03187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Serotonergic psychedelics induce altered states of consciousness and have shown potential for treating a variety of neuropsychiatric disorders, including depression and addiction. Yet their modes of action are not fully understood. Here, we provide a novel, synergistic understanding of psychedelics arising from systematic reviews and meta-analyses of three hierarchical levels of analysis: (1) subjective experience (phenomenology), (2) neuroimaging and (3) molecular pharmacology. Phenomenologically, medium and high doses of LSD yield significantly higher ratings of visionary restructuralisation than psilocybin on the 5-dimensional Altered States of Consciousness Scale. Our neuroimaging results reveal that, in general, psychedelics significantly strengthen between-network functional connectivity (FC) while significantly diminishing within-network FC. Pharmacologically, LSD induces significantly more inositol phosphate formation at the 5-HT2A receptor than DMT and psilocin, yet there are no significant between-drug differences in the selectivity of psychedelics for the 5-HT2A, 5-HT2C, or D2 receptors, relative to the 5-HT1A receptor. Our meta-analyses link DMT, LSD, and psilocybin to specific neural fingerprints at each level of analysis. The results show a highly non-linear relationship between these fingerprints. Overall, our analysis highlighted the high heterogeneity and risk of bias in the literature. This suggests an urgent need for standardising experimental procedures and analysis techniques, as well as for more research on the emergence between different levels of psychedelic effects.
Collapse
Affiliation(s)
- Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Oxford Mathematics of Consciousness and Applications Network (OMCAN), University of Oxford, Oxford, UK.
| | - Katarina Jerotic
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Pedro Mediano
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Computing, Imperial College London, London, UK
| | - Alex T Zhao
- Department of Statistics and Data Science (Alumnus), The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrin H Preller
- Departments of Psychiatry, Neuroscience, and Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Imperial College London, London, UK
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Neurology, Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Collins HM. Psychedelics for the Treatment of Obsessive-Compulsive Disorder: Efficacy and Proposed Mechanisms. Int J Neuropsychopharmacol 2024; 27:pyae057. [PMID: 39611453 PMCID: PMC11635828 DOI: 10.1093/ijnp/pyae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Psychedelics are emerging as potential treatments for a range of mental health conditions, including anxiety and depression, treatment-resistant depression, and substance use disorders. Recent studies have also suggested that the psychedelic psilocybin may be able to treat obsessive-compulsive disorder (OCD). Since the 1960s, case studies have reported improvements to obsessive and compulsive behaviors in patients taking psychedelics recreationally. The effects of psilocybin were then systematically assessed in a small, open-label trial in 2006, which found that psilocybin significantly reduced the symptoms of OCD. Reduced compulsive behaviors have also been seen in rodent models of OCD after administration of psilocybin. Nonetheless, the mechanisms underlying the effects of psychedelics for OCD are unclear, with hypotheses including their acute pharmacological effects, changes in neuroplasticity and resting state neural networks, and their psychological effects. This review will evaluate the evidence supporting the theory that psychedelics can be used for the treatment of OCD, as well as the data regarding claims about their mechanisms. It will also discuss issues with the current evidence and the ongoing trials of psilocybin that aim to address these knowledge gaps.
Collapse
Affiliation(s)
- Helen M Collins
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Bagdasarian FA, Larsen K, Deng HP, Fisher PM, Mandeville JB, Sander CY, Wey HY, Hansen HD. Neurochemical characterization of 5-HT 2AR partial agonists with simultaneous PET-MRI. J Cereb Blood Flow Metab 2024:271678X241302937. [PMID: 39610321 PMCID: PMC11605697 DOI: 10.1177/0271678x241302937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Understanding neuromodulatory effects of serotonin 2A receptor (5-HT2AR) agonists with diverse pharmacological profiles is relevant to advancing psychedelic-related drug applications. We performed simultaneous positron emission tomography (PET) and pharmacological magnetic resonance imaging (phMRI) in anesthetized nonhuman primates (NHP; N = 3) to examine partial agonists with varying 5-HT2AR affinities and selectivity profiles: psilocybin (30, 60, and 90 µg/kg), lisuride (5 µg/kg), and 25CN-NBOH (15 µg/kg). Receptor occupancy was assessed with [11C]MDL-100907 PET, and cerebral blood volume (CBV) changes were measured with phMRI. Mixed partial agonists psilocybin and lisuride evoked biphasic CBV responses, whereas the selective 25CN-NBOH produced monophasic CBV increases. Cortical occupancy for psilocybin plateaued at 60 µg/kg (32%), whereas a lower dose of lisuride (5 µg/kg) resulted in similar occupancy (31%). Administration of 25CN-NBOH resulted in lower occupancy (7%) but larger changes in CBV compared to psilocybin and lisuride. The associations between CBV and 5-HT2AR occupancy appear linear for lisuride and 25CN-NBOH, but not for psilocybin. We speculate that the temporal and spatial differences in hemodynamic responses of the three agonists could stem from mixed affinity profiles. This work provides an understanding of pharmacological impacts of mixed serotonergic agonists being pursued as therapeutics for psychiatric conditions, offering valuable insights for future drug applications and development strategies.
Collapse
Affiliation(s)
- Frederick A Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Kristian Larsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hong Ping Deng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Joseph B Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Center for the Neuroscience of Psychedelics, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Xu Z, Li L, Liu R, Azzam M, Wan S, Wang J. Functional Connectivity Alterations in Cocaine Use Disorder: Insights from the Triple Network Model and the Addictions Neuroclinical Assessment Framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623073. [PMID: 39605468 PMCID: PMC11601324 DOI: 10.1101/2024.11.12.623073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cocaine use disorder (CUD) disrupts functional connectivity within key brain networks, specifically the default mode network (DMN), salience network (SN), and central executive network (CEN). While the triple network model has been proposed to explain various psychiatric disorders, its applicability to CUD requires further exploration. In the present study, we built machine learning classifiers based on different combinations of DMN/SN/CEN to distinguish cocaine-use disorder (CUD) subjects from healthy control (HC) subjects. Among them, the combination of the SN and the CEN results in a remarkably high accuracy of 73.4% (sensitivity/specificity: 69.6%/78.6%, AUC: 0.78), outperforming the model based on the full triple network. This supports the hypothesis that during the binge/intoxication stage of addiction, the SN and the CEN play a more critical role than the DMN, consistent with the Addictions Neuroclinical Assessment (ANA) framework. Functional connectivity analysis revealed decreased connectivity within the DMN and the SN and increased connectivity within the CEN in CUD patients, suggesting that alterations in these networks could serve as biomarkers for addiction severity.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, NE, 68198, USA
| | - Lie Li
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, NE, 68198, USA
| | - Ruobing Liu
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, NE, 68198, USA
| | - Mohamed Azzam
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, NE, 68198, USA
- Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, NE, 68198, USA
| |
Collapse
|
16
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
17
|
Doss MK, DeMarco A, Dunsmoor JE, Cisler JM, Fonzo GA, Nemeroff CB. How Psychedelics Modulate Multiple Memory Mechanisms in Posttraumatic Stress Disorder. Drugs 2024; 84:1419-1443. [PMID: 39455547 DOI: 10.1007/s40265-024-02106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder with defining abnormalities in memory, and psychedelics may be promising candidates for the treatment of PTSD given their effects on multiple memory systems. Most PTSD and psychedelic research has investigated memory with fear conditioning and extinction. While fruitful, conditioning and extinction provide a limited model of the complexity of PTSD and phenomenology of psychedelics, thereby limiting the refinement of therapies. In this review, we discuss abnormalities in fear conditioning and extinction in PTSD and review 25 studies testing psychedelics on these forms of memory. Perhaps the most reliable effect is that the acute effects of psychedelics can enhance extinction learning, which is impaired in PTSD. However, the post-acute effects may also enhance extinction learning, and the acute effects can also enhance fear conditioning. We then discuss abnormalities in episodic and semantic memory in PTSD and review current knowledge on how psychedelics impact these memory systems. Although PTSD and psychedelics acutely impair the formation of hippocampal-dependent episodic memories, psychedelics may acutely enhance cortical-dependent learning of semantic memories that could facilitate the integration of trauma memories and disrupt maladaptive beliefs. More research is needed on the acute effects of psychedelics on episodic memory consolidation, retrieval, and reconsolidation and post-acute effects of psychedelics on all phases of episodic memory. We conclude by discussing how targeting multiple memory mechanisms could improve upon the current psychedelic therapy paradigm for PTSD, thereby necessitating a greater emphasis on assessing diverse measures of memory in translational PTSD and psychedelic research.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA.
| | - AnnaMarie DeMarco
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| |
Collapse
|
18
|
Ivan VE, Tomàs-Cuesta DP, Esteves IM, Luczak A, Mohajerani M, McNaughton BL, Gruber AJ. Psilocybin reduces functional correlation and the encoding of spatial information by neurons in mouse retrosplenial cortex. Eur J Neurosci 2024; 60:6395-6407. [PMID: 39364682 DOI: 10.1111/ejn.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Psychedelic drugs have profound effects on perception, cognition and mood. How psychedelics affect neural signaling to produce these effects remains poorly understood. We investigated the effect of the classic psychedelic psilocybin on neural activity patterns and spatial encoding in the retrosplenial cortex of head-fixed mice navigating on a treadmill. The place specificity of neurons to distinct locations along the belt was reduced by psilocybin. Moreover, the stability of place-related activity across trials decreased. Psilocybin also reduced the functional correlation among simultaneously recorded neurons. The 5-HT2AR (serotonin 2A receptor) antagonist ketanserin blocked these effects. These data are consistent with proposals that psychedelics increase the entropy of neural signaling and provide a potential neural mechanism contributing to disorientation frequently reported by humans after taking psychedelics.
Collapse
Affiliation(s)
- Victorita E Ivan
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David P Tomàs-Cuesta
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ingrid M Esteves
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Artur Luczak
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid Mohajerani
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Bruce L McNaughton
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Aaron J Gruber
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
19
|
Czajko S, Zorn J, Daumail L, Chetelat G, Margulies DS, Lutz A. Exploring the Embodied Mind: Functional Connectome Fingerprinting of Meditation Expertise. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100372. [PMID: 39309211 PMCID: PMC11414651 DOI: 10.1016/j.bpsgos.2024.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background Short mindfulness-based interventions have gained traction in research due to their positive impact on well-being, cognition, and clinical symptoms across various settings. However, these short-term trainings are viewed as preliminary steps within a more extensive transformative path, presumably leading to long-lasting trait changes. Despite this, little is still known about the brain correlates of these meditation traits. Methods To address this gap, we investigated the neural correlates of meditation expertise in long-term Buddhist practitioners, comparing the large-scale brain functional connectivity of 28 expert meditators with 47 matched novices. Our hypothesis posited that meditation expertise would be associated with specific and enduring patterns of functional connectivity present during both meditative (open monitoring/open presence and loving-kindness and compassion meditations) and nonmeditative resting states, as measured by connectivity gradients. Results Applying a support vector classifier to states not included in training, we successfully decoded expertise as a trait, demonstrating its non-state-dependent nature. The signature of expertise was further characterized by an increased integration of large-scale brain networks, including the dorsal and ventral attention, limbic, frontoparietal, and somatomotor networks. The latter correlated with a higher ability to create psychological distance from thoughts and emotions. Conclusions Such heightened integration of bodily maps with affective and attentional networks in meditation experts could point toward a signature of the embodied cognition cultivated in these contemplative practices.
Collapse
Affiliation(s)
- Sébastien Czajko
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - Jelle Zorn
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Lyon, France
| | - Loïc Daumail
- Department of Psychology, College of Arts and Sciences, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee
| | - Gael Chetelat
- Normandie University, UNICAEN, INSERM, U1237, NeuroPresage Team, Cyceron, Caen, France
| | - Daniel S. Margulies
- Centre National de la Recherche Scientifique and Université de Paris, INCC UMR 8002, Paris, France
| | - Antoine Lutz
- EDUWELL team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Lyon, France
| |
Collapse
|
20
|
Dai R, Jang H, Hudetz AG, Huang Z, Mashour GA. Neural Correlates of Psychedelic, Sleep, and Sedated States Support Global Theories of Consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619731. [PMID: 39484478 PMCID: PMC11526930 DOI: 10.1101/2024.10.23.619731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Understanding neural mechanisms of consciousness remains a challenging question in neuroscience. A central debate in the field concerns whether consciousness arises from global interactions that involve multiple brain regions or focal neural activity, such as in sensory cortex. Additionally, global theories diverge between the Global Neuronal Workspace (GNW) hypothesis, which emphasizes frontal and parietal areas, and the Integrated Information Theory (IIT), which focuses on information integration within posterior cortical regions. To disentangle the global vs. local and frontoparietal vs. posterior dilemmas, we measured global functional connectivity and local neural synchrony with functional magnetic resonance imaging (fMRI) data across a spectrum of conscious states in humans induced by psychedelics, sleep, and deep sedation. We found that psychedelic states are associated with increased global functional connectivity and decreased local neural synchrony. In contrast, non-REM sleep and deep sedation displayed the opposite pattern, suggesting that consciousness arises from global brain network interactions rather than localized activity. This mirror-image pattern between enhanced and diminished states was observed in both anterior-posterior (A-P) and posterior-posterior (P-P) brain regions but not within the anterior part of the brain alone. Moreover, anterior transmodal regions played a key role in A-P connectivity, while both posterior transmodal and posterior unimodal regions were critical for P-P connectivity. Overall, these findings provide empirical evidence supporting global theories of consciousness in relation to varying states of consciousness. They also bridge the gap between two prominent theories, GNW and IIT, by demonstrating how different theories can converge on shared neuronal mechanisms.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hyunwoo Jang
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Meling D, Egger K, Aicher HD, Jareño Redondo J, Mueller J, Dornbierer J, Temperli E, Vasella EA, Caflisch L, Pfeiffer DJ, Schlomberg JTT, Smallridge JW, Dornbierer DA, Scheidegger M. Meditating on psychedelics. A randomized placebo-controlled study of DMT and harmine in a mindfulness retreat. J Psychopharmacol 2024; 38:897-910. [PMID: 39340164 PMCID: PMC11487865 DOI: 10.1177/02698811241282637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
BACKGROUND In recent years, both meditation and psychedelics have attracted rapidly increasing scientific interest. While the current state of evidence suggests the promising potential of psychedelics, such as psilocybin, to enhance meditative training, it remains equivocal whether these effects are specifically bound to psilocybin or if other classical psychedelics might show synergistic effects with meditation practice. One particularly promising candidate is N,N-dimethyltryptamine (DMT), an active ingredient of ayahuasca. AIM This study aims to investigate the effect of the psychedelic substance DMT, combined with the monoamine oxidase inhibitor harmine (DMT-harmine), on meditative states, compared to meditation with a placebo. METHOD Forty experienced meditators (18 females and 22 males) participated in a double-blind, placebo-controlled study over a 3-day meditation retreat, receiving either placebo or DMT-harmine. Participants' levels of mindfulness, compassion, insight, and transcendence were assessed before, during, and after the meditation group retreat, using psychometric questionnaires. RESULTS Compared to meditation with a placebo, meditators who received DMT and harmine self-attributed greater levels of mystical-type experiences, non-dual awareness, and emotional breakthrough during the acute substance effects and, when corrected for baseline differences, greater psychological insight 1 day later. Mindfulness and compassion were not significantly different in the DMT-harmine group compared to placebo. At 1-month follow-up, the meditators who received DMT and harmine rated their experience as significantly more personally meaningful, spiritually significant, and well-being-enhancing than the meditators who received placebo. CONCLUSION Investigating the impact of DMT-harmine on meditators in a naturalistic mindfulness group retreat, this placebo-controlled study highlights the specific effects of psychedelics during meditation. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT05780216.
Collapse
Affiliation(s)
- Daniel Meling
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klemens Egger
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology Zurich, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Helena D Aicher
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Javier Jareño Redondo
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Jovin Mueller
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Joëlle Dornbierer
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology Zurich, University of Zurich, Zurich, Switzerland
| | - Elijah Temperli
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Emilia A Vasella
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Luzia Caflisch
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - David J Pfeiffer
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Jonas TT Schlomberg
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
| | - John W Smallridge
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Dario A Dornbierer
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
| | - Milan Scheidegger
- Psychedelic Research and Therapy Development, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Swiss Federal Institute of Technology Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Nicholas CR, Banks MI, Lennertz RC, Wenthur CJ, Krause BM, Riedner BA, Smith RF, Hutson PR, Sauder CJ, Dunne JD, Roseman L, Raison CL. Co-administration of midazolam and psilocybin: differential effects on subjective quality versus memory of the psychedelic experience. Transl Psychiatry 2024; 14:372. [PMID: 39266503 PMCID: PMC11393325 DOI: 10.1038/s41398-024-03059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Aspects of the acute experience induced by the serotonergic psychedelic psilocybin predict symptomatic relief in multiple psychiatric disorders and improved well-being in healthy participants, but whether these therapeutic effects are immediate or are based on memories of the experience is unclear. To examine this, we co-administered psilocybin (25 mg) with the amnestic benzodiazepine midazolam in 8 healthy participants and assayed the subjective quality of, and memory for, the dosing-day experience. We identified a midazolam dose that allowed a conscious psychedelic experience to occur while partially impairing memory for the experience. Furthermore, midazolam dose and memory impairment tended to associate inversely with salience, insight, and well-being induced by psilocybin. These data suggest a role for memory in therapeutically relevant behavioral effects occasioned by psilocybin. Because midazolam blocks memory by blocking cortical neural plasticity, it may also be useful for evaluating the contribution of the pro-neuroplastic properties of psychedelics to their therapeutic activity.
Collapse
Affiliation(s)
- Christopher R Nicholas
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA
| | - Matthew I Banks
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA.
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA.
| | - Richard C Lennertz
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | - Cody J Wenthur
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| | - Bryan M Krause
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | - Brady A Riedner
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, 53706, USA
| | - Richard F Smith
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
- Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, 53706, USA
| | - Paul R Hutson
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| | - Christina J Sauder
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | - John D Dunne
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Asian Languages and Cultures, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Leor Roseman
- Department of Psychology, University of Exeter, Exeter, UK
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Charles L Raison
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705, USA.
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
23
|
Schipper S, Nigam K, Schmid Y, Piechotta V, Ljuslin M, Beaussant Y, Schwarzer G, Boehlke C. Psychedelic-assisted therapy for treating anxiety, depression, and existential distress in people with life-threatening diseases. Cochrane Database Syst Rev 2024; 9:CD015383. [PMID: 39260823 PMCID: PMC11390284 DOI: 10.1002/14651858.cd015383.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Psychedelic-assisted therapy refers to a group of therapeutic practices involving psychedelics taken under therapeutic supervision from physicians, psychologists, and others. It has been hypothesised that psychedelic-assisted therapy may reduce symptoms of anxiety, depression, and existential distress in patients facing life-threatening diseases (e.g. cancer). However, these substances are illegal in most countries and have been associated with potential risks. OBJECTIVES To assess the benefits and harms of psychedelic-assisted therapy compared to placebo or active comparators (e.g. antidepressants) for treatment of anxiety, depression, and existential distress in people with life-threatening diseases. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and two trial registers on 30 March 2024. In addition, we undertook reference checking, citation searching, and contact with study authors to identify additional studies. We used no language or date restrictions. SELECTION CRITERIA We included randomised controlled trials (RCTs), with no restrictions regarding comorbidity, sex, or ethnicity. Interventions comprised a substance-induced psychedelic experience preceded by preparatory therapeutic sessions and followed by integrative therapeutic sessions. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS We included six studies in the review, which evaluated two different interventions: psychedelic-assisted therapy with classical psychedelics (psilocybin ('magic mushrooms') and lysergic acid diethylamide (LSD)), and psychedelic-assisted therapy with 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'). The studies randomised 149 participants with life-threatening diseases and analysed data for 140 of them. The age range of participants was 36 to 64 years. The studies lasted between 6 and 12 months, and were conducted in outpatient settings in the USA and in Switzerland. Drug companies were not involved in study funding, but funding was provided by organisations that promote psychedelic-assisted therapy. Primary outcomes (at 1 to 12 weeks) Anxiety Psychedelic-assisted therapy using classical psychedelics (psilocybin, LSD) may result in a reduction in anxiety when compared to active placebo (or low-dose psychedelic): State Trait Anxiety Inventory (STAI-Trait, scale 20 to 80) mean difference (MD) -8.41, 95% CI -12.92 to -3.89; STAI-State (scale 20 to 80) MD -9.04, 95% CI -13.87 to -4.21; 5 studies, 122 participants; low-certainty evidence. The effect of psychedelic-assisted therapy using MDMA on anxiety, compared to placebo, is very uncertain: STAI-T MD -14.70, 95% CI -29.45 to 0.05; STAI-S MD -16.10, 95% CI -33.03 to 0.83; 1 study, 18 participants; very low certainty evidence. Depression Psychedelic-assisted therapy using classical psychedelics (psilocybin, LSD) may result in a reduction in depression when compared to active placebo (or low-dose psychedelic): Beck Depression Inventory (BDI, scale 0 to 63) MD -4.92, 95% CI -8.97 to -0.87; 4 studies, 112 participants; standardised mean difference (SMD) -0.43, 95% CI -0.79 to -0.06; 5 studies, 122 participants; low-certainty evidence. The effect of psychedelic-assisted therapy using MDMA on depression, compared to placebo, is very uncertain: BDI-II (scale: 0 to 63) MD -6.30, 95% CI -16.93 to 4.33; 1 study, 18 participants; very low certainty evidence. Existential distress Psychedelic-assisted therapy using classical psychedelics (psilocybin, LSD) compared to active placebo (or low-dose psychedelic) may result in a reduction in demoralisation, one of the most common measures of existential distress, but the evidence is very uncertain (Demoralisation Scale, 1 study, 28 participants): post treatment scores, placebo group 39.6 (SEM 3.4), psilocybin group 18.8 (3.6), P ≤ 0.01). Evidence from other measures of existential distress was mixed. Existential distress was not measured in people receiving psychedelic-assisted therapy with MDMA. Secondary outcomes (at 1 to 12 weeks) Quality of life When classical psychedelics were used, one study had inconclusive results and two reported improved quality of life, but the evidence is very uncertain. MDMA did not improve quality of life measures, but the evidence is also very uncertain. Spirituality Participants receiving psychedelic-assisted therapy with classical psychedelics rated their experience as being spiritually significant (2 studies), but the evidence is very uncertain. Spirituality was not assessed in participants receiving MDMA. Adverse events No treatment-related serious adverse events or adverse events grade 3/4 were reported. Common minor to moderate adverse events for classical psychedelics were elevated blood pressure, nausea, anxiety, emotional distress, and psychotic-like symptoms (e.g. pseudo-hallucination where the participant is aware they are hallucinating); for MDMA, common minor to moderate adverse events were anxiety, dry mouth, jaw clenching, and headaches. Symptoms subsided when drug effects wore off or up to one week later. Certainty of the evidence Although all six studies had intended to blind participants, personnel, and assessors, blinding could not be achieved as this is very difficult in studies investigating psychedelics. Using GRADE criteria, we judged the certainty of evidence to be low to very low, mainly due to high risk of bias and imprecision (small sample size). AUTHORS' CONCLUSIONS Implications for practice Psychedelic-assisted therapy with classical psychedelics (psilocybin, LSD) may be effective for treating anxiety, depression, and possibly existential distress, in people facing a life-threatening disease. Psychedelic-assisted therapy seemed to be well tolerated, with no treatment-emergent serious adverse events reported in the studies included in this review. However, the certainty of evidence is low to very low, which means that we cannot be sure about these results, and they might be changed by future research. At the time of this review (2024), psychedelic drugs are illegal in many countries. Implications for research The risk of bias due to 'unblinding' (participants being aware of which intervention they are receiving) could be reduced by measuring expectation bias, checking blinding has been maintained before cross-over, and using active placebos. More studies with larger sample sizes are needed to reduce imprecision. As the US Drug Enforcement Administration (DEA) currently classifies psychedelics as Schedule I substances (i.e. having no accepted medical use and a high potential for abuse), research involving these drugs is restricted, but is steadily increasing.
Collapse
Affiliation(s)
- Sivan Schipper
- Department of Medicine, Spital Uster, Uster, Switzerland
| | - Kabir Nigam
- Department of Psychiatry, Brigham and Women's Hospital, Boston, USA
| | - Yasmin Schmid
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Vanessa Piechotta
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Michael Ljuslin
- Palliative Medicine Division, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, USA
| | - Yvan Beaussant
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, USA
| | - Guido Schwarzer
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Christopher Boehlke
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Palliative Care Center Basel, Basel, Switzerland
| |
Collapse
|
24
|
Avram M, Fortea L, Wollner L, Coenen R, Korda A, Rogg H, Holze F, Vizeli P, Ley L, Radua J, Müller F, Liechti ME, Borgwardt S. Large-scale brain connectivity changes following the administration of lysergic acid diethylamide, d-amphetamine, and 3,4-methylenedioxyamphetamine. Mol Psychiatry 2024:10.1038/s41380-024-02734-y. [PMID: 39261671 DOI: 10.1038/s41380-024-02734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Psychedelics have recently attracted significant attention for their potential to mitigate symptoms associated with various psychiatric disorders. However, the precise neurobiological mechanisms responsible for these effects remain incompletely understood. A valuable approach to gaining insights into the specific mechanisms of action involves comparing psychedelics with substances that have partially overlapping neurophysiological effects, i.e., modulating the same neurotransmitter systems. Imaging data were obtained from the clinical trial NCT03019822, which explored the acute effects of lysergic acid diethylamide (LSD), d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in 28 healthy volunteers. The clinical trial employed a double-blind, placebo-controlled, crossover design. Herein, various resting-state connectivity measures were examined, including within-network connectivity (integrity), between-network connectivity (segregation), seed-based connectivity of resting-state networks, and global connectivity. Differences between placebo and the active conditions were assessed using repeated-measures ANOVA, followed by post-hoc pairwise t-tests. Changes in voxel-wise seed-based connectivity were correlated with serotonin 2 A receptor density maps. Compared to placebo, all substances reduced integrity in several networks, indicating both common and unique effects. While LSD uniquely reduced integrity in the default-mode network (DMN), the amphetamines, in contrast to our expectations, reduced integrity in more networks than LSD. However, LSD exhibited more pronounced segregation effects, characterized solely by decreases, in contrast to the amphetamines, which also induced increases. Across all substances, seed-based connectivity mostly increased between networks, with LSD demonstrating more pronounced effects than both amphetamines. Finally, while all substances decreased global connectivity in visual areas, compared to placebo, LSD specifically increased global connectivity in the basal ganglia and thalamus. These findings advance our understanding of the distinctive neurobiological effects of psychedelics, prompting further exploration of their therapeutic potential.
Collapse
Affiliation(s)
- Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain
| | - Lea Wollner
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Ricarda Coenen
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Alexandra Korda
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Helena Rogg
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Egger K, Aicher HD, Cumming P, Scheidegger M. Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors. Cell Mol Life Sci 2024; 81:395. [PMID: 39254764 PMCID: PMC11387584 DOI: 10.1007/s00018-024-05353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
The potent hallucinogen N,N-dimethyltryptamine (DMT) has garnered significant interest in recent years due to its profound effects on consciousness and its therapeutic psychopotential. DMT is an integral (but not exclusive) psychoactive alkaloid in the Amazonian plant-based brew ayahuasca, in which admixture of several β-carboline monoamine oxidase A (MAO-A) inhibitors potentiate the activity of oral DMT, while possibly contributing in other respects to the complex psychopharmacology of ayahuasca. Irrespective of the route of administration, DMT alters perception, mood, and cognition, presumably through agonism at serotonin (5-HT) 1A/2A/2C receptors in brain, with additional actions at other receptor types possibly contributing to its overall psychoactive effects. Due to rapid first pass metabolism, DMT is nearly inactive orally, but co-administration with β-carbolines or synthetic MAO-A inhibitors (MAOIs) greatly increase its bioavailability and duration of action. The synergistic effects of DMT and MAOIs in ayahuasca or synthetic formulations may promote neuroplasticity, which presumably underlies their promising therapeutic efficacy in clinical trials for neuropsychiatric disorders, including depression, addiction, and post-traumatic stress disorder. Advances in neuroimaging techniques are elucidating the neural correlates of DMT-induced altered states of consciousness, revealing alterations in brain activity, functional connectivity, and network dynamics. In this comprehensive narrative review, we present a synthesis of current knowledge on the pharmacology and neuroscience of DMT, β-carbolines, and ayahuasca, which should inform future research aiming to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Klemens Egger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland.
| | - Helena D Aicher
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Gobbi G. CCNP Innovations in Neuropsychopharmacology Award: The psychopharmacology of psychedelics: where the brain meets spirituality. J Psychiatry Neurosci 2024; 49:E301-E318. [PMID: 39299781 PMCID: PMC11426389 DOI: 10.1503/jpn.240037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 09/22/2024] Open
Abstract
For 3000 years, psychedelics have been used in religious contexts to enhance spiritual thinking, well-being, and a sense of community. In the last few years, a renaissance in the use of psychedelic drugs for mental disorders has occurred in Western society; consequently, a pressing scientific need to elucidate the intricate mechanisms underlying their actions has arisen. Psychedelics mainly bind to serotonin (5-HT) receptors, particularly 5-HT2A receptors, but may also bind to other receptors. Unlike conventional psychotropic drugs used in psychiatry, psychedelics introduce a distinctive complexity. They not only engage in receptor activation, but also exert influence over specific neural circuits, thereby facilitating transformative cognitive experiences and fostering what many have identified as a spiritual contemplation or mystical experience. This comprehensive review describes clinical studies that have examined the propensity of psychedelics to enhance spiritual, mystical, and transcendent cognitive states. This multifaceted nature, encompassing diverse components and paradigms, necessitates careful consideration during the investigation of psychedelic mechanisms of action to avoid oversimplification. The present review endeavours to elucidate the mechanisms underlying the actions of 2 principal psychedelic substances, psilocybin and lysergic acid diethylamide (LSD), with a focus on monoamine and glutamate receptor mechanisms; molecular aspects, such as neuroplasticity and epigenetics; as well as the impact of psychedelics on brain circuits, including the default mode network and the cortico-striato-thalamo-cortical network. Given their distinctive and intricate mechanisms of action, psychedelics necessitate a novel conceptual framework in psychiatry, offering insight into the treatment of mental health disorders and facilitating the integration of the realms of brain, mind, and spirituality.
Collapse
Affiliation(s)
- Gabriella Gobbi
- From the Department of Psychiatry and the McGill University Health Centre, McGill University, Montréal, Que.
| |
Collapse
|
27
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
28
|
Nutt DJ, Morgan C, Klaire S. A Perspective on Psychedelics as Treatments for Addictions. J Stud Alcohol Drugs 2024; 85:583-588. [PMID: 38517747 PMCID: PMC11694248 DOI: 10.15288/jsad.23-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Affiliation(s)
- David J. Nutt
- Department of Psychiatry, Faculty of Medicine, Imperial College London, London, United Kingdom
- Awakn Life Sciences, Toronto, Ontario, Canada
| | - Celia Morgan
- Department of Psychiatry, Faculty of Medicine, Imperial College London, London, United Kingdom
- Awakn Life Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Sukhpreet Klaire
- Division of Addiction Medicine, Providence Health Care, Vancouver, British Columbia, Canada
- Department of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Lawrence DW, DiBattista AP, Timmermann C. N, N-Dimethyltryptamine (DMT)-Occasioned Familiarity and the Sense of Familiarity Questionnaire (SOF-Q). J Psychoactive Drugs 2024; 56:443-455. [PMID: 37428989 DOI: 10.1080/02791072.2023.2230568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 07/12/2023]
Abstract
This study investigated the sense of familiarity attributed to N, N-dimethyltryptamine (DMT) experiences. 227 naturalistic inhaled-DMT experiences reporting a sense of familiarity were included. No experiences referenced a previous DMT or psychedelic experience as the source of the familiarity. A high prevalence of concomitant features discordant from ordinary consciousness were identified: features of a mystical experience (97.4%), ego-dissolution (16.3%), and a "profound experience of death" (11.0%). The Sense of Familiarity Questionnaire (SOF-Q) was developed assessing 19 features of familiarity across 5 themes: (1) Familiarity with the Feeling, Emotion, or Knowledge Gained; (2) Familiarity with the Place, Space, State, or Environment; (3) Familiarity with the Act of Going Through the Experience; (4) Familiarity with Transcendent Features; and (5) Familiarity Imparted by an Entity Encounter. Bayesian latent class modeling yielded two stable classes of participants who shared similar SOF-Q responses. Class 1 participants responded, "yes" more often for items within "Familiarity Imparted by an Entity Encounter" and "Familiarity with the Feeling, Emotion, or Knowledge Gained." Results catalogued features of the sense of familiarity imparted by DMT, which appears to be non-referential to a previous psychedelic experience. Findings provide insights into the unique and enigmatic familiarity reported during DMT experiences and offer a foundation for further exploration into this intriguing phenomenon.
Collapse
Affiliation(s)
- David Wyndham Lawrence
- Department of Family & Community Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- Mount Sinai Hospital, Sinai Health System, Toronto, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Alex P DiBattista
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
30
|
Jang H, Dai R, Mashour GA, Hudetz AG, Huang Z. Classifying Unconscious, Psychedelic, and Neuropsychiatric Brain States with Functional Connectivity, Graph Theory, and Cortical Gradient Analysis. Brain Sci 2024; 14:880. [PMID: 39335376 PMCID: PMC11430472 DOI: 10.3390/brainsci14090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Accurate and generalizable classification of brain states is essential for understanding their neural underpinnings and improving clinical diagnostics. Traditionally, functional connectivity patterns and graph-theoretic metrics have been utilized. However, cortical gradient features, which reflect global brain organization, offer a complementary approach. We hypothesized that a machine learning model integrating these three feature sets would effectively discriminate between baseline and atypical brain states across a wide spectrum of conditions, even though the underlying neural mechanisms vary. To test this, we extracted features from brain states associated with three meta-conditions including unconsciousness (NREM2 sleep, propofol deep sedation, and propofol general anesthesia), psychedelic states induced by hallucinogens (subanesthetic ketamine, lysergic acid diethylamide, and nitrous oxide), and neuropsychiatric disorders (attention-deficit hyperactivity disorder, bipolar disorder, and schizophrenia). We used support vector machine with nested cross-validation to construct our models. The soft voting ensemble model marked the average balanced accuracy (average of specificity and sensitivity) of 79% (62-98% across all conditions), outperforming individual base models (70-76%). Notably, our models exhibited varying degrees of transferability across different datasets, with performance being dependent on the specific brain states and feature sets used. Feature importance analysis across meta-conditions suggests that the underlying neural mechanisms vary significantly, necessitating tailored approaches for accurate classification of specific brain states. This finding underscores the value of our feature-integrated ensemble models, which leverage the strengths of multiple feature types to achieve robust performance across a broader range of brain states. While our approach offers valuable insights into the neural signatures of different brain states, future work is needed to develop and validate even more generalizable models that can accurately classify brain states across a wider array of conditions.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Rui Dai
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Faramarzi A, Fooladi M, Yousef Pour M, Khodamoradi E, Chehreh A, Amiri S, shavandi M, Sharini H. Clinical utility of fMRI in evaluating of LSD effect on pain-related brain networks in healthy subjects. Heliyon 2024; 10:e34401. [PMID: 39165942 PMCID: PMC11334886 DOI: 10.1016/j.heliyon.2024.e34401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Objective We aimed to evaluate the effect of Lysergic acid diethylamide (LSD) on the pain neural network (PNN) in healthy subjects using functional magnetic resonance imaging (fMRI). Methods Twenty healthy volunteers participated in a balanced-order crossover study, receiving intravenous administration of LSD and placebo in two fMRI scanning sessions. Brain regions associated with pain processing were analyzed by amplitude of low-frequency fluctuation (ALFF), independent component analysis (ICA), functional connectivity and dynamic casual modeling (DCM). Results ALFF analysis demonstrated that LSD effectively relieves pain due to modulation in the neural network associated with pain processing. ICA analysis showed more active voxels in anterior cingulate cortex (ACC), thalamus (THL)-left, THL-right, insula cortex (IC)-right, parietal operculum (PO)-left, PO-right and frontal pole (FP)-right in the placebo session than the LSD session. There were more active voxels in FP-left and IC-left in the LSD session compared to the placebo session. Functional brain connectivity was observed between THL-left and PO-right and between PO-left with FP-left, FP-right and IC-left in the placebo session. In the LSD session, functional connectivity of PO-left with FP-left and FP-right was observed. The effective connectivity between left anterior insula cortex (lAIC)-lAIC, lAIC-dorsolateral prefrontal cortex (dlPFC) and secondary somatosensory cortex (SII)-dlPFC were significantly different. Finally, the correlation between fMRI biomarkers and clinical pain criteria was calculated. Conclusion This study enhances our understanding of the LSD effect on the architecture and neural behavior of pain in healthy subjects and provides great promise for future research in the field of cognitive science and pharmacology.
Collapse
Affiliation(s)
- A. Faramarzi
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - M. Fooladi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Yousef Pour
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - E. Khodamoradi
- Department of Radiology and Nuclear Medicine, Faculty of Paramedical, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - A. Chehreh
- Medical Physics Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S. Amiri
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. shavandi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - H. Sharini
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
32
|
Pasquini L, Simon AJ, Gallen CL, Kettner H, Roseman L, Gazzaley A, Carhart-Harris RL, Timmermann C. Dynamic medial parietal and hippocampal deactivations under DMT relate to sympathetic output and altered sense of time, space, and the self. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580356. [PMID: 38464275 PMCID: PMC10925211 DOI: 10.1101/2024.02.14.580356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic, known to rapidly induce short-lasting alterations in conscious experience, characterized by a profound and immersive sense of physical transcendence alongside rich and vivid auditory distortions and visual imagery. Multimodal neuroimaging data paired with dynamic analysis techniques offer a valuable approach for identifying unique signatures of brain activity - and linked autonomic physiology - naturally unfolding during the altered state of consciousness induced by DMT. We leveraged simultaneous fMRI and EKG data acquired in 14 healthy volunteers prior to, during, and after intravenous administration of DMT, and, separately, placebo. fMRI data was preprocessed to derive individual dynamic activity matrices, reflecting the similarity of brain activity in time, and community detection algorithms were applied on these matrices to identify brain activity substates; EKG data was used to derive continuous heart rate. We identified a brain substate occurring immediately after DMT injection, characterized by hippocampal and medial parietal deactivations and increased superior temporal lobe activity under DMT. Deactivations in the hippocampus and medial parietal cortex correlated with alterations in the usual sense of time, space and self-referential processes, reflecting a deconstruction of essential features of ordinary consciousness. Superior lobe activations instead correlated with audio/visual hallucinations and experience of "entities", reflecting the emergence of altered sensory experiences under DMT. Finally, increased heart rate under DMT correlated positively with hippocampus/medial parietal deactivation and the experience of "entities", and negatively with altered self-referential processes. These results suggest a chain of influence linking sympathetic regulation to hippocampal and medial parietal deactivations under DMT, which combined, may contribute to positive mental health outcomes related to self-referential processing following psychedelic administration.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
| | - Alexander J. Simon
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | - Courtney L. Gallen
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
| | - Hannes Kettner
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
| | - Leor Roseman
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
- Department of Psychology, University of Exeter, UK
| | - Adam Gazzaley
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- Department of Psychiatry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Robin L. Carhart-Harris
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
- Department of Psychiatry, University of California, San Francisco, CA 94158
| | - Christopher Timmermann
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
| |
Collapse
|
33
|
Harris-Blum L, Smith Z, Ortiz RJ, Athreya D, Chang A, Kulkarni PP, Ferris CF. Developmental changes in brain structure and function following exposure to oral LSD during adolescence. Sci Rep 2024; 14:18632. [PMID: 39128924 PMCID: PMC11317488 DOI: 10.1038/s41598-024-69597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
LSD is a hallucinogen with complex neurobiological and behavioral effects. Underlying these effects are changes in brain neuroplasticity. This is the first study to follow the developmental changes in brain structure and function following LSD exposure in periadolescence. We hypothesized LSD given during a time of heightened neuroplasticity, particularly in the forebrain, would affect cognitive and emotional behavior and the associated underlying neuroanatomy and neurocircuitry. Female and male mice were given vehicle, single or multiple treatments of 3.3 µg of LSD by oral gavage starting on postnatal day 51. Between postnatal days 90-120 mice were imaged and tested for cognitive and motor behavior. MRI data from voxel-based morphometry, diffusion weighted imaging, and BOLD resting state functional connectivity were registered to a mouse 3D MRI atlas with 139 brain regions providing site-specific differences in global brain structure and functional connectivity between experimental groups. Motor behavior and cognitive performance were unaffected by periadolescent exposure to LSD. Differences across experimental groups in brain volume for any of the 139 brain areas were few in number and not focused on any specific brain region. Multiple exposures to LSD significantly altered gray matter microarchitecture across much of the brain. These changes were primary associated with the thalamus, sensory and motor cortices, and basal ganglia. The forebrain olfactory system and prefrontal cortex and hindbrain cerebellum and brainstem were unaffected. The functional connectivity between forebrain white matter tracts and sensorimotor cortices and hippocampus was reduced with multidose LSD exposure. Does exposure to LSD in late adolescence have lasting effects on brain development? The bulk of our significant findings were seen through changes is DWI values across 74 brain areas in the multi-dose LSD group. The pronounced changes in indices of anisotropy across much of the brain would suggest altered gray matter microarchitecture and neuroplasticity. There was no evidence of LSD having consequential effects on cognitive or motor behavior when animal were evaluated as young adults 90-120 days of age. Neither were there any differences in the volume of specific brain areas between experimental conditions. The reduction in connectivity in forebrain white matter tracts with multidose LSD and consolidation around sensorimotor and hippocampal brain areas requires a battery of tests to understand the consequences of these changes on behavior.
Collapse
Affiliation(s)
- Lila Harris-Blum
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Zachary Smith
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard J Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Deepti Athreya
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen P Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA.
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, 125 NI Hall, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
34
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
35
|
McGovern HT, Grimmer HJ, Doss MK, Hutchinson BT, Timmermann C, Lyon A, Corlett PR, Laukkonen RE. An Integrated theory of false insights and beliefs under psychedelics. COMMUNICATIONS PSYCHOLOGY 2024; 2:69. [PMID: 39242747 PMCID: PMC11332244 DOI: 10.1038/s44271-024-00120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
Psychedelics are recognised for their potential to re-orient beliefs. We propose a model of how psychedelics can, in some cases, lead to false insights and thus false beliefs. We first review experimental work on laboratory-based false insights and false memories. We then connect this to insights and belief formation under psychedelics using the active inference framework. We propose that subjective and brain-based alterations caused by psychedelics increases the quantity and subjective intensity of insights and thence beliefs, including false ones. We offer directions for future research in minimising the risk of false and potentially harmful beliefs arising from psychedelics. Ultimately, knowing how psychedelics may facilitate false insights and beliefs is crucial if we are to optimally leverage their therapeutic potential.
Collapse
Affiliation(s)
- H T McGovern
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.
- The Cairnmillar Institute, Melbourne, VIC, Australia.
| | - H J Grimmer
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - M K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research & Therapy, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - B T Hutchinson
- Faculty of Behavioural and Movement Sciences, Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C Timmermann
- Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - A Lyon
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - P R Corlett
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - R E Laukkonen
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia
| |
Collapse
|
36
|
Siegel JS, Subramanian S, Perry D, Kay BP, Gordon EM, Laumann TO, Reneau TR, Metcalf NV, Chacko RV, Gratton C, Horan C, Krimmel SR, Shimony JS, Schweiger JA, Wong DF, Bender DA, Scheidter KM, Whiting FI, Padawer-Curry JA, Shinohara RT, Chen Y, Moser J, Yacoub E, Nelson SM, Vizioli L, Fair DA, Lenze EJ, Carhart-Harris R, Raison CL, Raichle ME, Snyder AZ, Nicol GE, Dosenbach NUF. Psilocybin desynchronizes the human brain. Nature 2024; 632:131-138. [PMID: 39020167 PMCID: PMC11291293 DOI: 10.1038/s41586-024-07624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/29/2024] [Indexed: 07/19/2024]
Abstract
A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials1-4. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus5-8. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6-12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.
Collapse
Affiliation(s)
- Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | - Subha Subramanian
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Demetrius Perry
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - T Rick Reneau
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ravi V Chacko
- Department of Emergency Medicine, Advocate Christ Health Care, Oak Lawn, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | | | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie A Schweiger
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - David A Bender
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Jonah A Padawer-Curry
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Robin Carhart-Harris
- Department of Neurology, University of California, San Francisco, CA, USA
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Charles L Raison
- Usona Institute, Fitchburg, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
37
|
Lewis-Healey E, Tagliazucchi E, Canales-Johnson A, Bekinschtein TA. Breathwork-induced psychedelic experiences modulate neural dynamics. Cereb Cortex 2024; 34:bhae347. [PMID: 39191666 DOI: 10.1093/cercor/bhae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Breathwork is an understudied school of practices involving intentional respiratory modulation to induce an altered state of consciousness (ASC). We simultaneously investigate the phenomenological and neural dynamics of breathwork by combining Temporal Experience Tracing, a quantitative methodology that preserves the temporal dynamics of subjective experience, with low-density portable EEG devices. Fourteen novice participants completed a course of up to 28 breathwork sessions-of 20, 40, or 60 min-in 28 days, yielding a neurophenomenological dataset of 301 breathwork sessions. Using hypothesis-driven and data-driven approaches, we found that "psychedelic-like" subjective experiences were associated with increased neural Lempel-Ziv complexity during breathwork. Exploratory analyses showed that the aperiodic exponent of the power spectral density-but not oscillatory alpha power-yielded similar neurophenomenological associations. Non-linear neural features, like complexity and the aperiodic exponent, neurally map both a multidimensional data-driven composite of positive experiences, and hypothesis-driven aspects of psychedelic-like experience states such as high bliss.
Collapse
Affiliation(s)
- Evan Lewis-Healey
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Enzo Tagliazucchi
- Consciousness, Culture and Complexity Lab, Department of Physics, Pabellón I, University of Buenos Aires, 1428, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, 7910000, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Provincia de Buenos Aires, Argentina
| | - Andres Canales-Johnson
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| |
Collapse
|
38
|
Butler M, Bird C, Maggio C, Durden A, Modlin N, Campbell-Coker K, Edwards M, Pick S, Millman LM, Lowery E, Bhagavan C, Kanaan R, Golder D, Mildon B, Mehta M, Rucker J, Nicholson TR. Probing the functional magnetic resonance imaging response to psilocybin in functional neurological disorder (PsiFUND): study protocol. Wellcome Open Res 2024; 9:401. [PMID: 39372842 PMCID: PMC11450546 DOI: 10.12688/wellcomeopenres.22543.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background Functional neurological disorder (FND) is a common cause of neurological symptoms including paralysis, seizures, and movement disorders. It is often debilitating, is associated with high health and social care costs, and can have a poor prognosis. Functional magnetic resonance imaging (fMRI) has suggested FND is a multi-network disorder; the default mode network (DMN) may be specifically implicated. Converging evidence suggests that other variable mechanisms including dissociation, interoception, and motor agency may be differentially abnormal in people with FND. Psychedelics are currently under investigation for numerous neuropsychiatric disorders and have been shown to disrupt functional networks such as the DMN. Administering psychedelics to people with FND will help us to probe mechanistic theories of the disorder. Protocol In this open-label neuroimaging study, we will administer 25mg oral psilocybin with psychological support to people with chronic FND (target n = 24). Participants will undergo resting-state and task-based (Libet's clock, a measure of motor agency) fMRI sequences which will be compared in a pre-post manner. Additional mechanistic outcomes including measures of interoception (heartbeat tracking task), somatisation, illness perceptions, imaginative suggestibility, and dissociation will be collected. Data on expectancy, preparedness, and subjective experience of the psychedelic experience will also be gathered. Participants will be followed up for three months following psilocybin administration. fMRI changes in networks such as the DMN will be analysed using seed-based approaches, and additional exploratory analysis of resting-state imaging will take place. Discussion The study will help us to probe the mechanisms thought to potentially underpin FND. As the first modern study of psychedelics in FND, it will also help us to understand whether psychedelic administration alongside psychological support might be safe and feasible in this patient population.
Collapse
Affiliation(s)
- Matt Butler
- Neuropsychiatry Research and Education Group, King's College London, London, England, UK
- Psychoactive Trials Group, King's College London, London, England, UK
- Department of Neuroimaging, King's College London, London, England, UK
| | - Catherine Bird
- Psychoactive Trials Group, King's College London, London, England, UK
| | - Carolina Maggio
- Psychoactive Trials Group, King's College London, London, England, UK
| | - Amy Durden
- Psychoactive Trials Group, King's College London, London, England, UK
| | - Nadav Modlin
- Psychoactive Trials Group, King's College London, London, England, UK
| | | | - Mark Edwards
- Neuropsychiatry Research and Education Group, King's College London, London, England, UK
| | - Susannah Pick
- Psychological Sciences, King's College London, London, England, UK
| | | | - Emily Lowery
- Neuropsychiatry Research and Education Group, King's College London, London, England, UK
| | - Chiranth Bhagavan
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - Richard Kanaan
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | | | | | - Mitul Mehta
- Department of Neuroimaging, King's College London, London, England, UK
| | - James Rucker
- Psychoactive Trials Group, King's College London, London, England, UK
| | - Timothy R Nicholson
- Neuropsychiatry Research and Education Group, King's College London, London, England, UK
| |
Collapse
|
39
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
40
|
Shadani S, Conn K, Andrews ZB, Foldi CJ. Potential Differences in Psychedelic Actions Based on Biological Sex. Endocrinology 2024; 165:bqae083. [PMID: 38980913 PMCID: PMC11259856 DOI: 10.1210/endocr/bqae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
The resurgence of interest in psychedelics as treatments for psychiatric disorders necessitates a better understanding of potential sex differences in response to these substances. Sex as a biological variable (SABV) has been historically neglected in medical research, posing limits to our understanding of treatment efficacy. Human studies have provided insights into the efficacy of psychedelics across various diagnoses and aspects of cognition, yet sex-specific effects remain unclear, making it difficult to draw strong conclusions about sex-dependent differences in response to psychedelic treatments. Compounding this further, animal studies used to understand biological mechanisms of psychedelics predominantly use one sex and present mixed neurobiological and behavioral outcomes. Studies that do include both sexes often do not investigate sex differences further, which may hinder the translation of findings to the clinic. In reviewing sex differences in responses to psychedelics, we will highlight the direct interaction between estrogen (the most extensively studied steroid hormone) and the serotonin system (central to the mechanism of action of psychedelics), and the potential that estrogen-serotonin interactions may influence the efficacy of psychedelics in female participants. Estrogen influences serotonin neurotransmission by affecting its synthesis and release, as well as modulating the sensitivity and responsiveness of serotonin receptor subtypes in the brain. This could potentially influence the efficacy of psychedelics in females by modifying their therapeutic efficacy across menstrual cycles and developmental stages. Investigating this interaction in the context of psychedelic research could aid in the advancement of therapeutic outcomes, especially for conditions with sex-specific prevalence.
Collapse
Affiliation(s)
- Sheida Shadani
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kyna Conn
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zane B Andrews
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
41
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Nassan M. Proposal for a Mechanistic Disease Conceptualization in Clinical Neurosciences: The Neural Network Components (NNC) Model. Harv Rev Psychiatry 2024; 32:150-159. [PMID: 38990903 DOI: 10.1097/hrp.0000000000000399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ABSTRACT Clinical neurosciences, and psychiatry specifically, have been challenged by the lack of a comprehensive and practical framework that explains the core mechanistic processes of variable psychiatric presentations. Current conceptualization and classification of psychiatric presentations are primarily centered on a non-biologically based clinical descriptive approach. Despite various attempts, advances in neuroscience research have not led to an improved conceptualization or mechanistic classification of psychiatric disorders. This perspective article proposes a new-work-in-progress-framework for conceptualizing psychiatric presentations based on neural network components (NNC). This framework could guide the development of mechanistic disease classification, improve understanding of underpinning pathology, and provide specific intervention targets. This model also has the potential to dissolve artificial barriers between the fields of psychiatry and neurology.
Collapse
Affiliation(s)
- Malik Nassan
- From Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL; Department of Neurology and Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine (Dr. Nassan)
| |
Collapse
|
43
|
Lee HJ, Tsang VW, Chai BS, Lin MC, Howard A, Uy C, Elefante JO. Psilocybin's Potential Mechanisms in the Treatment of Depression: A Systematic Review. J Psychoactive Drugs 2024; 56:301-315. [PMID: 37385217 DOI: 10.1080/02791072.2023.2223195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 07/01/2023]
Abstract
Evidence suggests that psilocybin has therapeutic benefit for treating depression. However, there is little consensus regarding the mechanism by which psilocybin elicits antidepressant effects. This systematic review summarizes existing evidence. Ovid MEDLINE, EMBASE, psychINFO, and Web of Science were searched, for both human and animal studies, using a combination of MeSH Terms and free-text keywords in September 2021. No other mood disorders or psychiatric diagnoses were included. Original papers in English were included. The PRISMA framework was followed for the screening of papers. Two researchers screened the retrieved articles from the literature search, and a third researcher resolved any conflicts. Of 2,193 papers identified, 49 were selected for full-text review. 14 articles were included in the qualitative synthesis. Six supported psilocybin's mechanism of antidepressant action via changes to serotonin or glutamate receptor activity and three papers found an increase in synaptogenesis. Thirteen papers investigated changes in non-receptor or pathway-specific brain activity. Five papers found changes in functional connectivity or neurotransmission, most commonly in the hippocampus or prefrontal cortex. Several neuroreceptors, neurotransmitters, and brain areas are thought to be involved in psilocybin's ability to mitigate depressive symptoms. Psilocybin appears to alter cerebral blood flow to the amygdala and prefrontal cortex, but the evidence on changes in functional connectivity and specific receptor activity remains sparse. The lack of consensus between studies suggests that psilocybin's mechanism of action may involve a variety of pathways, demonstrating the need for more studies on psilocybin's mechanism of action as an antidepressant.
Collapse
Affiliation(s)
- Harrison J Lee
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vivian Wl Tsang
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brandon S Chai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Cq Lin
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Howard
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Uy
- Department of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julius O Elefante
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Mortaheb S, Fort LD, Mason NL, Mallaroni P, Ramaekers JG, Demertzi A. Dynamic Functional Hyperconnectivity After Psilocybin Intake Is Primarily Associated With Oceanic Boundlessness. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:681-692. [PMID: 38588855 DOI: 10.1016/j.bpsc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Psilocybin is a widely studied psychedelic substance that leads to the psychedelic state, a specific altered state of consciousness. To date, the relationship between the psychedelic state's neurobiological and experiential patterns remains undercharacterized because they are often analyzed separately. We investigated the relationship between neurobiological and experiential patterns after psilocybin by focusing on the link between dynamic cerebral connectivity and retrospective questionnaire assessment. METHODS Healthy participants were randomized to receive either psilocybin (n = 22) or placebo (n = 27) and scanned for 6 minutes in an eyes-open resting state during the peak subjective drug effect (102 minutes posttreatment) in ultrahigh field 7T magnetic resonance imaging. The 5-Dimensional Altered States of Consciousness Rating Scale was administered 360 minutes after drug intake. RESULTS Under psilocybin, there were alterations across all dimensions of the 5-Dimensional Altered States of Consciousness Rating Scale and widespread increases in averaged brain functional connectivity. Time-varying functional connectivity analysis unveiled a recurrent hyperconnected pattern characterized by low blood oxygen level-dependent signal amplitude, suggesting heightened cortical arousal. In terms of neuroexperiential links, canonical correlation analysis showed higher transition probabilities to the hyperconnected pattern with feelings of oceanic boundlessness and secondly with visionary restructuralization. CONCLUSIONS Psilocybin generates profound alterations at both the brain and the experiential levels. We suggest that the brain's tendency to enter a hyperconnected-hyperarousal pattern under psilocybin represents the potential to entertain variant mental associations. These findings illuminate the intricate interplay between brain dynamics and subjective experience under psilocybin, thereby providing insights into the neurophysiology and neuroexperiential qualities of the psychedelic state.
Collapse
Affiliation(s)
- Sepehr Mortaheb
- Physiology of Cognition, GIGA Research, CRC Human Imaging Unit, University of Liège, Liège, Belgium; Fund for Scientific Research FNRS, Brussels, Belgium
| | - Larry D Fort
- Physiology of Cognition, GIGA Research, CRC Human Imaging Unit, University of Liège, Liège, Belgium; Fund for Scientific Research FNRS, Brussels, Belgium
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Athena Demertzi
- Physiology of Cognition, GIGA Research, CRC Human Imaging Unit, University of Liège, Liège, Belgium; Fund for Scientific Research FNRS, Brussels, Belgium; Psychology & Neuroscience of Cognition, University of Liège, Liège, Belgium.
| |
Collapse
|
45
|
Gonçalves ÓF, Sayal J, Lisboa F, Palhares P. The experimental study of consciousness: Is psychology travelling back to the future? Int J Clin Health Psychol 2024; 24:100475. [PMID: 39021679 PMCID: PMC11253270 DOI: 10.1016/j.ijchp.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
It was with the promise of rendering an experimental approach to consciousness that psychology started its trajectory as an independent science more than 150 years ago. Here, we will posit that the neurosciences were instrumental in leading psychology to resume the study of consciousness by projecting an empirical agenda for the future. First, we will start by showing how scientists were able to venture into the consciousness of supposedly unconscious patients, opening the door for the identification of important neural correlates of distinct consciousness states. Then, we will describe how different technological advances and elegant experimental paradigms helped in establishing important neuronal correlates of global consciousness (i.e., being conscious at all), perceptual consciousness (i.e., being conscious of something), and self-consciousness (i.e., being conscious of itself). Finally, we will illustrate how the study of complex consciousness experiences may contribute to the clarification of the mechanisms associated with global consciousness, the relationship between perceptual and self-consciousness, and the interface among distinct self-consciousness domains. In closing, we will elaborate on the road ahead of us for re-establishing psychology as a science of consciousness.
Collapse
Affiliation(s)
| | - Joana Sayal
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| | - Fábio Lisboa
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| | - Pedro Palhares
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| |
Collapse
|
46
|
Trautwein FM, Schweitzer Y, Dor-Ziderman Y, Nave O, Ataria Y, Fulder S, Berkovich-Ohana A. Suspending the Embodied Self in Meditation Attenuates Beta Oscillations in the Posterior Medial Cortex. J Neurosci 2024; 44:e1182232024. [PMID: 38760162 PMCID: PMC11211716 DOI: 10.1523/jneurosci.1182-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/20/2023] [Accepted: 03/15/2024] [Indexed: 05/19/2024] Open
Abstract
Human experience is imbued by the sense of being an embodied agent. The investigation of such basic self-consciousness has been hampered by the difficulty of comprehensively modulating it in the laboratory while reliably capturing ensuing subjective changes. The present preregistered study fills this gap by combining advanced meditative states with principled phenomenological interviews: 46 long-term meditators (19 female, 27 male) were instructed to modulate and attenuate their embodied self-experience during magnetoencephalographic monitoring. Results showed frequency-specific (high-beta band) activity reductions in frontoparietal and posterior medial cortices (PMC). Importantly, PMC reductions were driven by a subgroup describing radical embodied self-disruptions, including suspension of agency and dissolution of a localized first-person perspective. Neural changes were correlated with lifetime meditation and interview-derived experiential changes, but not with classical self-reports. The results demonstrate the potential of integrating in-depth first-person methods into neuroscientific experiments. Furthermore, they highlight neural oscillations in the PMC as a central process supporting the embodied sense of self.
Collapse
Affiliation(s)
- Fynn-Mathis Trautwein
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau 79104, Germany
| | - Yoav Schweitzer
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa 3498838, Israel
| | - Yair Dor-Ziderman
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Ohad Nave
- Department of Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yochai Ataria
- Psychology Department, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
| | - Stephen Fulder
- The Israel Insight Society (Tovana), R.D. Izrael 1933500, Israel
| | - Aviva Berkovich-Ohana
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
47
|
Costa RM. Silence between words: Is solitude important for relatedness? PROGRESS IN BRAIN RESEARCH 2024; 287:153-190. [PMID: 39097352 DOI: 10.1016/bs.pbr.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Chronic loneliness is a risk factor for physical and health problems, in part due to dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system. In contrast, temporary moments of positive solitude (passing good times alone and not feeling lonely) appear to have positive effects on mental health, social life, and creativity, and seems to be a buffer against loneliness. Herein, three ways of how solitude may have positive effects on health and relatedness are discussed, namely effects on enhancement of mind-wandering, interoceptive awareness, and spirituality. Solitude may facilitate (1) activation of the default mode network (DMN) underlying mind-wandering including daydreaming about other people; (2) activation of brain areas supporting interoceptive awareness; (3) deactivation of prefrontal cortex, or deactivation and decreased connectivity of the DMN, giving raise to susceptibility to spiritual experiences. The capacity to handle and enjoy solitude is a developmental process that may be difficult for many persons. Craving for social connections and external stimulation with digital technologies (e.g., internet, smartphones, social media) might be interfering with the development of the capacity for solitude and thereby increasing loneliness; this might be partly due to impaired interoceptive awareness and impaired functional mind-wandering (common in solitude). Congruently, overuse of digital technologies was associated with reduced activity, and reduced gray matter volume and density, in brain areas supporting interoceptive awareness, as well as with decreased connectivity of the DMN supporting creative insights. Solitude has been a relatively dismissed topic in neuroscience and health sciences, but a growing number of studies is highlighting its importance for well-being.
Collapse
Affiliation(s)
- Rui Miguel Costa
- William James Center for Research, Ispa-Instituto Universitário, Lisbon, Portugal.
| |
Collapse
|
48
|
Le GH, Wong S, Badulescu S, Au H, Di Vincenzo JD, Gill H, Phan L, Rhee TG, Ho R, Teopiz KM, Kwan ATH, Rosenblat JD, Mansur RB, McIntyre RS. Spectral signatures of psilocybin, lysergic acid diethylamide (LSD) and ketamine in healthy volunteers and persons with major depressive disorder and treatment-resistant depression: A systematic review. J Affect Disord 2024; 355:342-354. [PMID: 38570038 DOI: 10.1016/j.jad.2024.03.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Electrophysiologic measures provide an opportunity to inform mechanistic models and possibly biomarker prediction of response. Serotonergic psychedelics (SPs) (i.e., psilocybin, lysergic acid diethylamide (LSD)) and ketamine represent new investigational and established treatments in mood disorders respectively. There is a need to better characterize the mechanism of action of these agents. METHODS We conducted a systematic review investigating the spectral signatures of psilocybin, LSD, and ketamine in persons with major depressive disorder (MDD), treatment-resistant depression (TRD), and healthy controls. RESULTS Ketamine and SPs are associated with increased theta power in persons with depression. Ketamine and SPs are also associated with decreased spectral power in the alpha, beta and delta bands in healthy controls and persons with depression. When administered with SPs, theta power was increased in persons with MDD when administered with SPs. Ketamine is associated with increased gamma band power in both healthy controls and persons with MDD. LIMITATIONS The studies included in our review were heterogeneous in their patient population, exposure, dosing of treatment and devices used to evaluate EEG and MEG signatures. Our results were extracted entirely from persons who were either healthy volunteers or persons with MDD or TRD. CONCLUSIONS Extant literature evaluating EEG and MEG spectral signatures indicate that ketamine and SPs have reproducible effects in keeping with disease models of network connectivity. Future research vistas should evaluate whether observed spectral signatures can guide further discovery of therapeutics within the psychedelic and dissociative classes of agents, and its prediction capability in persons treated for depression.
Collapse
Affiliation(s)
- Gia Han Le
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Sabrina Wong
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Sebastian Badulescu
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Hezekiah Au
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Joshua D Di Vincenzo
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| | - Hartej Gill
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Lee Phan
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, Farmington, CT, USA.
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Joshua D Rosenblat
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Rodrigo B Mansur
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Roger S McIntyre
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
49
|
Wang B, Li M, Haihambo N, Qiu Z, Sun M, Guo M, Zhao X, Han C. Characterizing Major Depressive Disorder (MDD) using alpha-band activity in resting-state electroencephalogram (EEG) combined with MATRICS Consensus Cognitive Battery (MCCB). J Affect Disord 2024; 355:254-264. [PMID: 38561155 DOI: 10.1016/j.jad.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The diagnosis of major depressive disorder (MDD) is commonly based on the subjective evaluation by experienced psychiatrists using clinical scales. Hence, it is particularly important to find more objective biomarkers to aid in diagnosis and further treatment. Alpha-band activity (7-13 Hz) is the most prominent component in resting electroencephalogram (EEG), which is also thought to be a potential biomarker. Recent studies have shown the existence of multiple sub-oscillations within the alpha band, with distinct neural underpinnings. However, the specific contribution of these alpha sub-oscillations to the diagnosis and treatment of MDD remains unclear. METHODS In this study, we recorded the resting-state EEG from MDD and HC populations in both open and closed-eye state conditions. We also assessed cognitive processing using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS We found that the MDD group showed significantly higher power in the high alpha range (10.5-11.5 Hz) and lower power in the low alpha range (7-8.5 Hz) compared to the HC group. Notably, high alpha power in the MDD group is negatively correlated with working memory performance in MCCB, whereas no such correlation was found in the HC group. Furthermore, using five established classification algorithms, we discovered that combining alpha oscillations with MCCB scores as features yielded the highest classification accuracy compared to using EEG or MCCB scores alone. CONCLUSIONS Our results demonstrate the potential of sub-oscillations within the alpha frequency band as a potential distinct biomarker. When combined with psychological scales, they may provide guidance relevant for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Bin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Zihan Qiu
- Avenues the World School Shenzhen Campus, Shenzhen 518000, China
| | - Meirong Sun
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Mingrou Guo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
50
|
Ghaw A, Chunduri A, Chang A, Ortiz RJ, Kozlowska M, Kulkarni PP, Ferris CF. Dose-dependent LSD effects on cortical/thalamic and cerebellar activity: brain oxygen level-dependent fMRI study in awake rats. Brain Commun 2024; 6:fcae194. [PMID: 38863575 PMCID: PMC11166175 DOI: 10.1093/braincomms/fcae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Lysergic acid diethylamide is a hallucinogen with complex neurobiological and behavioural effects. This is the first study to use MRI to follow functional changes in brain activity in response to different doses of lysergic acid diethylamide in fully awake, drug-naive rats. We hypothesized that lysergic acid diethylamide would show a dose-dependent increase in activity in the prefrontal cortex and thalamus while decreasing hippocampal activity. Female and male rats were given intraperitoneal injections of vehicle or lysergic acid diethylamide in doses of 10 or 100 µg/kg while fully awake during the imaging session. Changes in blood oxygen level-dependent signal were recorded over a 30-min window. Approximately 45-min post-injection data for resting-state functional connectivity were collected. All data were registered to rat 3D MRI atlas with 173 brain regions providing site-specific increases and decreases in global brain activity and changes in functional connectivity. Treatment with lysergic acid diethylamide resulted in a significant dose-dependent increase in negative blood oxygen level-dependent signal. The areas most affected were the primary olfactory system, prefrontal cortex, thalamus and hippocampus. This was observed in both the number of voxels affected in these brains regions and the changes in blood oxygen level-dependent signal over time. However, there was a significant increase in functional connectivity between the thalamus and somatosensory cortex and the cerebellar nuclei and the surrounding brainstem areas. Contrary to our hypothesis, there was an acute dose-dependent increase in negative blood oxygen level-dependent signal that can be interpreted as a decrease in brain activity, a finding that agrees with much of the behavioural data from preclinical studies. The enhanced connectivity between thalamus and sensorimotor cortices is consistent with the human literature looking at lysergic acid diethylamide treatments in healthy human volunteers. The unexpected finding that lysergic acid diethylamide enhances connectivity to the cerebellar nuclei raises an interesting question concerning the role of this brain region in the psychotomimetic effects of hallucinogens.
Collapse
Affiliation(s)
- Ashley Ghaw
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Alisha Chunduri
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Richard J Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Milena Kozlowska
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Praveen P Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115, USA
| | - Craig F Ferris
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|