1
|
Chang C, Ramirez NA, Bhat AH, Nguyen MT, Kumari P, Ton-That H, Das A, Ton-That H. Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria. Annu Rev Microbiol 2024; 78:403-423. [PMID: 39141696 DOI: 10.1146/annurev-micro-112123-100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Aadil H Bhat
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Minh T Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Poonam Kumari
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - HyLam Ton-That
- Department of Chemistry, University of California, Irvine, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hung Ton-That
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| |
Collapse
|
2
|
Prajapati A, Palva A, von Ossowski I, Krishnan V. The crystal structure of the N-terminal domain of the backbone pilin LrpA reveals a new closure-and-twist motion for assembling dynamic pili in Ligilactobacillus ruminis. Acta Crystallogr D Struct Biol 2024; 80:474-492. [PMID: 38935340 DOI: 10.1107/s2059798324005114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.
Collapse
Affiliation(s)
- Amar Prajapati
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR, Biotech Science Cluster, Faridabad 121 001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR, Biotech Science Cluster, Faridabad 121 001, India
| |
Collapse
|
3
|
Prüßner T, Meinderink D, Zhu S, Orive AG, Kielar C, Huck M, Steinrück HG, Keller A, Grundmeier G. Molecular Adhesion of a Pilus-Derived Peptide Involved in Pseudomonas aeruginosa Biofilm Formation on Non-Polar ZnO-Surfaces. Chemistry 2024; 30:e202302464. [PMID: 37909474 DOI: 10.1002/chem.202302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.
Collapse
Affiliation(s)
- Tim Prüßner
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Dennis Meinderink
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Alejandro G Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofisico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Charlotte Kielar
- Insitute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marten Huck
- Chemistry Department, Paderborn University, 33098, Paderborn, Germany
| | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
4
|
Jesus HNR, Rocha DJPG, Ramos RTJ, Silva A, Brenig B, Góes-Neto A, Costa MM, Soares SC, Azevedo V, Aguiar ERGR, Martínez-Martínez L, Ocampo A, Alibi S, Dorta A, Pacheco LGC, Navas J. Pan-genomic analysis of Corynebacterium amycolatum gives insights into molecular mechanisms underpinning the transition to a pathogenic phenotype. Front Microbiol 2022; 13:1011578. [DOI: 10.3389/fmicb.2022.1011578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Corynebacterium amycolatum is a nonlipophilic coryneform which is increasingly being recognized as a relevant human and animal pathogen showing multidrug resistance to commonly used antibiotics. However, little is known about the molecular mechanisms involved in transition from colonization to the MDR invasive phenotype in clinical isolates. In this study, we performed a comprehensive pan-genomic analysis of C. amycolatum, including 26 isolates from different countries. We obtained the novel genome sequences of 8 of them, which are multidrug resistant clinical isolates from Spain and Tunisia. They were analyzed together with other 18 complete or draft C. amycolatum genomes retrieved from GenBank. The species C. amycolatum presented an open pan-genome (α = 0.854905), with 3,280 gene families, being 1,690 (51.52%) in the core genome, 1,121 related to accessory genes (34.17%), and 469 related to unique genes (14.29%). Although some classic corynebacterial virulence factors are absent in the species C. amycolatum, we did identify genes associated with immune evasion, toxin, and antiphagocytosis among the predicted putative virulence factors. Additionally, we found genomic evidence for extensive acquisition of antimicrobial resistance genes through genomic islands.
Collapse
|
5
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
6
|
Liu H, Liu Z, Yang B, Lopez Morales J, Nash MA. Optimal Sacrificial Domains in Mechanical Polyproteins: S. epidermidis Adhesins Are Tuned for Work Dissipation. JACS AU 2022; 2:1417-1427. [PMID: 35783175 PMCID: PMC9241160 DOI: 10.1021/jacsau.2c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The opportunistic pathogen Staphylococcus epidermidis utilizes a multidomain surface adhesin protein to bind host components and adhere to tissues. While it is known that the interaction between the SdrG receptor and its fibrinopeptide target (FgB) is exceptionally mechanostable (∼2 nN), the influence of downstream B domains (B1 and B2) is unclear. Here, we studied the mechanical relationships between folded B domains and the SdrG receptor bound to FgB. We used protein engineering, single-molecule force spectroscopy (SMFS) with an atomic force microscope (AFM), and Monte Carlo simulations to understand how the mechanical properties of folded sacrificial domains, in general, can be optimally tuned to match the stability of a receptor-ligand complex. Analogous to macroscopic suspension systems, sacrificial shock absorber domains should neither be too weak nor too strong to optimally dissipate mechanical energy. We built artificial molecular shock absorber systems based on the nanobody (VHH) scaffold and studied the competition between domain unfolding and receptor unbinding. We quantitatively determined the optimal stability of shock absorbers that maximizes work dissipation on average for a given receptor and found that natural sacrificial domains from pathogenic S. epidermidis and Clostridium perfringens adhesins exhibit stabilities at or near this optimum within a specific range of loading rates. These findings demonstrate how tuning the stability of sacrificial domains in adhesive polyproteins can be used to maximize mechanical work dissipation and serve as an adhesion strategy by bacteria.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Joanan Lopez Morales
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Shapiro DM, Mandava G, Yalcin SE, Arranz-Gibert P, Dahl PJ, Shipps C, Gu Y, Srikanth V, Salazar-Morales AI, O'Brien JP, Vanderschuren K, Vu D, Batista VS, Malvankar NS, Isaacs FJ. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat Commun 2022; 13:829. [PMID: 35149672 PMCID: PMC8837800 DOI: 10.1038/s41467-022-28206-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis. Bacterial hairs called pili become highly-conductive electric wires upon addition of both natural and synthetic amino acids conjugated with gold nanoparticles. Here the authors use computationally-guided ordering further increasing their conductivity, thus yielding genetically-programmable materials.
Collapse
Affiliation(s)
- Daniel Mark Shapiro
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Gunasheil Mandava
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Pol Arranz-Gibert
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Peter J Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Catharine Shipps
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Yangqi Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Vishok Srikanth
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Aldo I Salazar-Morales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - J Patrick O'Brien
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Koen Vanderschuren
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Dennis Vu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA. .,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, Cao Y. An ester bond underlies the mechanical strength of a pathogen surface protein. Nat Commun 2021; 12:5082. [PMID: 34426584 PMCID: PMC8382745 DOI: 10.1038/s41467-021-25425-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacteria can resist large mechanical perturbations during their invasion and colonization by secreting various surface proteins with intramolecular isopeptide or ester bonds. Compared to isopeptide bonds, ester bonds are prone to hydrolysis. It remains elusive whether ester bonds can completely block mechanical extension similarly to isopeptide bonds, or whether ester bonds dissipate mechanical energy by bond rupture. Here, we show that an ester-bond containing stalk domain of Cpe0147 is inextensible even at forces > 2 nN. The ester bond locks the structure to a partially unfolded conformation, in which the ester bond remains largely water inaccessible. This allows the ester bond to withstand considerable mechanical forces and in turn prevent complete protein unfolding. However, the protecting effect might be reduced at non-physiological basic pHs or low calcium concentrations due to destabilizing the protein structures. Inspired by this design principle, we engineer a disulfide mutant resistant to mechanical unfolding under reducing conditions. Bacterial surface adhesion proteins are characterized by unusual mechanical properties. Here, the authors use atomic force microscopy-based technique to study a surface-anchoring protein Cpe0147 from Clostridium perfringens and show that an ester bond can withstand considerable mechanical forces and prevent complete protein unfolding.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Quan Ma
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Jing Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
10
|
Amaya C, Cameron CJF, Devarkar SC, Seager SJH, Gerstein MB, Xiong Y, Schlieker C. Nodal modulator (NOMO) is required to sustain endoplasmic reticulum morphology. J Biol Chem 2021; 297:100937. [PMID: 34224731 PMCID: PMC8327139 DOI: 10.1016/j.jbc.2021.100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The endoplasmic reticulum (ER) is a membrane-bound organelle responsible for protein folding, lipid synthesis, and calcium homeostasis. Maintenance of ER structural integrity is crucial for proper function, but much remains to be learned about the molecular players involved. To identify proteins that support the structure of the ER, we performed a proteomic screen and identified nodal modulator (NOMO), a widely conserved type I transmembrane protein of unknown function, with three nearly identical orthologs specified in the human genome. We found that overexpression of NOMO1 imposes a sheet morphology on the ER, whereas depletion of NOMO1 and its orthologs causes a collapse of ER morphology concomitant with the formation of membrane-delineated holes in the ER network positive for the lysosomal marker lysosomal-associated protein 1. In addition, the levels of key players of autophagy including microtubule-associated protein light chain 3 and autophagy cargo receptor p62/sequestosome 1 strongly increase upon NOMO depletion. In vitro reconstitution of NOMO1 revealed a "beads on a string" structure likely representing consecutive immunoglobulin-like domains. Extending NOMO1 by insertion of additional immunoglobulin folds results in a correlative increase in the ER intermembrane distance. Based on these observations and a genetic epistasis analysis including the known ER-shaping proteins Atlastin2 and Climp63, we propose a role for NOMO1 in the functional network of ER-shaping proteins.
Collapse
Affiliation(s)
- Catherine Amaya
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christopher J F Cameron
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sebastian J H Seager
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA; Department of Computer Science, Yale University, New Haven, Connecticut, USA; Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
11
|
Sortase-assembled pili in Corynebacterium diphtheriae are built using a latch mechanism. Proc Natl Acad Sci U S A 2021; 118:2019649118. [PMID: 33723052 DOI: 10.1073/pnas.2019649118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine-isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood. Using a reconstituted pilus assembly system and hybrid structural biology methods, we elucidated the solution structure and dynamics of the crosslinked interface that is repeated to build the prototypical SpaA pilus from Corynebacterium diphtheriae We show that sortase-catalyzed introduction of a K190-T494 isopeptide bond between adjacent SpaA pilins causes them to form a rigid interface in which the LPLTG sorting signal is inserted into a large binding groove. Cellular and quantitative kinetic measurements of the crosslinking reaction shed light onto the mechanism of pilus biogenesis. We propose that the pilus-specific sortase in C. diphtheriae uses a latch mechanism to select K190 on SpaA for crosslinking in which the sorting signal is partially transferred from the enzyme to a binding groove in SpaA in order to facilitate catalysis. This process is facilitated by a conserved loop in SpaA, which after crosslinking forms a stabilizing latch that covers the K190-T494 isopeptide bond. General features of the structure and sortase-catalyzed assembly mechanism of the SpaA pilus are likely conserved in Gram-positive bacteria.
Collapse
|
12
|
Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M. AFM in cellular and molecular microbiology. Cell Microbiol 2021; 23:e13324. [PMID: 33710716 DOI: 10.1111/cmi.13324] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Abstract
Intramolecular isopeptide bonds, formed autocatalytically between Lys and Asn/Asp side chains, are widely present in the immunoglobulin-like domains of Gram-positive bacterial adhesins, including Group A Streptococcus, and confer considerable mechanical and chemical stability. These properties make them attractive for applications in biotechnology. Here, we detail the practical considerations that are involved in engineering isopeptide bonds into Ig-like proteins, including the choice of a site where bond-forming residues could be introduced and the appropriate methodology for mutagenesis. We specify how to determine whether an isopeptide bond has formed, what strategies can be adopted to overcome problems, and how to monitor the stability of the engineered protein.
Collapse
|
14
|
Banerjee S, Chakraborty S, Sreepada A, Banerji D, Goyal S, Khurana Y, Haldar S. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry. Annu Rev Biophys 2021; 50:419-445. [PMID: 33646813 DOI: 10.1146/annurev-biophys-090420-083836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Abhijit Sreepada
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Devshuvam Banerji
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shashwat Goyal
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Yajushi Khurana
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| |
Collapse
|
15
|
Ness S, Hilleringmann M. Streptococcus pneumoniae Type 1 Pilus - A Multifunctional Tool for Optimized Host Interaction. Front Microbiol 2021; 12:615924. [PMID: 33633703 PMCID: PMC7899983 DOI: 10.3389/fmicb.2021.615924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae represents a major Gram-positive human pathogen causing bacterial pneumonia, otitis media, meningitis, and other invasive diseases. Several pneumococcal isolates show increasing resistance rates against antibacterial agents. A variety of virulence factors promote pneumococcal pathogenicity with varying importance in different stages of host infection. Virulence related hair-like structures ("pili") are complex, surface located protein arrays supporting proper host interaction. In the last two decades different types of pneumococcal pili have been identified: pilus-1 (P1) and pilus-2 (P2) are formed by the catalytic activity of sortases that covalently assemble secreted polypeptide pilin subunits in a defined order and finally anchor the resulting pilus in the peptidoglycan. Within the long pilus fiber the presence of intramolecular isopeptide bonds confer high stability to the sequentially arranged individual pilins. This mini review will focus on S. pneumoniae TIGR4 P1 molecular architecture, the subunits it builds and provides insights into P1 sortase-mediated assembly. The complex P1 architecture (anchor-/backbone-/tip-subunits) allows the specific interaction with various target structures facilitating different steps of colonization, invasion and spreading within the host. Optimized pilin subunit confirmation supports P1 function under physiological conditions. Finally, aspects of P1- host interplay are summarized, including recent insights into P1 mechanobiology, which have important implications for P1 mediated pathogenesis.
Collapse
Affiliation(s)
| | - Markus Hilleringmann
- FG Protein Biochemistry & Cellular Microbiology, Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| |
Collapse
|
16
|
Alonso-Caballero A, Echelman DJ, Tapia-Rojo R, Haldar S, Eckels EC, Fernandez JM. Protein folding modulates the chemical reactivity of a Gram-positive adhesin. Nat Chem 2021; 13:172-181. [PMID: 33257887 PMCID: PMC7858226 DOI: 10.1038/s41557-020-00586-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces <6 pN, the Cpa thioester bond reacts reversibly with amine ligands, which are common in inflammation sites; however, mechanical unfolding and exposure to forces >6 pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.
Collapse
Affiliation(s)
- Alvaro Alonso-Caballero
- Department of Biological Sciences, Columbia University, NY
10027, USA,Correspondence and request of material should be
addressed to A.A-C.:
| | | | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | - Edward C. Eckels
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | | |
Collapse
|
17
|
Beaussart A, Feuillie C, El-Kirat-Chatel S. The microbial adhesive arsenal deciphered by atomic force microscopy. NANOSCALE 2020; 12:23885-23896. [PMID: 33289756 DOI: 10.1039/d0nr07492f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.
Collapse
|
18
|
Dos Santos Morais R, El-Kirat-Chatel S, Burgain J, Simard B, Barrau S, Paris C, Borges F, Gaiani C. A Fast, Efficient and Easy to Implement Method to Purify Bacterial Pili From Lacticaseibacillus rhamnosus GG Based on Multimodal Chromatography. Front Microbiol 2020; 11:609880. [PMID: 33391233 PMCID: PMC7775309 DOI: 10.3389/fmicb.2020.609880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Pili are polymeric proteins located at the cell surface of bacteria. These filamentous proteins play a pivotal role in bacterial adhesion with the surrounding environment. They are found both in Gram-negative and Gram-positive bacteria but differ in their structural organization. Purifying these high molecular weight proteins is challenging and has certainly slowed down their characterization. Here, we propose a chromatography-based protocol, mainly relying on multimodal chromatography (core bead technology using Capto Core 700 resin), to purify sortase-dependent SpaCBA pili from the probiotic strain Lacticaseibacillus rhamnosus GG (LGG). Contrary to previously published methods, this purification protocol does not require specific antibodies nor complex laboratory equipment, including for the multimodal chromatography step, and provides high degree of protein purity. No other proteins were detectable by SDS-PAGE and the 260/280 nm ratio (∼0.6) of the UV spectrum confirmed the absence of any other co-purified macromolecules. One can obtain ∼50 μg of purified pili, starting from 1 L culture at OD600nm ≈ 1, in 2–3 working days. This simple protocol could be useful to numerous laboratories to purify pili from LGG easily. Therefore, the present work should boost specific studies dedicated to LGG SpaCBA pili and the characterization of the interactions occurring with their protein partners at the molecular level. Moreover, this straightforward purification process might be extended to the purification of sortase-dependant pili from other Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Sofiane El-Kirat-Chatel
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS-Université de Lorraine, Nancy, France
| | - Jennifer Burgain
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Blandine Simard
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Sarah Barrau
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France
| | - Claire Gaiani
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Nancy, France.,Institut Universitaire de France, Parris, France
| |
Collapse
|
19
|
Iovino F, Nannapaneni P, Henriques-Normark B, Normark S. The impact of the ancillary pilus-1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Mol Microbiol 2020; 113:650-658. [PMID: 32185835 DOI: 10.1111/mmi.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia and meningitis. Several pneumococcal proteins important for its disease-causing capability have been described and many are expressed on the bacterial surface. The surface located pneumococcal type-1 pilus has been associated with virulence and the inflammatory response, and it is present in 20%-30% of clinical isolates. Its tip protein RrgA has been shown to be a major adhesin to human cells and to promote invasion through the blood-brain barrier. In this review we discuss recent findings of the impact of RrgA on bacterial colonization of the upper respiratory tract and on pneumococcal virulence, and use epidemiological data and genome-mining to suggest trade-off mechanisms potentially explaining the rather low prevalence of pilus-1 expressing pneumococci in humans.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
20
|
Sharma S, Subramani S, Popa I. Does protein unfolding play a functional role in vivo? FEBS J 2020; 288:1742-1758. [PMID: 32761965 DOI: 10.1111/febs.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Smrithika Subramani
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
21
|
Chakraborty S, Banerjee S, Haldar S. New Roles of Single-Molecule Technologies in Biology. Trends Biochem Sci 2020; 45:718-719. [PMID: 32679069 DOI: 10.1016/j.tibs.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
22
|
Dufrêne YF, Viljoen A. Binding Strength of Gram-Positive Bacterial Adhesins. Front Microbiol 2020; 11:1457. [PMID: 32670256 PMCID: PMC7330015 DOI: 10.3389/fmicb.2020.01457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens are equipped with specialized surface-exposed proteins that bind strongly to ligands on host tissues and biomaterials. These adhesins play critical roles during infection, especially during the early step of adhesion where the cells are exposed to physical stress. Recent single-molecule experiments have shown that staphylococci interact with their ligands through a wide diversity of mechanosensitive molecular mechanisms. Adhesin-ligand interactions are activated by tensile force and can be ten times stronger than classical non-covalent biological bonds. Overall these studies demonstrate that Gram-positive adhesins feature unusual stress-dependent molecular interactions, which play essential roles during bacterial colonization and dissemination. With an increasing prevalence of multidrug resistant infections caused by Staphylococcus aureus and Staphylococcus epidermidis, chemotherapeutic targeting of adhesins offers an innovative alternative to antibiotics.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
23
|
Sue CK, McConnell SA, Ellis-Guardiola K, Muroski J, McAllister RA, Yu J, Alvarez AI, Chang C, Ogorzalek Loo RR, Loo JA, Ton-That H, Clubb RT. Kinetics and Optimization of the Lysine-Isopeptide Bond Forming Sortase Enzyme from Corynebacterium diphtheriae. Bioconjug Chem 2020; 31:1624-1634. [PMID: 32396336 PMCID: PMC8153732 DOI: 10.1021/acs.bioconjchem.0c00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Site-specifically modified protein bioconjugates have important applications in biology, chemistry, and medicine. Functionalizing specific protein side chains with enzymes using mild reaction conditions is of significant interest, but remains challenging. Recently, the lysine-isopeptide bond forming activity of the sortase enzyme that builds surface pili in Corynebacterium diphtheriae (CdSrtA) has been reconstituted in vitro. A mutationally activated form of CdSrtA was shown to be a promising bioconjugating enzyme that can attach Leu-Pro-Leu-Thr-Gly peptide fluorophores to a specific lysine residue within the N-terminal domain of the SpaA protein (NSpaA), enabling the labeling of target proteins that are fused to NSpaA. Here we present a detailed analysis of the CdSrtA catalyzed protein labeling reaction. We show that the first step in catalysis is rate limiting, which is the formation of the CdSrtA-peptide thioacyl intermediate that subsequently reacts with a lysine ε-amine in NSpaA. This intermediate is surprisingly stable, limiting spurious proteolysis of the peptide substrate. We report the discovery of a new enzyme variant (CdSrtAΔ) that has significantly improved transpeptidation activity, because it completely lacks an inhibitory polypeptide appendage ("lid") that normally masks the active site. We show that the presence of the lid primarily impairs formation of the thioacyl intermediate and not the recognition of the NSpaA substrate. Quantitative measurements reveal that CdSrtAΔ generates its cross-linked product with a catalytic turnover number of 1.4 ± 0.004 h-1 and that it has apparent KM values of 0.16 ± 0.04 and 1.6 ± 0.3 mM for its NSpaA and peptide substrates, respectively. CdSrtAΔ is 7-fold more active than previously studied variants, labeling >90% of NSpaA with peptide within 6 h. The results of this study further improve the utility of CdSrtA as a protein labeling tool and provide insight into the enzyme catalyzed reaction that underpins protein labeling and pilus biogenesis.
Collapse
Affiliation(s)
- Christopher K. Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Scott A. McConnell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Rachel A. McAllister
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Justin Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Ana I. Alvarez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Chungyu Chang
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
- Molecular Biology Institute and the University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| |
Collapse
|
24
|
El-Kirat-Chatel S, Beaussart A, Mathelié-Guinlet M, Dufrêne YF. The importance of force in microbial cell adhesion. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Ramirez NA, Das A, Ton-That H. New Paradigms of Pilus Assembly Mechanisms in Gram-Positive Actinobacteria. Trends Microbiol 2020; 28:999-1009. [PMID: 32499101 DOI: 10.1016/j.tim.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Adhesive pili in Gram-positive bacteria represent a variety of extracellular multiprotein polymers that mediate bacterial colonization of specific host tissues and associated pathogenesis. Pili are assembled in two distinct but coupled steps, an orderly crosslinking of pilin monomers and subsequent anchoring of the polymer to peptidoglycan, catalyzed by two transpeptidase enzymes - the pilus-specific sortase and the housekeeping sortase. Here, we review this biphasic assembly mechanism based on studies of two prototypical models, the heterotrimeric pili in Corynebacterium diphtheriae and the heterodimeric pili in Actinomyces oris, highlighting some newly emerged basic paradigms. The disparate mechanisms of protein ligation mediated by the pilus-specific sortase and the spatial positioning of adhesive pili on the cell surface modulated by the housekeeping sortase are among the notable highlights.
Collapse
Affiliation(s)
- Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Abstract
Microbial adhesion and biofilm formation are usually studied using molecular and cellular biology assays, optical and electron microscopy, or laminar flow chamber experiments. Today, atomic force microscopy (AFM) represents a valuable addition to these approaches, enabling the measurement of forces involved in microbial adhesion at the single-molecule level. In this minireview, we discuss recent discoveries made applying state-of-the-art AFM techniques to microbial specimens in order to understand the strength and dynamics of adhesive interactions. These studies shed new light on the molecular mechanisms of adhesion and demonstrate an intimate relationship between force and function in microbial adhesins.
Collapse
|
27
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
28
|
Extreme mechanical stability in protein complexes. Curr Opin Struct Biol 2020; 60:124-130. [DOI: 10.1016/j.sbi.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
|
29
|
Viela F, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. What makes bacterial pathogens so sticky? Mol Microbiol 2020; 113:683-690. [PMID: 31916325 DOI: 10.1111/mmi.14448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Indexed: 01/06/2023]
Abstract
Pathogenic bacteria use a variety of cell surface adhesins to promote binding to host tissues and protein-coated biomaterials, as well as cell-cell aggregation. These cellular interactions represent the first essential step that leads to host colonization and infection. Atomic force microscopy (AFM) has greatly contributed to increase our understanding of the specific interactions at play during microbial adhesion, down to the single-molecule level. A key asset of AFM is that adhesive interactions are studied under mechanical force, which is highly relevant as surface-attached pathogens are often exposed to physical stresses in the human body. These studies have identified sophisticated binding mechanisms in adhesins, which represent promising new targets for antiadhesion therapy.
Collapse
Affiliation(s)
- Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
30
|
Contreras F, Rivas-Pardo JA. Interfering with the Folding of Group A Streptococcal pili Proteins. Methods Mol Biol 2020; 2136:347-364. [PMID: 32430836 DOI: 10.1007/978-1-0716-0467-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gram-positive bacteria use their adhesive pili to attach to host cells during early stages of a bacterial infection. These extracellular hair-like appendages experience mechanical stresses of hundreds of picoNewtons; however, the presence of an internal isopeptide bond prevents the pilus protein from unfolding. Here, we describe a method to interfere with nascent pili proteins through a peptide that mimics one of the β-strands of the molecule. By using AFM-based force spectroscopy, we study the isopeptide bond formation and the effect of the peptide in the elasticity of the pilus protein. This method could be used to afford a new strategy for mechanically targeted antibiotics by simply blocking the folding of the bacterial pilus protein.
Collapse
Affiliation(s)
- Fernanda Contreras
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | | |
Collapse
|
31
|
Chang C, Wu C, Osipiuk J, Siegel SD, Zhu S, Liu X, Joachimiak A, Clubb RT, Das A, Ton-That H. Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes. Proc Natl Acad Sci U S A 2019; 116:18041-18049. [PMID: 31427528 PMCID: PMC6731673 DOI: 10.1073/pnas.1907733116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in Actinomyces oris, a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions. Remarkably, the srtA-deficient mutant fails to mediate interspecies interactions, or coaggregation, even though the coaggregation factor CafA is present at the pilus tip. Increasing ectopic expression of srtA in the mutant progressively shortens pilus length and restores coaggregation accordingly, while elevated levels of shaft pilins and SrtC2 produce long pili and block coaggregation by SrtA+ bacteria. With structural studies, we uncovered 2 key structural elements in SrtA that partake in recognition of pilin substrates and regulate pilus length by inducing the capture and transfer of pilus polymers to the cell wall. Evidently, coaggregation requires proper positioning of the tip adhesin CafA via modulation of pilus length by the housekeeping sortase SrtA.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90095;
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439
| | - Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510
| | - Xiangan Liu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90095;
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
32
|
Jöhr R, Bauer MS, Schendel LC, Kluger C, Gaub HE. Dronpa: A Light-Switchable Fluorescent Protein for Opto-Biomechanics. NANO LETTERS 2019; 19:3176-3181. [PMID: 30912662 DOI: 10.1021/acs.nanolett.9b00639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since the development of the green fluorescent protein, fluorescent proteins (FP) are indispensable tools in molecular biology. Some FPs change their structure under illumination, which affects their interaction with other biomolecules or proteins. In particular, FPs that are able to form switchable dimers became an important tool in the field of optogenetics. They are widely used for the investigation of signaling pathways, the control of surface recruitment, as well as enzyme and gene regulation. However, optogenetics did not yet develop tools for the investigation of biomechanical processes. This could be leveraged if one could find a light-switchable FP dimer that is able to withstand sufficiently high forces. In this work, we measure the rupture force of the switchable interface in pdDronpa1.2 dimers using atomic force microscopy-based single molecule force spectroscopy. The most probable dimer rupture force amounts to around 80 pN at a pulling speed of 1600 nm/s. After switching of the dimer using illumination at 488 nm, there are hardly any measurable interface interactions, which indicates the successful dissociation of the dimers. Hence this Dronpa dimer could expand the current toolbox in optogenetics with new opto-biomechanical applications like the control of tension in adhesion processes.
Collapse
Affiliation(s)
- Res Jöhr
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Leonard C Schendel
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| |
Collapse
|
33
|
Herrero-Galán E, Martínez-Martín I, Alegre-Cebollada J. Redox regulation of protein nanomechanics in health and disease: Lessons from titin. Redox Biol 2018; 21:101074. [PMID: 30584979 PMCID: PMC6305763 DOI: 10.1016/j.redox.2018.101074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 01/11/2023] Open
Abstract
The nanomechanics of sarcomeric proteins is a key contributor to the mechanical output of muscle. Among them, titin emerges as a main target for the regulation of the stiffness of striated muscle. In the last years, single-molecule experiments by Atomic Force Microscopy (AFM) have demonstrated that redox posttranslational modifications are strong modulators of the mechanical function of titin. Here, we provide an overview of the recent development of the redox mechanobiology of titin, and suggest avenues of research to better understand how the stiffness of molecules, cells and tissues are modulated by redox signaling in health and disease.
Collapse
|
34
|
Ptak CP, Akif M, Hsieh C, Devarajan A, He P, Xu Y, Oswald RE, Chang Y. Comparative screening of recombinant antigen thermostability for improved leptospirosis vaccine design. Biotechnol Bioeng 2018; 116:260-271. [DOI: 10.1002/bit.26864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher P. Ptak
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Mohd. Akif
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
- Department of BiochemistryUniversity of HyderabadHyderabad India
| | - Ching‐Lin Hsieh
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Alex Devarajan
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Ping He
- Department of Microbiology and ImmunologyInstitutes of Medical Science, Shanghai Jiao Tong University School of MedicineShanghai China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug ControlBeijing China
| | - Robert E. Oswald
- Department of Molecular MedicineCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| | - Yung‐Fu Chang
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthaca New York
| |
Collapse
|
35
|
Milles LF, Unterauer EM, Nicolaus T, Gaub HE. Calcium stabilizes the strongest protein fold. Nat Commun 2018; 9:4764. [PMID: 30420680 PMCID: PMC6232131 DOI: 10.1038/s41467-018-07145-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Staphylococcal pathogens adhere to their human targets with exceptional resilience to mechanical stress, some propagating force to the bacterium via small, Ig-like folds called B domains. We examine the mechanical stability of these folds using atomic force microscopy-based single-molecule force spectroscopy. The force required to unfold a single B domain is larger than 2 nN – the highest mechanostability of a protein to date by a large margin. B domains coordinate three calcium ions, which we identify as crucial for their extreme mechanical strength. When calcium is removed through chelation, unfolding forces drop by a factor of four. Through systematic mutations in the calcium coordination sites we can tune the unfolding forces from over 2 nN to 0.15 nN, and dissect the contribution of each ion to B domain mechanostability. Their extraordinary strength, rapid refolding and calcium-tunable force response make B domains interesting protein design targets. Staphylococcal pathogens adhere to their human targets using adhesins, which can withstand extremely high forces. Here, authors use single-molecule force spectroscopy to determine the similarly high unfolding forces of B domains that link the adhesin to the bacterium.
Collapse
Affiliation(s)
- Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, Amalienstr. 54, 80799, Munich, Germany.
| | - Eduard M Unterauer
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, Amalienstr. 54, 80799, Munich, Germany
| | - Thomas Nicolaus
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, Amalienstr. 54, 80799, Munich, Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, Amalienstr. 54, 80799, Munich, Germany.
| |
Collapse
|
36
|
Molecular strategy for blocking isopeptide bond formation in nascent pilin proteins. Proc Natl Acad Sci U S A 2018; 115:9222-9227. [PMID: 30150415 DOI: 10.1073/pnas.1807689115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria anchor to their host cells through their adhesive pili, which must resist the large mechanical stresses induced by the host as it attempts to dislodge the pathogens. The pili of gram-positive bacteria are constructed as a single polypeptide made of hundreds of pilin repeats, which contain intramolecular isopeptide bonds strategically located in the structure to prevent their unfolding under force, protecting the pilus from degradation by extant proteases and oxygen radicals. Here, we demonstrate the design of a short peptide that blocks the formation of the isopeptide bond present in the pilin Spy0128 from the human pathogen Streptococcus pyogenes, resulting in mechanically labile pilin domains. We use a combination of protein engineering and atomic-force microscopy force spectroscopy to demonstrate that the peptide blocks the formation of the native isopeptide bond and compromises the mechanics of the domain. While an intact Spy0128 is inextensible at any force, peptide-modified Spy0128 pilins readily unfold at very low forces, marking the abrogation of the intramolecular isopeptide bond as well as the absence of a stable pilin fold. We propose that isopeptide-blocking peptides could be further developed as a type of highly specific antiadhesive antibiotics to treat gram-positive pathogens.
Collapse
|
37
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
38
|
Mechanical architecture and folding of E. coli type 1 pilus domains. Nat Commun 2018; 9:2758. [PMID: 30013059 PMCID: PMC6048123 DOI: 10.1038/s41467-018-05107-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Uropathogenic Escherichia coli attach to tissues using pili type 1. Each pilus is composed by thousands of coiled FimA domains followed by the domains of the tip fibrillum, FimF-FimG-FimH. The domains are linked by non-covalent β-strands that must resist mechanical forces during attachment. Here, we use single-molecule force spectroscopy to measure the mechanical contribution of each domain to the stability of the pilus and monitor the oxidative folding mechanism of a single Fim domain assisted by periplasmic FimC and the oxidoreductase DsbA. We demonstrate that pilus domains bear high mechanical stability following a hierarchy by which domains close to the tip are weaker than those close to or at the pilus rod. During folding, this remarkable stability is achieved by the intervention of DsbA that not only forms strategic disulfide bonds but also serves as a chaperone assisting the folding of the domains. The pilus type 1 of uropathogenic E. coli must resist mechanical forces to remain attached to the epithelium. Here the authors use single-molecule force spectroscopy to demonstrate a hierarchy of mechanical stability among the pilus domains and show that the oxidoreductase DsbA also acts as a folding chaperone on the domains.
Collapse
|
39
|
McConnell SA, Amer BR, Muroski J, Fu J, Chang C, Ogorzalek Loo RR, Loo JA, Osipiuk J, Ton-That H, Clubb RT. Protein Labeling via a Specific Lysine-Isopeptide Bond Using the Pilin Polymerizing Sortase from Corynebacterium diphtheriae. J Am Chem Soc 2018; 140:8420-8423. [PMID: 29927249 PMCID: PMC6230430 DOI: 10.1021/jacs.8b05200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins that are site-specifically modified with peptides and chemicals can be used as novel therapeutics, imaging tools, diagnostic reagents and materials. However, there are few enzyme-catalyzed methods currently available to selectively conjugate peptides to internal sites within proteins. Here we show that a pilus-specific sortase enzyme from Corynebacterium diphtheriae (CdSrtA) can be used to attach a peptide to a protein via a specific lysine-isopeptide bond. Using rational mutagenesis we created CdSrtA3M, a highly activated cysteine transpeptidase that catalyzes in vitro isopeptide bond formation. CdSrtA3M mediates bioconjugation to a specific lysine residue within a fused domain derived from the corynebacterial SpaA protein. Peptide modification yields greater than >95% can be achieved. We demonstrate that CdSrtA3M can be used in concert with the Staphylococcus aureus SrtA enzyme, enabling dual, orthogonal protein labeling via lysine-isopeptide and backbone-peptide bonds.
Collapse
Affiliation(s)
- Scott A. McConnell
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Brendan R. Amer
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - John Muroski
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Janine Fu
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Chungyu Chang
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, Argonne, IL, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Chang C, Amer BR, Osipiuk J, McConnell SA, Huang IH, Hsieh V, Fu J, Nguyen HH, Muroski J, Flores E, Ogorzalek Loo RR, Loo JA, Putkey JA, Joachimiak A, Das A, Clubb RT, Ton-That H. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. Proc Natl Acad Sci U S A 2018; 115:E5477-E5486. [PMID: 29844180 PMCID: PMC6004493 DOI: 10.1073/pnas.1800954115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA2M), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.
Collapse
Affiliation(s)
- Chungyu Chang
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Argonne National Laboratory, Argonne, IL 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Scott A McConnell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Van Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Janine Fu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Hong H Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - John Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Erika Flores
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - John A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Argonne National Laboratory, Argonne, IL 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Asis Das
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
- University of California, Los Angeles-US Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030;
| |
Collapse
|
41
|
Schönfelder J, Alonso-Caballero A, De Sancho D, Perez-Jimenez R. The life of proteins under mechanical force. Chem Soc Rev 2018; 47:3558-3573. [PMID: 29473060 DOI: 10.1039/c7cs00820a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although much of our understanding of protein folding comes from studies of isolated protein domains in bulk, in the cellular environment the intervention of external molecular machines is essential during the protein life cycle. During the past decade single molecule force spectroscopy techniques have been extremely useful to deepen our understanding of these interventional molecular processes, as they allow for monitoring and manipulating mechanochemical events in individual protein molecules. Here, we review some of the critical steps in the protein life cycle, starting with the biosynthesis of the nascent polypeptide chain in the ribosome, continuing with the folding supported by chaperones and the translocation into different cell compartments, and ending with proteolysis in the proteasome. Along these steps, proteins experience molecular forces often combined with chemical transformations, affecting their folding and structure, which are measured or mimicked in the laboratory by the application of force with a single molecule apparatus. These mechanochemical reactions can potentially be used as targets for fighting against diseases. Inspired by these insightful experiments, we devise an outlook on the emerging field of mechanopharmacology, which reflects an alternative paradigm for drug design.
Collapse
|
42
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|
43
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
44
|
Valle-Orero J, Tapia-Rojo R, Eckels EC, Rivas-Pardo JA, Popa I, Fernández JM. Proteins Breaking Bad: A Free Energy Perspective. J Phys Chem Lett 2017; 8:3642-3647. [PMID: 28723106 PMCID: PMC5957541 DOI: 10.1021/acs.jpclett.7b01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protein aging may manifest as a mechanical disease that compromises tissue elasticity. As proved recently, while proteins respond to changes in force with an instantaneous elastic recoil followed by a folding contraction, aged proteins break bad, becoming unstructured polymers. Here, we explain this phenomenon in the context of a free energy model, predicting the changes in the folding landscape of proteins upon oxidative aging. Our findings validate that protein folding under force is constituted by two separable components, polymer properties and hydrophobic collapse, and demonstrate that the latter becomes irreversibly blocked by oxidative damage. We run Brownian dynamics simulations on the landscape of protein L octamer, reproducing all experimental observables, for a naive and damaged polyprotein. This work provides a unique tool to understand the evolving free energy landscape of elastic proteins upon physiological changes, opening new perspectives to predict age-related diseases in tissues.
Collapse
|
45
|
Steward KF, Robinson C, Maskell DJ, Nenci C, Waller AS. Investigation of the Fim1 putative pilus locus of Streptococcus equi subspecies equi. MICROBIOLOGY-SGM 2017; 163:1217-1228. [PMID: 28749324 DOI: 10.1099/mic.0.000506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gram-positive bacterium Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, among the most frequently diagnosed infectious diseases of horses worldwide. Genome analysis of S. equi strain 4047 (Se4047) identified a putative operon, Fim1, with similarity to the pilus loci of other Gram-positive bacteria. The Fim1 locus was present in all strains of S. equi and its close relative S. equi subspecies zooepidemicus (S. zooepidemicus) that have been studied to date. In this study we provide evidence that the putative structural pilus proteins, SEQ_0936 and CNE, are produced on the cell surface during in vitro growth and in vivo infection. Although the proteins encoded within the Fim1 locus are not essential for attachment or biofilm formation, over-transcription of SEQ_0936 and CNE enhanced attachment to equine tissue in vitro. Our data suggest that whilst the Fim1 locus does not produce a polymerized pilus structure, the products of the Fim1 locus may fulfil an adhesive function. The putative pilus-associated regulator, tetR, which contains a nonsense mutation in S. equi, was able to regulate transcription of the Fim1 locus following repair and over-transcription, confirming its predicted role in the operon.
Collapse
Affiliation(s)
- Karen Frances Steward
- Centre of Preventative Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | - Carl Robinson
- Centre of Preventative Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chiara Nenci
- Elanco Animal Health, c/o Novartis Animal Health, Inc., Schwarzwaldallee 215, 4058 Basel, Swizerland
| | - Andrew Stephen Waller
- Centre of Preventative Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| |
Collapse
|
46
|
Khare B, V L Narayana S. Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci 2017; 26:1458-1473. [PMID: 28493331 DOI: 10.1002/pro.3191] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Successful adherence, colonization, and survival of Gram-positive bacteria require surface proteins, and multiprotein assemblies called pili. These surface appendages are attractive pharmacotherapeutic targets and understanding their assembly mechanisms is essential for identifying a new class of 'anti-infectives' that do not elicit microbial resistance. Molecular details of the Gram-negative pilus assembly are available indepth, but the Gram-positive pilus biogenesis is still an emerging field and investigations continue to reveal novel insights into this process. Pilus biogenesis in Gram-positive bacteria is a biphasic process that requires enzymes called pilus-sortases for assembly and a housekeeping sortase for covalent attachment of the assembled pilus to the peptidoglycan cell wall. Emerging structural and functional data indicate that there are at least two groups of Gram-positive pili, which require either the Class C sortase or Class B sortase in conjunction with LepA/SipA protein for major pilin polymerization. This observation suggests two distinct modes of sortase-mediated pilus biogenesis in Gram-positive bacteria. Here we review the structural and functional biology of the pilus-sortases from select streptococcal pilus systems and their role in Gram-positive pilus assembly.
Collapse
Affiliation(s)
- Baldeep Khare
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| | - Sthanam V L Narayana
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
47
|
Abstract
Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.
Collapse
Affiliation(s)
- Jessica Valle-Orero
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | | | | |
Collapse
|
48
|
Unusually high mechanical stability of bacterial adhesin extender domains having calcium clamps. PLoS One 2017; 12:e0174682. [PMID: 28376122 PMCID: PMC5380327 DOI: 10.1371/journal.pone.0174682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/12/2017] [Indexed: 01/07/2023] Open
Abstract
To gain insight into the relationship between protein structure and mechanical stability, single molecule force spectroscopy experiments on proteins with diverse structure and topology are needed. Here, we measured the mechanical stability of extender domains of two bacterial adhesins MpAFP and MhLap, in an atomic force microscope. We find that both proteins are remarkably stable to pulling forces between their N- and C- terminal ends. At a pulling speed of 1 μm/s, the MpAFP extender domain fails at an unfolding force Fu = 348 ± 37 pN and MhLap at Fu = 306 ± 51 pN in buffer with 10 mM Ca2+. These forces place both extender domains well above the mechanical stability of many other β-sandwich domains in mechanostable proteins. We propose that the increased stability of MpAFP and MhLap is due to a combination of both hydrogen bonding between parallel terminal strands and intra-molecular coordination of calcium ions.
Collapse
|
49
|
Echelman DJ, Lee AQ, Fernández JM. Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin. J Biol Chem 2017; 292:8988-8997. [PMID: 28348083 DOI: 10.1074/jbc.m117.777466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
Collapse
Affiliation(s)
- Daniel J Echelman
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Alex Q Lee
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Julio M Fernández
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
50
|
Milles LF, Bayer EA, Nash MA, Gaub HE. Mechanical Stability of a High-Affinity Toxin Anchor from the Pathogen Clostridium perfringens. J Phys Chem B 2016; 121:3620-3625. [PMID: 27991799 DOI: 10.1021/acs.jpcb.6b09593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Clostridium perfringens assembles its toxins and carbohydrate-active enzymes by the high-affinity cohesin-dockerin (Coh-Doc) interaction. Coh-Doc interactions characterized previously have shown considerable resilience toward mechanical stress. Here, we aimed to determine the mechanics of this interaction from C. perfringens in the context of a pathogen. Using atomic force microscopy based single-molecule force spectroscopy (AFM-SMFS) we probed the mechanical properties of the interaction of a dockerin from the μ-toxin with the GH84C X82 cohesin domain of C. perfringens. Most probable complex rupture forces were found to be approximately 60 pN and an estimate of the binding potential width was performed. The dockerin was expressed with its adjacent FIVAR (found in various architectures) domain, whose mechanostability we determined to be very similar to the complex. Additionally, fast refolding of this domain was observed. The Coh-Doc interaction from C. perfringens is the mechanically weakest observed to date. Our results establish the relevant force range of toxin assembly mechanics in pathogenic Clostridia.
Collapse
Affiliation(s)
- Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Michael A Nash
- Department of Chemistry, University of Basel , Klingelbergstr. 80, 4056 Basel, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH-Zürich) , Mattenstr. 26, 4058 Basel, Switzerland
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|