1
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Tomkova M, McClellan MJ, Crevel G, Shahid AM, Mozumdar N, Tomek J, Shepherd E, Cotterill S, Schuster-Böckler B, Kriaucionis S. Human DNA polymerase ε is a source of C>T mutations at CpG dinucleotides. Nat Genet 2024; 56:2506-2516. [PMID: 39390083 PMCID: PMC11549043 DOI: 10.1038/s41588-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
C-to-T transitions in CpG dinucleotides are the most prevalent mutations in human cancers and genetic diseases. These mutations have been attributed to deamination of 5-methylcytosine (5mC), an epigenetic modification found on CpGs. We recently linked CpG>TpG mutations to replication and hypothesized that errors introduced by polymerase ε (Pol ε) may represent an alternative source of mutations. Here we present a new method called polymerase error rate sequencing (PER-seq) to measure the error spectrum of DNA polymerases in isolation. We find that the most common human cancer-associated Pol ε mutant (P286R) produces an excess of CpG>TpG errors, phenocopying the mutation spectrum of tumors carrying this mutation and deficiencies in mismatch repair. Notably, we also discover that wild-type Pol ε has a sevenfold higher error rate when replicating 5mCpG compared to C in other contexts. Together, our results from PER-seq and human cancers demonstrate that replication errors are a major contributor to CpG>TpG mutagenesis in replicating cells, fundamentally changing our understanding of this important disease-causing mutational mechanism.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.
| | | | - Gilles Crevel
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | - Nandini Mozumdar
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Emelie Shepherd
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sue Cotterill
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | | |
Collapse
|
3
|
Zhai X, Gobbi A, Kot W, Krych L, Nielsen DS, Deng L. A single-stranded based library preparation method for virome characterization. MICROBIOME 2024; 12:219. [PMID: 39449043 PMCID: PMC11515303 DOI: 10.1186/s40168-024-01935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The gut virome is an integral component of the gut microbiome, playing a crucial role in maintaining gut health. However, accurately depicting the entire gut virome is challenging due to the inherent diversity of genome types (dsDNA, ssDNA, dsRNA, and ssRNA) and topologies (linear, circular, or fragments), with subsequently biases associated with current sequencing library preparation methods. To overcome these problems and improve reproducibility and comparability across studies, universal or standardized virome sequencing library construction methods are highly needed in the gut virome study. RESULTS We repurposed the ligation-based single-stranded library (SSLR) preparation method for virome studies. We demonstrate that the SSLR method exhibits exceptional efficiency in quantifying viral DNA genomes (both dsDNA and ssDNA) and outperforms existing double-stranded (Nextera) and single-stranded (xGen, MDA + Nextera) library preparation approaches in terms of minimal amplification bias, evenness of coverage, and integrity of assembling viral genomes. The SSLR method can be utilized for the simultaneous library preparation of both DNA and RNA viral genomes. Furthermore, the SSLR method showed its ability to capture highly modified phage genomes, which were often lost using other library preparation approaches. CONCLUSION We introduce and improve a fast, simple, and efficient ligation-based single-stranded DNA library preparation for gut virome study. This method is compatible with Illumina sequencing platforms and only requires ligation reagents within 3-h library preparation, which is similar or even better than the advanced library preparation method (xGen). We hope this method can be further optimized, validated, and widely used to make gut virome study more comparable and reproducible. Video Abstract.
Collapse
Affiliation(s)
- Xichuan Zhai
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Alex Gobbi
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, Torino, 10095, Italy
| | - Witold Kot
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lukasz Krych
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Dennis Sandris Nielsen
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Ling Deng
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark.
| |
Collapse
|
4
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Jin X, Zhang R, Fu Y, Zhu Q, Hong L, Wu A, Wang H. Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. Brief Funct Genomics 2024; 23:639-650. [PMID: 38688725 DOI: 10.1093/bfgp/elae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.
Collapse
Affiliation(s)
- Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruohan Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunqi Fu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiunan Zhu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Qiao Y, Cheng T, Miao Z, Cui Y, Tu J. Recent Innovations and Technical Advances in High-Throughput Parallel Single-Cell Whole-Genome Sequencing Methods. SMALL METHODS 2024:e2400789. [PMID: 38979872 DOI: 10.1002/smtd.202400789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Single-cell whole-genome sequencing (scWGS) detects cell heterogeneity at the aspect of genomic variations, which are inheritable and play an important role in life processes such as aging and cancer progression. The recent explosive development of high-throughput single-cell sequencing methods has enabled high-performance heterogeneity detection through a vast number of novel strategies. Despite the limitation on total cost, technical advances in high-throughput single-cell whole-genome sequencing methods are made for higher genome coverage, parallel throughput, and level of integration. This review highlights the technical advancements in high-throughput scWGS in the aspects of strategies design, data efficiency, parallel handling platforms, and their applications on human genome. The experimental innovations, remaining challenges, and perspectives are summarized and discussed.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianguang Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zikun Miao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yue Cui
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
7
|
Jia H, Tan S, Zhang YE. Chasing Sequencing Perfection: Marching Toward Higher Accuracy and Lower Costs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae024. [PMID: 38991976 PMCID: PMC11423848 DOI: 10.1093/gpbjnl/qzae024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Next-generation sequencing (NGS), represented by Illumina platforms, has been an essential cornerstone of basic and applied research. However, the sequencing error rate of 1 per 1000 bp (10-3) represents a serious hurdle for research areas focusing on rare mutations, such as somatic mosaicism or microbe heterogeneity. By examining the high-fidelity sequencing methods developed in the past decade, we summarized three major factors underlying errors and the corresponding 12 strategies mitigating these errors. We then proposed a novel framework to classify 11 preexisting representative methods according to the corresponding combinatory strategies and identified three trends that emerged during methodological developments. We further extended this analysis to eight long-read sequencing methods, emphasizing error reduction strategies. Finally, we suggest two promising future directions that could achieve comparable or even higher accuracy with lower costs in both NGS and long-read sequencing.
Collapse
Affiliation(s)
- Hangxing Jia
- CAS Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- CAS Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- CAS Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
8
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024:10.1038/s41576-024-00748-4. [PMID: 38918545 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
9
|
Liu MH, Costa BM, Bianchini EC, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Nunes NM, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature 2024; 630:752-761. [PMID: 38867045 PMCID: PMC11216816 DOI: 10.1038/s41586-024-07532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin M Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilia C Bianchini
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel C Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Lassen
- Cryos International Sperm and Egg Bank, Aarhus, Denmark
| | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Zachary R Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nuno Miguel Nunes
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Caitlin A Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Si Y, Wang X, Su X, Weng Z, Hu Q, Li Q, Fan C, Zhang DY, Wang Y, Luo S, Song P. Extended Enrichment for Ultrasensitive Detection of Low-Frequency Mutations by Long Blocker Displacement Amplification. Angew Chem Int Ed Engl 2024; 63:e202400551. [PMID: 38416545 DOI: 10.1002/anie.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Detecting low-frequency DNA mutations hotspots cluster is critical for cancer diagnosis but remains challenging. Quantitative PCR (qPCR) is constrained by sensitivity, and allele-specific PCR is restricted by throughput. Here we develop a long blocker displacement amplification (LBDA) coupled with qPCR for ultrasensitive and multiplexed variants detection. By designing long blocker oligos to perfectly match wildtype sequences while mispairing with mutants, long blockers enable 14-44 nt enrichment regions which is 2-fold longer than normal BDA in the experiments. For wild template with a specific nucleotide, LBDA can detect different mutation types down to 0.5 % variant allele frequency (VAF) in one reaction, with median enrichment fold of 1,000 on 21 mutant DNA templates compared to the wild type. We applied LBDA-qPCR to detect KRAS and NRAS mutation hotspots, utilizing a single plex assay capable of covering 81 mutations and tested in synthetic templates and colorectal cancer tissue samples. Moreover, the mutation types were verified through Sanger sequencing, demonstrating concordance with results obtained from next generation sequencing. Overall, LBDA-qPCR provides a simple yet ultrasensitive approach for multiplexed detection of low VAF mutations hotspots, presenting a powerful tool for cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Yunpei Si
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiawen Wang
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinglei Su
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhi Weng
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ping Song
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Andersson D, Kebede FT, Escobar M, Österlund T, Ståhlberg A. Principles of digital sequencing using unique molecular identifiers. Mol Aspects Med 2024; 96:101253. [PMID: 38367531 DOI: 10.1016/j.mam.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Massively parallel sequencing technologies have long been used in both basic research and clinical routine. The recent introduction of digital sequencing has made previously challenging applications possible by significantly improving sensitivity and specificity to now allow detection of rare sequence variants, even at single molecule level. Digital sequencing utilizes unique molecular identifiers (UMIs) to minimize sequencing-induced errors and quantification biases. Here, we discuss the principles of UMIs and how they are used in digital sequencing. We outline the properties of different UMI types and the consequences of various UMI approaches in relation to experimental protocols and bioinformatics. Finally, we describe how digital sequencing can be applied in specific research fields, focusing on cancer management where it can be used in screening of asymptomatic individuals, diagnosis, treatment prediction, prognostication, monitoring treatment efficacy and early detection of treatment resistance as well as relapse.
Collapse
Affiliation(s)
- Daniel Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Firaol Tamiru Kebede
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
12
|
Sahib S, Yan J, Chen T. Application of duplex sequencing to evaluate mutagenicity of aristolochic acid and methapyrilene in Fisher 344 rats. Food Chem Toxicol 2024; 185:114512. [PMID: 38342231 DOI: 10.1016/j.fct.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing (NGS) method that can overcome notorious high error rate from the process of NGS and detect ultralow-frequency mutations. In this study, we evaluated the mutagenicity of aristolochic acid, a known genotoxic carcinogen, and methapyrilene, a known nongenotoxic carcinogen using DS. Four male Fisher 344 rats were treated with aristolochic acid, methapyrilene, or the vehicle control for 6 weeks, liver tissues were collected one day after the treatment, and the DNA was isolated for analysis. The mutation frequency for the aristolochic acid-treated group was significantly increased over the vehicle control (44-fold), whereas no significant difference in the mutation frequency was observed between the methapyrilene-treated and the control groups. The primary type of mutation induced by aristolochic acid was A:T > T:A transversion, which occurred frequently at ApT sites, whereas the major type of mutation in the control and methapyrilene-treated groups was G:C > A:T transition, which occurred frequently at CpG sites. These findings are consistent with previously published data obtained with other in vivo mutation assays. Thus, our results suggest that the DS mutation assay is a promising technology for assessing mutagenicity of chemicals in vivo.
Collapse
Affiliation(s)
- Seaab Sahib
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
13
|
Weng C, Yu F, Yang D, Poeschla M, Liggett LA, Jones MG, Qiu X, Wahlster L, Caulier A, Hussmann JA, Schnell A, Yost KE, Koblan LW, Martin-Rufino JD, Min J, Hammond A, Ssozi D, Bueno R, Mallidi H, Kreso A, Escabi J, Rideout WM, Jacks T, Hormoz S, van Galen P, Weissman JS, Sankaran VG. Deciphering cell states and genealogies of human haematopoiesis. Nature 2024; 627:389-398. [PMID: 38253266 PMCID: PMC10937407 DOI: 10.1038/s41586-024-07066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.
Collapse
Affiliation(s)
- Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Dian Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael Poeschla
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - L Alexander Liggett
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew G Jones
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Genetics and Computer Science, BASE Research Initiative, Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeffrey A Hussmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke W Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alessandro Hammond
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Ssozi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raphael Bueno
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hari Mallidi
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Kreso
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Javier Escabi
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William M Rideout
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Tyler Jacks
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sahand Hormoz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter van Galen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
14
|
Youk J, Kwon HW, Lim J, Kim E, Kim T, Kim R, Park S, Yi K, Nam CH, Jeon S, An Y, Choi J, Na H, Lee ES, Cho Y, Min DW, Kim H, Kang YR, Choi SH, Bae MJ, Lee CG, Kim JG, Kim YS, Yu T, Lee WC, Shin JY, Lee DS, Kim TY, Ku T, Kim SY, Lee JH, Koo BK, Lee H, Yi OV, Han EC, Chang JH, Kim KS, Son TG, Ju YS. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. CELL GENOMICS 2024; 4:100499. [PMID: 38359788 PMCID: PMC10879144 DOI: 10.1016/j.xgen.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Woo Kwon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Eunji Kim
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20, Boramae-ro 5 Gil, Dongjak-gu, Seoul 07061, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taewoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sara Jeon
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwook Choi
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Hyelin Na
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Eon-Seok Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong-Wook Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - HyoJin Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Joon-Goon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea
| | | | | | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Su Yeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - On Vox Yi
- Department of Breast Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Eon Chul Han
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
15
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
16
|
Maslov AY, Vijg J. Somatic mutation burden in relation to aging and functional life span: implications for cellular reprogramming and rejuvenation. Curr Opin Genet Dev 2023; 83:102132. [PMID: 37931583 PMCID: PMC10841402 DOI: 10.1016/j.gde.2023.102132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 11/08/2023]
Abstract
The accrual of somatic mutations has been implicated as causal factors in aging since the 1950s. However, the quantitative analysis of somatic mutations has posed a major challenge due to the random nature of de novo mutations in normal tissues, which has limited analysis to tumors and other clonal lineages. Advances in single-cell and single-molecule next-generation sequencing now allow to obtain, for the first time, detailed insights into the landscape of somatic mutations in different human tissues and cell types as a function of age under various conditions. Here, we will briefly recapitulate progress in somatic mutation analysis and discuss the possible relationship between somatic mutation burden with functional life span, with a focus on differences between germ cells, stem cells, and differentiated cells.
Collapse
Affiliation(s)
- Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technologies, Voronezh, Russia.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
17
|
Nathan DI, Dougherty M, Bhatta M, Mascarenhas J, Marcellino BK. Clonal hematopoiesis and inflammation: A review of mechanisms and clinical implications. Crit Rev Oncol Hematol 2023; 192:104187. [PMID: 37879493 DOI: 10.1016/j.critrevonc.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined by the presence of somatic mutations in hematopoietic stem and progenitor cells (HSPC). CH is associated primarily with advancing age and confers an elevated risk of progression to overt hematologic malignancy and cardiovascular disease. Increasingly, CH is associated with a wide range of diseases driven by, and sequelae of, inflammation. Accordingly, there is great interest in better understanding the pathophysiologic and clinical relationship between CH, aging, and disease. Both observational and experimental findings support the concept that CH is a potential common denominator in the inflammatory outcomes of aging. However, there is also evidence that local and systemic inflammatory states promote the growth and select for CH clones. In this review, we aim to provide an up-to-date summary of the nature of the relationship between inflammation and CH, which is central to unlocking potential therapeutic opportunities to prevent progression to myeloid malignancy.
Collapse
Affiliation(s)
- Daniel I Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manasa Bhatta
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
You X, Cao Y, Suzuki T, Shao J, Zhu B, Masumura K, Xi J, Liu W, Zhang X, Luan Y. Genome-wide direct quantification of in vivo mutagenesis using high-accuracy paired-end and complementary consensus sequencing. Nucleic Acids Res 2023; 51:e109. [PMID: 37870450 PMCID: PMC10681716 DOI: 10.1093/nar/gkad909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Error-corrected next-generation sequencing (ecNGS) is an emerging technology for accurately measuring somatic mutations. Here, we report paired-end and complementary consensus sequencing (PECC-Seq), a high-accuracy ecNGS approach for genome-wide somatic mutation detection. We characterize a novel 2-aminoimidazolone lesion besides 7,8-dihydro-8-oxoguanine and the resulting end-repair artifacts originating from NGS library preparation that obscure the sequencing accuracy of NGS. We modify library preparation protocol for the enzymatic removal of end-repair artifacts and improve the accuracy of our previously developed duplex consensus sequencing method. Optimized PECC-Seq shows an error rate of <5 × 10-8 with consensus bases compressed from approximately 25 Gb of raw sequencing data, enabling the accurate detection of low-abundance somatic mutations. We apply PECC-Seq to the quantification of in vivo mutagenesis. Compared with the classic gpt gene mutation assay using gpt delta transgenic mice, PECC-Seq exhibits high sensitivity in quantitatively measuring dose-dependent mutagenesis induced by Aristolochic acid I (AAI). Moreover, PECC-Seq specifically characterizes the distinct genome-wide mutational signatures of AAI, Benzo[a]pyrene, N-Nitroso-N-ethylurea and N-nitrosodiethylamine and reveals the mutational signature of Quinoline in common mouse models. Overall, our findings demonstrate that high-accuracy PECC-Seq is a promising tool for genome-wide somatic mutagenesis quantification and for in vivo mutagenicity testing.
Collapse
Affiliation(s)
- Xinyue You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiyi Cao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenichi Masumura
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Jing Xi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiying Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Luan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Izawa K, Tsuda M, Suzuki T, Honma M, Sugiyama KI. Detection of in vivo mutagenicity in rat liver samples using error-corrected sequencing techniques. Genes Environ 2023; 45:30. [PMID: 37993952 PMCID: PMC10664353 DOI: 10.1186/s41021-023-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mutagenicity, the ability of chemical agents to cause mutations and potentially lead to cancer, is a critical aspect of substance safety assessment for protecting human health and the environment. Metabolic enzymes activate multiple mutagens in living organisms, thus in vivo animal models provide highly important information for evaluating mutagenicity in human. Rats are considered suitable models as they share a similar metabolic pathway with humans for processing toxic chemical and exhibit higher responsiveness to chemical carcinogens than mice. To assess mutagenicity in rats, transgenic rodents (TGRs) are widely used for in vivo gene mutation assays. However, such assays are labor-intensive and could only detect transgene mutations inserted into the genome. Therefore, introducing a technology to directly detect in vivo mutagenicity in rats would be necessary. The next-generation sequencing (NGS) based error-corrected sequencing technique is a promising approach for such purposes. RESULTS We investigated the applicability of paired-end and complementary consensus sequencing (PECC-Seq), an error-corrected sequencing technique, for detecting in vivo mutagenicity in the rat liver samples. PECC-Seq allows for the direct detection of ultra-rare somatic mutations in the genomic DNA without being constrained by the genomic locus, tissue, or organism. We tested PECC-Seq feasibility in rats treated with diethylnitrosamine (DEN), a mutagenic compound. Interestingly, the mutation and mutant frequencies between PECC-Seq and the TGR assay displayed a promising correlation. Our results also demonstrated that PECC-Seq could successfully detect the A:T > T:A mutation in rat liver samples, consistent with the TGR assay. Furthermore, we calculated the trinucleotide mutation frequency and proved that PECC-Seq accurately identified the DEN treatment-induced mutational signatures. CONCLUSIONS Our study provides the first evidence of using PECC-Seq for in vivo mutagenicity detection in rat liver samples. This approach could provide a valuable alternative to conventional TGR assays as it is labor- and time-efficient and eliminates the need for transgenic rodents. Error-corrected sequencing techniques, such as PECC-Seq, represent promising approaches for enhancing mutagenicity assessment and advancing regulatory science.
Collapse
Affiliation(s)
- Kazuki Izawa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Masataka Tsuda
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Division of General Affairs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
20
|
Dobrovolsky VN, Matsuda T, McKinzie P, Miranda J, Revollo JR. Whole-genome high-fidelity sequencing: A novel approach to detecting and characterization of mutagenicity in vivo. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503691. [PMID: 37770148 DOI: 10.1016/j.mrgentox.2023.503691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Direct DNA sequencing can be used for characterizing mutagenicity in simple and complex biological models. Recently we described a method of whole-genome sequencing for detecting mutations in simple models of cultured bacteria, mammalian cells, and nematode. In the current proof-of-concept study, we expand and improve our method for evaluating a more complex mammalian biological model in outbred mice. We detail the method by applying it to a small set of animals treated with a mutagen with known mutagenicity profiles, N-ethyl-N-nitrosourea (ENU), for consistency with the known data. Whole-genome high-fidelity sequencing (HiFi Sequencing) showed frequencies and spectra of background mutations in tissues of untreated mice that were consistent with normal ageing and characterized by spontaneous or enzymatic deamination of 5-methylcytosine. In mice treated with a single 40 mg/kg dose of ENU, the frequency of mutations in the genomic DNA of solid tissues increased up to 7-fold, with the greatest increase observed in the spleen and the smallest increase in the liver. The most common mutations detected in ENU-treated mice were T > A transitions and T > C transversions, consistent with the types of mutations caused by alkylating agents. The data suggest that HiFi Sequencing may be useful for characterizing mutagenicity of novel compounds in various biological models.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA.
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA
| | - Jaime Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA
| |
Collapse
|
21
|
Bryukhovetskiy AS, Grivtsova LY, Bogachev SS, Ustyugov AA, Nebogatikov VO, Shurdov MA. Technology of genomic balancing of chromatin of autologous hematopoietic stem cells for gene therapy of fatal immune-mediated diseases of civilization, extended life expectancy and sudden human death prevention. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:237-284. [PMID: 37833013 DOI: 10.1016/bs.irn.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
A biotechnology for personalized ex vivo gene therapy based on molecular genomic balancing of hematopoietic stem cell (HSC) chromatin with nucleosome monomers of human genomic DNA (hDNAnmr) has been developed and implemented in the clinic to change (to "correct") mutant chromosome loci genomes of dominant HSC clones that form mono- and oligoclonal hematopoiesis during aging and major (oncological, cardiovascular, neurodegenerative and autoimmune) fatal immune-mediated diseases of civilization. A fundamentally new biotechnological approach has been applied to the delivery of genetic material into eukaryotic stem and progenitor cells by establishing an artificial "recombinogenic situation" in them to induce homologous recombination (equivalent replacement) of mutant DNA regions with healthy hDNAnmr. In experimental preclinical trials, the effectiveness of genomic balancing technology has been proven to reduce the risk of sudden death in old animals and to increase the lifespan of outbred mice by 30% and Wistar rats by 57%. The improvement in their quality of life, compared with the control, is explained by an increase in the telomeric regions of the HSCs and HPCs chromosomes by 1.5-2 times. The potential of the technology to slow down the hereditary neurodegenerative diseases on the model of amyotrophic lateral sclerosis is shown. The effectiveness of this technology in clinical practice is presented on the example of a terminal patient with stage 4 neuroendocrine cancer. This technology used in the treatment of a number of oncological, neurodegenerative, autoimmune and hereditary diseases with clonal hematopoiesis is able to arrest the progression of the disease, prevent its recurrence, prolong the active life of a person, increase the average life expectancy and prevent sudden death.
Collapse
Affiliation(s)
| | - L Yu Grivtsova
- FGBU MRRC named after A.F. Tsyb - Branch of the FGBU National Medical Research Center for Radiology of the Ministry of Health of Russia, Obninsk, Russia
| | - S S Bogachev
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Ustyugov
- Research Institute of Biologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - V O Nebogatikov
- Research Institute of Biologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - M A Shurdov
- JSC NeuroVita Clinical Hospital, Moscow, Russia
| |
Collapse
|
22
|
Ng AS, Chan DKH. Commonalities and differences in the mutational signature and somatic driver mutation landscape across solid and hollow viscus organs. Oncogene 2023; 42:2713-2724. [PMID: 37573406 PMCID: PMC10491491 DOI: 10.1038/s41388-023-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Advances in sequencing have revealed a highly variegated landscape of mutational signatures and somatic driver mutations in a range of normal tissues. Normal tissues accumulate mutations at varying rates ranging from 11 per cell per year in the liver, to 1879 per cell per year in the bladder. In addition, some normal tissues are also comprised of a large proportion of cells which possess driver mutations while appearing phenotypically normal, as in the oesophagus where a majority of cells harbour driver mutations. Individual tissue proliferation and mutation rate, unique mutagenic stimuli, and local tissue architecture contribute to this highly variegated landscape which confounds the functional characterization of driver mutations found in normal tissue. In particular, our understanding of the relationship between normal tissue somatic mutations and tumour initiation or future cancer risk remains poor. Here, we describe the mutational signatures and somatic driver mutations in solid and hollow viscus organs, highlighting unique characteristics in a tissue-specific manner, while simultaneously seeking to describe commonalities which can bring forward a basic unified theory on the role of these driver mutations in tumour initiation. We discuss novel findings which can be used to inform future research in this field.
Collapse
Affiliation(s)
- Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dedrick Kok Hong Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Division of Colorectal Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, Harper T, Heflich RH, Kidd D, Lynch AM, Myers MB, Parsons BL, Salk JJ, Settivari RS, Smith-Roe SL, Witt KL, Yauk CL, Young R, Zhang S, Minocherhomji S. Error-corrected next generation sequencing - Promises and challenges for genotoxicity and cancer risk assessment. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108466. [PMID: 37643677 DOI: 10.1016/j.mrrev.2023.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.
Collapse
Affiliation(s)
| | | | - Connie L Chen
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | | | - Joanne Elloway
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Tod Harper
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Robert H Heflich
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | | | - Meagan B Myers
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara L Parsons
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | | | | | | | - Kristine L Witt
- NIEHS, Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | | | - Robert Young
- MilliporeSigma, Rockville, MD, USA; Current: Consultant, Bethesda, MD, USA
| | | | - Sheroy Minocherhomji
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA; Current: Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
24
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
25
|
Cho E, Swartz CD, Williams A, V Rivas M, Recio L, Witt KL, Schmidt EK, Yaplee J, Smith TH, Van P, Lo FY, Valentine CC, Salk JJ, Marchetti F, Smith-Roe SL, Yauk CL. Error-corrected duplex sequencing enables direct detection and quantification of mutations in human TK6 cells with strong inter-laboratory consistency. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503649. [PMID: 37491114 PMCID: PMC10395007 DOI: 10.1016/j.mrgentox.2023.503649] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023]
Abstract
Error-corrected duplex sequencing (DS) enables direct quantification of low-frequency mutations and offers tremendous potential for chemical mutagenicity assessment. We investigated the utility of DS to quantify induced mutation frequency (MF) and spectrum in human lymphoblastoid TK6 cells exposed to a prototypical DNA alkylating agent, N-ethyl-N-nitrosourea (ENU). Furthermore, we explored appropriate experimental parameters for this application, and assessed inter-laboratory reproducibility. In two independent experiments in two laboratories, TK6 cells were exposed to ENU (25-200 µM) and DNA was sequenced 48, 72, and 96 h post-exposure. A DS mutagenicity panel targeting twenty 2.4-kb regions distributed across the genome was used to sample diverse, genome-representative sequence contexts. A significant increase in MF that was unaffected by time was observed in both laboratories. Concentration-response in the MF from the two laboratories was strongly positively correlated (r = 0.97). C:G>T:A, T:A>C:G, T:A>A:T, and T:A>G:C mutations increased in consistent, concentration-dependent manners in both laboratories, with high proportions of C:G>T:A at all time points. The consistent results across the three time points suggest that 48 h may be sufficient for mutation analysis post-exposure. The target sites responded similarly between the two laboratories and revealed a higher average MF in intergenic regions. These results, demonstrating remarkable reproducibility across time and laboratory for both MF and spectrum, support the high value of DS for characterizing chemical mutagenicity in both research and regulatory evaluation.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | | | - Leslie Recio
- Inotiv-RTP, Research Triangle Park, NC, USA; Scitovation, Research Triangle Park, NC, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Bae JH, Liu R, Roberts E, Nguyen E, Tabrizi S, Rhoades J, Blewett T, Xiong K, Gydush G, Shea D, An Z, Patel S, Cheng J, Sridhar S, Liu MH, Lassen E, Skytte AB, Grońska-Pęski M, Shoag JE, Evrony GD, Parsons HA, Mayer EL, Makrigiorgos GM, Golub TR, Adalsteinsson VA. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity. Nat Genet 2023; 55:871-879. [PMID: 37106072 PMCID: PMC10181940 DOI: 10.1038/s41588-023-01376-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.
Collapse
Affiliation(s)
- Jin H Bae
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruolin Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Erica Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shervin Tabrizi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Douglas Shea
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sahil Patel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Ju Cheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Mei Hong Liu
- Center for Human Genetics and Genomics, Departments of Pediatrics and Neuroscience & Physiology, New York University Grossman School of Medicine, New York City, NY, USA
| | | | | | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, Departments of Pediatrics and Neuroscience & Physiology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Jonathan E Shoag
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, Departments of Pediatrics and Neuroscience & Physiology, New York University Grossman School of Medicine, New York City, NY, USA
| | | | | | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
28
|
Wang Y, Douville C, Cohen JD, Mattox A, Curtis S, Silliman N, Popoli M, Ptak J, Dobbyn L, Nehme N, Dudley JC, Summers M, Zhang M, Ho-Pham LT, Tran BNH, Tran TS, Nguyen TV, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B. Detection of rare mutations, copy number alterations, and methylation in the same template DNA molecules. Proc Natl Acad Sci U S A 2023; 120:e2220704120. [PMID: 37014860 PMCID: PMC10104560 DOI: 10.1073/pnas.2220704120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023] Open
Abstract
The analysis of cell-free DNA (cfDNA) from plasma offers great promise for the earlier detection of cancer. At present, changes in DNA sequence, methylation, or copy number are the most sensitive ways to detect the presence of cancer. To further increase the sensitivity of such assays with limited amounts of sample, it would be useful to be able to evaluate the same template molecules for all these changes. Here, we report an approach, called MethylSaferSeqS, that achieves this goal, and can be applied to any standard library preparation method suitable for massively parallel sequencing. The innovative step was to copy both strands of each DNA-barcoded molecule with a primer that allows the subsequent separation of the original strands (retaining their 5-methylcytosine residues) from the copied strands (in which the 5-methylcytosine residues are replaced with unmodified cytosine residues). The epigenetic and genetic alterations present in the DNA molecules can then be obtained from the original and copied strands, respectively. We applied this approach to plasma from 265 individuals, including 198 with cancers of the pancreas, ovary, lung, and colon, and found the expected patterns of mutations, copy number alterations, and methylation. Furthermore, we could determine which original template DNA molecules were methylated and/or mutated. MethylSaferSeqS should be useful for addressing a variety of questions relating genetics and epigenetics.
Collapse
Affiliation(s)
- Yuxuan Wang
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joshua D. Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Austin Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Sam Curtis
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Natalie Silliman
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- HHMI, Baltimore, MD21287
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Janine Ptak
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- HHMI, Baltimore, MD21287
| | - Lisa Dobbyn
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nadine Nehme
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Jonathan C. Dudley
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Mahmoud Summers
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Ming Zhang
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Lan T. Ho-Pham
- BioMedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City72510, Vietnam
- Clinical Genetics Research Group, Saigon Precision Medicine Research Center, Ho Chi Minh City72512, Vietnam
| | - Bich N. H. Tran
- Clinical Genetics Research Group, Saigon Precision Medicine Research Center, Ho Chi Minh City72512, Vietnam
| | - Thach S. Tran
- Clinical Genetics Research Group, Saigon Precision Medicine Research Center, Ho Chi Minh City72512, Vietnam
- School of Biomedical Engineering, University of Technology, NSW2007, Australia
| | - Tuan V. Nguyen
- Clinical Genetics Research Group, Saigon Precision Medicine Research Center, Ho Chi Minh City72512, Vietnam
- Centre for Health Technologies, University of Technology, NSW2007, Australia
- School of Population Health, University of New South Wales, NSW2003, Australia
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD21298
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- HHMI, Baltimore, MD21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
29
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
30
|
Liu MH, Costa B, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. Single-strand mismatch and damage patterns revealed by single-molecule DNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.526140. [PMID: 36824744 PMCID: PMC9949150 DOI: 10.1101/2023.02.19.526140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Benjamin Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Rachel C. Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
| | | | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Zachary R. Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Caitlin A. Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Tina K. Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh School of Medicine, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Kansas City, USA
| | - J. Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Canada
| | - Jonathan E. Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Gilad D. Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| |
Collapse
|
31
|
Sobel E, Coate JE, Schaack S. Estimating somatic mutation rates by bottlenecked duplex sequencing in non-model organisms: Daphnia magna as a case study. J Biol Methods 2022; 9:e165. [PMID: 36992917 PMCID: PMC10040303 DOI: 10.14440/jbm.2022.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Somatic mutations are evolutionarily important as determinants of individual organismal fitness, as well as being a focus of clinical research on age-related disease, such as cancer. Identifying somatic mutations and quantifying mutation rates, however, is extremely challenging and genome-wide somatic mutation rates have only been reported for a few model organisms. Here, we describe the application of Duplex Sequencing on bottlenecked WGS libraries to quantify somatic nuclear genome-wide base substitution rates in Daphnia magna. Daphnia, historically an ecological model system, has more recently been the focus of mutation studies, in part because of its high germline mutation rates. Using our protocol and pipeline, we estimate a somatic mutation rate of 5.6 × 10-7 substitutions per site (in a genotype where the germline rate is 3.60 × 10-9 substitutions per site per generation). To obtain this estimate, we tested multiple dilution levels to maximize sequencing efficiency and developed bioinformatic filters needed to minimize false positives when a high-quality reference genome is not available. In addition to laying the groundwork for estimating genotypic variation in rates of somatic mutations within D. magna, we provide a framework for quantifying somatic mutations in other non-model systems, and also highlight recent innovations to single molecule sequencing that will help to further refine such estimates.
Collapse
Affiliation(s)
| | | | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202
| |
Collapse
|
32
|
Lodato MA, Ziegenfuss JS. The two faces of DNA oxidation in genomic and functional mosaicism during aging in human neurons. FRONTIERS IN AGING 2022; 3:991460. [PMID: 36313183 PMCID: PMC9596766 DOI: 10.3389/fragi.2022.991460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Maintaining genomic integrity in post-mitotic neurons in the human brain is paramount because these cells must survive for an individual's entire lifespan. Due to life-long synaptic plasticity and electrochemical transmission between cells, the brain engages in an exceptionally high level of mitochondrial metabolic activity. This activity results in the generation of reactive oxygen species with 8-oxo-7,8-dihydroguanine (8-oxoG) being one of the most prevalent oxidation products in the cell. 8-oxoG is important for the maintenance and transfer of genetic information into proper gene expression: a low basal level of 8-oxoG plays an important role in epigenetic modulation of neurodevelopment and synaptic plasticity, while a dysregulated increase in 8-oxoG damages the genome leading to somatic mutations and transcription errors. The slow yet persistent accumulation of DNA damage in the background of increasing cellular 8-oxoG is associated with normal aging as well as neurological disorders such as Alzheimer's disease and Parkinson's disease. This review explores the current understanding of how 8-oxoG plays a role in brain function and genomic instability, highlighting new methods being used to advance pathological hallmarks that differentiate normal healthy aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Michael A. Lodato
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | |
Collapse
|
33
|
Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FFL, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer 2022; 22:576-591. [PMID: 35854147 DOI: 10.1038/s41568-022-00494-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
| |
Collapse
|
34
|
Huang W, Sun G, Wang Q, Long Z. The research progress of targeted therapy in acute myeloid leukemia based on bibliometric analysis. Front Oncol 2022; 12:957370. [PMID: 36119476 PMCID: PMC9481238 DOI: 10.3389/fonc.2022.957370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Wanxue Huang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Gongrui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Wang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Zhiguo Long
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
- *Correspondence: Zhiguo Long,
| |
Collapse
|
35
|
Hergott CB, Kim AS. Molecular Diagnostic Testing for Hematopoietic Neoplasms: Linking Pathogenic Drivers to Personalized Diagnosis. Clin Lab Med 2022; 42:325-347. [PMID: 36150815 DOI: 10.1016/j.cll.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular diagnostics inhabit an increasingly central role in characterizing hematopoietic malignancies. This brief review summarizes the genomic targets important for many major categories of hematopoietic neoplasia by focusing on disease pathogenesis. In myeloid disease, recurrent mutations in key functional classes drive clonal hematopoiesis, on which additional variants can specify clinical presentation and accelerate progression. Lymphoblastic leukemias are frequently initiated by oncogenic fusions that block lymphoid maturation while, in concert with additional mutations, driving proliferation. The links between genetic aberrations and lymphoma patient outcomes have been clarified substantially through the clustering of genomic profiles. Finally, the addition of next-generation sequencing strategies to cytogenetics is refining risk stratification for plasma cell myeloma. In all categories, molecular diagnostics shed light on the unique mechanistic underpinnings of each individual malignancy, thereby empowering more rational, personalized care for these patients.
Collapse
Affiliation(s)
- Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Wan JCM, Stephens D, Luo L, White JR, Stewart CM, Rousseau B, Tsui DWY, Diaz LA. Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA. Nat Commun 2022; 13:4953. [PMID: 35999207 PMCID: PMC9399180 DOI: 10.1038/s41467-022-32598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Mutational signatures accumulate in somatic cells as an admixture of endogenous and exogenous processes that occur during an individual's lifetime. Since dividing cells release cell-free DNA (cfDNA) fragments into the circulation, we hypothesize that plasma cfDNA might reflect mutational signatures. Point mutations in plasma whole genome sequencing (WGS) are challenging to identify through conventional mutation calling due to low sequencing coverage and low mutant allele fractions. In this proof of concept study of plasma WGS at 0.3-1.5x coverage from 215 patients and 227 healthy individuals, we show that both pathological and physiological mutational signatures may be identified in plasma. By applying machine learning to mutation profiles, patients with stage I-IV cancer can be distinguished from healthy individuals with an Area Under the Curve of 0.96. Interrogating mutational processes in plasma may enable earlier cancer detection, and might enable the assessment of cancer risk and etiology.
Collapse
Affiliation(s)
- Jonathan C M Wan
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dennis Stephens
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lingqi Luo
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - James R White
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Resphera Biosciences, Baltimore, MD, 21231, USA
| | - Caitlin M Stewart
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10065, USA
- New York Genome Center, New York, NY, 10013, USA
| | - Benoît Rousseau
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dana W Y Tsui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- PetDx Inc., San Diego, CA, USA
| | - Luis A Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
37
|
A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy. Proc Natl Acad Sci U S A 2022; 119:e2123241119. [PMID: 35895679 PMCID: PMC9351471 DOI: 10.1073/pnas.2123241119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal normal tissues. Duplex sequencing, which tags both DNA strands in one DNA molecule, enables accurate count of such mutations, but requires a very large number of sequencing reads for each single sample of human-genome size. Here, we reduced the genome size to 1/90 using the BamHI restriction enzyme and established a cost-effective pipeline. The enzymatically cleaved and optimal sequencing (EcoSeq) method was able to count somatic mutations in a single DNA molecule with a sensitivity of as low as 3 × 10-8 per base pair (bp), as assessed by measuring artificially prepared mutations. Taking advantages of EcoSeq, we analyzed normal peripheral blood cells of pediatric sarcoma patients who received chemotherapy (n = 10) and those who did not (n = 10). The former had a mutation frequency of 31.2 ± 13.4 × 10-8 per base pair while the latter had 9.0 ± 4.5 × 10-8 per base pair (P < 0.001). The increase in mutation frequency was confirmed by analysis of the same patients before and after chemotherapy, and increased mutation frequencies persisted 46 to 64 mo after chemotherapy, indicating that the mutation accumulation constitutes a risk of secondary leukemia. EcoSeq has the potential to reveal accumulation of somatic mutations and exposure to environmental factors in any DNA samples and will contribute to cancer risk estimation.
Collapse
|
38
|
Savola P, Bhattacharya D, Huuhtanen J. The spectrum of somatic mutations in large granular lymphocyte leukemia, rheumatoid arthritis and Felty's syndrome. Semin Hematol 2022; 59:123-130. [DOI: 10.1053/j.seminhematol.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
|
39
|
Miranda JA, McKinzie PB, Dobrovolsky VN, Revollo JR. Evaluation of the mutagenic effects of Molnupiravir and N4-hydroxycytidine in bacterial and mammalian cells by HiFi sequencing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:320-328. [PMID: 36181379 DOI: 10.1002/em.22510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Molnupiravir (MOV) is used to treat COVID-19. In cells, MOV is converted to the ribonucleoside analog N4-hydroxycytidine (NHC) and incorporated into the SARS-CoV-2 RNA genome during its replication, resulting in RNA mutations. The widespread accumulation of such mutations inhibits SARS-CoV-2 propagation. Although safety assessments by many regulatory agencies across the world have concluded that the genotoxic risks associated with the clinical use of MOV are low, concerns remain that it could induce DNA mutations in patients, particularly because numerous in vitro studies have shown that NHC is a DNA mutagen. In this study, we used HiFi sequencing, a technique that can detect ultralow-frequency substitution mutations in whole genomes, to evaluate the mutagenic effects of MOV in E. coli and of MOV and NHC in mouse lymphoma L5178Y cells and human lymphoblastoid TK6 cells. In all models, exposure to these compounds increased genome-wide mutation frequencies in a dose-dependent manner, and these increases were mainly composed of A:T → G:C transitions. The NHC exposure concentrations used for mammalian cells were comparable to those observed in the plasma of humans who received clinical doses of MOV.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
40
|
Duplex sequencing identifies genomic features that determine susceptibility to benzo(a)pyrene-induced in vivo mutations. BMC Genomics 2022; 23:542. [PMID: 35902794 PMCID: PMC9331077 DOI: 10.1186/s12864-022-08752-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Exposure to environmental mutagens increases the risk of cancer and genetic disorders. We used Duplex Sequencing (DS), a high-accuracy error-corrected sequencing technology, to analyze mutation induction across twenty 2.4 kb intergenic and genic targets in the bone marrow of MutaMouse males exposed to benzo(a)pyrene (BaP), a widespread environmental pollutant. DS revealed a linear dose-related induction of mutations across all targets with low intra-group variability. Heterochromatic and intergenic regions exhibited the highest mutation frequencies (MF). C:G > A:T transversions at CCA, CCC and GCC trinucleotides were enriched in BaP-exposed mice consistent with the known etiology of BaP mutagenesis. However, GC-content had no effect on mutation susceptibility. A positive correlation was observed between DS and the “gold-standard” transgenic rodent gene mutation assay. Overall, we demonstrate that DS is a promising approach to study in vivo mutagenesis and yields critical insight into the genomic features governing mutation susceptibility, spectrum, and variability across the genome.
Collapse
|
41
|
Riehl L, Mulaw M, Kneer K, Beer M, Beer A, Barth TF, Benes V, Schulte J, Fischer M, Debatin K, Beltinger C. Targeted parallel DNA sequencing detects circulating tumor-associated variants of the mitochondrial and nuclear genomes in patients with neuroblastoma. Cancer Rep (Hoboken) 2022; 6:e1687. [PMID: 35899825 PMCID: PMC9875664 DOI: 10.1002/cnr2.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The utility for liquid biopsy of tumor-associated circulating single-nucleotide variants, as opposed to mutations, of the mitochondrial (mt) and nuclear genomes in neuroblastoma (NB) is unknown. PROCEDURE Variants of the mt and nuclear genomes from tumor, blood cells, and consecutive plasma samples of five patients with metastatic NB that relapsed or progressed were analyzed. Targeted parallel sequencing results of the mt genome, and of the coding region of 139 nuclear genes and 22 miRNAs implicated in NB, were correlated with clinical imaging and laboratory data. RESULTS All tumors harbored multiple somatic mt and nuclear single nucleotide variants with low allelic frequency, most of them not detected in the circulation. In one patient a tumor-associated mt somatic variant was detected in the plasma before and during progressive disease. In a second patient a circulating nuclear tumor-associated DNA variant heralded clinical relapse. In all patients somatic mt and nuclear variants not evident in the tumor biopsy at time of diagnosis were found circulating at varying timepoints. This suggests either tumor heterogeneity, evolution of tumor variants or a confounding contribution of normal tissues to somatic variants in patient plasma. The number and allelic frequency of the circulating variants did not reflect the clinical course of the tumors. Mutational signatures of mt and nuclear somatic variants differed. They varied between patients and were detected in the circulation without mirroring the patients' course. CONCLUSIONS In this limited cohort of NB patients clinically informative tumor-associated mt and nuclear circulating variants were detected by targeted parallel sequencing in a minority of patients.
Collapse
Affiliation(s)
- Lara Riehl
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| | - Medhanie Mulaw
- Institute of Experimental Cancer ResearchUniversity Medical Center UlmUlmGermany
| | - Katharina Kneer
- Department of Nuclear MedicineUniversity Medical Center UlmUlmGermany
| | - Meinhard Beer
- Department of Diagnostic and Interventional RadiologyUniversity Medical Center UlmUlmGermany
| | - Ambros Beer
- Department of Nuclear MedicineUniversity Medical Center UlmUlmGermany
| | - Thomas F. Barth
- Department of PathologyUniversity Medical Center UlmUlmGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Johannes Schulte
- Pediatric Oncology and HematologyCharité University MedicineBerlinGermany,German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
| | - Matthias Fischer
- Department of Pediatric Oncology and HematologyUniversity Children's Hospital of CologneCologneGermany
| | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| |
Collapse
|
42
|
Guo Y, Chomiak A, Hong Y, Lowe CC, Kopsidas CA, Chan WC, Andrade J, Pan H, Zhou X, Monuki ES, Feng Y. Histone H2A ubiquitination resulting from Brap loss of function connects multiple aging hallmarks and accelerates neurodegeneration. iScience 2022; 25:104519. [PMID: 35754718 PMCID: PMC9213774 DOI: 10.1016/j.isci.2022.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is an intricate process characterized by multiple hallmarks including stem cell exhaustion, genome instability, epigenome alteration, impaired proteostasis, and cellular senescence. Whereas each of these traits is detrimental at the cellular level, it remains unclear how they are interconnected to cause systemic organ deterioration. Here we show that abrogating Brap, a BRCA1-associated protein essential for neurogenesis, results in persistent DNA double-strand breaks and elevation of histone H2A mono- and poly-ubiquitination (H2Aub). These defects extend to cellular senescence and proteasome-mediated histone H2A proteolysis with alterations in cells' proteomic and epigenetic states. Brap deletion in the mouse brain causes neuroinflammation, impaired proteostasis, accelerated neurodegeneration, and substantially shortened the lifespan. We further show the elevation of H2Aub also occurs in human brain tissues with Alzheimer's disease. These data together suggest that chromatin aberrations mediated by H2Aub may act as a nexus of multiple aging hallmarks and promote tissue-wide degeneration.
Collapse
Affiliation(s)
- Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Alison.A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Ye Hong
- University of Turku, Turku 20500, Finland
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Wen-Ching Chan
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Edwin S. Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
43
|
Huang AY, Lee EA. Identification of Somatic Mutations From Bulk and Single-Cell Sequencing Data. FRONTIERS IN AGING 2022; 2:800380. [PMID: 35822012 PMCID: PMC9261417 DOI: 10.3389/fragi.2021.800380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Somatic mutations are DNA variants that occur after the fertilization of zygotes and accumulate during the developmental and aging processes in the human lifespan. Somatic mutations have long been known to cause cancer, and more recently have been implicated in a variety of non-cancer diseases. The patterns of somatic mutations, or mutational signatures, also shed light on the underlying mechanisms of the mutational process. Advances in next-generation sequencing over the decades have enabled genome-wide profiling of DNA variants in a high-throughput manner; however, unlike germline mutations, somatic mutations are carried only by a subset of the cell population. Thus, sensitive bioinformatic methods are required to distinguish mutant alleles from sequencing and base calling errors in bulk tissue samples. An alternative way to study somatic mutations, especially those present in an extremely small number of cells or even in a single cell, is to sequence single-cell genomes after whole-genome amplification (WGA); however, it is critical and technically challenging to exclude numerous technical artifacts arising during error-prone and uneven genome amplification in current WGA methods. To address these challenges, multiple bioinformatic tools have been developed. In this review, we summarize the latest progress in methods for identification of somatic mutations and the challenges that remain to be addressed in the future.
Collapse
Affiliation(s)
- August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, United States, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, United States, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Fowler JC, Jones PH. Somatic Mutation: What Shapes the Mutational Landscape of Normal Epithelia? Cancer Discov 2022; 12:1642-1655. [PMID: 35397477 PMCID: PMC7613026 DOI: 10.1158/2159-8290.cd-22-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.
Collapse
Affiliation(s)
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Li C, Wang H, Jiang Y, Fu W, Liu X, Zhong R, Cheng B, Zhu F, Xiang Y, He J, Liang W. Advances in lung cancer screening and early detection. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0690. [PMID: 35535966 PMCID: PMC9196057 DOI: 10.20892/j.issn.2095-3941.2021.0690] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is associated with a heavy cancer-related burden in terms of patients' physical and mental health worldwide. Two randomized controlled trials, the US-National Lung Screening Trial (NLST) and Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON), indicated that low-dose CT (LDCT) screening results in a statistically significant decrease in mortality in patients with lung cancer, LDCT has become the standard approach for lung cancer screening. However, many issues in lung cancer screening remain unresolved, such as the screening criteria, high false-positive rate, and radiation exposure. This review first summarizes recent studies on lung cancer screening from the US, Europe, and Asia, and discusses risk-based selection for screening and the related issues. Second, an overview of novel techniques for the differential diagnosis of pulmonary nodules, including artificial intelligence and molecular biomarker-based screening, is presented. Third, current explorations of strategies for suspected malignancy are summarized. Overall, this review aims to help clinicians understand recent progress in lung cancer screening and alleviate the burden of lung cancer.
Collapse
Affiliation(s)
- Caichen Li
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Huiting Wang
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Yu Jiang
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Wenhai Fu
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Xiwen Liu
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Bo Cheng
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
| | - Feng Zhu
- Department of Internal Medicine, Detroit Medical Center Sinai-Grace Hospital, Detroit, Michigan 48235, USA
| | - Yang Xiang
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Jianxing He
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, the First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- Dongguan Affiliated Hospital of Southern Medical University, Dongguan People Hospital, Dongguan 523059, China
- Department of Oncology, the First People’s Hospital of Zhaoqing, Zhaoqing 526020, China
| |
Collapse
|
46
|
Lobon I, Solís-Moruno M, Juan D, Muhaisen A, Abascal F, Esteller-Cucala P, García-Pérez R, Martí MJ, Tolosa E, Ávila J, Rahbari R, Marques-Bonet T, Casals F, Soriano E. Somatic Mutations Detected in Parkinson Disease Could Affect Genes With a Role in Synaptic and Neuronal Processes. FRONTIERS IN AGING 2022; 3:851039. [PMID: 35821807 PMCID: PMC9261316 DOI: 10.3389/fragi.2022.851039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
The role of somatic mutations in complex diseases, including neurodevelopmental and neurodegenerative disorders, is becoming increasingly clear. However, to date, no study has shown their relation to Parkinson disease’s phenotype. To explore the relevance of embryonic somatic mutations in sporadic Parkinson disease, we performed whole-exome sequencing in blood and four brain regions of ten patients. We identified 59 candidate somatic single nucleotide variants (sSNVs) through sensitive calling and a careful filtering strategy (COSMOS). We validated 27 of them with amplicon-based ultra-deep sequencing, with a 70% validation rate for the highest-confidence variants. The identified sSNVs are in genes with synaptic functions that are co-expressed with genes previously associated with Parkinson disease. Most of the sSNVs were only called in blood but were also found in the brain tissues with ultra-deep amplicon sequencing, demonstrating the strength of multi-tissue sampling designs.
Collapse
Affiliation(s)
- Irene Lobon
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- *Correspondence: Irene Lobon, ; Eduardo Soriano,
| | - Manuel Solís-Moruno
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Federico Abascal
- Cancer, Ageing, and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | - Maria Josep Martí
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
| | - Eduardo Tolosa
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
| | - Jesús Ávila
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - Raheleh Rahbari
- Cancer, Ageing, and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- *Correspondence: Irene Lobon, ; Eduardo Soriano,
| |
Collapse
|
47
|
Wang Z, Zhang T, Wu W, Wu L, Li J, Huang B, Liang Y, Li Y, Li P, Li K, Wang W, Guo R, Wang Q. Detection and Localization of Solid Tumors Utilizing the Cancer-Type-Specific Mutational Signatures. Front Bioeng Biotechnol 2022; 10:883791. [PMID: 35547159 PMCID: PMC9081532 DOI: 10.3389/fbioe.2022.883791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate detection and location of tumor lesions are essential for improving the diagnosis and personalized cancer therapy. However, the diagnosis of lesions with fuzzy histology is mainly dependent on experiences and with low accuracy and efficiency. Here, we developed a logistic regression model based on mutational signatures (MS) for each cancer type to trace the tumor origin. We observed MS could distinguish cancer from inflammation and healthy individuals. By collecting extensive datasets of samples from ten tumor types in the training cohort (5,001 samples) and independent testing cohort (2,580 samples), cancer-type-specific MS patterns (CTS-MS) were identified and had a robust performance in distinguishing different types of primary and metastatic solid tumors (AUC:0.76 ∼ 0.93). Moreover, we validated our model in an Asian population and found that the AUC of our model in predicting the tumor origin of the Asian population was higher than 0.7. The metastatic tumor lesions inherited the MS pattern of the primary tumor, suggesting the capability of MS in identifying the tissue-of-origin for metastatic cancers. Furthermore, we distinguished breast cancer and prostate cancer with 90% accuracy by combining somatic mutations and CTS-MS from cfDNA, indicating that the CTS-MS could improve the accuracy of cancer-type prediction by cfDNA. In summary, our study demonstrated that MS was a novel reliable biomarker for diagnosing solid tumors and provided new insights into predicting tissue-of-origin.
Collapse
Affiliation(s)
- Ziyu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Pengping Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Qianghu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| |
Collapse
|
48
|
Mitiushkina NV, Yanus GA, Kuligina ES, Laidus TA, Romanko AA, Kholmatov MM, Ivantsov AO, Aleksakhina SN, Imyanitov EN. Preparation of Duplex Sequencing Libraries for Archival Paraffin-Embedded Tissue Samples Using Single-Strand-Specific Nuclease P1. Int J Mol Sci 2022; 23:4586. [PMID: 35562977 PMCID: PMC9105346 DOI: 10.3390/ijms23094586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
DNA from formalin-fixed paraffin-embedded (FFPE) tissues, which are frequently utilized in cancer research, is significantly affected by chemical degradation. It was suggested that approaches that are based on duplex sequencing can significantly improve the accuracy of mutation detection in FFPE-derived DNA. However, the original duplex sequencing method cannot be utilized for the analysis of formalin-fixed paraffin-embedded (FFPE) tissues, as FFPE DNA contains an excessive number of damaged bases, and these lesions are converted to false double-strand nucleotide substitutions during polymerase-driven DNA end repair process. To resolve this drawback, we replaced DNA polymerase by a single strand-specific nuclease P1. Nuclease P1 was shown to efficiently remove RNA from DNA preparations, to fragment the FFPE-derived DNA and to remove 5'/3'-overhangs. To assess the performance of duplex sequencing-based methods in FFPE-derived DNA, we constructed the Bottleneck Sequencing System (BotSeqS) libraries from five colorectal carcinomas (CRCs) using either DNA polymerase or nuclease P1. As expected, the number of identified mutations was approximately an order of magnitude higher in libraries prepared with DNA polymerase vs. nuclease P1 (626 ± 167/Mb vs. 75 ± 37/Mb, paired t-test p-value 0.003). Furthermore, the use of nuclease P1 but not polymerase-driven DNA end repair allowed a reliable discrimination between CRC tumors with and without hypermutator phenotypes. The utility of newly developed modification was validated in the collection of 17 CRCs and 5 adjacent normal tissues. Nuclease P1 can be recommended for the use in duplex sequencing library preparation from FFPE-derived DNA.
Collapse
Affiliation(s)
- Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Grigory A. Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Ekatherina Sh. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Tatiana A. Laidus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Alexandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Maksim M. Kholmatov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Alexandr O. Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, 191015 St.-Petersburg, Russia
| |
Collapse
|
49
|
El-Saadi MW, Tian X, Grames M, Ren M, Keys K, Li H, Knott E, Yin H, Huang S, Lu XH. Tracing brain genotoxic stress in Parkinson's disease with a novel single-cell genetic sensor. SCIENCE ADVANCES 2022; 8:eabd1700. [PMID: 35427151 PMCID: PMC9012470 DOI: 10.1126/sciadv.abd1700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
To develop an in vivo tool to probe brain genotoxic stress, we designed a viral proxy as a single-cell genetic sensor termed PRISM that harnesses the instability of recombinant adeno-associated virus genome processing and a hypermutable repeat sequence-dependent reporter. PRISM exploits the virus-host interaction to probe persistent neuronal DNA damage and overactive DNA damage response. A Parkinson's disease (PD)-associated environmental toxicant, paraquat (PQ), inflicted neuronal genotoxic stress sensitively detected by PRISM. The most affected cell type in PD, dopaminergic (DA) neurons in substantia nigra, was distinguished by a high level of genotoxic stress following PQ exposure. Human alpha-synuclein proteotoxicity and propagation also triggered genotoxic stress in nigral DA neurons in a transgenic mouse model. Genotoxic stress is a prominent feature in PD patient brains. Our results reveal that PD-associated etiological factors precipitated brain genotoxic stress and detail a useful tool for probing the pathogenic significance in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Madison Wynne El-Saadi
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Xinli Tian
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Mychal Grames
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Michael Ren
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Kelsea Keys
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Hanna Li
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Erika Knott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Hong Yin
- Feist-Weiller Cancer Center and Department of Medicine, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
50
|
Maslov AY, Makhortov S, Sun S, Heid J, Dong X, Lee M, Vijg J. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. SCIENCE ADVANCES 2022; 8:eabm3259. [PMID: 35394831 PMCID: PMC8993124 DOI: 10.1126/sciadv.abm3259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Postzygotic somatic mutations have been found associated with human disease, including diseases other than cancer. Most information on somatic mutations has come from studying clonally amplified mutant cells, based on a growth advantage or genetic drift. However, almost all somatic mutations are unique for each cell, and the quantitative analysis of these low-abundance mutations in normal tissues remains a major challenge in biology. Here, we introduce single-molecule mutation sequencing (SMM-seq), a novel approach for quantitative identification of point mutations in normal cells and tissues.
Collapse
Affiliation(s)
- Alexander Y. Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Sergey Makhortov
- Department of Programming and Information Technology, Voronezh State University, Voronezh, Russia
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute on the Biology of Aging and Metabolism and Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|