1
|
Roth C, Pitard B, Levillayer L, Lay S, Vo HTM, Cantaert T, Sakuntabhai A. Zika virus T-cell based 704/DNA vaccine promotes protection from Zika virus infection in the absence of neutralizing antibodies. PLoS Negl Trop Dis 2024; 18:e0012601. [PMID: 39418312 PMCID: PMC11521268 DOI: 10.1371/journal.pntd.0012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are closely related flaviviruses co-circulating in the same endemic areas. Infection can raise cross-reactive antibodies that can be either protective or increase risk of severe disease, depending on the infection sequence, DENV serotype and elapsed time between infection. On the contrast, T cell-mediated immunity against DENV and ZIKV is considered protective. Therefore, we have developed a T cell vaccine enriched in immunodominant T cell epitopes derived from ZIKV and evaluated its immunogenicity and efficacy against ZIKV and DENV infection. Mice were vaccinated using DNA vaccine platform using the tetrafunctional amphiphilic block copolymer 704. We show that vaccination of 2 different HLA class I transgenic mice with the ZIKV non-structural (NS) poly-epitope elicits T cell response against numerous ZIKV epitopes. Moreover, vaccination induces a significant protection against ZIKV infection, in the absence of neutralizing or enhancing antibodies against ZIKV. However, vaccination does not induce a significant protection against DENV2. In contrast, immunization with a DENV1-NS poly-epitope induces a significant protection against both DENV1 and DENV2, in the absence of humoral immunity. Taken together, we have shown that T-cell based vaccination could protect against multiple flavivirus infections and could overcome the complexity of antibody-mediated enhancement.
Collapse
Affiliation(s)
- Claude Roth
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Bruno Pitard
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in Immunotherapy, INCIT UMR1232/EMR6001, F-44000 Nantes, France
| | - Laurine Levillayer
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Ecology and Emergence of Arthropod-Borne Pathogens Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| |
Collapse
|
2
|
Tian G, Tan J, Liu B, Xiao M, Xia Q. Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a. Anal Chim Acta 2024; 1316:342838. [PMID: 38969428 DOI: 10.1016/j.aca.2024.342838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.
Collapse
Affiliation(s)
- Guozhen Tian
- Hainan Women and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Jun Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Biao Liu
- Hainan Women and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Meifang Xiao
- Hainan Women and Children's Medical Center, Haikou, Hainan, 571199, China.
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
3
|
Morgenlander WR, Chia WN, Parra B, Monaco DR, Ragan I, Pardo CA, Bowen R, Zhong D, Norris DE, Ruczinski I, Durbin A, Wang LF, Larman HB, Robinson ML. Precision arbovirus serology with a pan-arbovirus peptidome. Nat Commun 2024; 15:5833. [PMID: 38992033 PMCID: PMC11239951 DOI: 10.1038/s41467-024-49461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.
Collapse
Affiliation(s)
- William R Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore
| | - Beatriz Parra
- Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Daniel R Monaco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Izabela Ragan
- Department of Biomedical Sciences, Colorado State University College of Veterinary and Biomedical Sciences, Fort Collins, CO, USA
| | - Carlos A Pardo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University College of Veterinary and Biomedical Sciences, Fort Collins, CO, USA
| | - Diana Zhong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Durbin
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Matthew L Robinson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Sarker S, Dutta C, Mallick A, Das S, Das Chowdhury C, De A, Gorai S, Biswas S. Dengue virus (DV) non-cross-reactive Omicron wave COVID-19 serums enhanced DV3 infectivity in vitro. J Med Microbiol 2024; 73. [PMID: 38963412 DOI: 10.1099/jmm.0.001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Introduction. In India, the SARS-CoV-2 Delta wave (2020-2021) faded away with the advent of the Omicron variants (2021-present). Dengue incidences were observed to be less in Southeast Asia during the active years of the pandemic (2020-2021). However, dengue virus type 3 (DV3) cases were increasingly reported in this region (including India) concurrent with the progression of the Omicron waves since 2022.Hypothesis. What could be the reason(s) behind this unusual DV3 surge after an overall dip in dengue incidences in many parts of Southeast Asia?Aim. We, therefore, investigated the current state of cross-reactivity of prevalent (Omicron era) SARS-CoV-2 serums with different DV serotypes and evaluated the impact of such serums on DV neutralization in cell culture.Methodology. Fifty-five COVID-19 serum samples (January-September 2022) and three pre-pandemic archived serum samples from apparently healthy individuals were tested for DV or SARS-CoV-2 IgM/IgG using the lateral flow immunoassays. DV1-4 virus neutralization tests (VNTs) were done with the SARS-CoV-2 antibody (Ab)-positive serums in Huh7 cells. DV3 envelope (env) gene was PCR amplified and sequenced for three archived DV isolates, one from 2017 and two from 2021.Results. SARS-CoV-2 Ab-positive samples constituted 74.5 % of the serums. Of these, 41.5 % were DV cross-reactive and 58.5 % were not. The DV cross-reactive serums neutralized all DV serotypes (DV1-4), as per previous results and this study. The DV non-cross-reactive serums (58.5 %) also cross-neutralized DV1, 2 and 4 but increased DV3 infectivity by means of antibody-dependent enhancement of infection as evident from significantly higher DV3 titres in VNT compared to control serums. The DV3 envelope was identical among the three isolates, including isolate 1 used in VNTs. Our results suggest that DV cross-reactivity of SARS-CoV-2 serums diminished with the shift from Delta to Omicron prevalence. Such COVID-19 serums (DV non-cross-reactive) might have played a major role in causing DV3 surge during the Omicron waves.Conclusion. Patients suspected of dengue or COVID-19 should be subjected to virus/antigen tests and serological tests for both the diseases for definitive diagnosis, prognosis and disease management.
Collapse
Affiliation(s)
- Supratim Sarker
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chiroshri Dutta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Abinash Mallick
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sayantan Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chandrika Das Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College and Hospital, Kolkata, West Bengal, India
| | - Surajit Gorai
- Department of Dermatology, Apollo Multispeciality Hospital, Kolkata, West Bengal, India
| | - Subhajit Biswas
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Adam A, Wenzel R, Unger E, Reiche S, Jassoy C. Serological Evidence of Zika Virus Infections in Sudan. Viruses 2024; 16:1045. [PMID: 39066208 PMCID: PMC11281350 DOI: 10.3390/v16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Little is known about the frequency of Zika virus (ZIKV) infections in Sudan. The aim of this study was to obtain data on the prevalence of ZIKV infections and the immunity of the population in the country. To this end, 198 sera obtained between December 2012 and January 2013 in different regions in Sudan were examined for neutralizing antibodies against ZIKV, dengue virus (DENV), and yellow fever virus (YFV). The sera were non-randomly selected. The neutralization titers were compared with each other and with the WHO 1st International Standard for anti-Asian lineage Zika virus antibody. Twenty-six sera neutralized ZIKV. One-third of these sera had higher neutralization titers against ZIKV than against DENV-2 and -3. Two sera showed higher neutralization titers than the WHO standard for ZIKV antibodies. These data suggest occasional ZIKV infections in Sudan. The low percentage of sera in this cohort that neutralized ZIKV indicates that, in the study period, the population was susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Robert Wenzel
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Elisabeth Unger
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| |
Collapse
|
6
|
Pereira SH, Sá Magalhães Serafim M, Moraes TDFS, Zini N, Abrahão JS, Nogueira ML, Coelho dos Reis JGA, Bagno FF, da Fonseca FG. Design, development, and validation of multi-epitope proteins for serological diagnosis of Zika virus infections and discrimination from dengue virus seropositivity. PLoS Negl Trop Dis 2024; 18:e0012100. [PMID: 38635656 PMCID: PMC11025737 DOI: 10.1371/journal.pntd.0012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.
Collapse
Affiliation(s)
- Samille Henriques Pereira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Sá Magalhães Serafim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís de Fátima Silva Moraes
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | | | - Flávia Fonseca Bagno
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Singh T, Miller IG, Venkatayogi S, Webster H, Heimsath HJ, Eudailey JA, Dudley DM, Kumar A, Mangan RJ, Thein A, Aliota MT, Newman CM, Mohns MS, Breitbach ME, Berry M, Friedrich TC, Wiehe K, O'Connor DH, Permar SR. Prior dengue virus serotype 3 infection modulates subsequent plasmablast responses to Zika virus infection in rhesus macaques. mBio 2024; 15:e0316023. [PMID: 38349142 PMCID: PMC10936420 DOI: 10.1128/mbio.03160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.
Collapse
Affiliation(s)
- Tulika Singh
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | | | - Sravani Venkatayogi
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Holly J. Heimsath
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Josh A. Eudailey
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amit Kumar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Riley J. Mangan
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Amelia Thein
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madison Berry
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Wiehe
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sallie R. Permar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| |
Collapse
|
8
|
Cruz KG, Eron MH, Makhaik S, Savinov S, Hardy JA. A Non-Active-Site Inhibitor with Selectivity for Zika Virus NS2B-NS3 Protease. ACS Infect Dis 2024; 10:412-425. [PMID: 38265226 PMCID: PMC11099878 DOI: 10.1021/acsinfecdis.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Flavivirus infection usually results in fever accompanied by headache, arthralgia, and, in some cases, rash. Although the symptoms are mild, full recovery can take several months. Flaviviruses encode seven nonstructural proteins that represent potential drug targets for this viral family. Focusing on the Zika virus NS2B-NS3 protease, we uncovered a unique inhibitor, MH1, composed of aminothiazolopyridine and benzofuran moieties. MH1 inhibits ZVP with a biochemical IC50 of 440 nM and effectively blocks cleavage of ZVP substrates in cells. Surprisingly, MH1 inhibits the other flaviviral proteases at least 18-fold more weakly. This same phenomenon was observed in assays of the viral cytopathic effect, where only Zika virus showed sensitivity to MH1. This selectivity was unexpected since flaviviral proteases have high similarity in sequence and protein structure. MH1 binds at an allosteric site, as demonstrated by its ability to stabilize ZVP synergistically with an active site inhibitor. To understand its selectivity, we constructed a series of hybrid proteases composed of select segments of ZVP, which is sensitive to MH1, and dengue virus protease, which is essentially insensitive to MH1. Our results suggest that MH1 binds to the NS3 protease domain, disrupting its interaction with NS2B. These interactions are essential for substrate binding and cleavage. In particular, the unique dynamic properties of NS2B from Zika seem to be required for the function of MH1. Insights into the mechanism of MH1 function will aid us in developing non-active-site-directed, pan-flaviviral inhibitors, by highlighting the importance of evaluating and considering the dynamics of the NS2B regions.
Collapse
Affiliation(s)
| | | | - Sparsh Makhaik
- Department of Chemistry, University of Massachusetts Amherst, MA, US 01002
| | | | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts Amherst, MA, US 01002
| |
Collapse
|
9
|
Castro-Trujillo S, Segura K, Bolívar-Marín S, Salgado DM, Bosch I, Vega R, Rojas MC, Narváez CF. NS1-Specific Antibody Response Facilitates the Identification of Children With Dengue and Zika in Hyperendemic Areas. Pediatr Infect Dis J 2024; 43:178-185. [PMID: 37963312 DOI: 10.1097/inf.0000000000004163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Infections by dengue virus (DENV) and Zika virus (ZIKV) have some similar symptoms and a cross-reactive immune response, although with different risk populations and outcomes. Here, we evaluated the virologic characteristics and the nonstructural protein 1 (NS1)-specific antibody responses to DENV and ZIKV in children suspected of dengue in different epidemiologic moments in Colombia. METHODS Viral RNA, circulating NS1 and IgM/IgG specific for DENV and ZIKV were performed by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) in 301 children suspected of dengue enrolled in a hospital setting during the ZIKV epidemic and a primary healthcare setting during a DENV epidemic. For the detection of DENV and ZIKV-specific IgM, an NS1-based ELISA was validated using characterized pediatric samples. Clinical and laboratory parameters were also evaluated. RESULTS DENV RNA or NS1 antigen was detected in the plasma of 62% of children, and in none, the ZIKV RNA was found. NS1-based ELISA for DENV and ZIKV IgM showed a sensitivity/specificity of 90/84% and 73/98%, respectively. Of 114 children without detectable viremia or antigenemia, 30.7%, 17.5%, 22% and 30% were IgM-DENV + , IgM-ZIKV + , IgM-DENV + ZIKV + and IgM-DENV - ZIKV - , respectively. The ZIKV/DENV IgM-NS1 ratio allows the identification of the infecting orthoflavivirus in 88% of the children with IgM-DENV + ZIKV + , confirming a high predominance of DENV infections in the 2 pediatric settings. CONCLUSION Overall, 88% of the children with clinical suspicion of dengue had an identifiable orthoflaviviral infection, with 80% caused by DENV, 7% by ZIKV and 0.7% classified as recent infections or coinfection, demonstrating active viral cocirculation in the pediatric population of southern Colombia. The IgM-NS1 detection improved the identification of orthoflaviviral infections in children without viremia or antigenemia, suggesting it is a helpful complementary tool for medical personnel in tropical regions with high viral cocirculation and different clinical scenes.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- From the División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Katherine Segura
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Sara Bolívar-Marín
- From the División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Doris M Salgado
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Irene Bosch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Rocío Vega
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - María Clemencia Rojas
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Carlos F Narváez
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| |
Collapse
|
10
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
11
|
Smith TC, Espinoza DO, Zhu Y, Cardona-Ospina JA, Bowman NM, Becker-Dreps S, Rouphael N, Rodriguez-Morales AJ, Bucardo F, Edupuganti S, Premkumar L, Mulligan MJ, de Silva AM, Collins MH. Natural infection by Zika virus but not DNA vaccination consistently elicits antibodies that compete with two potently neutralising monoclonal antibodies targeting distinct epitopes. EBioMedicine 2023; 98:104875. [PMID: 37983984 PMCID: PMC10694573 DOI: 10.1016/j.ebiom.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Autochthonous transmission of Zika virus (ZIKV) has been reported in 87 countries since 2015. Although most infections are mild, there is risk of Guillain-Barré syndrome and adverse pregnancy outcomes. Vaccines are urgently needed to prevent Zika, but sufficient understanding of humoral responses and tools to assess ZIKV-specific immunity are lacking. METHODS We developed a blockade-of-binding (BOB) ELISA using A9E and G9E, two strongly neutralising ZIKV-specific monoclonal antibodies, which do not react with dengue virus. Receiver operating characteristic curve analysis assessed A9E and G9E BOB serodiagnostic performance. BOB was then applied to samples from a surveillance cohort in Risaralda, Colombia, and phase 1 ZIKV vaccine trial samples, comparing results against traditional serologic tests. FINDINGS In the validation sample set (n = 120), A9E BOB has a sensitivity of 93.5% (95% CI: 79.3, 98.9) and specificity 97.8 (95% CI: 92.2, 99.6). G9E BOB had a sensitivity of 100% (95% CI: 89.0, 100.0) and specificity 100% (95% CI: 95.9, 100). Serum from natural infections consistently tested positive in these assays for up to one year, and reactivity tracks well with ZIKV infection status among sera from endemic areas with complicated flavivirus exposures. Interestingly, a leading ZIKV vaccine candidate elicited minimal BOB reactivity despite generating neutralising antibody responses. INTERPRETATION In conclusion, A9E and G9E BOB assays are sensitive and specific assays for detecting antibodies elicited by recent or remote ZIKV infections. Given the additional ability of these BOB assays to detect immune responses that target different epitopes, further development of these assays is well justified for applications including flavivirus surveillance, translational vaccinology research and as potential serologic correlates of protective immunity against Zika. FUNDING R21 AI129532 (PI: S. Becker-Dreps), CDCBAA 2017-N-18041 (PI: A. M. de Silva), Thrasher Fund (PI: M. H. Collins), K22 AI137306 (PI: M. H. Collins).
Collapse
Affiliation(s)
- Teresa C Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Daniel O Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yerun Zhu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Natalie M Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia; Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Omame A, Abbas M. The stability analysis of a co-circulation model for COVID-19, dengue, and zika with nonlinear incidence rates and vaccination strategies. HEALTHCARE ANALYTICS (NEW YORK, N.Y.) 2023; 3:100151. [PMID: 36883137 PMCID: PMC9979858 DOI: 10.1016/j.health.2023.100151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 05/18/2023]
Abstract
This paper aims to study the impacts of COVID-19 and dengue vaccinations on the dynamics of zika transmission by developing a vaccination model with the incorporation of saturated incidence rates. Analyses are performed to assess the qualitative behavior of the model. Carrying out bifurcation analysis of the model, it was concluded that co-infection, super-infection and also re-infection with same or different disease could trigger backward bifurcation. Employing well-formulated Lyapunov functions, the model's equilibria are shown to be globally stable for a certain scenario. Moreover, global sensitivity analyses are performed out to assess the impact of dominant parameters that drive each disease's dynamics and its co-infection. Model fitting is performed on the actual data for the state of Amazonas in Brazil. The fittings reveal that our model behaves very well with the data. The significance of saturated incidence rates on the dynamics of three diseases is also highlighted. Based on the numerical investigation of the model, it was observed that increased vaccination efforts against COVID-19 and dengue could positively impact zika dynamics and the co-spread of triple infections.
Collapse
Affiliation(s)
- Andrew Omame
- Department of Mathematics, Federal University of Technology, Owerri, Nigeria
- Abdus Salam School of Mathematical Sciences, Government College University Katchery Road, Lahore 54000, Pakistan
| | - Mujahid Abbas
- Department of Mathematics, Government College University Katchery Road, Lahore 54000, Pakistan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
13
|
Estofolete CF, Versiani AF, Dourado FS, Milhim BHGA, Pacca CC, Silva GCD, Zini N, dos Santos BF, Gandolfi FA, Mistrão NFB, Garcia PHC, Rocha RS, Gehrke L, Bosch I, Marques RE, Teixeira MM, da Fonseca FG, Vasilakis N, Nogueira ML. Influence of previous Zika virus infection on acute dengue episode. PLoS Negl Trop Dis 2023; 17:e0011710. [PMID: 37943879 PMCID: PMC10662752 DOI: 10.1371/journal.pntd.0011710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/21/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The co-circulation of flaviviruses in tropical regions has led to the hypothesis that immunity generated by a previous dengue infection could promote severe disease outcomes in subsequent infections by heterologous serotypes. This study investigated the influence of antibodies generated by previous Zika infection on the clinical outcomes of dengue infection. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 1,043 laboratory confirmed dengue patients and investigated their prior infection to Zika or dengue. Severe forms of dengue disease were more frequent in patients with previous Zika infection, but not in those previously exposed to dengue. CONCLUSIONS/SIGNIFICANCE Our findings suggest that previous Zika infection may represent a risk factor for subsequent severe dengue disease, but we did not find evidence of antibody-dependent enhancement (higher viral titer or pro-inflammatory cytokine overexpression) contributing to exacerbation of the subsequent dengue infection.
Collapse
Affiliation(s)
- Cassia F. Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Alice F. Versiani
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Fernanda S. Dourado
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Carolina C. Pacca
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Gislaine C. D. Silva
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Barbara F. dos Santos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Flora A. Gandolfi
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Natalia F. B. Mistrão
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Pedro H. C. Garcia
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Rodrigo S. Rocha
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM); Campinas, Sao Paulo, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Flavio G. da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
- Centro de Tecnoogia em Vacinas da UFMG, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
14
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
15
|
Aquino VH, Fumagalli MJ, Silva A, de Moura Negrini BV, Rojas A, Guillen Y, Bernal C, Figueiredo LTM. Linear epitope mapping in the E and NS1 proteins of dengue and Zika viruses: Prospection of peptides for vaccines and diagnostics. PLoS One 2023; 18:e0292451. [PMID: 37788262 PMCID: PMC10547212 DOI: 10.1371/journal.pone.0292451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
The arrival of the Zika virus (ZIKV) in dengue virus (DENV)-endemic areas has posed challenges for both differential diagnosis and vaccine development. Peptides have shown promise in addressing these issues. The aim of this study was to identify the linear epitope profile recognized by serum samples from dengue and Zika patients in the E and NS1 proteins of DENV and ZIKV. This cross-sectional study included individuals of all ages with laboratory-confirmed DENV and ZIKV infections, who were selected through convenience sampling. The serum samples from dengue and Zika patients detected epitopes evenly distributed across the viral proteins in a peptide microarray platform. However, several epitopes were located within "epitope hotspots", characterized by clusters of peptides recognized in more than 30% of the sub-arrays analyzed using individual or pooled serum samples. The serum samples from dengue and Zika patients showed a high level of cross-reactivity with peptides in the DENV and ZIKV proteins. Analysis using an additional peptide microarray platform, which contained peptides selected based on the results of the initial screening, revealed that two DENV and one ZIKV peptide, highly specific to their related viruses, were located within the epitope hotspots; however, they presented low detection rates (32.5, 35.0, and 28.6%, respectively). In addition, two DENV peptides detected at similarly high rates by both dengue and Zika patients were also found within the epitope hotspots. These hotspots contain several immunodominant epitopes that are recognized by a larger number of individuals when compared to 15-amino acid (aa) sequence peptides. Thus, epitope hotspots may have greater potential to serve as antigens in diagnostic tests and vaccine development than peptides composed of only 15 amino acids.
Collapse
Affiliation(s)
- Victor Hugo Aquino
- Immunology Department, Research Institute for Health Sciences, National University of Asuncion, San Lorenzo, Central, Paraguay
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marcilio J. Fumagalli
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Angélica Silva
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Alejandra Rojas
- Production Department, Research Institute for Health Sciences, National University of Asuncion, San Lorenzo, Central, Paraguay
| | - Yvalena Guillen
- Production Department, Research Institute for Health Sciences, National University of Asuncion, San Lorenzo, Central, Paraguay
| | - Cynthia Bernal
- Production Department, Research Institute for Health Sciences, National University of Asuncion, San Lorenzo, Central, Paraguay
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
16
|
Valdes I, Gil L, Lazo L, Cobas K, Romero Y, Bruno A, Suzarte E, Pérez Y, Cabrales A, Ramos Y, Hermida L, Guillén G. Recombinant protein based on domain III and capsid regions of zika virus induces humoral and cellular immune response in immunocompetent BALB/c mice. Vaccine 2023; 41:5892-5900. [PMID: 37599141 DOI: 10.1016/j.vaccine.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Zika virus infection continues to be a global concern for human health due to the high-risk association of the disease with neurological disorders and microcephaly in newborn. Nowadays, no vaccine or specific antiviral treatment is available, and the development of safe and effective vaccines is yet a challenge. In this study, we obtained a novel subunit vaccine that combines two regions of zika genome, domain III of the envelope and the capsid, in a chimeric protein in E. coli bacteria. The recombinant protein was characterized with polyclonal anti-ZIKV and anti-DENV antibodies that corroborate the specificity of the molecule. In addition, the PBMC from zika-immune donors stimulated with the ZEC recombinant antigen showed the capacity to recall the memory T cell response previously generated by the natural infection. The chimeric protein ZEC was able to self-assemble after combination with an immunomodulatory specific oligonucleotide to form aggregates. The inoculation of BALB/c mice with ZEC aggregated and not aggregated form of the protein showed a similar humoral immune response, although the aggregated variant induced more cell-mediated immunity evaluated by in vitro IFNγ secretion. In this study, we propose a novel vaccine candidate against the zika disease based on a recombinant protein that can stimulate both arms of the immune system.
Collapse
Affiliation(s)
- Iris Valdes
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba.
| | - Lázaro Gil
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yaremis Romero
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Andy Bruno
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yassel Ramos
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Lisset Hermida
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| |
Collapse
|
17
|
Kasbergen LMR, Nieuwenhuijse DF, de Bruin E, Sikkema RS, Koopmans MPG. The increasing complexity of arbovirus serology: An in-depth systematic review on cross-reactivity. PLoS Negl Trop Dis 2023; 17:e0011651. [PMID: 37738270 PMCID: PMC10550177 DOI: 10.1371/journal.pntd.0011651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/04/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Diagnosis of arbovirus infection or exposure by antibody testing is becoming increasingly difficult due to global expansion of arboviruses, which induce antibodies that may (cross-)react in serological assays. We provide a systematic review of the current knowledge and knowledge gaps in differential arbovirus serology. The search included Medline, Embase and Web of Science databases and identified 911 publications which were reduced to 102 after exclusion of studies not providing data on possible cross-reactivity or studies that did not meet the inclusion criteria regarding confirmation of virus exposure of reference population sets. Using a scoring system to further assess quality of studies, we show that the majority of the selected papers (N = 102) provides insufficient detail to support conclusions on specificity of serological outcomes with regards to elucidating antibody cross-reactivity. Along with the lack of standardization of assays, metadata such as time of illness onset, vaccination, infection and travel history, age and specificity of serological methods were most frequently missing. Given the critical role of serology for diagnosis and surveillance of arbovirus infections, better standards for reporting, as well as the development of more (standardized) specific serological assays that allow discrimination between exposures to multiple different arboviruses, are a large global unmet need.
Collapse
Affiliation(s)
| | - David F. Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Eickhoff CS, Meza KA, Terry FE, Colbert CG, Blazevic A, Gutiérrez AH, Stone ET, Brien JD, Pinto AK, El Sahly HM, Mulligan MJ, Rouphael N, Alcaide ML, Tomashek KM, Focht C, Martin WD, Moise L, De Groot AS, Hoft DF. Identification of immunodominant T cell epitopes induced by natural Zika virus infection. Front Immunol 2023; 14:1247876. [PMID: 37705976 PMCID: PMC10497216 DOI: 10.3389/fimmu.2023.1247876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Zika virus (ZIKV) is a flavivirus primarily transmitted by Aedes species mosquitoes, first discovered in Africa in 1947, that disseminated through Southeast Asia and the Pacific Islands in the 2000s. The first ZIKV infections in the Americas were identified in 2014, and infections exploded through populations in Brazil and other countries in 2015/16. ZIKV infection during pregnancy can cause severe brain and eye defects in offspring, and infection in adults has been associated with higher risks of Guillain-Barré syndrome. We initiated a study to describe the natural history of Zika (the disease) and the immune response to infection, for which some results have been reported. In this paper, we identify ZIKV-specific CD4+ and CD8+ T cell epitopes that induce responses during infection. Two screening approaches were utilized: an untargeted approach with overlapping peptide arrays spanning the entire viral genome, and a targeted approach utilizing peptides predicted to bind human MHC molecules. Immunoinformatic tools were used to identify conserved MHC class I supertype binders and promiscuous class II binding peptide clusters predicted to bind 9 common class II alleles. T cell responses were evaluated in overnight IFN-γ ELISPOT assays. We found that MHC supertype binding predictions outperformed the bulk overlapping peptide approach. Diverse CD4+ T cell responses were observed in most ZIKV-infected participants, while responses to CD8+ T cell epitopes were more limited. Most individuals developed a robust T cell response against epitopes restricted to a single MHC class I supertype and only a single or few CD8+ T cell epitopes overall, suggesting a strong immunodominance phenomenon. Noteworthy is that many epitopes were commonly immunodominant across persons expressing the same class I supertype. Nearly all of the identified epitopes are unique to ZIKV and are not present in Dengue viruses. Collectively, we identified 31 immunogenic peptides restricted by the 6 major class I supertypes and 27 promiscuous class II epitopes. These sequences are highly relevant for design of T cell-targeted ZIKV vaccines and monitoring T cell responses to Zika virus infection and vaccination.
Collapse
Affiliation(s)
- Christopher S. Eickhoff
- Department of Internal Medicine, Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Saint Louis, MO, United States
| | - Krystal A. Meza
- Department of Internal Medicine, Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Saint Louis, MO, United States
| | | | - Chase G. Colbert
- Department of Internal Medicine, Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Saint Louis, MO, United States
| | - Azra Blazevic
- Department of Internal Medicine, Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Saint Louis, MO, United States
| | | | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, United States
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, United States
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, United States
| | - Hana M. El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mark J. Mulligan
- New York University Grossman School of Medicine, Division of Infectious Diseases and Immunology, New York, NY, United States
| | - Nadine Rouphael
- Emory University School of Medicine, Division of Infectious Diseases, Department of Internal Medicine, Atlanta, GA, United States
| | - Maria L. Alcaide
- University of Miami, Division of Infectious Diseases, Miller School of Medicine, Miami, FL, United States
| | - Kay M. Tomashek
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chris Focht
- The Emmes Company, LLC., Rockville, MD, United States
| | | | | | - Anne S. De Groot
- EpiVax, Inc., Providence, RI, United States
- University of Georgia Center for Vaccines and Immunology, Athens, GA, United States
| | - Daniel F. Hoft
- Department of Internal Medicine, Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Saint Louis, MO, United States
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO, United States
| |
Collapse
|
19
|
Sankhala RS, Dussupt V, Donofrio G, Gromowski GD, De La Barrera RA, Larocca RA, Mendez-Rivera L, Lee A, Choe M, Zaky W, Mantus G, Jensen JL, Chen WH, Gohain N, Bai H, McCracken MK, Mason RD, Leggat D, Slike BM, Tran U, Jian N, Abbink P, Peterson R, Mendes EA, Freitas de Oliveira Franca R, Calvet GA, Bispo de Filippis AM, McDermott A, Roederer M, Hernandez M, Albertus A, Davidson E, Doranz BJ, Rolland M, Robb ML, Lynch RM, Barouch DH, Jarman RG, Thomas SJ, Modjarrad K, Michael NL, Krebs SJ, Joyce MG. Zika-specific neutralizing antibodies targeting inter-dimer envelope epitopes. Cell Rep 2023; 42:112942. [PMID: 37561630 PMCID: PMC10775418 DOI: 10.1016/j.celrep.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Anna Lee
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Weam Zaky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Grace Mantus
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jaime L Jensen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Neelakshi Gohain
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Hongjun Bai
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - David Leggat
- Vaccine Research Center, NIH, Bethesda, MD 20852, USA
| | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica Araujo Mendes
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Guilherme Amaral Calvet
- Oswaldo Cruz Foundation, Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, RJ 21040-360, Brazil
| | | | | | | | | | | | | | | | - Morgane Rolland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rebecca M Lynch
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kayvon Modjarrad
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - M Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
20
|
Zhu K, Hill C, Muirhead A, Basu M, Brown J, Brinton MA, Hayat MJ, Venegas-Vargas C, Reis MG, Casanovas-Massana A, Meschke JS, Ko AI, Costa F, Stauber CE. Zika virus RNA persistence and recovery in water and wastewater: An approach for Zika virus surveillance in resource-constrained settings. WATER RESEARCH 2023; 241:120116. [PMID: 37270953 PMCID: PMC10330535 DOI: 10.1016/j.watres.2023.120116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
During the 2015-2016 Zika virus (ZIKV) epidemic in the Americas, serological cross-reactivity with other flaviviruses and relatively high costs of nucleic acid testing in the region hindered the capacity for widespread diagnostic testing. In such cases where individual testing is not feasible, wastewater monitoring approaches may offer a means of community-level public health surveillance. To inform such approaches, we characterized the persistence and recovery of ZIKV RNA in experiments where we spiked cultured ZIKV into surface water, wastewater, and a combination of both to examine the potential for detection in open sewers serving communities most affected by the ZIKV outbreak, such as those in Salvador, Bahia, Brazil. We used reverse transcription droplet digital PCR to quantify ZIKV RNA. In our persistence experiments, we found that the persistence of ZIKV RNA decreased with increasing temperature, significantly decreased in surface water versus wastewater, and significantly decreased when the initial concentration of virus was lowered by one order of magnitude. In our recovery experiments, we found higher percent recovery of ZIKV RNA in pellets versus supernatants from the same sample, higher recoveries in pellets using skimmed milk flocculation, lower recoveries of ZIKV RNA in surface water versus wastewater, and lower recoveries from a freeze thaw. We also analyzed samples collected from Salvador, Brazil during the ZIKV outbreak (2015-2016) that consisted of archived samples obtained from open sewers or environmental waters thought to be contaminated by sewage. Although we did not detect any ZIKV RNA in the archived Brazil samples, results from these persistence and recovery experiments serve to inform future wastewater monitoring efforts in open sewers, an understudied and important application of wastewater monitoring.
Collapse
Affiliation(s)
- Kevin Zhu
- Department of Civil and Environmental Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cailee Hill
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron Muirhead
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA
| | - Mausumi Basu
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 303034, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margo A Brinton
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 303034, USA
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA
| | - Cristina Venegas-Vargas
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mitermayer G Reis
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Rua Waldemar Falcão, 121, Salvador Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - J Scott Meschke
- Department of Environmental and Occupational Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - Albert I Ko
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Rua Waldemar Falcão, 121, Salvador Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Federico Costa
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Rua Waldemar Falcão, 121, Salvador Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA; Institute of Collective Health, Federal University of Bahia, Canela, Salvador 40110-040, Brazil
| | - Christine E Stauber
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
21
|
Yen LC, Chen HW, Ho CL, Lin CC, Lin YL, Yang QW, Chiu KC, Lien SP, Lin RJ, Liao CL. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J Biomed Sci 2023; 30:41. [PMID: 37316861 DOI: 10.1186/s12929-023-00938-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.
Collapse
Affiliation(s)
- Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Lo Ho
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Qiao-Wen Yang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Chou Chiu
- Department of Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Pei Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
22
|
Kim IJ, Tighe MP, Clark MJ, Gromowski GD, Lanthier PA, Travis KL, Bernacki DT, Cookenham TS, Lanzer KG, Szaba FM, Tamhankar MA, Ross CN, Tardif SD, Layne-Colon D, Dick EJ, Gonzalez O, Giraldo Giraldo MI, Patterson JL, Blackman MA. Impact of prior dengue virus infection on Zika virus infection during pregnancy in marmosets. Sci Transl Med 2023; 15:eabq6517. [PMID: 37285402 DOI: 10.1126/scitranslmed.abq6517] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Zika virus (ZIKV) infection during pregnancy causes severe developmental defects in newborns, termed congenital Zika syndrome (CZS). Factors contributing to a surge in ZIKV-associated CZS are poorly understood. One possibility is that ZIKV may exploit the antibody-dependent enhancement of infection mechanism, mediated by cross-reactive antibodies from prior dengue virus (DENV) infection, which may exacerbate ZIKV infection during pregnancy. In this study, we investigated the impact of prior DENV infection or no DENV infection on ZIKV pathogenesis during pregnancy in a total of four female common marmosets with five or six fetuses per group. The results showed that negative-sense viral RNA copies increased in the placental and fetal tissues of DENV-immune dams but not in DENV-naïve dams. In addition, viral proteins were prevalent in endothelial cells, macrophages, and neonatal Fc receptor-expressing cells in the placental trabeculae and in neuronal cells in the brains of fetuses from DENV-immune dams. DENV-immune marmosets maintained high titers of cross-reactive ZIKV-binding antibodies that were poorly neutralizing, raising the possibility that these antibodies might be involved in the exacerbation of ZIKV infection. These findings need to be verified in a larger study, and the mechanism involved in the exacerbation of ZIKV infection in DENV-immune marmosets needs further investigation. However, the results suggest a potential negative impact of preexisting DENV immunity on subsequent ZIKV infection during pregnancy in vivo.
Collapse
Affiliation(s)
- In-Jeong Kim
- Trudeau Institute Inc., Saranac Lake, NY 12983, USA
| | | | | | - Gregory D Gromowski
- Viral Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | - Manasi A Tamhankar
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Corrina N Ross
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Suzette D Tardif
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Donna Layne-Colon
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Edward J Dick
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Olga Gonzalez
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria I Giraldo Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jean L Patterson
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | |
Collapse
|
23
|
Acosta CJ, Diaz C, Nordio F, Han HH, Moss KJ, Bohning K, Kumar P, Liu M, Patel H, Pacciarini F, Mwangi V, Walter E, Powell TD, El Sahly HM, Baldwin WR, Santangelo J, Anderson EJ, Dubin G. Persistence of Immunogenicity of a Purified Inactivated Zika Virus Vaccine Candidate in Healthy Adults: 2 Years of Follow-up Compared With Natural Infection. J Infect Dis 2023; 227:1303-1312. [PMID: 36484441 PMCID: PMC10226659 DOI: 10.1093/infdis/jiac482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND We report 2-year persistence of immune response to Takeda's prophylactic purified formalin-inactivated whole Zika virus vaccine candidate (TAK-426) compared with that observed after natural infection. METHODS A randomized, observer-blind, placebo-controlled, dose-selection, phase 1 trial was conducted in 18-49-year-old adults at 9 centers (7 in the United States, 2 in Puerto Rico) from 13 November 2017 to 24 November 2020. Primary objectives were safety, tolerability, and immunogenicity of 3 increasing doses of TAK-426 administered as 2 doses 28 days apart to flavivirus (FV)-naive and FV-primed adults. Here, we report on safety and persistence of immunity up to 2 years after primary vaccination with 10-μg TAK-426, the highest dose, and compare neutralizing antibody responses with those observed after natural infection. RESULTS TAK-426 at 10-μg had an acceptable safety profile in FV-naive and FV-primed adults up to 24 months after dose 2. Seropositivity for neutralizing antibodies was 100% at 1 year, and 93.8% and 76.2% at 2 years in FV-naive and FV-primed groups, respectively. TAK-426 responses were comparable in magnitude and kinetics with those elicited by natural Zika virus infection. CONCLUSIONS These results support the further clinical development of TAK-426 for both FV-naive and FV-primed populations. CLINICAL TRIALS REGISTRATION NCT03343626.
Collapse
Affiliation(s)
| | - Clemente Diaz
- Puerto Rico Clinical and Translational Research Consortium, San Juan, Puerto Rico
| | | | | | | | | | - Pradeep Kumar
- Takeda Pharmaceuticals International AG, Zürich, Switzerland
| | - Mengya Liu
- Takeda Vaccines Inc, Cambridge, Massachusetts, USA
| | - Hetal Patel
- Takeda Vaccines Inc, Cambridge, Massachusetts, USA
| | | | | | - Elke Walter
- Takeda Pharmaceuticals International AG, Zürich, Switzerland
| | - Tim D Powell
- Takeda Vaccines Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | - Gary Dubin
- Takeda Pharmaceuticals International AG, Zürich, Switzerland
| |
Collapse
|
24
|
Gowri Sankar S, Alwin Prem Anand A, Chattopadhyay B. Editorial: Trends in dengue evolution, immune pathogenesis, and pathology. Front Cell Infect Microbiol 2023; 13:1210316. [PMID: 37305420 PMCID: PMC10248524 DOI: 10.3389/fcimb.2023.1210316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- S Gowri Sankar
- Department of Molecular Biology, Indian Council of Medical Research (ICMR)-Vector Control Research Center - Field Station, Madurai, India
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
25
|
Petphong V, Kosoltanapiwat N, Limkittikul K, Maneekan P, Chatchen S, Jittmittraphap A, Sriburin P, Chattanadee S, Leaungwutiwong P. Detection of Anti-ZIKV NS1 IgA, IgM, and Combined IgA/IgM and Identification of IL-4 and IL-10 as Potential Biomarkers for Early ZIKV and DENV Infections in Hyperendemic Regions, Thailand. Trop Med Infect Dis 2023; 8:tropicalmed8050284. [PMID: 37235332 DOI: 10.3390/tropicalmed8050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The frequency of Zika virus (ZIKV)-specific IgA and IgM and the cytokine expression profile of ZIKV-infected patients in hyperendemic areas remain unclear. This study investigated the rates of ZIKV non-structural protein 1 (NS1)-specific IgA and IgM and evaluated serum cytokine levels of ZIKV and Dengue virus (DENV) cases in Thailand to identify potential diagnostic biomarkers, elucidate the immunity against ZIKV and DENV, and investigate the association between cytokine levels and ZIKV symptoms. Low rates of positivity for ZIKV NS1-specific IgA and IgM were detected in our study. ZIKV NS1 IgA/M (11%, 11/101) in combination was more frequently detected than ZIKV NS1 IgM (2%, 2/101) or ZIKV NS1 IgA (4%, 4/96) alone, especially in acute ZIKV cases with previous DENV exposure (14%, 10/72). Cytokine analysis showed that both ZIKV and DENV infections induced polyfunctional immunity, and the latter triggered more prolonged responses. The existence of significant differences in IL-4 and IL-10 levels between acute ZIKV and acute DENV cases suggested that IL-4 (p = 0.0176) and IL-10 (p = 0.0003) may represent biomarkers for acute ZIKV and acute DENV infections, respectively. Analysis of the association between increased cytokine levels and ZIKV symptoms indicated that CXCL10 (p = 0.0029) was associated with exanthema, while IL-5 (p = 0.0496) was linked to headache. The detection of ZIKV NS1 IgA and IgM in combination may enhance the diagnosis of early ZIKV infection, particularly when levels of IgM or IgA alone are low or undetectable. IL-4 and IL-10 may serve as targets for the development of diagnostic tools to detect ZIKV and DENV infections early, respectively, in flavivirus-endemic regions.
Collapse
Affiliation(s)
- Vajee Petphong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Siriporn Chattanadee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
26
|
Electrochemical magneto-immunoassay for detection of zika virus antibody in human serum. Talanta 2023; 256:124277. [PMID: 36738622 DOI: 10.1016/j.talanta.2023.124277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/29/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL-1 (r2 = 0.982), with a limit of detection of 0.48 pg mL-1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.
Collapse
|
27
|
Lunardelli VAS, Almeida BDS, Apostolico JDS, Rezende T, Yamamoto MM, Pereira SS, Bueno MFC, Pereira LR, Carvalho KI, Slhessarenko RD, de Souza Ferreira LC, Boscardin SB, Rosa DS. Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells. Front Immunol 2023; 14:1071041. [PMID: 37006270 PMCID: PMC10060818 DOI: 10.3389/fimmu.2023.1071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes.MethodsIn this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV.ResultsTesting of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses.ConclusionIn conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.
Collapse
Affiliation(s)
- Victória Alves Santos Lunardelli
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Bianca da Silva Almeida
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Juliana de Souza Apostolico
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Thais Rezende
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Samuel Santos Pereira
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Maria Fernanda Campagnari Bueno
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Lennon Ramos Pereira
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Karina Inacio Carvalho
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - Luis Carlos de Souza Ferreira
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
- Plataforma Científica Pasteur- Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Investigação em Imunologia (iii), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Investigação em Imunologia (iii), São Paulo, Brazil
- *Correspondence: Daniela Santoro Rosa,
| |
Collapse
|
28
|
Poveda Cuevas SA, Barroso da Silva FL, Etchebest C. NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. J Chem Inf Model 2023; 63:1386-1400. [PMID: 36780300 DOI: 10.1021/acs.jcim.2c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Zika virus (ZIKV) from Uganda (UG) expresses a phenotype related to fetal loss, whereas the variant from Brazil (BR) induces microcephaly in neonates. The differential virulence has a direct relation to biomolecular mechanisms that make one strain more aggressive than the other. The nonstructural protein 1 (NS1) is a key viral toxin to comprehend these viral discrepancies because of its versatility in many processes of the virus life cycle. Here, we aim to examine through coarse-grained models and molecular dynamics simulations the protein-membrane interactions for both NS1ZIKV-UG and NS1ZIKV-BR dimers. A first evaluation allowed us to establish that the NS1 proteins, in the membrane presence, explore new conformational spaces when compared to systems simulated without a lipid bilayer. These events derive from both differential coupling patterns and discrepant binding affinities to the membrane. The N-terminal domain, intertwined loop, and greasy finger proposed previously as binding membrane regions were also computationally confirmed by us. The anchoring sites have aromatic and ionizable residues that manage the assembly of NS1 toward the membrane, especially for the Ugandan variant. Furthermore, in the presence of the membrane, the difference in the dynamic cross-correlation of residues between the two strains is particularly pronounced in the putative epitope regions. This suggests that the protein-membrane interaction induces changes in the distal part related to putative epitopes. Taken together, these results open up new strategies for the treatment of flaviviruses that would specifically target these dynamic differences.
Collapse
Affiliation(s)
- Sergio Alejandro Poveda Cuevas
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, Frankfurt am Main, Hesse DE-60590, Germany.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Fernando L Barroso da Silva
- Programa Interunidades em Bioinformática, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, São Paulo BR-05508-090, Brazil.,Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/no-Campus da USP, Ribeirão Preto, São Paulo BR-14040-903, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| | - Catherine Etchebest
- Université Paris Cité and Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, F-75015 Paris, France.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Av. do Café, s/no-Campus da USP, Bloco B, Ribeirão Preto, São Paulo BR-14040-903, Brazil
| |
Collapse
|
29
|
Serological Cross-Reactivity in Zoonotic Flaviviral Infections of Medical Importance. Antibodies (Basel) 2023; 12:antib12010018. [PMID: 36975365 PMCID: PMC10045537 DOI: 10.3390/antib12010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Flaviviruses are enveloped RNA viruses from the family Flaviviridae that comprise many important human pathogenic arboviruses such as Yellow Fever, Dengue, and Zika viruses. Because they belong to the same genus, these viruses show sequence and structural homology among them, which results in serological cross-reactivity. Upon infection, the immune system produces both species-specific and cross-reactive antibodies, and depending on the virus, in a successive flavivirus infection, cross-reactive antibodies either enhance protection or exacerbate the disease—the latter usually due to antibody-dependent enhancement. These antigenic relationships between different flaviviruses that lead to serological cross-reactivity make them difficult to be identified through serological methods, especially when it comes to successive flavivirus infections. We present here an overview of the main structural, epidemiological, and immunological aspects of flaviviruses, highlighting the role of neutralizing antibodies in fighting viral infections and in the “original antigenic sin” problem. Finally, we draw attention to the importance of developing a rapid serological diagnostic test for flaviviruses with high sensitivity and specificity, especially when considering that cross-reactive immunity can influence the outcome of these infections.
Collapse
|
30
|
Maeki T, Tajima S, Ando N, Wakimoto Y, Hayakawa K, Kutsuna S, Kato F, Taniguchi S, Nakayama E, Lim CK, Saijo M. Analysis of cross-reactivity among flaviviruses using sera of patients with dengue showed the importance of neutralization tests with paired serum samples for the correct interpretations of serological test results for dengue. J Infect Chemother 2023; 29:469-474. [PMID: 36702208 DOI: 10.1016/j.jiac.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Dengue is a febrile illness caused by the dengue virus (DENV) that belongs to the genus Flavivirus in the family Flaviviridae. Cross-reactivity between flaviviruses poses a challenge while interpreting serological test results. In the present study, the cross-reactivity of sera of the patients with dengue, who traveled from Japan to DENV-endemic countries, was analyzed by using an enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). Sixteen serum samples were collected from patients with dengue and were tested for: i) IgM antibodies against Zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) using IgM ELISA, ii) IgG antibody against TBEV using IgG ELISA, and iii) neutralizing antibody against ZIKV, WNV, TBEV, and JEV. Among the 16 samples tested using ELISA, seven samples were IgM-positive for at least one of the other flaviviruses, and nine samples were IgG-positive for TBEV. Neutralizing antibody titers (NATs) against ZIKV, WNV, and TBEV were one-fourth or lower than those against the causative DENV in all samples. The NATs against JEV were one-fourth or lower than those against the causative DENV in six convalescent-phase serum sample among the seven convalescent-phase serum samples. The NAT against DENV of the residual one convalescent-phase serum was similar to that against JEV and that against JEV of its relevant acute-phase serum sample. These results showed that NTs with paired serum samples are important to correctly interpret the serological test results for DENV.
Collapse
Affiliation(s)
- Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Naokatsu Ando
- National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Yuji Wakimoto
- National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Kayoko Hayakawa
- National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Satoshi Kutsuna
- National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan
| | - Fumihiro Kato
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| |
Collapse
|
31
|
Essink B, Chu L, Seger W, Barranco E, Le Cam N, Bennett H, Faughnan V, Pajon R, Paila YD, Bollman B, Wang S, Dooley J, Kalidindi S, Leav B. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. THE LANCET. INFECTIOUS DISEASES 2023; 23:621-633. [PMID: 36682364 DOI: 10.1016/s1473-3099(22)00764-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Developing a safe and immunogenic vaccine against Zika virus remains an unmet medical need. We did two phase 1 studies that evaluated the safety and immunogenicity of two mRNA-based Zika virus vaccines (mRNA-1325 and mRNA-1893) in adults. METHODS Two randomised, placebo-controlled, dose-ranging, multicentre, phase 1 trials, one of mRNA-1325 (mRNA-1325 trial) and one of mRNA-1893 (mRNA-1893 trial), were done. For both studies, eligible participants were healthy adults (aged 18-49 years) who were flavivirus seronegative or flavivirus seropositive at baseline. Participants in the mRNA-1325 trial, which was done at three centres in the USA, were randomly assigned centrally (1:4), using a randomisation table, to the placebo group or one of three mRNA-1325 dose groups (10, 25, or 100 μg). All participants received two doses. The mRNA-1325 vaccine encoded the premembrane and envelope E structural proteins (prME) from a Micronesia 2007 Zika virus isolate. Participants in the mRNA-1893 trial, which was done at three centres in the USA and one centre in Puerto Rico, were randomly assigned (1:4) to the placebo group or one of four mRNA-1893 dose groups (10, 30, 100, or 250 μg) using centralised interactive response technology. All participants in the mRNA-1893 trial received dose one on day 1 and then dose two on day 29. The mRNA-1893 vaccine encoded the prME from the RIO-U1 Zika virus isolate. Safety was the primary outcome of each study, which was evaluated in the respective safety populations (mRNA-1325 trial: participants who received at least one dose and provided safety data; mRNA-1893 trial: participants who received at least one dose) and the solicited safety population (mRNA-1893 trial only: received at least 1 dose and contributed solicited adverse reaction data). Endpoints in both trials included solicited adverse reactions within 7 days after vaccination and unsolicited adverse events within 28 days after vaccination. The secondary outcome of both trials was immunogenicity assessed by Zika virus-specific neutralising antibodies (nAbs) in the per-protocol populations in either trial (participants with no major protocol deviations received full dose[s] of assigned dose level within the acceptable time window, had samples drawn within acceptable time window, and had prevaccination and corresponding post-vaccination serum samples for testing). These were descriptive studies, with no formal hypothesis testing in either trial. Both trials are registered with ClinicalTrials.gov, NCT03014089 (mRNA-1325 trial) and NCT04064905 (mRNA-1893 trial). FINDINGS The mRNA-1325 trial was done from Dec 14, 2016, to Aug 16, 2018. 90 participants were enrolled: 53 (59%) participants were women and 37 (41%) were men; 84 (93%) were White; and 74 (82%) were not Hispanic or Latino. All three dose levels of mRNA-1325 (10, 25, and 100 μg) were generally well tolerated, but the vaccine elicited poor Zika virus-specific nAb responses. At 28 days after dose two, geometric mean titres (GMTs) were highest for mRNA-1325 10 μg (10·3 [95% CI 5·9-18·2]). The mRNA-1893 trial was done from July 23, 2019, to March 22, 2021. 120 participants (70 [58%] women and 50 [42%] men) were enrolled, most participants were White (89 [74%]), and not Hispanic or Latino (91 [76%]). In the mRNA-1893 trial, solicited adverse reactions in participants who received a vaccine were mostly grade 1 or 2 and occurred more frequently at higher dose levels and after dose two. No participants withdrew due to an unsolicited treatment-emergent adverse event and most of these events were not treatment related. On day 57, all evaluated mRNA-1893 dose levels induced robust Zika virus-specific nAb responses, independent of flavivirus serostatus, that persisted until month 13. At day 57 in participants who were flavivirus seronegative, plaque reduction neutralisation titre test nAb GMTs were highest for mRNA-1893 100 μg (454·2 [330·0-619·6]); in participants who were flavivirus seropositive, GMTs were highest for mRNA-1893 10 μg (224·1 [43·5-1153·5]) and mRNA-1893 100 μg (190·5 [19·2-1887·2]). INTERPRETATION These findings support the continued development of mRNA-1893 against Zika virus, which was well tolerated at all evaluated dose levels and induced strong Zika virus-specific serum nAb responses after two doses, regardless of baseline flavivirus serostatus. FUNDING Biomedical Advanced Research and Development Authority and Moderna.
Collapse
|
32
|
Delfin-Riela T, Rossotti MA, Mattiuzzo G, Echaides C, González-Sapienza G. Nanobody-Based Blocking of Binding ELISA for the Detection of Anti-NS1 Zika-Virus-Specific Antibodies in Convalescent Patients. Trop Med Infect Dis 2023; 8:tropicalmed8010055. [PMID: 36668962 PMCID: PMC9862682 DOI: 10.3390/tropicalmed8010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Zika virus has spread around the world with rapid pace in the last five years. Although symptoms are typically mild and unspecific, Zika's major impact occurs during pregnancy, generating a congenital syndrome. Serology plays a key role in its diagnosis. However, its use is limited due to the uncertainty caused by the cross-reaction of antibodies elicited in response to other flavivirus infections when tested in direct immunoassays. Using a panel of previously generated anti-Zika non-structural protein 1 (NS1) nanobodies, a set was selected that only recognizes epitopes present in Zika and is immunogenic to humans. A proper arrangement of these nanobodies was made and conditions were optimized in order to develop a novel serology assay. This new ELISA relies on the inhibition of the binding of a set of selected nanobodies to Zika-immobilized NS1 when previously incubated with Zika convalescent sera. Using the developed blocking of binding assay, it was possible to discriminate between Zika-specific and cross-reactive antibodies in serum samples from infections with Zika and other flaviviruses.
Collapse
Affiliation(s)
- Triana Delfin-Riela
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo 11600, Uruguay
| | - Martín A. Rossotti
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo 11600, Uruguay
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control (NIBSC)-MHRA, Hertfordshire EN6 3QG, UK
| | | | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo 11600, Uruguay
- Correspondence: ; Tel.: +598-24874334
| |
Collapse
|
33
|
Patel SK, Surve J, Parmar J, Ahmed K, Bui FM, Al-Zahrani FA. Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev Biomed Eng 2023; 16:22-37. [PMID: 36197867 PMCID: PMC10009816 DOI: 10.1109/rbme.2022.3212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and some of them generates false negative or false positive that might cost patients their lives. The biosensor technique is one of the best qualified to address this difficult challenge. In this systematic review, we have summarized recent advancements in biosensor-based detection of these pandemic viruses including COVID-19. Biosensors are emerging as efficient and economical analytical diagnostic instruments for early-stage illness detection. They are highly suitable for applications related to healthcare, wearable electronics, safety, environment, military, and agriculture. We strongly believe that these insights will aid in the study and development of a new generation of adaptable virus biosensors for fellow researchers.
Collapse
Affiliation(s)
- Shobhit K. Patel
- Department of Computer EngineeringMarwadi UniversityRajkot360003India
| | - Jaymit Surve
- Department of Electrical EngineeringMarwadi UniversityRajkot360003India
| | - Juveriya Parmar
- Department of Mechanical and Materials EngineeringUniversity of Nebraska - LincolnNebraska68588USA
- Department of Electronics and Communication EngineeringMarwadi UniversityRajkot360003India
| | - Kawsar Ahmed
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
- Group of Bio-PhotomatiX, Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversitySantoshTangail1902Bangladesh
| | - Francis M. Bui
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
| | | |
Collapse
|
34
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
35
|
Schnabel I, Schneitler S, Schüttoff T, Trawinski H, Lübbert C, Jassoy C. Diagnostic Specificity of Two Dengue Virus IgG ELISAs after Yellow Fever and Japanese Encephalitis Virus Vaccination. Trop Med Infect Dis 2022; 8:tropicalmed8010007. [PMID: 36668914 PMCID: PMC9863392 DOI: 10.3390/tropicalmed8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) antibody assays frequently cross-react with sera from individuals who have been infected with or vaccinated against related flaviviruses. The goal of this study was to determine the specificity of two DENV ELISAs with sera from individuals vaccinated against yellow fever virus (YFV) and Japanese encephalitis virus (JEV). The Panbio and the Novatec Dengue IgG ELISAs were tested with sera obtained 3-4 weeks or 0.5-6 years after YFV or JEV vaccination and the diagnostic specificity of the assays was determined. As controls, the sera were tested using DENV, YFV, JEV, Zika and West Nile virus neutralization assays. The diagnostic specificity of the Panbio and the Novatec ELISA with sera from YFV-vaccinated subjects was 98.2% and 88.2%, respectively. Cross-reactions were rare in the first 4 weeks despite high YFV-neutralizing antibody titers and were mostly found later. The specificity of the Panbio and Novatec assays with sera from JEV-vaccinated individuals was 100% and 92.9%. Cross-reactions occurred in the early time period after vaccination. The measurement values of the two ELISAs correlated strongly. Thus, the Panbio ELISA showed higher diagnostic specificity and may be suitable for seroprevalence studies in areas with high disease prevalence.
Collapse
Affiliation(s)
- Isabelle Schnabel
- Institute for Medical Microbiology and Virology, University Hospital and Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Sophie Schneitler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, University Hospital and Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Germany
| | - Tom Schüttoff
- Institute for Medical Microbiology and Virology, University Hospital and Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Henning Trawinski
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, University Hospital and Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Christoph Lübbert
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, University Hospital and Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, University Hospital and Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-9714314
| |
Collapse
|
36
|
Comparative Analysis of In Vitro Models to Study Antibody-Dependent Enhancement of Zika Virus Infection. Viruses 2022; 14:v14122776. [PMID: 36560779 PMCID: PMC9781448 DOI: 10.3390/v14122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
During the 2015-2016 outbreak of Zika virus (ZIKV) in the Americas, a previously unknown severe complication of ZIKV infection during pregnancy resulting in birth defects was reported. Since the ZIKV outbreak occurred in regions that were highly endemic for the related dengue virus (DENV), it was speculated that antibody-dependent enhancement (ADE) of a ZIKV infection, caused by the presence of cross-reactive DENV antibodies, could contribute to ZIKV disease severity. Emerging evidence indicates that, while in vitro models can show ADE of ZIKV infection, ADE does not seem to contribute to congenital ZIKV disease severity in humans. However, the role of ADE of ZIKV infection during pregnancy and in vertical ZIKV transmission is not well studied. In this study, we hypothesized that pregnancy may affect the ability of myeloid cells to become infected with ZIKV, potentially through ADE. We first systematically assessed which cell lines and primary cells can be used to study ZIKV ADE in vitro, and we compared the difference in outcomes of (ADE) infection experiments between these cells. Subsequently, we tested the hypothesis that pregnancy may affect the ability of myeloid cells to become infected through ADE, by performing ZIKV ADE assays with primary cells isolated from blood of pregnant women from different trimesters and from age-matched non-pregnant women. We found that ADE of ZIKV infection can be induced in myeloid cell lines U937, THP-1, and K562 as well as in monocyte-derived macrophages from healthy donors. There was no difference in permissiveness for ZIKV infection or ADE potential of ZIKV infection in primary cells of pregnant women compared to non-pregnant women. In conclusion, no increased permissiveness for ZIKV infection and ADE of ZIKV infection was found using in vitro models of primary myeloid cells from pregnant women compared to age-matched non-pregnant women.
Collapse
|
37
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
38
|
Bishoyi A, Alam MA, Hasan MR, Khanuja M, Pilloton R, Narang J. Cyclic Voltammetric-Paper-Based Genosensor for Detection of the Target DNA of Zika Virus. MICROMACHINES 2022; 13:mi13122037. [PMID: 36557336 PMCID: PMC9785462 DOI: 10.3390/mi13122037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 05/27/2023]
Abstract
Zika virus (ZIKV), a positive-sense single-stranded RNA virus, has been declared as the cause of a 'worldwide public health emergency' by the WHO since the year 2016. In cases of acute infections, it has been found to cause Guillain-Barre syndrome and microcephaly. Considering the tropical occurrence of the infections, and the absence of any proper treatments, accurate and timely diagnosis is the only way to control this infectious disease. Currently, there are many diagnostic methods under investigation by the scientific community, but they have some major limitations, such as high cost, low specificity, and poor sensitivity. To overcome these limitations, we have presented a low-cost, simple-to-operate, and portable diagnosis system for its detection by utilizing silver nanoparticles. silver nanoparticles were synthesized via chemical methods and characterization was confirmed by UV/TEM and XRD. The paper platform was synthesized using a graphene-based conductive ink, methylene blue as the redox indicator, and a portable potentiostat to perform the cyclic voltammetry to ensure true point-of-care availability for patients in remote areas.
Collapse
Affiliation(s)
- Anirudh Bishoyi
- Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchirapalli 620001, India
| | - Md. Anish Alam
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd. Rahil Hasan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Roberto Pilloton
- Institute of Crystallography, National Research Council (IC-CNR), 00118 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
39
|
Zhou W, Tang B, Bai Y, Shao Y, Xiao Y, Tang S. The resurgence risk of COVID-19 in China in the presence of immunity waning and ADE: A mathematical modelling study. Vaccine 2022; 40:7141-7150. [PMID: 36328883 PMCID: PMC9597525 DOI: 10.1016/j.vaccine.2022.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 01/27/2023]
Abstract
The mass vaccination program has been actively promoted since the end of 2020. However, waning immunity, antibody-dependent enhancement (ADE), and increased transmissibility of variants make the herd immunity untenable and the implementation of dynamic zero-COVID policy challenging in China. To explore how long the vaccination program can prevent China at low resurgence risk, and how these factors affect the long-term trajectory of the COVID-19 epidemics, we developed a dynamic transmission model of COVID-19 incorporating vaccination and waning immunity, calibrated using the data of accumulative vaccine doses administered and the COVID-19 epidemic in 2020 in mainland China. The prediction suggests that the vaccination coverage with at least one dose reach 95.87%, and two doses reach 77.92% on 31 August 2021. However, despite the mass vaccination, randomly introducing infected cases in the post-vaccination period causes large outbreaks quickly with waning immunity, particularly for SARS-CoV-2 variants with higher transmissibility. The results showed that with the current vaccination program and 50% of the population wearing masks, mainland China can be protected at low resurgence risk until 8 January 2023. However, ADE and higher transmissibility for variants would significantly shorten the low-risk period by over 1 year. Furthermore, intermittent outbreaks can occur while the peak values of the subsequent outbreaks decrease, indicating that subsequent outbreaks boosted immunity in the population level, further indicating that follow-up vaccination programs can help mitigate or avoid the possible outbreaks. The findings revealed that the integrated effects of multiple factors: waning immunity, ADE, relaxed interventions, and higher variant transmissibility, make controlling COVID-19 challenging. We should prepare for a long struggle with COVID-19, and not entirely rely on the COVID-19 vaccine.
Collapse
Affiliation(s)
- Weike Zhou
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, PR China
| | - Biao Tang
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - Yao Bai
- Department of Infection Disease Control and Prevention, Xi’an Center for Disease Prevention and Control, Xi’an, 710043, PR China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, PR China,Corresponding author
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, PR China,Corresponding author
| |
Collapse
|
40
|
Cheong HC, Cheok YY, Chan YT, Sulaiman S, Looi CY, Alshanon AF, Hassan J, Abubakar S, Wong WF. Zika Virus Vaccine: The Current State of Affairs and Challenges Posed by Antibody-Dependent Enhancement Reaction. Viral Immunol 2022; 35:586-596. [PMID: 36301533 DOI: 10.1089/vim.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly Abubakar
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Diseases Research and Educational Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Chan KR, Ismail AA, Thergarajan G, Raju CS, Yam HC, Rishya M, Sekaran SD. Serological cross-reactivity among common flaviviruses. Front Cell Infect Microbiol 2022; 12:975398. [PMID: 36189346 PMCID: PMC9519894 DOI: 10.3389/fcimb.2022.975398] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The Flavivirus genus is made up of viruses that are either mosquito-borne or tick-borne and other viruses transmitted by unknown vectors. Flaviviruses present a significant threat to global health and infect up to 400 million of people annually. As the climate continues to change throughout the world, these viruses have become prominent infections, with increasing number of infections being detected beyond tropical borders. These include dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Several highly conserved epitopes of flaviviruses had been identified and reported to interact with antibodies, which lead to cross-reactivity results. The major interest of this review paper is mainly focused on the serological cross-reactivity between DENV serotypes, ZIKV, WNV, and JEV. Direct and molecular techniques are required in the diagnosis of Flavivirus-associated human disease. In this review, the serological assays such as neutralization tests, enzyme-linked immunosorbent assay, hemagglutination-inhibition test, Western blot test, and immunofluorescence test will be discussed. Serological assays that have been developed are able to detect different immunoglobulin isotypes (IgM, IgG, and IgA); however, it is challenging when interpreting the serological results due to the broad antigenic cross-reactivity of antibodies to these viruses. However, the neutralization tests are still considered as the gold standard to differentiate these flaviviruses.
Collapse
Affiliation(s)
- Kai Rol Chan
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Shamala Devi Sekaran, ; Chandramathi Samudi Raju,
| | - Hock Chai Yam
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Manikam Rishya
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Shamala Devi Sekaran, ; Chandramathi Samudi Raju,
| |
Collapse
|
42
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Marzan-Rivera N, Serrano-Collazo C, Cruz L, Pantoja P, Ortiz-Rosa A, Arana T, Martinez MI, Burgos AG, Roman C, Mendez LB, Geerling E, Pinto AK, Brien JD, Sariol CA. Infection order outweighs the role of CD4 + T cells in tertiary flavivirus exposure. iScience 2022; 25:104764. [PMID: 35982798 PMCID: PMC9379573 DOI: 10.1016/j.isci.2022.104764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
The link between CD4+ T and B cells during immune responses to DENV and ZIKV and their roles in cross-protection during heterologous infection is an active area of research. Here we used CD4+ lymphocyte depletions to dissect the impact of cellular immunity on humoral responses during a tertiary flavivirus infection in macaques. We show that CD4+ depletion in DENV/ZIKV-primed animals followed by DENV resulted in dysregulated adaptive immune responses. We show a delay in DENV-specific IgM/IgG antibody titers and binding and neutralization in the DENV/ZIKV-primed CD4-depleted animals but not in ZIKV/DENV-primed CD4-depleted animals. This study confirms the critical role of CD4+ cells in priming an early effective humoral response during sequential flavivirus infections. Our work here suggests that the order of flavivirus exposure affects the outcome of a tertiary infection. Our findings have implications for understanding the complex flavivirus immune responses and for the development of effective flavivirus vaccines.
Collapse
Affiliation(s)
- Nicole Marzan-Rivera
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Crisanta Serrano-Collazo
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Alexandra Ortiz-Rosa
- Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR 00931, USA
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Melween I. Martinez
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, Toa Baja, PR 00952, USA
| | - Armando G. Burgos
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, Toa Baja, PR 00952, USA
| | - Chiara Roman
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| | - Loyda B. Mendez
- Department of Science & Technology, Universidad Ana G. Mendez, Recinto de Carolina, Carolina, PR 00985, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 631204, USA
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 631204, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 631204, USA
| | - Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
- Department of Biology, University of Puerto Rico Rio Piedras Campus, San Juan, PR 00931, USA
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
44
|
Serological characterization of lineage II insect-specific flaviviruses compared with pathogenic mosquito-borne flaviviruses. Biochem Biophys Res Commun 2022; 616:115-121. [DOI: 10.1016/j.bbrc.2022.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022]
|
45
|
Development of a Monoclonal Antibody to a Vibriophage as a Proxy for Vibrio cholerae Detection. Infect Immun 2022; 90:e0016122. [PMID: 35862704 PMCID: PMC9387236 DOI: 10.1128/iai.00161-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.
Collapse
|
46
|
Can Modern Molecular Modeling Methods Help Find the Area of Potential Vulnerability of Flaviviruses? Int J Mol Sci 2022; 23:ijms23147721. [PMID: 35887069 PMCID: PMC9316223 DOI: 10.3390/ijms23147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses’ E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses’ E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.
Collapse
|
47
|
Zika Virus Replication in a Mast Cell Model is Augmented by Dengue Virus Antibody-Dependent Enhancement and Features a Selective Immune Mediator Secretory Profile. Microbiol Spectr 2022; 10:e0177222. [PMID: 35862953 PMCID: PMC9431662 DOI: 10.1128/spectrum.01772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies generated against one dengue serotype can enhance infection of another by a phenomenon called antibody-dependent enhancement (ADE). Additionally, antigenic similarities between Zika and dengue viruses can promote Zika virus infection by way of ADE
in vitro
using these very same anti-dengue antibodies.
Collapse
|
48
|
Boeras D, Diagne CT, Pelegrino JL, Grandadam M, Duong V, Dussart P, Brey P, Ruiz D, Adati M, Wilder-Smith A, Falconar AK, Romero CM, Guzman M, Hasanin N, Sall A, Peeling RW. Evaluation of Zika rapid tests as aids for clinical diagnosis and epidemic preparedness. EClinicalMedicine 2022; 49:101478. [PMID: 35747186 PMCID: PMC9167860 DOI: 10.1016/j.eclinm.2022.101478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Development and evaluation of diagnostics for diseases of epidemic potential are often funded during epidemics, but not afterwards, leaving countries unprepared for the next epidemic. United Nations Children's Emergency Fund (UNICEF) partnered with the United States Agency for International Development (USAID) to address this important gap by investing in an advance purchase commitment (APC) mechanism to accelerate the development and evaluation of Zika rapid diagnostic tests (RDTs) for case detection and surveillance. This paper describes the performance evaluation of five Zika RDTs eligible for procurement. METHODS A network of European Union-funded ZikaPLAN sites in Africa, Asia, Latin America with access to relevant serum specimens were selected to evaluate RDTs developed for the UNICEF APC mechanism. A standardised protocol and evaluation panels were developed and a call for specimens for the evaluation panels issued to different sites. Each site contributed specimens to the evaluation from their biobank. Data were collated, analysed and presented to the UNICEF Procurement Review Group for review. FINDINGS Three RDTs met the criteria for UNICEF procurement of sensitivity and specificity of 85% against a refence standard. The sensitivity/specificity of the ChemBio anti-Zika Virus (ZIKV) immunoglobulin M (IgM) test was 86.4 %/86.7% and the ChemBio ZCD system for anti-ZIKV IgM was 79.0%/97.1%, anti-dengue virus (DENV) IgM 90.0%/89.2%, anti-Chikungunya virus (CHIKV) IgM 90.6%/97.2%. The sensitivity/specificity of the SD Biosensor anti-ZIKV IgM was 96.8 %/90.8%, anti-DENV IgM 71.8%/83.5%, the DENV nonstructural protein 1 (NS1) glycoprotein 90.0%/90.2%, anti- yellow fever virus (YFV) IgM 84.6%/92.4%, anti-CHIKV IgM 86.3%/97.5%. INTERPRETATION Three RDTs fulfilled the performance thresholds set by WHO and were eligible for UNICEF procurement. These tests will improve the diagnosis of ZIKV and other arboviral infections as well as providing countries with better tools for surveillance and response to future epidemics. FUNDING This work was supported by the USAID grant GHA-G-00-07-00007 and ZikaPLAN (European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 734584).
Collapse
Affiliation(s)
| | | | | | | | - Veasna Duong
- Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Paul Brey
- Institute Pasteur du Laos, Vientiane Laos
| | | | - Marisa Adati
- National Institute for Quality Control in Health, Rio de Janeiro, Brazil
| | - Annelies Wilder-Smith
- Umea University, Umea, Sweden
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | | | | | | - Rosanna W. Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Corresponding author.
| |
Collapse
|
49
|
Lv H, So RTY, Teo QW, Yuan M, Liu H, Lee CCD, Yip GK, Ng WW, Wilson IA, Peiris M, Wu NC, Mok CKP. Neutralizing Antibody Response to Sarbecovirus Is Delayed in Sequential Heterologous Immunization. Viruses 2022; 14:1382. [PMID: 35891363 PMCID: PMC9318566 DOI: 10.3390/v14071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antigenic imprinting, which describes the bias of the antibody response due to previous immune history, can influence vaccine effectiveness. While this phenomenon has been reported for viruses such as influenza, there is little understanding of how prior immune history affects the antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting through immunization with two Sarbecoviruses, the subgenus that includes SARS-CoV-2. Mice were immunized subsequently with two antigenically distinct Sarbecovirus strains, namely SARS-CoV-1 and SARS-CoV-2. We found that sequential heterologous immunization induced cross-reactive binding antibodies for both viruses and delayed the emergence of neutralizing antibody responses against the booster strain. Our results provide fundamental knowledge about the immune response to Sarbecovirus and important insights into the development of pan-sarbecovirus vaccines and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Ray T. Y. So
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
| | - Garrick K. Yip
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Wilson W. Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; (M.Y.); (H.L.); (C.-C.D.L.); (I.A.W.)
- The Skaggs Institute for Chemical Biology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (H.L.); (R.T.Y.S.); (Q.W.T.); (G.K.Y.); (W.W.N.); (M.P.)
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Rosado LEP, de Aquino EC, Brickley EB, França DDDS, Silva FPA, da Silva VL, Lopes AF, Turchi MD. Socioeconomic disparities associated with symptomatic Zika virus infections in pregnancy and congenital microcephaly: A spatiotemporal analysis from Goiânia, Brazil (2016 to 2020). PLoS Negl Trop Dis 2022; 16:e0010457. [PMID: 35714146 PMCID: PMC9246127 DOI: 10.1371/journal.pntd.0010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/30/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
The Zika virus (ZIKV) epidemic, which was followed by an unprecedented outbreak of congenital microcephaly, emerged in Brazil unevenly, with apparent pockets of susceptibility. The present study aimed to detect high-risk areas for ZIKV infection and microcephaly in Goiania, a large city of 1.5 million inhabitants in Central-West Brazil. Using geocoded surveillance data from the Brazilian Information System for Notifiable Diseases (SINAN) and from the Public Health Event Registry (RESP-microcefalia), we analyzed the spatiotemporal distribution and socioeconomic indicators of laboratory confirmed (RT-PCR and/or anti-ZIKV IgM ELISA) symptomatic ZIKV infections among pregnant women and clinically confirmed microcephaly in neonates, from 2016 to 2020. We investigated temporal patterns by estimating the risk of symptomatic maternal ZIKV infections and microcephaly per 1000 live births per month. We examined the spatial distribution of maternal ZIKV infections and microcephaly cases across the 63 subdistricts of Goiania by manually plotting the geographical coordinates. We used spatial scan statistics estimated by discrete Poisson models to detect high clusters of maternal ZIKV infection and microcephaly and compared the distributions by socioeconomic indicators measured at the subdistrict level. In total, 382 lab-confirmed cases of maternal ZIKV infections, and 31 cases of microcephaly were registered in the city of Goiania. More than 90% of maternal cases were reported between 2016 and 2017. The highest incidence of ZIKV cases among pregnant women occurred between February and April 2016. A similar pattern was observed in the following year, although with a lower number of cases, indicating seasonality for ZIKV infection, during the local rainy season. Most congenital microcephaly cases occurred with a time-lag of 6 to 7 months after the peak of maternal ZIKV infection. The highest estimated incidence of maternal ZIKV infections and microcephaly were 39.3 and 2.5 cases per 1000 livebirths, respectively. Districts with better socioeconomic indicators and with higher proportions of self-identified white inhabitants were associated with lower risks of maternal ZIKV infection. Overall, the findings indicate heterogeneity in the spatiotemporal patterns of maternal ZIKV infections and microcephaly, which were correlated with seasonality and included a high-risk geographic cluster. Our findings identified geographically and socio-economically underprivileged groups that would benefit from targeted interventions to reduce exposure to vector-borne infections. The first wave of Zika virus (ZIKV) epidemic and its Congenital Zika Syndrome, has vanished. However, the consequences have remained for the affected children and families ever since. In Brazil, the first cases of microcephaly, detected in the end of 2015 in the Northeast region, especially in coastal cities, quickly spread to other regions and cities in countryside of Brazil. Understanding the temporal and spatial dynamics of cases distribution is essential to identify areas of greater risk and enable preparedness for a future wave of cases. In this study, we analyzed the spatiotemporal distribution of cases of ZIKV infection in pregnant women and cases of microcephaly in newborns by district, over a five-year period, in a large city in Midwest Brazil. Additionally, cases of microcephaly were correlated with the socioeconomic and structural conditions at the local level. Our findings indicate heterogeneity in the spatiotemporal patterns of maternal ZIKV infections and microcephaly, which were correlated with seasonality and included a persistent high-risk geographic location (cluster) in the city of Goiania. We could identify geographically and socio-economically underprivileged groups, with higher risk for ZIKV infection, that would benefit from targeted interventions to reduce exposure to new vector borne infections.
Collapse
Affiliation(s)
- Luiza Emylce Pela Rosado
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
- Department of Obstetrics, of Maternal Children’s Hospital, Goiania, Brazil
- * E-mail:
| | | | - Elizabeth Bailey Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | | | | | - Marilia Dalva Turchi
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|