1
|
Fan L, Pan J, Zeng J, Guo G, Yang N, Li X, Nafees Ur Rehman M, Zheng J. An outbreak of Providencia rettgeri bacteremia at a Ptyas mucosus farm in Hainan, China. Front Microbiol 2024; 15:1353603. [PMID: 39056011 PMCID: PMC11269246 DOI: 10.3389/fmicb.2024.1353603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Aim To describe the histopathology and etiology of an outbreak of respiratory disease at a Ptyas mucosus farm in Hainan, China. Methods and results The etiology was confirmed by gross examination and microscopic analysis. The bacterial isolates from blood and internal organs were identified by biochemical analysis and 16S rRNA gene sequencing. The virulence and antibiotic resistance characteristics of the isolates were further demonstrated by polymerase chain reaction (PCR), disk diffusion testing, and LD50 analysis in Kunming mice. Histopathological analysis of the diseased P. mucosus revealed systemic lesions, including severe airway obstruction with large numbers of inflammatory cells and cellulose exudates in the lungs; severe multifocal hepatocyte vacuolar degeneration and necrosis in the liver with excessive inflammatory exudates and chronic granuloma; splenic hemorrhage and partial loss of splenic structure; and renal vascular and interstitial congestion. Providencia rettgeri was isolated from the blood and multiple internal organs (liver, spleen, kidneys, and lungs). All examined isolates (H1, H4, and H13) were multidrug-resistant but sensitive to four antibiotics-cefepime, imipenem, chloramphenicol, and ciprofloxacin. Both H1 and H4 carried five resistance genes [bla OXA, tet(A), tet(B), tet(E), and aac (3)-IIa], whereas H13 only carried the tet(A) gene. The dominant virulence pattern of the three isolates was hlyA + ZapA + luxS + rsbA. The virulence of H1 strain was tested, and its 50% lethal dose (LD50) in mice was 2.29 × 108 CFU ml-1. Conclusion To our knowledge, this is the first study to describe an outbreak of bacteremia caused by P. rettgeri in farmed rat snakes. Significance and impact of the study The results highlight that P. rettgeri is an emerging bacterial pathogen in farmed reptiles.
Collapse
Affiliation(s)
- Lixia Fan
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Jiwen Pan
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jifeng Zeng
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Guiying Guo
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, China
| | - Nou Yang
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xuesong Li
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Muhammad Nafees Ur Rehman
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Jiping Zheng
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| |
Collapse
|
2
|
Fitzgerald MJ, Pearson MM, Mobley HLT. Proteus mirabilis UreR coordinates cellular functions required for urease activity. J Bacteriol 2024; 206:e0003124. [PMID: 38534115 PMCID: PMC11025324 DOI: 10.1128/jb.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
A hallmark of Proteus mirabilis infection of the urinary tract is the formation of stones. The ability to induce urinary stone formation requires urease, a nickel metalloenzyme that hydrolyzes urea. This reaction produces ammonia as a byproduct, which can serve as a nitrogen source and weak base that raises the local pH. The resulting alkalinity induces the precipitation of ions to form stones. Transcriptional regulator UreR activates expression of urease genes in a urea-dependent manner. Thus, urease genes are highly expressed in the urinary tract where urea is abundant. Production of mature urease also requires the import of nickel into the cytoplasm and its incorporation into the urease apoenzyme. Urease accessory proteins primarily acquire nickel from one of two nickel transporters and facilitate incorporation of nickel to form mature urease. In this study, we performed a comprehensive RNA-seq to define the P. mirabilis urea-induced transcriptome as well as the UreR regulon. We identified UreR as the first defined regulator of nickel transport in P. mirabilis. We also offer evidence for the direct regulation of the Ynt nickel transporter by UreR. Using bioinformatics, we identified UreR-regulated urease loci in 15 Morganellaceae family species across three genera. Additionally, we located two mobilized UreR-regulated urease loci that also encode the ynt transporter, implying that UreR regulation of nickel transport is a conserved regulatory relationship. Our study demonstrates that UreR specifically regulates genes required to produce mature urease, an essential virulence factor for P. mirabilis uropathogenesis. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs) account for over 40% of acute nosocomial infections in the USA and generate $340 million in healthcare costs annually. A major causative agent of CAUTIs is Proteus mirabilis, an understudied Gram-negative pathogen noted for its ability to form urinary stones via the activity of urease. Urease mutants cannot induce stones and are attenuated in a murine UTI model, indicating this enzyme is essential to P. mirabilis pathogenesis. Transcriptional regulation of urease genes by UreR is well established; here, we expand the UreR regulon to include regulation of nickel import, a function required to produce mature urease. Furthermore, we reflect on the role of urea catalysis in P. mirabilis metabolism and provide evidence for its importance.
Collapse
Affiliation(s)
- Madison J. Fitzgerald
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Legesse M, Abebe A, Degu S, Alebachew Y, Tadesse S. Synthesis and antimicrobial activity of knipholone analogs. Nat Prod Res 2024; 38:1287-1293. [PMID: 36315255 DOI: 10.1080/14786419.2022.2139696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
In the present study, we use knipholone as a prototype molecule to identify new anti-infective agents. Since knipholone is insoluble in water, which would have a detrimental effect on its bioavailability and efficacy, we synthesized knipholone Mannich base derivatives (2-4) that have better predicted solubility and investigated their in vitro antimicrobial activity against eight pathogenic bacterial and fungal strains. The chemical structures of compounds 1-4 were elucidated from their 1H and 13C NMR data, and their antimicrobial activity evaluation was carried out by a broth microdilution MTT assay. Compound 3 exhibited the strongest efficacy against Staphylococcus epidermidis, with MIC value of 9.7 µg/mL. While 4 exhibited the best activity against Staphylococcus aureus, with an MIC value of 19.5 µg/mL, and was the only one to significantly inhibit the fungus Trichophyton mentagrophytes (MIC = 78.2 µg/mL). The study provides evidence for the antibacterial activity of aminoalkyl derivatives of knipholone.
Collapse
Affiliation(s)
- Melese Legesse
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonatan Alebachew
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tadesse
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Sawant NV, Chang SS, Pandit KA, Khekare P, Warner WR, Zimmern PE, De Nisco NJ. VesiX cetylpyridinium chloride is rapidly bactericidal and reduces uropathogenic Escherichia coli bladder epithelial cell invasion in vitro. Microbiol Spectr 2024; 12:e0271223. [PMID: 38240572 PMCID: PMC10913388 DOI: 10.1128/spectrum.02712-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/11/2023] [Indexed: 03/06/2024] Open
Abstract
Management of urinary tract infection (UTI) in postmenopausal women can be challenging. The recent rise in resistance to most of the available oral antibiotic options together with high recurrence rate in postmenopausal women has further complicated treatment of UTI. As such, intravesical instillations of antibiotics like gentamicin are being investigated as an alternative to oral antibiotic therapies. This study evaluates the efficacy of the candidate intravesical therapeutic VesiX, a solution containing the cationic detergent Cetylpyridinium chloride, against a broad range of uropathogenic bacterial species clinically isolated from postmenopausal women with recurrent UTI (rUTI). We also evaluate the cytotoxicity of VesiX against cultured bladder epithelial cells and find that low concentrations of 0.0063% and 0.0125% provide significant bactericidal effect toward diverse bacterial species including uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, and Proteus mirabilis while minimizing cytotoxic effects against cultured 5637 bladder epithelial cells. Lastly, to begin to evaluate the potential utility of using VesiX in combination therapy with existing intravesical therapies for rUTI, we investigate the combined effects of VesiX and the intravesical antibiotic gentamicin. We find that VesiX and gentamicin are not antagonistic and are able to reduce levels of intracellular UPEC in cultured bladder epithelial cells. IMPORTANCE When urinary tract infections (UTIs), which affect over 50% of women, become resistant to available antibiotic therapies dangerous complications like kidney infection and lethal sepsis can occur. New therapeutic paradigms are needed to expand our arsenal against these difficult to manage infections. Our study investigates VesiX, a Cetylpyridinium chloride (CPC)-based therapeutic, as a candidate broad-spectrum antimicrobial agent for use in bladder instillation therapy for antibiotic-resistant UTI. CPC is a cationic surfactant that is FDA-approved for use in mouthwashes and is used as a food additive but has not been extensively evaluated as a UTI therapeutic. Our study is the first to investigate its rapid bactericidal kinetics against diverse uropathogenic bacterial species isolated from postmenopausal women with recurrent UTI and host cytotoxicity. We also report that together with the FDA-approved bladder-instillation agent gentamicin, VesiX was able to significantly reduce intracellular populations of uropathogenic bacteria in cultured bladder epithelial cells.
Collapse
Affiliation(s)
- Namrata V. Sawant
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Samuel S. Chang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Krutika A. Pandit
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Prachi Khekare
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Philippe E. Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole J. De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial ligases reveal fundamental principles of polyubiquitin specificity. Mol Cell 2023; 83:4538-4554.e4. [PMID: 38091999 PMCID: PMC10872931 DOI: 10.1016/j.molcel.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
Homologous to E6AP C terminus (HECT) E3 ubiquitin (Ub) ligases direct substrates toward distinct cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal attached. How polyUb specificity is achieved has been a long-standing mystery, despite extensive study in various hosts, ranging from yeast to human. The bacterial pathogens enterohemorrhagic Escherichia coli and Salmonella Typhimurium encode outlying examples of "HECT-like" (bHECT) E3 ligases, but commonalities to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. We expanded the bHECT family with examples in human and plant pathogens. Three bHECT structures in primed, Ub-loaded states resolved key details of the entire Ub ligation process. One structure provided a rare glimpse into the act of ligating polyUb, yielding a means to rewire polyUb specificity of both bHECT and eHECT ligases. Studying this evolutionarily distinct bHECT family has revealed insight into the function of key bacterial virulence factors as well as fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo bacterial colonization. Infect Immun 2023; 91:e0035523. [PMID: 37850748 PMCID: PMC10652904 DOI: 10.1128/iai.00355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to bacterial colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. Organ agar was also useful for identifying previously unknown links between biosynthetic genes and swarming motility. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sapna Pahil
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
8
|
Elhoshi M, El-Sherbiny E, Elsheredy A, Aboulela AG. A correlation study between virulence factors and multidrug resistance among clinical isolates of Proteus mirabilis. Braz J Microbiol 2023; 54:1387-1397. [PMID: 37535261 PMCID: PMC10484824 DOI: 10.1007/s42770-023-01080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Treatment of Proteus mirabilis infections is a challenge due to the high abundance of virulence factors and the high intrinsic resistance to antimicrobials. Multidrug resistance (MDR) and extensive drug resistance (XDR) further challenge the control of P. mirabilis infection. This study aimed to investigate the correlation between virulence determinants and multidrug resistance in 100 clinical isolates of P. mirabilis collected in Alexandria from December 2019 to June 2021. Susceptibility to antimicrobials was tested by the Kirby Bauer method. Detection of swarming, urease, protease, hemolysin, and biofilm formation was performed phenotypically and by PCR amplification of zapA, flaA, ureC, mrpA, atfA, ucaA, hpmA, and luxS. MDR and XDR were detected in 34% and 5%, respectively. All isolates were positive for motility, swarming, urease, and protease production. Ninety percent were positive for hemolysin production, while 73% formed biofilm. All isolates possessed the ureC and zapA genes. The luxS, flaA, ucaA, hpmA, mrpA, and atfA genes were detected in 99%, 98%, 96% 90%, 89%, and 84%, respectively. The presence of a single biofilm-related gene was statistically correlated with non-biofilm production (P= 0.018). It was concluded that P. mirabilis isolates from catheterized-urine samples were significantly associated with biofilm formation. MDR and virulence were not statistically correlated. A significant positive correlation was detected between some virulence genes in P. mirabilis. Non-MDR isolates of P. mirabilis had a high abundance of virulence factors with no statistically significant difference from MDR. Most of the MDR and all XDR isolates could produce biofilm.
Collapse
Affiliation(s)
- Mai Elhoshi
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eglal El-Sherbiny
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
9
|
Fusco A, Savio V, Chiaromonte A, Alfano A, D’Ambrosio S, Cimini D, Donnarumma G. Evaluation of Different Activity of Lactobacillus spp. against Two Proteus mirabilis Isolated Clinical Strains in Different Anatomical Sites In Vitro: An Explorative Study to Improve the Therapeutic Approach. Microorganisms 2023; 11:2201. [PMID: 37764044 PMCID: PMC10534642 DOI: 10.3390/microorganisms11092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Between these, bacterial prostatitis is believed to be the leading cause of recurrent UTIs in men under 50 years of age and is often unresponsive to antibiotic treatment. Proteus mirabilis is more commonly associated with UTIs in these abnormalities, especially in patients undergoing catheterization. Lactobacillus spp. are an important component of the human microbiota and occur in large quantities in foods. Probiotics are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. In addition to their ability to produce antimicrobial metabolites, they have immunomodulatory activity and do not cause side effects. For this reason, the combination of probiotic microorganisms and conventional drugs was considered. The aim of this work was to select the most active Lactobacillus strains against two clinical isolates of P. mirabilis on bladder and prostatic epithelium, potentially exploitable to improve the clinical management of UTIs.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| | | | | | | | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| |
Collapse
|
10
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial mimicry of eukaryotic HECT ubiquitin ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543783. [PMID: 37333152 PMCID: PMC10274628 DOI: 10.1101/2023.06.05.543783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic Escherichia coli and Salmonella Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, bona fide examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S. Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Pearson MM, Shea AE, Pahil S, Smith SN, Forsyth VS, Mobley HLT. Organ agar serves as physiologically relevant alternative for in vivo colonization. RESEARCH SQUARE 2023:rs.3.rs-2777869. [PMID: 37293055 PMCID: PMC10246091 DOI: 10.21203/rs.3.rs-2777869/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal models for host-microbial interactions have proven valuable, yielding physiologically relevant data that may be otherwise difficult to obtain. Unfortunately, such models are lacking or nonexistent for many microbes. Here, we introduce organ agar, a straightforward method to enable the screening of large mutant libraries while avoiding physiological bottlenecks. We demonstrate that growth defects on organ agar were translatable to colonization deficiencies in a murine model. Specifically, we present a urinary tract infection agar model to interrogate an ordered library of Proteus mirabilis transposon mutants, with accurate prediction of bacterial genes critical for host colonization. Thus, we demonstrate the ability of ex vivo organ agar to reproduce in vivo deficiencies. This work provides a readily adoptable technique that is economical and uses substantially fewer animals. We anticipate this method will be useful for a wide variety of microorganisms, both pathogenic and commensal, in a diverse range of model host species.
Collapse
Affiliation(s)
- Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Herout R, Khoddami S, Moskalev I, Reicherz A, Chew BH, Armbruster CE, Lange D. Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens 2023; 12:pathogens12040509. [PMID: 37111395 PMCID: PMC10143806 DOI: 10.3390/pathogens12040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Proteus mirabilis (PM) is a Gram-negative, rod-shaped bacterium that causes catheter-associated urinary tract infections (CAUTIs). The specific roles of bacterial surface components (BSCs) in PM pathogenicity and CAUTIs remain unknown. To address this knowledge gap, we utilized relevant in vitro adhesion/invasion models and a well-established murine model of CAUTI to assess the ability of wildtype (WT) and seven mutant strains (MSs) of PM with deficiencies in various genes encoding BSCs to undergo the infectious process (including adhesion to catheters) in both model systems. Overall, MSs adhesion to catheters and the different cell types tested was significantly reduced compared to WT, while no invasion of cells was evident at 24 h. In vivo, WT showed a greater number of planktonic (urine) bacteria, bacteria adherent to catheters, and bacteria adherent to/invading bladder tissue when compared to the MSs. Bacterial counts in urine for PMI3191 and waaE mutants were lower than that for WT and other MSs. The complementation of mutated BSC genes resulting in the biggest defects restored the invasion phenotype both in vitro and in vivo. BSCs play a critical role at various steps in the pathogenicity of PM including adhesion to indwelling medical devices and adhesion/invasion of urinary tissue in vivo.
Collapse
Affiliation(s)
- Roman Herout
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sara Khoddami
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Alina Reicherz
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Department of Urology, Marien Hospital Herne, Ruhr-University of Bochum, 44649 Herne, Germany
| | - Ben H Chew
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
14
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
15
|
Xu K, Wang Y, Jian Y, Chen T, Liu Q, Wang H, Li M, He L. Staphylococcus aureus ST1 promotes persistent urinary tract infection by highly expressing the urease. Front Microbiol 2023; 14:1101754. [PMID: 36910215 PMCID: PMC9992547 DOI: 10.3389/fmicb.2023.1101754] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Staphylococcus aureus (SA) is a relatively uncommon cause of urinary tract infections (UTIs) in the general population. Although rare, S. aureus-induced UTIs are prone to potentially life-threatening invasive infections such as bacteremia. To investigate the molecular epidemiology, phenotypic characteristics, and pathophysiology of S. aureus-induced UTIs, we analyzed non-repetitive 4,405 S. aureus isolates collected from various clinical sources from 2008 to 2020 from a general hospital in Shanghai, China. Among these, 193 isolates (4.38%) were cultivated from the midstream urine specimens. Epidemiological analysis showed UTI-derived ST1 (UTI-ST1) and UTI-ST5 are the primary sequence types of UTI-SA. Furthermore, we randomly selected 10 isolates from each of the UTI-ST1, non-UTI-ST1 (nUTI-ST1), and UTI-ST5 groups to characterize their in vitro and in vivo phenotypes. The in vitro phenotypic assays revealed that UTI-ST1 exhibits an obvious decline in hemolysis of human red blood cells and increased biofilm and adhesion in the urea-supplemented medium, compared to the medium without urea, while UTI-ST5 and nUTI-ST1 did not show significant differences between the biofilm-forming and adhesion abilities. In addition, the UTI-ST1 displayed intense urease activities by highly expressing urease genes, indicating the potential role of urease in UTI-ST1 survival and persistence. Furthermore, in vitro virulence assays using the UTI-ST1 ureC mutant showed no significant difference in the hemolytic and biofilm-forming phenotypes in the presence or absence of urea in the tryptic soy broth (TSB) medium. The in vivo UTI model also showed that the CFU of the UTI-ST1 ureC mutant rapidly reduced during UTI pathogenesis 72 h post-infection, while UTI-ST1 and UTI-ST5 persisted in the urine of the infected mice. Furthermore, the phenotypes and the urease expression of UTI-ST1 were found to be potentially regulated by the Agr system with the change in environmental pH. In summary, our results provide important insights into the role of urease in S. aureus-induced UTI pathogenesis in promoting bacterial persistence in the nutrient-limiting urinary microenvironment.
Collapse
Affiliation(s)
- Kai Xu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Cavalu S, Elbaramawi SS, Eissa AG, Radwan MF, S. Ibrahim T, Khafagy ES, Lopes BS, Ali MAM, Hegazy WAH, Elfaky MA. Characterization of the Anti-Biofilm and Anti-Quorum Sensing Activities of the β-Adrenoreceptor Antagonist Atenolol against Gram-Negative Bacterial Pathogens. Int J Mol Sci 2022; 23:13088. [PMID: 36361877 PMCID: PMC9656717 DOI: 10.3390/ijms232113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 08/10/2023] Open
Abstract
The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two β-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the β-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F. Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Thabit AK, Eljaaly K, Zawawi A, Ibrahim TS, Eissa AG, Elbaramawi SS, Hegazy WAH, Elfaky MA. Muting Bacterial Communication: Evaluation of Prazosin Anti-Quorum Sensing Activities against Gram-Negative Bacteria Pseudomonas aeruginosa, Proteus mirabilis, and Serratia marcescens. BIOLOGY 2022; 11:biology11091349. [PMID: 36138828 PMCID: PMC9495718 DOI: 10.3390/biology11091349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Bacterial infections are considered one of the main challenges to global health. Bacterial virulence is controlled by interplayed systems to regulate bacterial invasion and infection in host tissues. Quorum sensing (QS) plays a crucial role in regulating virulence factor production, thus could be considered as the bacterial communication system in the bacterial population. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria. It was demonstrated that prazosin significantly downregulates the expression of QS-encoding genes and shows considered ability to compete on QS proteins in tested strains. Prazosin can significantly diminish biofilm formation and production of virulent enzymes and mitigate the virulence factors of tested strains. However, more testing is required alongside pharmacological and toxicological studies to assure the potential clinical use of prazosin as an adjuvant anti-QS and anti-virulence agent. Abstract Quorum sensing (QS) controls the production of several bacterial virulence factors. There is accumulative evidence to support that targeting QS can ensure a significant diminishing of bacterial virulence. Lessening bacterial virulence has been approved as an efficient strategy to overcome the development of antimicrobial resistance. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria Pseudomonades aeruginosa, Proteus mirabilis, and Serratia marcescens. The evaluation of anti-QS was carried out on a series of in vitro experiments, while the anti-virulence activities of prazosin were tested in an in vivo animal model. The prazosin anti-QS activity was assessed on the production of QS-controlled Chromobacterium violaceum pigment violacein and the expression of QS-encoding genes in P. aeruginosa. In vitro tests were performed to evaluate the prazosin effects on biofilm formation and production of extracellular enzymes by P. aeruginosa, P. mirabilis, and S. marcescens. A protective assay was conducted to evaluate the in vivo anti-virulence activity of prazosin against P. aeruginosa, P. mirabilis, and S. marcescens. Moreover, precise in silico molecular docking was performed to test the prazosin affinity to different QS receptors. The results revealed that prazosin significantly decreased the production of violacein and the virulent enzymes, protease and hemolysins, in the tested strains. Prazosin significantly diminished biofilm formation in vitro and bacterial virulence in vivo. The prazosin anti-QS activity was proven by its downregulation of QS-encoding genes and its obvious binding affinity to QS receptors. In conclusion, prazosin could be considered an efficient anti-virulence agent to be used as an adjuvant to antibiotics, however, it requires further pharmacological evaluations prior to clinical application.
Collapse
Affiliation(s)
- Abrar K. Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.K.T.); (M.A.H.H.)
| | - Khalid Eljaaly
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.K.T.); (M.A.H.H.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Lin WF, Hu RY, Chang HY, Lin FY, Kuo CH, Su LH, Peng HL. The role of urease in the acid stress response and fimbriae expression in Klebsiella pneumoniae CG43. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:620-633. [PMID: 35367140 DOI: 10.1016/j.jmii.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/PURPOSE Two urease operons were identified in Klebsiella pneumoniae CG43, ure-1 and ure-2. This study investigates whether a differential regulation of the expression of ure-1 and ure-2 exists and how urease activity influences the acid stress response and expression of type 1 and type 3 fimbriae. METHODS The ureA1 and ureA2 gene specific deletion mutants were constructed. Promoter activity was assessed using a LacZ reporter system. The sensitivity to acid stress was determined by assessing the survival after pH 2.5 treatment. The influence on type 1 and type 3 fimbriae expression was assessed using western blotting and mannose-sensitive yeast agglutination and biofilm formation assay, respectively. RESULTS Bacterial growth analysis in mM9-U or modified Stuart broth revealed that ure-1 was the principal urease system, and ure-2 had a negative effect on ure-1 activity. Deletion of the fur or nac gene had no apparent effect on the activity of Pure1, Pure2-1, and Pure2-2. The Pure2-2 activity was enhanced by deletion of the hns gene. ureA1 deletion increased acid stress sensitivity, whereas the deleting effect of ureA2 was notable without hns. Deletion of ureA1 or ureA2 significantly induced the expression of type 1 fimbriae but decreased MrkA production and biofilm formation. CONCLUSION ure-1 is the primary expression system in K. pneumoniae CG43, while ure-2 is active in the absence of hns. Impairment of urease activity increases the sensitivity to acid stress, and the accumulation of urea induces the expression of type 1 fimbriae but represses type 3 fimbriae expression.
Collapse
Affiliation(s)
- Wei-Feng Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsin Chu, Taiwan
| | - Rong-Yu Hu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsin Chu, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Fang-Yu Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Chih-Hao Kuo
- Department of Biological Science and Technology, School of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin Chu, Taiwan
| | - Li-Hsin Su
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsin Chu, Taiwan
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsin Chu, Taiwan; Department of Biological Science and Technology, School of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin Chu, Taiwan.
| |
Collapse
|
19
|
Anderson KM, Anderson DM. LncRNAs at the heart of development and disease. Mamm Genome 2022; 33:354-365. [PMID: 35048139 DOI: 10.1007/s00335-021-09937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Long noncoding RNAs (LncRNAs) have emerged as a diverse class of functional molecules that contribute to nearly every facet of mammalian cardiac development and disease. Recent examples show that lncRNAs can be important co-regulators of cardiac patterning and morphogenesis and modulators of the pathogenic signaling that drives heart disease. The flexibility and chemical nature of RNA allows lncRNAs to utilize diverse mechanisms, mediating their effects through their sequence, structure, and molecular interactions with DNA, protein, and other RNAs. In vivo, i.e., animal, studies of individual lncRNAs highlight their ability to balance conserved cardiac gene expression networks, serve as specific and early biomarkers, and indicate their promise as useful therapeutic targets to treat human heart disease. Here, we review recent functionally characterized lncRNAs in cardiac biology and pathology and provide a perspective on emerging approaches to decipher the role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Kelly M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Douglas M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
20
|
Broll V, Perin APA, Lopes FC, Martinelli AHS, Moyetta NR, Fruttero LL, Grahl MV, Uberti AF, Demartini DR, Ligabue-Braun R, Carlini CR. Non-enzymatic properties of Proteus mirabilis urease subunits. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Not Only Antimicrobial: Metronidazole Mitigates the Virulence of Proteus mirabilis Isolated from Macerated Diabetic Foot Ulcer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic foot ulcers are recognized to be a severe complication of diabetes, increasing the risk of amputation and death. The bacterial infection of Diabetic foot ulcers with virulent and resistant bacteria as Proteus mirabilis greatly worsens the wound and may not be treated with conventional therapeutics. Developing new approaches to target bacterial virulence can be helpful to conquer such infections. In the current work, we evaluated the anti-virulence activities of the widely used antibacterial metronidazole. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MEBC) were determined for selected antibiotics which P. mirabilis was resistant to them in the presence and absence of metronidazole in sub-MIC. The effect of metronidazole in sub-MIC on P. mirabilis virulence factors as production of exoenzymes, motilities, adhesion and biofilm formation, were evaluated. Furthermore, molecular docking of metronidazole into P. mirabilis adhesion and essential quorum sensing (QS) proteins, was performed. The results revealed a significant ability of metronidazole to in-vitro inhibit P. mirabilis virulence factors and antagonize its essential proteins. Moreover, metronidazole markedly decreased the MICs and MBECs of tested antibiotics. Conclusively, metronidazole in sub-MIC is a plausible anti-virulence and anti-QS agent that can be combined to other antibiotics as anti-virulence adjuvant to defeat aggressive infections.
Collapse
|
22
|
Grahl MVC, Uberti AF, Broll V, Bacaicoa-Caruso P, Meirelles EF, Carlini CR. Proteus mirabilis Urease: Unsuspected Non-Enzymatic Properties Relevant to Pathogenicity. Int J Mol Sci 2021; 22:ijms22137205. [PMID: 34281258 PMCID: PMC8268090 DOI: 10.3390/ijms22137205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022] Open
Abstract
Infection by Proteus mirabilis causes urinary stones and catheter incrustation due to ammonia formed by urease (PMU), one of its virulence factors. Non-enzymatic properties, such as pro-inflammatory and neurotoxic activities, were previously reported for distinct ureases, including that of the gastric pathogen Helicobacter pylori. Here, PMU was assayed on isolated cells to evaluate its non-enzymatic properties. Purified PMU (nanomolar range) was tested in human (platelets, HEK293 and SH-SY5Y) cells, and in murine microglia (BV-2). PMU promoted platelet aggregation. It did not affect cellular viability and no ammonia was detected in the cultures’ supernatants. PMU-treated HEK293 cells acquired a pro-inflammatory phenotype, producing reactive oxygen species (ROS) and cytokines IL-1β and TNF-α. SH-SY5Y cells stimulated with PMU showed high levels of intracellular Ca2+ and ROS production, but unlike BV-2 cells, SH-SY5Y did not synthesize TNF-α and IL-1β. Texas Red-labeled PMU was found in the cytoplasm and in the nucleus of all cell types. Bioinformatic analysis revealed two bipartite nuclear localization sequences in PMU. We have shown that PMU, besides urinary stone formation, can potentially contribute in other ways to pathogenesis. Our data suggest that PMU triggers pro-inflammatory effects and may affect cells beyond the renal system, indicating a possible role in extra-urinary diseases.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (M.V.C.G.); (A.F.U.)
| | - Augusto F. Uberti
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (M.V.C.G.); (A.F.U.)
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil;
| | - Paula Bacaicoa-Caruso
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil;
| | - Evelin F. Meirelles
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil;
| | - Celia R. Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil
- Correspondence: ; Tel.: +55-51-33205986
| |
Collapse
|
23
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
24
|
Gaston JR, Johnson AO, Bair KL, White AN, Armbruster CE. Polymicrobial interactions in the urinary tract: is the enemy of my enemy my friend? Infect Immun 2021; 89:IAI.00652-20. [PMID: 33431702 DOI: 10.1128/iai.00652-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vast majority of research pertaining to urinary tract infection has focused on a single pathogen in isolation, and predominantly Escherichia coli. However, polymicrobial urine colonization and infection are prevalent in several patient populations, including individuals with urinary catheters. The progression from asymptomatic colonization to symptomatic infection and severe disease is likely shaped by interactions between traditional pathogens as well as constituents of the normal urinary microbiota. Recent studies have begun to experimentally dissect the contribution of polymicrobial interactions to disease outcomes in the urinary tract, including their role in development of antimicrobial-resistant biofilm communities, modulating the innate immune response, tissue damage, and sepsis. This review aims to summarize the epidemiology of polymicrobial urine colonization, provide an overview of common urinary tract pathogens, and present key microbe-microbe and host-microbe interactions that influence infection progression, persistence, and severity.
Collapse
Affiliation(s)
- Jordan R Gaston
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Alexandra O Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Kirsten L Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Ashley N White
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| |
Collapse
|
25
|
Pagoni A, Grabowiecka A, Tabor W, Mucha A, Vassiliou S, Berlicki Ł. Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. J Med Chem 2020; 64:404-416. [PMID: 33369409 DOI: 10.1021/acs.jmedchem.0c01143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, a new class of bifunctional inhibitors of bacterial ureases, important molecular targets for antimicrobial therapies, was developed. The structures of the inhibitors consist of a combination of a phosphonate or (2-carboxyethyl)phosphinate functionality with a catechol-based fragment, which are designed for complexation of the catalytic nickel ions and covalent bonding with the thiol group of Cys322, respectively. Compounds with three types of frameworks, including β-3,4-dihydroxyphenyl-, α-3,4-dihydroxybenzyl-, and α-3,4-dihydroxybenzylidene-substituted derivatives, exhibited complex and varying structure-dependent kinetics of inhibition. Among irreversible binders, methyl β-(3,4-dihydroxyphenyl)-β-(2-carboxyethyl)phosphorylpropionate was observed to be a remarkably reactive inhibitor of Sporosarcina pasteurii urease (kinact/KI = 10 420 s-1 M-1). The high potential of this group of compounds was also confirmed in Proteus mirabilis whole-cell-based inhibition assays. Some compounds followed slow-binding and reversible kinetics, e.g., methyl β-(3,4-dihydroxyphenyl)-β-phosphonopropionate, with Ki* = 0.13 μM, and an atypical low dissociation rate (residence time τ = 205 min).
Collapse
Affiliation(s)
- Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
26
|
Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms 2020; 8:microorganisms8111775. [PMID: 33198099 PMCID: PMC7696407 DOI: 10.3390/microorganisms8111775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Proteus mirabilis is a component of the normal intestinal microflora of humans and animals, but can cause urinary tract infections and even sepsis in hospital settings. In recent years, the number of multidrug-resistant P. mirabilis isolates, including the ones producing extended-spectrum β-lactamases (ESBLs), is increasing worldwide. However, the number of investigations dedicated to this species, especially, whole-genome sequencing, is much lower in comparison to the members of the ESKAPE pathogens group. This study presents a detailed analysis of clinical multidrug-resistant ESBL-producing P. mirabilis isolate using short- and long-read whole-genome sequencing, which allowed us to reveal possible horizontal gene transfer between Klebsiella pneumoniae and P. mirabilis plasmids and to locate the CRISPR-Cas system in the genome together with its probable phage targets, as well as multiple virulence genes. We believe that the data presented will contribute to the understanding of antibiotic resistance acquisition and virulence mechanisms for this important pathogen.
Collapse
|
27
|
Lin WY, Liaw SJ. Deacidification by FhlA-dependent hydrogenase is involved in urease activity and urinary stone formation in uropathogenic Proteus mirabilis. Sci Rep 2020; 10:19546. [PMID: 33177598 PMCID: PMC7658346 DOI: 10.1038/s41598-020-76561-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Proteus mirabilis is an important uropathogen, featured with urinary stone formation. Formate hydrogenlyase (FHL), consisting of formate dehydrogenase H and hydrogenase for converting proton to hydrogen, has been implicated in virulence. In this study, we investigated the role of P. mirabilis FHL hydrogenase and the FHL activator, FhlA. fhlA and hyfG (encoding hydrogenase large subunit) displayed a defect in acid resistance. fhlA and hyfG mutants displayed a delay in medium deacidification compared to wild-type and ureC mutant failed to deacidify the medium. In addition, loss of fhlA or hyfG decreased urease activity in the pH range of 5-8. The reduction of urease activities in fhlA and hyfG mutants subsided gradually over the pH range and disappeared at pH 9. Furthermore, mutation of fhlA or hyfG resulted in a decrease in urinary stone formation in synthetic urine. These indicate fhlA- and hyf-mediated deacidification affected urease activity and stone formation. Finally, fhlA and hyfG mutants exhibited attenuated colonization in mice. Altogether, we found expression of fhlA and hyf confers medium deacidification via facilitating urease activity, thereby urinary stone formation and mouse colonization. The link of acid resistance to urease activity provides a potential strategy for counteracting urinary tract infections by P. mirabilis.
Collapse
Affiliation(s)
- Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10016, Taiwan, ROC
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10016, Taiwan, ROC. .,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
28
|
Gaston JR, Andersen MJ, Johnson AO, Bair KL, Sullivan CM, Guterman LB, White AN, Brauer AL, Learman BS, Flores-Mireles AL, Armbruster CE. Enterococcus faecalis Polymicrobial Interactions Facilitate Biofilm Formation, Antibiotic Recalcitrance, and Persistent Colonization of the Catheterized Urinary Tract. Pathogens 2020; 9:E835. [PMID: 33066191 PMCID: PMC7602121 DOI: 10.3390/pathogens9100835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Indwelling urinary catheters are common in health care settings and can lead to catheter-associated urinary tract infection (CAUTI). Long-term catheterization causes polymicrobial colonization of the catheter and urine, for which the clinical significance is poorly understood. Through prospective assessment of catheter urine colonization, we identified Enterococcus faecalis and Proteus mirabilis as the most prevalent and persistent co-colonizers. Clinical isolates of both species successfully co-colonized in a murine model of CAUTI, and they were observed to co-localize on catheter biofilms during infection. We further demonstrate that P. mirabilis preferentially adheres to E. faecalis during biofilm formation, and that contact-dependent interactions between E. faecalis and P. mirabilis facilitate establishment of a robust biofilm architecture that enhances antimicrobial resistance for both species. E. faecalis may therefore act as a pioneer species on urinary catheters, establishing an ideal surface for persistent colonization by more traditional pathogens such as P. mirabilis.
Collapse
Affiliation(s)
- Jordan R. Gaston
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (J.R.G.); (C.M.S.); (L.B.G.)
| | - Marissa J. Andersen
- Department of Biological Sciences, College of Science, Notre Dame University, IN 15701, USA;
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Kirsten L. Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Christopher M. Sullivan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (J.R.G.); (C.M.S.); (L.B.G.)
| | - L. Beryl Guterman
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (J.R.G.); (C.M.S.); (L.B.G.)
| | - Ashely N. White
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, College of Science, Notre Dame University, IN 15701, USA;
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| |
Collapse
|
29
|
Jiang W, Ubhayasekera W, Breed MC, Norsworthy AN, Serr N, Mobley HLT, Pearson MM, Knight SD. MrpH, a new class of metal-binding adhesin, requires zinc to mediate biofilm formation. PLoS Pathog 2020; 16:e1008707. [PMID: 32780778 PMCID: PMC7444556 DOI: 10.1371/journal.ppat.1008707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/21/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Proteus mirabilis, a Gram-negative uropathogen, is a major causative agent in catheter-associated urinary tract infections (CAUTI). Mannose-resistant Proteus-like fimbriae (MR/P) are crucially important for P. mirabilis infectivity and are required for biofilm formation and auto-aggregation, as well as for bladder and kidney colonization. Here, the X-ray crystal structure of the MR/P tip adhesin, MrpH, is reported. The structure has a fold not previously described and contains a transition metal center with Zn2+ coordinated by three conserved histidine residues and a ligand. Using biofilm assays, chelation, metal complementation, and site-directed mutagenesis of the three histidines, we show that an intact metal binding site occupied by zinc is essential for MR/P fimbria-mediated biofilm formation, and furthermore, that P. mirabilis biofilm formation is reversible in a zinc-dependent manner. Zinc is also required for MR/P-dependent agglutination of erythrocytes, and mutation of the metal binding site renders P. mirabilis unfit in a mouse model of UTI. The studies presented here provide important clues as to the mechanism of MR/P-mediated biofilm formation and serve as a starting point for identifying the physiological MR/P fimbrial receptor. Many bacteria use fimbriae to adhere to surfaces, and this function is often essential for pathogens to gain a foothold in the host. In this study, we examine the major virulence-associated fimbrial protein, MrpH, of the bacterial urinary tract pathogen Proteus mirabilis. This species is particularly known for causing catheter-associated urinary tract infections, in which it forms damaging urinary stones and crystalline biofilms that can block the flow of urine through indwelling catheters. MrpH resides at the tip of mannose-resistant Proteus-like (MR/P) fimbriae and is required for MR/P-dependent adherence to surfaces. Although MR/P belongs to a well-known class of adhesive fimbriae encoded by the chaperone-usher pathway, we found that MrpH has a dramatically different structure compared with other tip-located adhesins in this family. Unexpectedly, MrpH was found to bind a zinc cation, which we show is essential for MR/P-mediated biofilm formation and adherence to red blood cells. Furthermore, MR/P-mediated adherence can be modified by controlling zinc levels. These findings have the potential to aid development of better anti-biofilm urinary catheters or other methods to prevent P. mirabilis infection of the urinary tract.
Collapse
Affiliation(s)
- Wangshu Jiang
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Wimal Ubhayasekera
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Michael C. Breed
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Allison N. Norsworthy
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Nina Serr
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Melanie M. Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail: (MMP); (SDK)
| | - Stefan D. Knight
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail: (MMP); (SDK)
| |
Collapse
|
30
|
Potentially Probiotic Lactobacillus Strains Derived from Food Intensify Crystallization Caused by Proteus mirabilis in Urine. Probiotics Antimicrob Proteins 2020; 13:441-452. [PMID: 32754854 PMCID: PMC8032593 DOI: 10.1007/s12602-020-09689-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Proteus mirabilis is a common cause of infectious urolithiasis. The first stage in the formation of urinary stones is the crystallization of mineral salts in the urine induced by urease activity of this microorganism. Lactobacillus spp. are an important component of the human microbiota and in large quantities occur in foods. Regardless of their origin, those with probiotic properties are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. The aim of the study was to check the effect of selected Lactobacillus plantarum and Lactobacillus brevis strains on crystallization caused by P. mirabilis in an in vitro experiment. It has been confirmed that selected Lactobacillus strains have antibacterial properties and colonize the urinary tract epithelium. During 24-h incubation of bacterial cultures, containing P. mirabilis and individual Lactobacillus strains, in synthetic urine, bacterial viability (CFU/mL), pH, and crystallization were determined. Crystallization was assessed quantitatively and qualitatively using AAS and XRD techniques as well as phase-contrast microscopy. It has been shown that in the presence of selected Lactobacillus strains, the culture pH increases faster, especially after 8 h of incubation, compared with the pure P. mirabilis culture. An increase in pH reduces the viability of P. mirabilis; however, in the presence of some lactobacilli, the uropathogen grows more intensively. The presence of Lactobacillus also affected crystallization by increasing its intensity, and the resulting crystals were larger in size. Tested L. plantarum and L. brevis strains could therefore accelerate the formation of urinary stones and development of infection.
Collapse
|
31
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
32
|
Assessment of Pathogenic Potential, Virulent Genes Profile, and Antibiotic Susceptibility of Proteus mirabilis from Urinary Tract Infection. Int J Microbiol 2020; 2020:1231807. [PMID: 32089693 PMCID: PMC7029293 DOI: 10.1155/2020/1231807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Proteus mirabilis is the third most common bacterium that can cause complicated UTI, especially in catheterized patients. Urovirulence genes of P. mirabilis strains are poorly identified among UTI patients. The aims of the present study were to determine the prevalence of the uropathogenic P. mirabilis strains isolated from UTI patients by the detection of several P. mirabilis virulence genes and to characterize the antibiotic susceptibility profile of P. mirabilis isolates. P. mirabilis isolates were collected from urine specimens of patients suffering from UTI. Virulence genes in P. mirabilis, namely, hpmA, hpmB, rsbA, luxS, ureC1, hlyA, rpoA, atfA, atfC, mrpA, and pm1 were detected in the isolates via PCR detection method. All P. mirabilis virulence genes were detected in more than 90% of the isolates except hlyA gene, which was detected in only 23.8% of the isolates. The rate of susceptibility for ceftriaxone was 96.8%, followed by norfloxacin (82.5%), gentamicin (71.4%), ciprofloxacin (69.8%), cephalexin (52.4%), nalidixic acid (42.9%), sulfamethoxazole (39.7%), ampicillin (36.5%), and nitrofurantoin (3.2%). Significant associations (P < 0.05) were detected between antimicrobial susceptibility of each of the following antibiotics and the presence virulence genes. Cephalexin antimicrobial susceptibility was significantly associated with the presence each of ureC1 and atfC. Sulfamethoxazole antimicrobial susceptibility was significantly associated with the presence atfA. Ceftriaxone antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfC, mrpA, and pm1. Nitrofurantoin antimicrobial susceptibility was significantly associated with the presence each of hpmA, ureC1, rpoA, atfA, atfC, mrpA, and pm1. In conclusion, an association between the presence of urovirulence genes of P. mirabilis and increasing P. mirabilis resistance to antimicrobials has been demonstrated.
Collapse
|
33
|
Juarez GE, Mateyca C, Galvan EM. Proteus mirabilis outcompetes Klebsiella pneumoniae in artificial urine medium through secretion of ammonia and other volatile compounds. Heliyon 2020; 6:e03361. [PMID: 32055744 PMCID: PMC7005574 DOI: 10.1016/j.heliyon.2020.e03361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/18/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae and Proteus mirabilis form mixed biofilms in catheter-associated urinary tract infections. However, co-inoculation of P. mirabilis with K. pneumoniae in artificial urine medium (AUM) resulted in a drastic reduction of K. pneumoniae cells in both biofilm and planktonic growth. Here, the mechanism behind this competitive interaction was studied. Both pH and aqueous ammonia (NH3aq) increased in mixed cultures (to 9.3 and 150 mM, respectively), while K. pneumoniae viable cells dramatically diminished over time (>6-log reduction, p < 0.05). Mixed cultures developed in either 2-(N-morpholino) ethanesulfonic acid (MES)-buffered AUM (pH 6.5) or AUM without urea did not show bacterial competition, evidencing that the increase in pH and/or NH3aq concentration play a role in the competitive interaction. Viability of K. pneumoniae single-species cultures decreased 1.5-log in alkaline AUM containing 150 mM NH3aq after 24 h inoculation, suggesting that ammonia is involved in this inter-species competition. Besides NH3aq, additional antimicrobials should be present to get the whole competitive effect. Supernatants from P. mirabilis-containing cultures significantly diminished K. pneumoniae viability in planktonic cultures and affected biofilm biomass (p < 0.05). When subjected to evaporation, these supernatants lost their antimicrobial activity suggesting the volatile nature of the antimicrobial compounds. Exposure of K. pneumoniae to volatile compounds released by P. mirabilis significantly decreased cell viability in both planktonic and biofilm cultures (p < 0.05). The current investigation also evidenced a similar bactericidal effect of P. mirabilis volatiles over Escherichia coli and Morganella morganii. Altogether, these results evidence the secretion of ammonia and other volatile compounds by P. mirabilis, with antimicrobial activity against gram-negative uropathogens including K. pneumoniae. This investigation provides novel insight into competitive inter-species interactions that are mediated by production of volatile molecules.
Collapse
Affiliation(s)
- Guillermo E Juarez
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquimicas y Farmaceuticas, Centro de Estudios Biomédicos, Basicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Celeste Mateyca
- Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.,Laboratory of Bacterial Genetics, Fundacion Instituto Leloir-IIBBA (CONICET), Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Estela M Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquimicas y Farmaceuticas, Centro de Estudios Biomédicos, Basicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
34
|
Abstract
Urease is one of the most distinctive virulence factors of Proteus mirabilis pathogenesis. Urease activity correlates with many landmark side effects of P. mirabilis catheter-associated urinary tract infections, such as urolithiasis and bacteremia. Here we describe two simple and inexpensive colorimetric methods for quantifying urease activity in single species cultures as well as cocultures.
Collapse
|
35
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
36
|
Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis 2019; 19:369. [PMID: 31046689 PMCID: PMC6498624 DOI: 10.1186/s12879-019-3994-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug-resistant E. coli. METHODS Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. RESULTS We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. CONCLUSION We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-001, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| |
Collapse
|
37
|
Pelling H, Nzakizwanayo J, Milo S, Denham EL, MacFarlane WM, Bock LJ, Sutton JM, Jones BV. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 2019; 68:277-293. [PMID: 30811615 DOI: 10.1111/lam.13144] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/21/2022]
Abstract
Urethral catheters are the most commonly deployed medical devices and used to manage a wide range of conditions in both hospital and community care settings. The use of long-term catheterization, where the catheter remains in place for a period >28 days remains common, and the care of these patients is often undermined by the acquisition of infections and formation of biofilms on catheter surfaces. Particular problems arise from colonization with urease-producing species such as Proteus mirabilis, which form unusual crystalline biofilms that encrust catheter surfaces and block urine flow. Encrustation and blockage often lead to a range of serious clinical complications and emergency hospital referrals in long-term catheterized patients. Here we review current understanding of bacterial biofilm formation on urethral catheters, with a focus on crystalline biofilm formation by P. mirabilis, as well as approaches that may be used to control biofilm formation on these devices. SIGNIFICANCE AND IMPACT OF THE STUDY: Urinary catheters are the most commonly used medical devices in many healthcare systems, but their use predisposes to infection and provide ideal conditions for bacterial biofilm formation. Patients managed by long-term urethral catheterization are particularly vulnerable to biofilm-related infections, with crystalline biofilm formation by urease producing species frequently leading to catheter blockage and other serious clinical complications. This review considers current knowledge regarding biofilm formation on urethral catheters, and possible strategies for their control.
Collapse
Affiliation(s)
- H Pelling
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - J Nzakizwanayo
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - S Milo
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - E L Denham
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - W M MacFarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - L J Bock
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - J M Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - B V Jones
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| |
Collapse
|
38
|
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
|
39
|
Abstract
Neutrophils are important mediators of the antimicrobial defense during urinary tract infections (UTIs). When activated at the site of infection, these innate immune cells phagocytose and neutralize an invading pathogen. Another neutrophil defense strategy is the release of effectors, such as antimicrobial peptides and proteins stored in neutrophil granules and reactive oxygen species. Their release can be facilitated by cellular signals that trigger chromatic decondensation and the disruption of nuclear membranes, followed by granule and plasma membrane disintegration, DNA release into the extracellular milieu, and neutrophil cell death. Neutrophil extracellular traps (NETs) form. If microbial pathogens are the cause of neutrophil infiltration, they are entrapped in the network of DNA fibers that characterize NETs and are exposed to antimicrobial granule effectors and histones that bind to the extracellular DNA fibers. Here, we describe nonmicroscopic methods applied to clinical (urine sediment) samples to identify and characterize NETs associated with UTI. A stepwise extraction procedure using PBS, deoxyribonuclease I digestion and SDS-based solubilization is described. This is followed by native gel analysis to visualize protein-DNA macromolecular assemblies and proteomic analysis to identify signature proteins and their quantities in NETs. Microbes observed to be entrapped in NETs in the process of the innate immune response to the infection are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, and Enterococcus faecalis.
Collapse
Affiliation(s)
- Yanbao Yu
- The J. Craig Venter Institute, Rockville, MD, USA
| | - Keehwan Kwon
- The J. Craig Venter Institute, Rockville, MD, USA
| | | |
Collapse
|
40
|
Microevolution in response to transient heme-iron restriction enhances intracellular bacterial community development and persistence. PLoS Pathog 2018; 14:e1007355. [PMID: 30332468 PMCID: PMC6205647 DOI: 10.1371/journal.ppat.1007355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM. Nontypeable Haemophilus influenzae (NTHI) inhabits diverse niches in the host. The ability to adapt to new microenvironments is consistent with the predominance of NTHI as a causative agent of otitis media (OM) in children. We evaluated the microevolution of NTHI associated with adaptation and persistence in response to nutrient limitation. We identified a naturally occurring mutation that enhances NTHI persistence and formation of intracellular bacterial communities (IBCs) in a pre-clinical model of OM. The presence of IBCs during OM provides the first opportunity to evaluate the role of intracellular populations in chronicity and quiescence as a new paradigm for recurrent OM. This model provides a new platform to identify novel therapeutics for this highly prevalent and costly infectious disease.
Collapse
|
41
|
MrpJ Directly Regulates Proteus mirabilis Virulence Factors, Including Fimbriae and Type VI Secretion, during Urinary Tract Infection. Infect Immun 2018; 86:IAI.00388-18. [PMID: 30082479 DOI: 10.1128/iai.00388-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (CAUTIs) and urolithiasis. The transcriptional regulator MrpJ inversely modulates two critical aspects of P. mirabilis UTI progression: fimbria-mediated attachment and flagellum-mediated motility. Transcriptome data indicated a network of virulence-associated genes under MrpJ's control. Here, we identify the direct gene regulon of MrpJ and its contribution to P. mirabilis pathogenesis, leading to the discovery of novel virulence targets. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) was used for the first time in a CAUTI pathogen to probe for in vivo direct targets of MrpJ. Selected MrpJ-regulated genes were mutated and assessed for their contribution to UTI using a mouse model. ChIP-seq revealed a palindromic MrpJ binding sequence and 78 MrpJ-bound regions, including binding sites upstream of genes involved in motility, fimbriae, and a type VI secretion system (T6SS). A combinatorial mutation approach established the contribution of three fimbriae (fim8A, fim14A, and pmpA) to UTI and a new pathogenic role for the T6SS in UTI progression. In conclusion, this study (i) establishes the direct gene regulon and an MrpJ consensus binding site and (ii) led to the discovery of new virulence genes in P. mirabilis UTI, which could be targeted for therapeutic intervention of CAUTI.
Collapse
|
42
|
Hardison RL, Heimlich DR, Harrison A, Beatty WL, Rains S, Moseley MA, Thompson JW, Justice SS, Mason KM. Transient Nutrient Deprivation Promotes Macropinocytosis-Dependent Intracellular Bacterial Community Development. mSphere 2018; 3:3/5/e00286-18. [PMID: 30209128 PMCID: PMC6135960 DOI: 10.1128/msphere.00286-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nutrient limitation restricts bacterial growth in privileged sites such as the middle ear. Transient heme-iron restriction of nontypeable Haemophilus influenzae (NTHI), the major causative agent of chronic and recurrent otitis media (OM), promotes new and diverse phenotypes that can influence planktonic, biofilm, and intracellular lifestyles of NTHI. However, the bacterial responses to nutrient restriction that impact intracellular fate and survival of NTHI are unknown. In this work, we provide evidence for the role of transient heme-iron restriction in promoting the formation of intracellular bacterial communities (IBCs) of NTHI both in vitro and in vivo in a preclinical model of OM. We show that transient heme-iron restriction of NTHI results in significantly increased invasion and intracellular populations that escape or evade the endolysosomal pathway for increased intracellular survival. In contrast, NTHI continuously exposed to heme-iron traffics through the endolysosomal pathway for degradation. The use of pharmacological inhibitors revealed that prior heme-iron status does not appear to influence NTHI internalization through endocytic pathways. However, inhibition of macropinocytosis altered the intracellular fate of transiently restricted NTHI for degradation in the endolysosomal pathway. Furthermore, prevention of macropinocytosis significantly reduced the number of IBCs in cultured middle ear epithelial cells, providing evidence for the feasibility of this approach to reduce OM persistence. These results reveal that microenvironmental cues can influence the intracellular fate of NTHI, leading to new mechanisms for survival during disease progression.IMPORTANCE Otitis media is the most common bacterial infection in childhood. Current therapies are limited in the prevention of chronic or recurrent otitis media which leads to increased antibiotic exposure and represents a significant socioeconomic burden. In this study, we delineate the effect of nutritional limitation on the intracellular trafficking pathways used by nontypeable Haemophilus influenzae (NTHI). Moreover, transient limitation of heme-iron led to the development of intracellular bacterial communities that are known to contribute to persistence and recurrence in other diseases. New approaches for therapeutic interventions that reduce the production of intracellular bacterial communities and promote trafficking through the endolysosomal pathway were revealed through the use of pharmacological inhibition of macropinocytosis. This work demonstrates the importance of an intracellular niche for NTHI and provides new approaches for intervention for acute, chronic, and recurring episodes of otitis media.
Collapse
Affiliation(s)
- Rachael L Hardison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Derek R Heimlich
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alistair Harrison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Rains
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kevin M Mason
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
43
|
Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol 2018; 200:JB.00124-18. [PMID: 29866802 DOI: 10.1128/jb.00124-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.
Collapse
|
44
|
Luzhnova S, Voronkov A, Gabitova N, Billel S. Investigation of the activity of new derivatives of 1,3-diazinone-4 and their acyclic precursors with respect to bacteria of the genus Proteus. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.25110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The present paper provides a study of the activity of the new 1,3-diazinon-4 derivatives and their acyclic precursors under the laboratory cipher PYaTd1, PYaTs2, PYaTs3 and PYaTs4 against microorganisms of the genus Proteus, which is of high importance at the moment as the growing resistance of the Proteus to previously highly active antibiotics dictates the need to search for effective antimicrobial agents that meet modern safety requirements.
Materials and Methods: The study of the activity of the compounds was carried out on collection and freshly isolated strains from patients with different pathologies. The strains were identified using the BIOMIC V3 apparatus (Giles Scientific, USA) to verify genus and species identity. The strains used in the study were previously examined for susceptibility to antibacterial drugs by the Disc Method to assess the presence or absence of resistance. The activity of the new compounds was studied by the serial dilution method.
Results: The results of the study showed that the compounds PYaTd1, PYaTs2, PYaTs3 and PYaTs4 show a different activity against bacteria of the genus Proteus. The substance PYaTs2 is ineffective. With respect to strains P.mirabilis and P.rettgeri, the minimum inhibitory concentration of the compounds PYaTs3, PYaTs4 and PYaTd1 ranges from 4 μg/ml to 16 μg/ml.
Conclusion: Thus, by the average aggregate indices, regardless of the species and strain of bacteria, the most effective compound is PYaTd1, the MIC50 of which is within 10 μg/ml, which proves it to be promising and makes further development worthwhile.
Collapse
|
45
|
Yang X, Koohi-Moghadam M, Wang R, Chang YY, Woo PCY, Wang J, Li H, Sun H. Metallochaperone UreG serves as a new target for design of urease inhibitor: A novel strategy for development of antimicrobials. PLoS Biol 2018; 16:e2003887. [PMID: 29320492 PMCID: PMC5779714 DOI: 10.1371/journal.pbio.2003887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/23/2018] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Urease as a potential target of antimicrobial drugs has received considerable attention given its versatile roles in microbial infection. Development of effective urease inhibitors, however, is a significant challenge due to the deeply buried active site and highly specific substrate of a bacterial urease. Conventionally, urease inhibitors are designed by either targeting the active site or mimicking substrate of urease, which is not efficient. Up to now, only one effective inhibitor—acetohydroxamic acid (AHA)—is clinically available, but it has adverse side effects. Herein, we demonstrate that a clinically used drug, colloidal bismuth subcitrate, utilizes an unusual way to inhibit urease activity, i.e., disruption of urease maturation process via functional perturbation of a metallochaperone, UreG. Similar phenomena were also observed in various pathogenic bacteria, suggesting that UreG may serve as a general target for design of new types of urease inhibitors. Using Helicobacter pylori UreG as a showcase, by virtual screening combined with experimental validation, we show that two compounds targeting UreG also efficiently inhibited urease activity with inhibitory concentration (IC)50 values of micromolar level, resulting in attenuated virulence of the pathogen. We further demonstrate the efficacy of the compounds in a mammalian cell infection model. This study opens up a new opportunity for the design of more effective urease inhibitors and clearly indicates that metallochaperones involved in the maturation of important microbial metalloenzymes serve as new targets for devising a new type of antimicrobial drugs. Urease, a metalloenzyme that catalyzes the hydrolysis of urea, plays important roles in the survival and virulence of many microbial pathogens, and has long been considered an important drug target for the development of novel antimicrobials. However, its deeply buried active site and highly specific substrate of bacterial urease make it very challenging to design effective urease inhibitors by conventional approaches. In this study, we reveal that a bismuth-based drug (colloidal bismuth subcitrate) inhibits urease activity in an unusual way. This drug binds the urease accessary protein UreG and inhibits its GTPase activity, thus perturbing nickel insertion into the apo-urease, a process called urease maturation. UreG is therefore proposed as an alternative target for the development of urease inhibitors. Using H. pylori UreG as an example, combined with virtual screening and experimental validation, we further show that several small molecules that bind and functionally disrupt UreG could indeed inhibit urease activity in bacteria and in a cell infection model and possess potent antimicrobial activity. In summary, we discovered metallochaperone UreG as a new target for the design of urease inhibitors. Such a strategy should have a broad application in the development of metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Xinming Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Mohamad Koohi-Moghadam
- Department of Chemistry, The University of Hong Kong, Hong Kong
- Center for Genomic Sciences, The University of Hong Kong, Hong Kong
- Center for Individualized Medicine & Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Junwen Wang
- Center for Individualized Medicine & Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, United States of America
- Department of Biomedical Informatics, Arizona State University, Scottsdale, Arizona, United States of America
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong
- * E-mail: (HS); (HL)
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong
- * E-mail: (HS); (HL)
| |
Collapse
|
46
|
Sasaki S, Kishii K, Okazaki M. Contactless Ammonia Mapping for Concentric Colony Pattern of <i>Proteus mirabilis</i>. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology
| | - Kozue Kishii
- School of Health Sciences, Tokyo University of Technology
| | | |
Collapse
|
47
|
Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment. Int J Mol Sci 2017; 18:ijms18102077. [PMID: 28973965 PMCID: PMC5666759 DOI: 10.3390/ijms18102077] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia coli (UPEC), for which current antibiotic therapies often fail. UPEC forms multicellular communities known as biofilms on urinary catheters, as well as on and within bladder epithelial cells. Biofilm formation protects UPEC from environmental conditions, antimicrobial therapy, and the host immune system. Previous studies have investigated UPEC biofilm formation in aerobic conditions (21% oxygen); however, urine oxygen tension is reduced (4–6%), and urine contains molecules that can be used by UPEC as alternative terminal electron acceptors (ATEAs) for respiration. This study was designed to determine whether these different terminal electron acceptors utilized by E. coli influence biofilm formation. A panel of 50 urine-associated E. coli isolates was tested for the ability to form biofilm under anaerobic conditions and in the presence of ATEAs. Biofilm production was reduced under all tested sub-atmospheric levels of oxygen, with the notable exception of 4% oxygen, the reported concentration of oxygen within the bladder.
Collapse
|
48
|
Abstract
Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections. Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of urinary tract infections in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of uropathogenic E. coli and other uropathogens.
Collapse
|
49
|
The Pathogenic Potential of Proteus mirabilis Is Enhanced by Other Uropathogens during Polymicrobial Urinary Tract Infection. Infect Immun 2017; 85:IAI.00808-16. [PMID: 27895127 DOI: 10.1128/iai.00808-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022] Open
Abstract
Urinary catheter use is prevalent in health care settings, and polymicrobial colonization by urease-positive organisms, such as Proteus mirabilis and Providencia stuartii, commonly occurs with long-term catheterization. We previously demonstrated that coinfection with P. mirabilis and P. stuartii increased overall urease activity in vitro and disease severity in a model of urinary tract infection (UTI). In this study, we expanded these findings to a murine model of catheter-associated UTI (CAUTI), delineated the contribution of enhanced urease activity to coinfection pathogenesis, and screened for enhanced urease activity with other common CAUTI pathogens. In the UTI model, mice coinfected with the two species exhibited higher urine pH values, urolithiasis, bacteremia, and more pronounced tissue damage and inflammation compared to the findings for mice infected with a single species, despite having a similar bacterial burden within the urinary tract. The presence of P. stuartii, regardless of urease production by this organism, was sufficient to enhance P. mirabilis urease activity and increase disease severity, and enhanced urease activity was the predominant factor driving tissue damage and the dissemination of both organisms to the bloodstream during coinfection. These findings were largely recapitulated in the CAUTI model. Other uropathogens also enhanced P. mirabilis urease activity in vitro, including recent clinical isolates of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa We therefore conclude that the underlying mechanism of enhanced urease activity may represent a widespread target for limiting the detrimental consequences of polymicrobial catheter colonization, particularly by P. mirabilis and other urease-positive bacteria.
Collapse
|
50
|
Norsworthy AN, Pearson MM. From Catheter to Kidney Stone: The Uropathogenic Lifestyle of Proteus mirabilis. Trends Microbiol 2016; 25:304-315. [PMID: 28017513 DOI: 10.1016/j.tim.2016.11.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis is a model organism for urease-producing uropathogens. These diverse bacteria cause infection stones in the urinary tract and form crystalline biofilms on indwelling urinary catheters, frequently leading to polymicrobial infection. Recent work has elucidated how P. mirabilis causes all of these disease states. Particularly exciting is the discovery that this bacterium forms large clusters in the bladder lumen that are sites for stone formation. These clusters, and other steps of infection, require two virulence factors in particular: urease and MR/P fimbriae. Highlighting the importance of MR/P fimbriae is the cotranscribed regulator, MrpJ, which globally controls virulence. Overall, P. mirabilis exhibits an extraordinary lifestyle, and further probing will answer exciting basic microbiological and clinically relevant questions.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology, New York University Medical Center, New York, NY, USA
| | - Melanie M Pearson
- Department of Microbiology, New York University Medical Center, New York, NY, USA; Department of Urology, New York University Medical Center, New York, NY, USA; Current address: University of Michigan Medical School, Department of Microbiology and Immunology, 5641 Medical Science Building II, 1150 West Medical Center Dr., Ann Arbor, MI 48109-0620, USA.
| |
Collapse
|