1
|
Adams HR, Fujii S, Pfalzgraf HE, Smyth P, Andrew CR, Hough MA. Cytochromes P460 and c'-β: exploiting a novel fold for multiple functions. J Biol Inorg Chem 2025:10.1007/s00775-025-02102-3. [PMID: 40009202 DOI: 10.1007/s00775-025-02102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Two related classes of ligand-binding heme c-containing proteins with a high degree of structural homology have been identified and characterized over recent decades: cytochromes P460 (cyts P460), defined by an unusual heme-lysine cross-link, and cytochromes c'-β (cyts c'-β), containing a canonical c-heme without the lysine cross-link. The shared protein fold of the cyt P460-cyt c'-β superfamily can accommodate a variety of heme environments with entirely different reactivities. On the one hand, cyts P460 with polar distal pockets have been shown to oxidize NH2OH to NO and/or N2O via proton-coupled electron transfer. On the other hand, cyts c'-β with hydrophobic distal pockets have a proposed gas binding function similar to the unrelated, but more extensively characterized, alpha helical cytochromes c'. Recent studies have also identified 'halfway house' proteins (cyts P460 with non-polar heme pockets and cyts c'-β with polar distal heme pockets) with functions yet to be resolved. Here, we review the structural, spectroscopic and enzymatic properties of the cyt P460-cyt c'-β superfamily with a view to understanding the structural determinants of their different functional properties.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Hans E Pfalzgraf
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Peter Smyth
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande, OR, 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.
| |
Collapse
|
2
|
Voland RW, Wang H, Abruña HD, Lancaster KM. Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon Nitrosopumilus maritimus. Proc Natl Acad Sci U S A 2025; 122:e2416971122. [PMID: 39823305 PMCID: PMC11761707 DOI: 10.1073/pnas.2416971122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (N2O) emissions, although biochemical origins of this N2O remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA Nitrosopumilus maritimus. We show that Nmar_1354 selectively produces nitroxyl (HNO) by coupling the oxidation of the obligate nitrification intermediate hydroxylamine (NH2OH) to dioxygen (O2) reduction. This HNO undergoes several downstream reactions, although the major fates are production of N2 via reaction with NH2OH and dimerization with itself to yield N2O. These results afford one plausible enzymatic origin for N2O release by AOA. Moreover, these results reveal a physiologically relevant enzymatic reaction for producing HNO, an enigmatic nitrogen oxide speculated to be operative in cellular signaling and in energy transduction.
Collapse
Affiliation(s)
- Robert W. Voland
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY14853
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY14853
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY14853
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY14853
| |
Collapse
|
3
|
Siegbahn PEM. Nitrification Mechanisms for the P460 Enzymes. J Phys Chem B 2025; 129:111-116. [PMID: 39693510 PMCID: PMC11726666 DOI: 10.1021/acs.jpcb.4c06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
The oxidation of hydroxylamine was studied by quantum chemical modeling. Hydroxylamine is the product of ammonia oxidation in ammonia monooxygenase. That mechanism has been studied recently by quantum chemical modeling as here. Only two enzymes can oxidize hydroxylamine, hydroxylamine oxidase and cytochrome-P460. Both employ the unusual P460-heme cofactor. In hydroxylamine oxidase, there is a covalently linked tyrosine, while in cytochrome-P460, there is a covalently linked lysine. The calculations give explanations for the experimental findings that NO is the final product in hydroxylamine oxidase, while N2O is the final product in cytochrome-P460. The effect of the covalent attachments has been investigated, and reasons for their presence have been given. The methodology used, which was proven to give very good agreement with experiments for several redox enzymes, again leads to excellent agreement with experimental findings.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
4
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Mao TQ, Zhang Y, Ou YF, Li XF, Zheng YL, Liang X, Liu M, Hou LJ, Dong HP. Temperature differentially regulates estuarine microbial N 2O production along a salinity gradient. WATER RESEARCH 2024; 267:122454. [PMID: 39293343 DOI: 10.1016/j.watres.2024.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nitrous oxide (N2O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N2O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N2O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N2O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (Topt) for N2O production rates (N2OR) were higher at nearshore than offshore sites. 15N-labeled nitrite (15NO2-) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of 15N-N2OR increases with increasing salinity, suggesting that N2O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N2O, while clade II N2O-reducers dominated N2O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N2O emissions in the system. Our findings contribute to understanding the sources of N2O in estuarine waters and their response to global warming.
Collapse
Affiliation(s)
- Tie-Qiang Mao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yong Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou 350117, China
| | - Ya-Fei Ou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiao-Fei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Zhang Y, Wang W, Xu X, Zhang Q, Xing D, Lee DJ, Ren N, Chen C. Sulfur cycle-mediated biological nitrogen removal and greenhouse gas abatement processes: Micro-oxygen regulation tells the story. BIORESOURCE TECHNOLOGY 2024; 414:131614. [PMID: 39395607 DOI: 10.1016/j.biortech.2024.131614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Sulfur-mediated autotrophic biological nitrogen removal (BNR) processes favor the reduction of greenhouse gas (GHG) emissions compared to heterotrophic BNR processes. Micro-oxygen environments are widely prevalent in practical BNR systems, and the mechanisms of GHG emissions mediated by multi-elements, including nitrogen (N), sulfur (S), and oxygen (O), remain to be systematically summarized. This review reveals the functional microorganisms involved in sulfur-mediated BNR processes under micro-oxygen regulation, elucidating their metabolic mechanisms and interactions. The GHG abatement potential of sulfur-mediated BNR processes under micro-oxygen regulation is highlighted, along with recent advances in multi-scenario applications. The fate of GHG in wastewater treatment systems is explored and insights into future multi-scale GHG regulatory strategies are provided. Overall, the application of sulfur-mediated BNR processes under micro-oxygen regulation exhibits great potential. This review can act as a guide for the effective implementation of strategies to mitigate the environmental impacts of GHG emissions from wastewater treatment processes.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
7
|
Liu R, Chang D, Zhou G, Liang H, Zhang J, Chai Q, Cao W. Green manuring combined with zeolite reduced nitrous oxide emissions in maize field by targeting microbial nitrogen transformations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175382. [PMID: 39127210 DOI: 10.1016/j.scitotenv.2024.175382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Green manure is a crucial strategy for increasing cereal yield and mitigating environmental burden while reducing chemical N fertilizer. To effectively tackle climate change, finding ways to reduce nitrous oxide (N2O) emissions from green manuring systems is vital. Herein, field and 15N labeled microcosm experiments were arranged to investigate the effect and mechanisms of green manuring and zeolite application on N2O emission. Both experiments comprised four treatments: conventional chemical N (N100), 70 % chemical N (N70), N70 with green manure (N70 + CV), and N70 + CV combined with zeolite (N70 + CV + Z). Compared with N100, both N70 + CV and N70 + CV + Z maintained maize yield, cumulative N2O emissions decreased by 37.7 % and 34.9 % in N70 + CV + Z in 2022-yr and 2023-yr, and by 12.8 % in N70 + CV in 2022-yr. Moreover, the reduction of N2O emission primarily occurred after incorporating green manure. The N100 and N70 + CV demonstrated a similar transformed proportion of chemical N to N2O (i.e., 4.9 % and 4.7 %) while reducing it to 2.7 % in N70 + CV + Z. Additionally, a mere 0.7 % of green manure N was transformed to N2O in both N70 + CV and N70 + CV + Z treatments. Compared with N100, both N70 + CV and N70 + CV + Z decreased the relative abundances of ammonia oxidation microbes, increased denitrifier and the ratios of (nirK + nirS)/nosZ and norBC/nosZ. Furthermore, compared with N70 + CV, N70 + CV + Z decreased the relative abundances of N2O-producer and the ratios of (nirK + nirS)/nosZ and norBC/nosZ in denitrification. These findings revealed that the reduction of N2O emissions resulting from green manure replaced chemical N was mainly due to weakened nitrification, while zeolite reduced N2O emissions attributed to enhanced conversion of N2O to N2. Moreover, certain key N-cycling functional bacteria, such as Phycisphaerae, Rubrobacteria, and Thermoflexia, were positively correlated with N2O emission. In contrast, Dehalococcoidia, Gammaproteobacteria, and Betaproteobacteria were negatively correlated with N2O emission. This investigation uncovered the underlying mechanisms for effectively reducing N2O emissions through green manuring combined with zeolite.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Danna Chang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guopeng Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hao Liang
- College of Geography and Remote Sensing, Hohai University, Nanjing 210024, China
| | - Jiudong Zhang
- Soil and Fertilizer and Water-saving Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Qiang Chai
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Chen CX, Koskue V, Duan H, Gao L, Shon HK, Martin GJO, Chen GQ, Freguia S. Impact of nutrient deficiency on biological sewage treatment - Perspectives towards urine source segregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174174. [PMID: 38925384 DOI: 10.1016/j.scitotenv.2024.174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Human urine contains 9 g/L of nitrogen (N) and 0.7 g/L of phosphorus (P). The recovery of N and P from urine helps close the nutrient loop and increase resource circularity in the sewage treatment sector. Urine contributes an average of 80 % N and 50 % P in sewage, whereby urine source segregation could reduce the burden of nutrient removal in sewage treatment plants (STPs) but result in N and P deficiency and unintended negative consequences. This review examines the potential impacts of N and P deficiency on the removal of organic carbon and nutrients, sludge characteristics and greenhouse gas emissions in activated sludge processes. The details of how these impacts affect the operation of STPs were also included. This review helps foresee operational challenges that established STPs may face when dealing with nutrient-deficient sewage in a future where source separation of urine is the norm. The findings indicate that the requirement of nitrification-denitrification and biological P removal processes could shrink at urine segregation above 80 % and 100 %, respectively. Organic carbon, N and biological P removal processes can be severely affected under full urine segregation. The decrease in solid retention time due to urine segregation increases treatment capacity up to 48 %. Sludge flocculation and settleability would deteriorate due to changes in extracellular polymeric substances and induce various forms of bulking. Beneficially, N deficiency reduces nitrous oxide emissions. These findings emphasise the importance of considering and preparing for impacts caused by urine source segregation-induced nutrient deficiency in sewage treatment processes.
Collapse
Affiliation(s)
- Chee Xiang Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Veera Koskue
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Gao
- South East Water Corporation, 2268, Seaford, VIC 3198, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Broadway, NSW 2007, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Zhou J, Zheng Y, Hou L, Qi L, Mao T, Yin G, Liu M. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission. WATER RESEARCH 2024; 261:122041. [PMID: 38972235 DOI: 10.1016/j.watres.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Acidification of coastal waters, synergistically driven by increasing atmospheric carbon dioxide (CO2) and intensive land-derived nutrient inputs, exerts significant stresses on the biogeochemical cycles of coastal ecosystem. However, the combined effects of anthropogenic nitrogen (N) inputs and aquatic acidification on nitrification, a critical process of N cycling, remains unclear in estuarine and coastal ecosystems. Here, we showed that increased loading of ammonium (NH4+) in estuarine and coastal waters alleviated the inhibitory effect of acidification on nitrification rates but intensified the production of the potent greenhouse gas nitrous oxide (N2O), thus accelerating global climate change. Metatranscriptomes and natural N2O isotopic signatures further suggested that the enhanced emission of N2O may mainly source from hydroxylamine (NH2OH) oxidation rather than from nitrite (NO2-) reduction pathway of nitrifying microbes. This study elucidates how anthropogenic N inputs regulate the effects of coastal acidification on nitrification and associated N2O emissions, thereby enhancing our ability to predict the feedbacks of estuarine and coastal ecosystems to climate change and human perturbations.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
10
|
Zhao H, Guo Y, Wang X, Sun H, Gao M, Wu C, Li S, Li YY, Wang Q. Exploring the maximum nitrite production rate through the granular sludge-type reactor to match the needs of anammox process realizing efficient nitrogen removal. ENVIRONMENTAL RESEARCH 2024; 255:119158. [PMID: 38763279 DOI: 10.1016/j.envres.2024.119158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The reliable and efficient nitrite production rate (NPR) through nitritation process is the prerequisite for the efficient running of subsequent processes, like the anammox process and the nitrite shunt. However, there has been scant research on stable and productive nitritation process in recent years. In this study, at a stable hydraulic retention time of 12.0 h and with precise and strict DO control, the upper limit of the NPR was initially investigated using a continuous-flow granular sludge reactor. The NPR of 1.69 kg/m3/d with a nitrite production efficiency of 81.97% was finally achieved, which set a record until now in similar research. The median sludge particle size of 270.0 μm confirmed the development of clearly defined granular sludge. The genus Nitrosomonas was the major ammonium oxidizing bacteria. In conclusion, this study provides valuable insights for the practical application of the effective nitritation process driving subsequent nitrogen removal processes.
Collapse
Affiliation(s)
- Hongjun Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
11
|
Wang S, Xiao M, Jiang L, Jin Y, Zhou Y, Yu L, Armanbek G, Wang M, Ma J, Zhu G. Diverse metabolism drives comammox in continental-scale agricultural streams: Important ammonia oxidation but low N 2O production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174411. [PMID: 38960159 DOI: 10.1016/j.scitotenv.2024.174411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Agriculture receives approximately 25 % of the annual global nitrogen input, 37 % of which subsequently runs off into adjacent low-order streams and surface water, where it may contribute to high nitrification and nitrous oxide (N2O). However, the mechanisms of nitrification and the pathways controlling N2O production in agricultural streams remain unknown. Here, we report that the third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is widespread and contributes to important ammonia oxidation with low ammonia-N2O conversion in both basin- and continental-scale agricultural streams. The contribution of comammox to ammonia oxidation (21.5 ± 2.3 %) was between that of bacterial (68.6 ± 2.7 %) and archaeal (9.9 ± 1.8 %) ammonia oxidation. Interestingly, N2O production by comammox (18.5 ± 2.1 %) was higher than archaeal (10.5 ± 1.9 %) but significantly lower than bacterial (70.2 ± 2.6 %) ammonia oxidation. The first metagenome-assembled genome (MAG) of comammox bacteria from agricultural streams further revealed their potential extensive diverse and specific metabolism. Their wide habitats might be attributed to the diverse metabolism, i.e. harboring the functional gene of nitrate reduction to ammonia, while the lower N2O would be attributed to their lacking biological function to produce N2O. Our results highlight the importance of widespread comammox in agricultural streams, both for the fate of ammonia fertilizer and for climate change. However, it has not yet been routinely included in Earth system models and IPCC global assessments. Synopsis Widespread but overlooked comammox contributes to important ammonia oxidation but low N2O production, which were proved by the first comammox MAG found in agricultural streams.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucheng Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuting Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Longbin Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gawhar Armanbek
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manting Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingchen Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Lenferink WB, Bakken LR, Jetten MSM, van Kessel MAHJ, Lücker S. Hydroxylamine production by Alcaligenes faecalis challenges the paradigm of heterotrophic nitrification. SCIENCE ADVANCES 2024; 10:eadl3587. [PMID: 38848370 PMCID: PMC11160463 DOI: 10.1126/sciadv.adl3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Heterotrophic nitrifiers continue to be a hiatus in our understanding of the nitrogen cycle. Despite their discovery over 50 years ago, the physiology and environmental role of this enigmatic group remain elusive. The current theory is that heterotrophic nitrifiers are capable of converting ammonia to hydroxylamine, nitrite, nitric oxide, nitrous oxide, and dinitrogen gas via the subsequent actions of nitrification and denitrification. In addition, it was recently suggested that dinitrogen gas may be formed directly from ammonium. Here, we combine complementary high-resolution gas profiles, 15N isotope labeling studies, and transcriptomics data to show that hydroxylamine is the major product of nitrification in Alcaligenes faecalis. We demonstrated that denitrification and direct ammonium oxidation to dinitrogen gas did not occur under the conditions tested. Our results indicate that A. faecalis is capable of hydroxylamine production from an organic intermediate. These results fundamentally change our understanding of heterotrophic nitrification and have important implications for its biotechnological application.
Collapse
Affiliation(s)
- Wouter B. Lenferink
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Mike S. M. Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
| | - Maartje A. H. J. van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
| |
Collapse
|
13
|
Tan X, Lu Y, Nie WB, Evans P, Wang XW, Dang CC, Wang X, Liu BF, Xing DF, Ren NQ, Xie GJ. Nitrate-dependent anaerobic methane oxidation coupled to Fe(III) reduction as a source of ammonium and nitrous oxide. WATER RESEARCH 2024; 256:121571. [PMID: 38583332 DOI: 10.1016/j.watres.2024.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
'Candidatus Methanoperedens nitroreducens' is an archaeal methanotroph with global importance that links carbon and nitrogen cycles and great potential for sustainable operation of wastewater treatment. It has been reported to mediate the anaerobic oxidation of methane through a reverse methanogenesis pathway while reducing nitrate to nitrite. Here, we demonstrate that 'Ca. M. nitroreducens' reduces ferric iron forming ammonium (23.1 %) and nitrous oxide (N2O, 46.5 %) from nitrate. These results are supported with the upregulation of genes coding for proteins responsible for dissimilatory nitrate reduction to ammonium (nrfA), N2O formation (norV, cyt P460), and multiple multiheme c-type cytochromes for ferric iron reduction. Concomitantly, an increase in the N2O-reducing SJA-28 lineage and a decrease in the nitrite-reducing 'Candidatus Methylomirabilis oxyfera' are consistent with the changes in 'Ca. M. nitroreducens' end products. These findings demonstrate the highly flexible physiology of 'Ca. M. nitroreducens' in anaerobic ecosystems with diverse electron acceptor conditions, and further reveals its roles in linking methane oxidation to global biogeochemical cycles. 'Ca. M. nitroreducens' could significantly affect the bioavailability of nitrogen sources as well as the emission of greenhouse gas in natural ecosystems and wastewater treatment plants.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wen-Bo Nie
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Paul Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Nguyen Quoc B, Cavanaugh SK, Hunt KA, Bryson SJ, Winkler MKH. Impact of aerobic granular sludge sizes and dissolved oxygen concentration on greenhouse gas N 2O emission. WATER RESEARCH 2024; 255:121479. [PMID: 38520777 DOI: 10.1016/j.watres.2024.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Aerobic granular sludge (AGS) at wastewater treatment plants (WWTPs) are known to produce nitrous oxide (N2O), a greenhouse gas which has a ∼300 times higher global warming potential than carbon dioxide. In this research, we studied N2O emissions from different sizes of AGS developed at a dissolved oxygen (DO) level of 2 mgO2/L while exposing them to disturbances at various DO concentrations ranging from 1 to 4 mgO2/L. Five different AGS size classes were studied: 212-600 µm, 600-1000 µm, 1000-1400 µm, 1400-2000 µm, and > 2000 µm. Metagenomic data showed N2O reductase genes (nosZ) were more abundant in the smaller AGS sizes which aligned with the observation of higher N2O reduction rates in small AGS under anaerobic conditions. However, when oxygen was present, the activity measurements of N2O emission showed an opposite trend compared to metagenomic data, smaller AGS (212 to 1000 µm) emitted significantly higher N2O (p < 0.05) than larger AGS (1000 µm to >2000 µm) at DO of 2, 3, and 4 mgO2/L. The N2O emission rate showed positive correlation with both oxygen levels and nitrification rate. This pattern indicates a connection between N2O emission and nitrification. In addition, the data suggested the penetration of oxygen into the anoxic zone of granules might have hindered nitrous oxide reduction, resulting in incomplete denitrification stopping at N2O and consequently contributing to an increase in N2O emissions. This work sets the stage to better understand the impacts of AGS size on N2O emissions in WWTPs under different disturbance of DO conditions, and thus ensure that wastewater treatment will comply with possible future regulations demanding lowering greenhouse gas emissions in an effort to combat climate change.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, United States.
| | - Shannon K Cavanaugh
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, United States
| |
Collapse
|
15
|
He Y, Liu Y, Li X, Guo H, Zhu T, Liu Y. Polyvinyl Chloride Microplastics Facilitate Nitrous Oxide Production in Partial Nitritation Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1954-1965. [PMID: 38239129 DOI: 10.1021/acs.est.3c09280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.
Collapse
Affiliation(s)
- Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
17
|
Oshiki M, Saito T, Nakaya Y, Satoh H, Okabe S. Growth of the Nitrosomonas europaea cells in the biofilm and planktonic growth mode: Responses of extracellular polymeric substances production and transcriptome. J Biosci Bioeng 2023; 136:430-437. [PMID: 37925312 DOI: 10.1016/j.jbiosc.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Nitrosomonas europaea, an aerobic ammonia oxidizing bacterium, is responsible for the first and rate-limiting step of the nitrification process, and their ammonia oxidation activities are critical for the biogeochemical cycling and the biological nitrogen removal of wastewater treatment. In the present study, N. europaea cells were cultivated in the inorganic or organic media (the NBRC829 and the nutrient-rich, NR, media, respectively), and the cells proliferated in the form of planktonic and biofilm in those media, respectively. The N. europaea cells in the biofilm growth mode produced larger amounts of the extracellular polymeric substances (EPS), and the composition of the EPS was characterized by the chemical analyses including Fourier transform infrared spectroscopy (FT-IR) and 1H-nuclear magnetic resonance (NMR) measurements. The RNA-Seq analysis of N. europaea in the biofilm or planktonic growth mode revealed that the following gene transcripts involved in central nitrogen metabolisms were abundant in the biofilm growth mode; amo encoding ammonia monooxygenase, hao encoding hydroxylamine dehydrogenase, the gene encoding nitrosocyanine, nirK encoding copper-containing nitrite reductase. Additionally, the transcripts of the pepA and wza involved in the bacterial floc formation and the translocation of EPS, respectively, were also abundant in the biofilm-growth mode. Our study was first to characterize the EPS production and transcriptome of N. europaea in the biofilm and planktonic growth mode.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Takahiro Saito
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuki Nakaya
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
18
|
Kikuchi S, Fujitani H, Ishii K, Isshiki R, Sekiguchi Y, Tsuneda S. Characterisation of bacteria representing a novel Nitrosomonas clade: Physiology, genomics and distribution of missing ammonia oxidizer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:404-416. [PMID: 37078228 PMCID: PMC10472526 DOI: 10.1111/1758-2229.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Members of the genus Nitrosomonas are major ammonia oxidizers that catalyse the first step of nitrification in various ecosystems. To date, six subgenus-level clades have been identified. We have previously isolated novel ammonia oxidizers from an additional clade (unclassified cluster 1) of the genus Nitrosomonas. In this study, we report unique physiological and genomic properties of the strain PY1, compared with representative ammonia-oxidising bacteria (AOB). The apparent half-saturation constant for total ammonia nitrogen and maximum velocity of strain PY1 were 57.9 ± 4.8 μM NH3 + NH4 + and 18.5 ± 1.8 μmol N (mg protein)-1 h-1 , respectively. Phylogenetic analysis based on genomic information revealed that strain PY1 belongs to a novel clade of the Nitrosomonas genus. Although PY1 contained genes to withstand oxidative stress, cell growth of PY1 required catalase to scavenge hydrogen peroxide. Environmental distribution analysis revealed that the novel clade containing PY1-like sequences is predominant in oligotrophic freshwater. Taken together, the strain PY1 had a longer generation time, higher yield and required reactive oxygen species (ROS) scavengers to oxidize ammonia, compared with known AOB. These findings expand our knowledge of the ecophysiology and genomic diversity of ammonia-oxidising Nitrosomonas.
Collapse
Affiliation(s)
- Shuta Kikuchi
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Hirotsugu Fujitani
- Department of Biological SciencesChuo UniversityTokyoJapan
- Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan
| | - Kento Ishii
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan
| | - Rino Isshiki
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Yuji Sekiguchi
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
| | - Satoshi Tsuneda
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan
| |
Collapse
|
19
|
Gao S, Das A, Alfonzo E, Sicinski KM, Rieger D, Arnold FH. Enzymatic Nitrogen Incorporation Using Hydroxylamine. J Am Chem Soc 2023; 145:20196-20201. [PMID: 37671894 PMCID: PMC10560455 DOI: 10.1021/jacs.3c08053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hydroxylamine-derived reagents have enabled versatile nitrene transfer reactions for introducing nitrogen-containing functionalities in small-molecule catalysis, as well as biocatalysis. These reagents, however, result in a poor atom economy and stoichiometric organic waste. Activating hydroxylamine (NH2OH) for nitrene transfer offers a low-cost and sustainable route to amine synthesis, since water is the sole byproduct. Despite its presence in nature, hydroxylamine is not known to be used for enzymatic nitrogen incorporation in biosynthesis. Here, we report an engineered heme enzyme that can utilize hydroxylammonium chloride, an inexpensive commodity chemical, for nitrene transfer. Directed evolution of Pyrobaculum arsenaticum protoglobin generated efficient enzymes for benzylic C-H primary amination and styrene aminohydroxylation. Mechanistic studies supported a stepwise radical pathway involving rate-limiting hydrogen atom transfer. This unprecedented activity is a useful addition to the "nitrene transferase" repertoire and hints at possible future discovery of natural enzymes that use hydroxylamine for amination chemistry.
Collapse
Affiliation(s)
- Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen M. Sicinski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dominic Rieger
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Choi E, Chaudhry SI, Martens-Habbena W. Role of Nitric Oxide in Hydroxylamine Oxidation by Ammonia-Oxidizing Bacteria. Appl Environ Microbiol 2023; 89:e0217322. [PMID: 37439697 PMCID: PMC10467338 DOI: 10.1128/aem.02173-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
An important role of nitric oxide (NO) as either a free intermediate in the NH3 oxidation pathway or a potential oxidant for NH3 or NH2OH has been proposed for ammonia-oxidizing bacteria (AOB) and archaea (AOA), respectively. However, tracing NO metabolism at low concentrations remains notoriously difficult. Here, we use electrochemical sensors and the mild NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) to trace apparent NO concentration and determine production rates at low micromolar concentrations in the model AOB strain Nitrosomonas europaea. In agreement with previous studies, we found that PTIO does not affect NH3 oxidation instantaneously in both Nitrosospira briensis and Nitrosomonas europaea, unlike inhibitors for ammonia oxidation such as allylthiourea and acetylene, although it effectively scavenged NO from the cell suspensions. Quantitative analysis showed that NO production by N. europaea amounted to 3.15% to 6.23% of NO2- production, whereas N. europaea grown under O2 limitation produced NO equivalent to up to 40% of NO2- production at high substrate concentrations. In addition, we found that PTIO addition to N. europaea grown under O2 limitation abolished N2O production. These results indicate different turnover rates of NO during NH3 oxidation under O2-replete and O2-limited growth conditions in AOB. The results suggest that NO may not be a free intermediate or remain tightly bound to iron centers of enzymes during hydroxylamine oxidation and that only NH3 saturation and adaptation to O2 limitation may lead to significant dissociation of NO from hydroxylamine dehydrogenase. IMPORTANCE Ammonia oxidation by chemolithoautotrophic ammonia-oxidizing bacteria (AOB) is thought to contribute significantly to global nitrous oxide (N2O) emissions and leaching of oxidized nitrogen, particularly through their activity in nitrogen (N)-fertilized agricultural production systems. Although substantial efforts have been made to characterize the N metabolism in AOB, recent findings suggest that nitric oxide (NO) may play an important mechanistic role as a free intermediate of hydroxylamine oxidation in AOB, further implying that besides hydroxylamine dehydrogenase (HAO), additional enzymes may be required to complete the ammonia oxidation pathway. However, the NO spin trap PTIO was found to not inhibit ammonia oxidation in AOB. This study provides a combination of physiological and spectroscopic evidence that PTIO indeed scavenges only free NO in AOB and that significant amounts of free NO are produced only during incomplete hydroxylamine oxidation or nitrifier denitrification under O2-limited growth conditions.
Collapse
Affiliation(s)
- Eunkyung Choi
- Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA
| | - Sana I. Chaudhry
- Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Microbiology & Cell Science Department, University of Florida, Davie, Florida, USA
| |
Collapse
|
21
|
Li J, Zhao C, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, He X, Qiu Z, Wang J. Multidrug-resistant plasmid RP4 increases NO and N 2O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. WATER RESEARCH 2023; 242:120266. [PMID: 37421866 DOI: 10.1016/j.watres.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N2O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH2OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N2O.
Collapse
Affiliation(s)
- Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
22
|
Bollmeyer MM, Majer SH, Coleman RE, Lancaster KM. Outer coordination sphere influences on cofactor maturation and substrate oxidation by cytochrome P460. Chem Sci 2023; 14:8295-8304. [PMID: 37564409 PMCID: PMC10411619 DOI: 10.1039/d3sc02288a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023] Open
Abstract
Product selectivity of ammonia oxidation by ammonia-oxidizing bacteria (AOB) is tightly controlled by metalloenzymes. Hydroxylamine oxidoreductase (HAO) is responsible for the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO). The non-metabolic enzyme cytochrome (cyt) P460 also oxidizes NH2OH, but instead produces nitrous oxide (N2O). While both enzymes use a heme P460 cofactor, they selectively oxidize NH2OH to different products. Previously reported structures of Nitrosomonas sp. AL212 cyt P460 show that a capping phenylalanine residue rotates upon ligand binding, suggesting that this Phe may influence substrate and/or product binding. Here, we show via substitutions of the capping Phe in Nitrosomonas europaea cyt P460 that the bulky phenyl side-chain promotes the heme-lysine cross-link forming reaction operative in maturing the cofactor. Additionally, the Phe side-chain plays an important role in modulating product selectivity between N2O and NO during NH2OH oxidation under aerobic conditions. A picture emerges where the sterics and electrostatics of the side-chain in this capping position control the kinetics of N2O formation and NO binding affinity. This demonstrates how the outer coordination sphere of cyt P460 is tuned not only for selective NH2OH oxidation, but also for the autocatalytic cross-link forming reaction that imbues activity to an otherwise inactive protein.
Collapse
Affiliation(s)
- Melissa M Bollmeyer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Sean H Majer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Rachael E Coleman
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Kyle M Lancaster
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
23
|
Gulay A, Fournier G, Smets BF, Girguis PR. Proterozoic Acquisition of Archaeal Genes for Extracellular Electron Transfer: A Metabolic Adaptation of Aerobic Ammonia-Oxidizing Bacteria to Oxygen Limitation. Mol Biol Evol 2023; 40:msad161. [PMID: 37440531 PMCID: PMC10415592 DOI: 10.1093/molbev/msad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of β-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that β-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.
Collapse
Affiliation(s)
- Arda Gulay
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Greg Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
24
|
Tan Q, Zhang G, Ding A, Bian Z, Wang X, Xing Y, Zheng L. Anthropogenic land-use activities within watersheds reduce comammox activity and diversity in rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117841. [PMID: 37003226 DOI: 10.1016/j.jenvman.2023.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen cycling plays a key role in maintaining river ecological functions which are threatened by anthropogenic activities. The newly discovered complete ammonia oxidation, comammox, provides novel insights into the ecological effects of nitrogen on that it oxidizes ammonia directly to nitrate without releasing nitrite as canonical ammonia oxidization conducted by AOA or AOB which is believed to play an important role in greenhouse gas generation. Theoretically, contribution of commamox, AOA and AOB to ammonia oxidization in rivers might be impacted by anthropogenic land-use activities through alterations in flow regime and nutrient input. While how land use pattern affects comammox and other canonical ammonia oxidizers remains elusive. In this study, we examined the ecological effects of land use practices on the activity and contribution of three distinctive groups of ammonia oxidizers (AOA, AOB, comammox) as well as the composition of comammox bacterial communities from 15 subbasins covering an area of 6166 km2 in North China. The results showed that comammox dominated nitrification (55.71%-81.21%) in less disturbed basins characterized by extensive forests and grassland, while AOB became the major player (53.83%-76.43%) in highly developed basins with drastic urban and agricultural development. In addition, increasing anthropogenic land use activities within the watershed lowered the alpha diversity of comammox communities and simplified the comammox network. Additionally, the alterations of NH4+-N, pH and C/N induced by land use change were found to be crucial drivers in determining the distribution and activity of AOB and comammox. Together, our findings cast a new light on aquatic-terrestrial linkages from the view of microorganism-mediated nitrogen cycling and can further be applied to target watershed land use management.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Guoyu Zhang
- Department of Environmental Engineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Zhaoyong Bian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
25
|
Bollmeyer MM, Coleman RE, Majer SH, Ferrao SD, Lancaster KM. Cytochrome P460 Cofactor Maturation Proceeds via Peroxide-Dependent Post-translational Modification. J Am Chem Soc 2023; 145:14404-14416. [PMID: 37338957 PMCID: PMC10431212 DOI: 10.1021/jacs.3c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Cytochrome P460s are heme enzymes that oxidize hydroxylamine to nitrous oxide. They bear specialized "heme P460" cofactors that are cross-linked to their host polypeptides by a post-translationally modified lysine residue. Wild-type N. europaea cytochrome P460 may be isolated as a cross-link-deficient proenzyme following anaerobic overexpression in E. coli. When treated with peroxide, this proenzyme undergoes maturation to active enzyme with spectroscopic and catalytic properties that match wild-type cyt P460. This maturation reactivity requires no chaperones─it is intrinsic to the protein. This behavior extends to the broader cytochrome c'β superfamily. Accumulated data reveal key contributions from the secondary coordination sphere that enable selective, complete maturation. Spectroscopic data support the intermediacy of a ferryl species along the maturation pathway.
Collapse
Affiliation(s)
- Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Rachael E. Coleman
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Sean H. Majer
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Silas D. Ferrao
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Hu P, Qian Y, Liu J, Gao L, Li Y, Xu Y, Wu J, Hong Y, Ford T, Radian A, Yang Y, Gu JD. Delineation of the complex microbial nitrogen-transformation network in an anammox-driven full-scale wastewater treatment plant. WATER RESEARCH 2023; 235:119799. [PMID: 36965294 DOI: 10.1016/j.watres.2023.119799] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Jinye Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China
| | - Lin Gao
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Yuxin Li
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China.
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China.
| |
Collapse
|
27
|
Adams HR, Svistunenko DA, Wilson MT, Fujii S, Strange RW, Hardy ZA, Vazquez PA, Dabritz T, Streblow GJ, Andrew CR, Hough MA. A Heme Pocket Aromatic Quadrupole Modulates Gas Binding to Cytochrome c'-β: Implications for NO Sensors. J Biol Chem 2023:104742. [PMID: 37100286 DOI: 10.1016/j.jbc.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2, is fundamental to enzymology, biotechnology and human health. Cytochromes c´ (cyts c´) are a group of putative NO-binding heme proteins that fall into two families: the well characterised four alpha helix bundle fold (cyts c´-α) and an unrelated family with a largely beta sheet fold (cyts c´-β) resembling that of cytochromes P460. A recent structure of cyt c´-β from Methylococcus capsulatus Bath (McCP-β) revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas binding site. This feature, dubbed the "Phe cap", is highly conserved within the sequences of other cyts c´-β, but is absent in their close homologues, the hydroxylamine oxidizing cytochromes P460, although some do contain a single Phe residue. Here we report an integrated structural, spectroscopic, and kinetic characterization of McCP-β complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron rich aromatic ring face of Phe 32 towards distally-bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO-sensor, soluble guanylate cyclase (sGC). Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-β, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Richard W Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Zoe A Hardy
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Priscilla A Vazquez
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Tyler Dabritz
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Gabriel J Streblow
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
28
|
Jiang L, Yu J, Wang S, Wang X, Schwark L, Zhu G. Complete ammonia oxidization in agricultural soils: High ammonia fertilizer loss but low N 2 O production. GLOBAL CHANGE BIOLOGY 2023; 29:1984-1997. [PMID: 36607170 DOI: 10.1111/gcb.16586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg-1 day-1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0-0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2 O (0.98 ± 0.44 μg N kg-1 day-1 , 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2 O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.
Collapse
Affiliation(s)
- Liping Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lorenz Schwark
- Organic Geochemistry Unit, Kiel University, Kiel, Germany
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Zhou J, Zheng Y, Hou L, An Z, Chen F, Liu B, Wu L, Qi L, Dong H, Han P, Yin G, Liang X, Yang Y, Li X, Gao D, Li Y, Liu Z, Bellerby R, Liu M. Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters. Nat Commun 2023; 14:1380. [PMID: 36914644 PMCID: PMC10011576 DOI: 10.1038/s41467-023-37104-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
In the context of an increasing atmospheric carbon dioxide (CO2) level, acidification of estuarine and coastal waters is greatly exacerbated by land-derived nutrient inputs, coastal upwelling, and complex biogeochemical processes. A deeper understanding of how nitrifiers respond to intensifying acidification is thus crucial to predict the response of estuarine and coastal ecosystems and their contribution to global climate change. Here, we show that acidification can significantly decrease nitrification rate but stimulate generation of byproduct nitrous oxide (N2O) in estuarine and coastal waters. By varying CO2 concentration and pH independently, an expected beneficial effect of elevated CO2 on activity of nitrifiers ("CO2-fertilization" effect) is excluded under acidification. Metatranscriptome data further demonstrate that nitrifiers could significantly up-regulate gene expressions associated with intracellular pH homeostasis to cope with acidification stress. This study highlights the molecular underpinnings of acidification effects on nitrification and associated greenhouse gas N2O emission, and helps predict the response and evolution of estuarine and coastal ecosystems under climate change and human activities.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China. .,School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China.
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Zhanfei Liu
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Richard Bellerby
- Norwegian Institute for Water Research, Thormøhlensgt 53D, 5006, Bergen, Norway
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
30
|
Lycus P, Einsle O, Zhang L. Structural biology of proteins involved in nitrogen cycling. Curr Opin Chem Biol 2023; 74:102278. [PMID: 36889028 DOI: 10.1016/j.cbpa.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Microbial metabolic processes drive the global nitrogen cycle through sophisticated and often unique metalloenzymes that facilitate difficult redox reactions at ambient temperature and pressure. Understanding the intricacies of these biological nitrogen transformations requires a detailed knowledge that arises from the combination of a multitude of powerful analytical techniques and functional assays. Recent developments in spectroscopy and structural biology have provided new, powerful tools for addressing existing and emerging questions, which have gained urgency due to the global environmental implications of these fundamental reactions. The present review focuses on the recent contributions of the wider area of structural biology to understanding nitrogen metabolism, opening new avenues for biotechnological applications to better manage and balance the challenges of the global nitrogen cycle.
Collapse
Affiliation(s)
- Pawel Lycus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
31
|
Chen L, Yuan H, Wang XJ, Li L, Tan X, Lin YW. Engineering Human Neuroglobin into a Cytochrome c-Like Protein with a Single Thioether Bond in Non-native State. Chembiochem 2022; 23:e202200531. [PMID: 36217897 DOI: 10.1002/cbic.202200531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Indexed: 01/25/2023]
Abstract
A double mutant of human H64M/V71C neuroglobin (Ngb) was engineered, which formed a single thioether bond as that in atypical cytochrome c, whereas the heme distal Met64 was oxidized to both sulfoxide (SO-Met) and sulfone (SO2 -Met). By contrast, no Cys-heme cross-link was formed in V71C Ngb with His64/His96 coordination, as shown by the X-ray crystal structure, which indicates that an open distal site facilitates the activation of heme iron for structural modifications.
Collapse
Affiliation(s)
- Lei Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China
| |
Collapse
|
32
|
Liu W, Lu Z, Yuan S, Jiang X, Xian M. Identification and mechanistic analysis of a bifunctional enzyme involved in the C-N and N-N bond formation. Biochem Biophys Res Commun 2022; 635:154-160. [DOI: 10.1016/j.bbrc.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
33
|
Cavanaugh SK, Nguyen Quoc B, Jacobson E, Bucher R, Sukapanpotharam P, Winkler MKH. Impact of nitrite and oxygen on nitrous oxide emissions from a granular sludge sequencing batch reactor. CHEMOSPHERE 2022; 308:136378. [PMID: 36113651 DOI: 10.1016/j.chemosphere.2022.136378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Maximizing nutrient removal and minimizing greenhouse gas (GHG) emissions is imperative for the future of wastewater treatment. As municipalities focus on minimizing their carbon footprints, future permits could regulate GHG emissions from wastewater treatment plants. This study investigates how nitrous oxide (N2O) emissions are affected by dissolved oxygen and nitrite concentrations, providing potential strategies to meet possible gaseous emission permits. A lab-scale sequencing batch reactor (SBR) was enriched with aerobic granular sludge (AGS) capable of phosphate removal and simultaneous nitrification-denitrification (SND). N2O emissions were tracked at varying dissolved oxygen (DO) and nitrite (NO2-) concentrations, with >99% SND efficiency and 93%-100% phosphate removal efficiency. Higher DO and NO2- concentrations were associated with higher N2O emissions. Emissions were minimized at a DO concentration of 1 mg L-1, with an average emission factor of 0.18% of oxidized NH3-N emitted as N2O-N, which is lower than factors from many full-scale treatment plants (Vasilaki et al., 2019) and similar to a Nereda® full-scale AGS SBR (van Dijk et al., 2021). This challenges assertions that AGS emits more N2O than conventional activated sludge, although more research at full-scale with influent quality variations is required to confirm this trend. Molecular analyses revealed that the efficient SND was likely achieved with shortcut nitrogen removal facilitated by a low presence of nitrite oxidizing bacteria and a large population of denitrifying phosphate accumulating organisms, which far outnumbered denitrifying glycogen accumulating organisms.
Collapse
Affiliation(s)
- Shannon K Cavanaugh
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA.
| | - Bao Nguyen Quoc
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Eron Jacobson
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, Seattle, WA, 98104, USA
| | - Robert Bucher
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, Seattle, WA, 98104, USA
| | - Pardi Sukapanpotharam
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, Seattle, WA, 98104, USA
| | - Mari-Karoliina H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| |
Collapse
|
34
|
Zhang Q, Lin L, Chen Y, Cao W, Zhang Y. Effects of hydroxylamine on treatment of anaerobic digestate of pig manure in partial nitrification-anaerobic ammonium oxidation. BIORESOURCE TECHNOLOGY 2022; 363:128015. [PMID: 36155814 DOI: 10.1016/j.biortech.2022.128015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Partial nitrification-anaerobic ammonium oxidation (PN-anammox) was started up within 40 days by bioaugmentation and aeration control, and its performance in the treatment of anaerobic digestate of pig manure (ADPM) was evaluated. Inhibitors in ADPM decreased the nitrogen removal rate (NRR) by 0.24 g N/L/d. The effect and mechanism of hydroxylamine (NH2OH) alleviation of PN-anammox inhibition during ADPM treatment were investigated. As an intermediate product of anammox and ammonia-oxidizing bacteria, NH2OH strengthened energy metabolism, improved the activity and abundance of functional bacteria, and eliminated miscellaneous bacteria, increasing the average NRR by 31%. However, the average nitrous oxide emission was increased by 10.1% via hydroxylamine oxidation. The results showed that synergy and competition among nitrogen-transforming microorganisms were crucial for NRR and that NH2OH played an essential role in maintaining efficient operation. This study lays a foundation for restoring PN-anammox for treating livestock wastewater.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Lan Lin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuqi Chen
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
35
|
Young MN, Boltz J, Rittmann BE, Al-Omari A, Jimenez JA, Takacs I, Marcus AK. Thermodynamic Analysis of Intermediary Metabolic Steps and Nitrous Oxide Production by Ammonium-Oxidizing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12532-12541. [PMID: 35993695 DOI: 10.1021/acs.est.1c08498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is a greenhouse gas emitted from wastewater treatment, soils, and agriculture largely by ammonium-oxidizing bacteria (AOB). While AOB are characterized by being aerobes that oxidize ammonium (NH4+) to nitrite (NO2-), fundamental studies in microbiology are revealing the importance of metabolic intermediates and reactions that can lead to the production of N2O. These findings about the metabolic pathways for AOB were integrated with thermodynamic electron-equivalents modeling (TEEM) to estimate kinetic and stoichiometric parameters for each of the AOB's nitrogen (N)-oxidation and -reduction reactions. The TEEM analysis shows that hydroxylamine (NH2OH) oxidation to nitroxyl (HNO) is the most energetically efficient means for the AOB to provide electrons for ammonium monooxygenation, while oxidations of HNO to nitric oxide (NO) and NO to NO2- are energetically favorable for respiration and biomass synthesis. The respiratory electron acceptor can be O2 or NO, and both have similar energetics. The TEEM-predicted value for biomass yield, maximum-specific rate of NH4+ utilization, and maximum specific growth rate are consistent with empirical observations. NO reduction to N2O is thermodynamically favorable for respiration and biomass synthesis, but the need for O2 as a reactant in ammonium monooxygenation likely precludes NO reduction to N2O from becoming the major pathway for respiration.
Collapse
Affiliation(s)
- Michelle N Young
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Joshua Boltz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | - Ahmed Al-Omari
- Brown and Caldwell, 1725 Duke Street Suite 250, Alexandria, Virginia 22314, United States
| | - Jose A Jimenez
- Brown and Caldwell, 351 Lucien Way, Suite 250, Maitland, Florida 32751, United States
| | - Imre Takacs
- Dynamita, 2015 route d'Aiglun, 06910 Sigale, France
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
36
|
Zhao J, Zhao J, Yang W, Hu B, Huang T, Xie S, Lei S, Hou W. Mechanisms of NO and N 2O production by enriched nitrifying sludge in a sequencing batch reactor: Effects of hydroxylamine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115237. [PMID: 35568014 DOI: 10.1016/j.jenvman.2022.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
NO and N2O as important greenhouse gases andtheir production mechanisms during nitrification are not completely understood. This study aimed to analyze the effect of hydroxylamine (NH2OH) on NO and N2O produced by nitrifying bacteria from activated sludge in a sequencing batch reactor (SBR). Experimental results showed that when nitrite (NO2-) accumulated during aerobic ammonia (NH4+) oxidation, N2O was the main product. The total amount of NO and N2O produced by NH2OH oxidation was positively correlated with dissolved oxygen (DO) levels. The imbalance of NH4+ oxidation caused by NH2OH addition was more conducive to the generation of NO and N2O under high DO conditions. When NH2OH was added into the reactor with NO2- as the substrate, the production of NO and N2O under high DO levels was mainly related to NH2OH oxidation. Under low DO conditions, NO and N2O from the biotic/abiotic hybrid pathways were more significant in the reactor of the coexistence of NO2- and NH2OH, which could be mainly caused by the pathways of nitrifier denitrification and abiotic reaction. Besides, limited amount of NO and N2O was generated by heterotrophic denitrification pathway during autotrophic nitrification. The implications for the above results are important for understanding the production of NO and N2O under NH2OH stress in nitrifying sludge reactor.
Collapse
Affiliation(s)
- Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an, 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an, 710064, Shaanxi, China.
| | - Wenjuan Yang
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Bo Hu
- School of Civil Engineering, Chang'an University, Xi'an, 710061, Shaanxi, China
| | - Ting Huang
- School of Civil Engineering, Chang'an University, Xi'an, 710061, Shaanxi, China
| | - Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Wei Hou
- Petro China ChangQing Oilfield Company, Xi'an, 710021, Shaanxi, China
| |
Collapse
|
37
|
Wu MR, Miao LL, Liu Y, Qian XX, Hou TT, Ai GM, Yu L, Ma L, Gao XY, Qin YL, Zhu HZ, Du L, Li SY, Tian CL, Li DF, Liu ZP, Liu SJ. Identification and characterization of a novel hydroxylamine oxidase, DnfA, that catalyzes the oxidation of hydroxylamine to N 2. J Biol Chem 2022; 298:102372. [PMID: 35970391 PMCID: PMC9478400 DOI: 10.1016/j.jbc.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N2) gas in the atmosphere is partially replenished by microbial denitrification of ammonia. Recent study has shown that Alcaligenes ammonioxydans oxidizes ammonia to dinitrogen via a process featuring the intermediate hydroxylamine, termed “Dirammox” (direct ammonia oxidation). However, the unique biochemistry of this process remains unknown. Here, we report an enzyme involved in Dirammox that catalyzes the conversion of hydroxylamine to N2. We tested previously annotated proteins involved in redox reactions, DnfA, DnfB, and DnfC, to determine their ability to catalyze the oxidation of ammonia or hydroxylamine. Our results showed that none of these proteins bound to ammonia or catalyzed its oxidation; however, we did find DnfA bound to hydroxylamine. Further experiments demonstrated that, in the presence of NADH and FAD, DnfA catalyzed the conversion of 15N-labeled hydroxylamine to 15N2. This conversion did not happen under oxygen (O2)-free conditions. Thus, we concluded that DnfA encodes a hydroxylamine oxidase. We demonstrate that DnfA is not homologous to any known hydroxylamine oxidoreductases and contains a diiron center, which was shown to be involved in catalysis via electron paramagnetic resonance experiments. Furthermore, enzyme kinetics of DnfA were assayed, revealing a Km of 92.9 ± 3.0 μM for hydroxylamine and a kcat of 0.028 ± 0.001 s−1. Finally, we show that DnfA was localized in the cytoplasm and periplasm as well as in tubular membrane invaginations in HO-1 cells. To the best of our knowledge, we conclude that DnfA is the first enzyme discovered that catalyzes oxidation of hydroxylamine to N2.
Collapse
Affiliation(s)
- Meng-Ru Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Qian
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Hou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049
| | - Guo-Min Ai
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049
| | - Xi-Yan Gao
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049
| | - Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, China
| | - Sheng-Ying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049.
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China 100049; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, China.
| |
Collapse
|
38
|
Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion. Proc Natl Acad Sci U S A 2022; 119:e2123022119. [PMID: 35858422 PMCID: PMC9335327 DOI: 10.1073/pnas.2123022119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.
Collapse
|
39
|
Valk LC, Peces M, Singleton CM, Laursen MD, Andersen MH, Mielczarek AT, Nielsen PH. Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. WATER RESEARCH 2022; 219:118563. [PMID: 35594748 DOI: 10.1016/j.watres.2022.118563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide is a highly potent greenhouse gas and one of the main contributors to the greenhouse gas footprint of wastewater treatment plants (WWTP). Although nitrous oxide can be produced by abiotic reactions in these systems, biological N2O production resulting from the imbalance of nitrous oxide production and reduction by microbial populations is the dominant cause. The microbial populations responsible for the imbalance have not been clearly identified, yet they are likely responsible for strong seasonal nitrous oxide patterns. Here, we examined the seasonal nitrous oxide concentration pattern in Avedøre WWTP alongside abiotic parameters, the microbial community composition based on 16S rRNA gene sequencing and already available metagenome-assembled genomes (MAGs). We found that the WWTP parameters could not explain the observed pattern. While no distinct community changes between periods of high and low dissolved nitrous oxide concentrations were determined, we found 26 and 28 species with positive and negative correlations to the seasonal N2O concentrations, respectively. MAGs were identified for 124 species (approximately 31% mean relative abundance of the community), and analysis of their genomic nitrogen transformation potential could explain this correlation for four of the negatively correlated species. Other abundant species were also analysed for their nitrogen transformation potential. Interestingly, only one full-denitrifier (Candidatus Dechloromonas phosphorivorans) was identified. 59 species had a nosZ gene predicted, with the majority identified as a clade II nosZ gene, mainly from the phylum Bacteroidota. A correlation of MAG-derived functional guilds with the N2O concentration pattern showed that there was a small but significant negative correlation with nitrite oxidizing bacteria and species with a nosZ gene (N2O reducers (DEN)). More research is required, specifically long-term activity measurements in relation to the N2O concentration to increase the resolution of these findings.
Collapse
Affiliation(s)
- Laura Christina Valk
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Caitlin Margaret Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Mads Dyring Laursen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | | | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
40
|
Lin Z, Ma K, Yang Y. Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070971. [PMID: 35888061 PMCID: PMC9317218 DOI: 10.3390/life12070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Wastewater treatment plants (WWTPs) are important contributors to global greenhouse gas (GHG) emissions, partly due to their huge emission of nitrous oxide (N2O), which has a global warming potential of 298 CO2 equivalents. Anaerobic ammonium-oxidizing (anammox) bacteria provide a shortcut in the nitrogen removal pathway by directly transforming ammonium and nitrite to nitrogen gas (N2). Due to its energy efficiency, the anammox-driven treatment has been applied worldwide for the removal of inorganic nitrogen from ammonium-rich wastewater. Although direct evidence of the metabolic production of N2O by anammox bacteria is lacking, the microorganisms coexisting in anammox-driven WWTPs could produce a considerable amount of N2O and hence affect the sustainability of wastewater treatment. Thus, N2O emission is still one of the downsides of anammox-driven wastewater treatment, and efforts are required to understand the mechanisms of N2O emission from anammox-driven WWTPs using different nitrogen removal strategies and develop effective mitigation strategies. Here, three main N2O production processes, namely, hydroxylamine oxidation, nitrifier denitrification, and heterotrophic denitrification, and the unique N2O consumption process termed nosZ-dominated N2O degradation, occurring in anammox-driven wastewater treatment systems, are summarized and discussed. The key factors influencing N2O emission and mitigation strategies are discussed in detail, and areas in which further research is urgently required are identified.
Collapse
|
41
|
Li T, Wang X, Huang J, Wang Y, Song S. Distribution of ammonia oxidizers and their role in N 2 O emissions in the reservoir riparian zone. J Basic Microbiol 2022; 62:1179-1192. [PMID: 35730619 DOI: 10.1002/jobm.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
As a transitional boundary between terrestrial and aquatic ecosystems, the riparian zone is considered a hotspot for N2 O production because of the active nitrogen processes. Ammoxidation is an important microbial pathway for N2 O production, but the distribution of ammonia oxidizers under different land-use types in the reservoir riparian zone and what role they played in N2 O emissions are still not clear. We investigated spatiotemporal distributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their role in N2 O emissions in different land-use types along the riparian zone of Miyun Reservoir: grassland, sparse woods, and woodland. We found significant differences in both AOA abundance and AOB diversity indices among land-use types. AOA and AOB communities were significantly separated by different land-use types. The main drivers to determine the distribution of ammonia-oxidizing microbial community were soil water content, NH4 + , NO3 - , and total organic carbon (TOC). In situ N2 O flux was highest in woodland with a mean value of 12.28 μg/m2 ·h, and it was substantially decreased by 121% and 123% in sparse woods and grassland. TOC content was decreased by 20% and 40% in sparse woods and grassland compared with woodland, and it was significantly positively correlated with in situ N2 O flux. Meanwhile, AOB diversity indices were significantly correlated with in situ N2 O flux. These results showed that the heterogeneity of physicochemical properties among different land-use types affected the community of AOA and AOB in riparian zones. AOB not AOA, and community diversity rather than abundance, played a role in N2 O emissions.
Collapse
Affiliation(s)
- Tingting Li
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Xiaoyan Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Jingyu Huang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Yubing Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| | - Shuang Song
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, China
| |
Collapse
|
42
|
Zhao C, Li J, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, Qiu Z, Wang J. Horizontal transfer of the multidrug resistance plasmid RP4 inhibits ammonia nitrogen removal dominated by ammonia-oxidizing bacteria. WATER RESEARCH 2022; 217:118434. [PMID: 35427829 DOI: 10.1016/j.watres.2022.118434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) have become an important public health concern. Particularly, although several ARGs have been identified in wastewater treatment plants (WWTPs), very few studies have characterized their impacts on reactor performance. Therefore, our study sought to investigate the effect of a representative conjugative transfer plasmid (RP4) encoding multidrug resistance genes on ammonia oxidation. To achieve this, we established sequencing batch reactors (SBRs) and a conjugation model with E. coli donor strains carrying the RP4 plasmid and a typical ammonia-oxidating (AOB) bacterial strain (Nitrosomonas europaea ATCC 25978) as a recipient to investigate the effect of conjugative transfer of plasmid RP4 on AOB. Our findings demonstrated that the RP4 plasmid carried by the donor strains could be transferred to AOB in the SBR and to Nitrosomonas europaea ATCC 25978. In SBR treated with donor strains carrying the RP4 plasmid, ammonia removal efficiency continuously decreased to 71%. Once the RP4 plasmid entered N. europaea ATCC 25978 in the conjugation model, ammonia removal was significantly inhibited and nitrite generation was decreased. Furthermore, the expression of several functional genes related to ammonia oxidation in AOB was suppressed following the transfer of the RP4 plasmid, including amoA, amoC, hao, nirK, and norB. In contrast, the cytL gene encoding cytochrome P460 was upregulated. These results demonstrated the ecological risk of ARGs in WWTPs, and therefore measures must be taken to avoid their transfer.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China.
| |
Collapse
|
43
|
Abendroth J, Buchko GW, Liew FN, Nguyen JN, Kim HJ. Structural Characterization of Cytochrome c'β-Met from an Ammonia-Oxidizing Bacterium. Biochemistry 2022; 61:563-574. [PMID: 35315646 DOI: 10.1021/acs.biochem.1c00640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ammonia-oxidizing bacterium Nitrosomonas europaea expresses two cytochromes in the P460 superfamily that are predicted to be structurally similar. In one, cytochrome (cyt) P460, the substrate hydroxylamine (NH2OH) is converted to nitric oxide (NO) and nitrous oxide (N2O) requiring a unique heme-lysyl cross-link in the catalytic cofactor. In the second, cyt c'β-Met, the cross-link is absent, and the cytochrome instead binds H2O2 forming a ferryl species similar to compound II of peroxidases. Here, we report the 1.80 Å crystal structure of cyt c'β-Met─a well-expressed protein in N. europaea with a lysine to a methionine replacement at the cross-linking position. The structure of cyt c'β-Met is characterized by a large β-sheet typical of P460 members; however, several localized structural differences render cyt c'β-Met distinct. This includes a large lasso-like loop at the "top" of the cytochrome that is not observed in other structurally characterized members. Active site variation is also observed, especially in comparison to its closest homologue cyt c'β from the methane-oxidizing Methylococcus capsulatus Bath, which also lacks the cross-link. The phenylalanine "cap" which is presumed to control small ligand access to the distal heme iron is replaced with an arginine, reminiscent of the strictly conserved distal arginine in peroxidases and to the NH2OH-oxidizing cytochromes P460. A critical proton-transferring glutamate residue required for NH2OH oxidation is nevertheless missing in the active site. This in part explains the inability of cyt c'β-Met to oxidize NH2OH. Our structure also rationalizes the absence of a methionyl cross-link, although the side chain's spatial position in the structure does not eliminate the possibility that it could form under certain conditions.
Collapse
Affiliation(s)
- Jan Abendroth
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington 98105, United States.,UCB Biosciences, Bainbridge Island, Washington 98110, United States
| | - Garry W Buchko
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington 98105, United States.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 98354, United States.,School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, United States
| | - Fong Ning Liew
- Division of Physical Sciences, Chemistry, University of Washington-Bothell, Bothell, Washington 98011, United States
| | - Joline N Nguyen
- Division of Physical Sciences, Chemistry, University of Washington-Bothell, Bothell, Washington 98011, United States
| | - Hyung J Kim
- Division of Physical Sciences, Chemistry, University of Washington-Bothell, Bothell, Washington 98011, United States
| |
Collapse
|
44
|
Soler-Jofra A, Schmidtchen L, Olmo L, van Loosdrecht MCM, Pérez J. Short and long term continuous hydroxylamine feeding in a granular sludge partial nitritation reactor. WATER RESEARCH 2022; 209:117945. [PMID: 34936973 DOI: 10.1016/j.watres.2021.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Hydroxylamine is a nitrogen intermediate of ammonium oxidizing bacteria (AOB) that can transiently accumulate during nitrification. The impact of hydroxylamine on aerobic ammonium oxidations is still obscure. In the present study the short and long term impact of hydroxylamine on partial nitritation granular sludge was investigated. Dissolved oxygen was the governing factor determining the hydroxylamine impact in short term studies with continuous hydroxylamine feeding. Continuous short term hydroxylamine feeding together with low dissolved oxygen resulted in higher hydroxylamine accumulation, higher N2O production and decreased or maintained ammonium consumption. Instead, high dissolved oxygen reduced hydroxylamine accumulation and N2O production and increased ammonium consumption. Long term continuous hydroxylamine feeding reduced ammonium consumption rate while the constant nitrite production rate indicated that dosed hydroxylamine was mainly transformed to nitrite. This indicates that hydroxylamine was preferred over ammonium as substrate. Nitrosomonas sp. was shown to be predominant during continuous hydroxylamine feeding while the side community shifted.
Collapse
Affiliation(s)
- Aina Soler-Jofra
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Lisbeth Schmidtchen
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Lluc Olmo
- Department of Chemical, Biological and Environmental Engineering, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Julio Pérez
- Department of Chemical, Biological and Environmental Engineering, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
45
|
Li Z, Yang X, Chen H, Du M, Ok YS. Modeling nitrous oxide emissions in membrane bioreactors: Advancements, challenges and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151394. [PMID: 34740645 DOI: 10.1016/j.scitotenv.2021.151394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactors (MBRs) have become a well-established wastewater treatment technology owing to their extraordinary efficiency and low space advantage over conventional activated sludge processes. Although the extended activated sludge models can predict the general trend of nitrous oxide (N2O) emissions in MBRs, the simulation results usually deviate from the actual values. This review critically evaluates the recent advances in the modeling of N2O emissions in MBRs, and proposes future directions for the development and improvement of models that better match the MBR characteristics. The quantitative impact of MBR characteristics on N2O emissions is identified as a key knowledge gap demanding urgent attention. Accurately clarification of the N2O emission pathways governed by MBR characteristics is essential to improve the reliability and practicability of existing models. This article lays a momentous foundation for the optimization of N2O models in MBRs, and proposes new demands for the next-generation model. The contents will assist academics and engineers in developing N2O production models for accurate prediction.
Collapse
Affiliation(s)
- Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Mingyang Du
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
46
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
47
|
Cargo Genes of Tn 7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. mBio 2021; 12:e0293821. [PMID: 34872347 PMCID: PMC8649781 DOI: 10.1128/mbio.02938-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition.
Collapse
|
48
|
Kroneck PMH. Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen. J Biol Inorg Chem 2021; 27:1-21. [PMID: 34865208 PMCID: PMC8840924 DOI: 10.1007/s00775-021-01921-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the NH4+ produced from NO2- is released as NH3 leading to nitrogen loss, similar to denitrification which generates NO, N2O, and N2. NH4+ can also be used for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of NO2- to NH4+, hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a pentaheme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features.
Collapse
Affiliation(s)
- Peter M H Kroneck
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
49
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
50
|
Okubo T, Takami H. Metabolic potential of the imperfect denitrifier Candidatus Desulfobacillus denitrificans in an anammox bioreactor. Microbiologyopen 2021; 10:e1227. [PMID: 34459550 PMCID: PMC8402940 DOI: 10.1002/mbo3.1227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
The imperfect denitrifier, Candidatus (Ca.) Desulfobacillus denitrificans, which lacks nitric oxide (NO) reductase, frequently appears in anammox bioreactors depending on the operating conditions. We used genomic and metatranscriptomic analyses to evaluate the metabolic potential of Ca. D. denitrificans and deduce its functional relationships to anammox bacteria (i.e., Ca. Brocadia pituitae). Although Ca. D. denitrificans is hypothesized to supply NO to Ca. B. pituitae as a byproduct of imperfect denitrification, this microbe also possesses hydroxylamine oxidoreductase, which catalyzes the oxidation of hydroxylamine to NO and potentially the reverse reaction. Ca. D. denitrificans can use a range of electron donors for denitrification, including aromatic compounds, glucose, sulfur compounds, and hydrogen, but metatranscriptomic analysis suggested that the major electron donors are aromatic compounds, which inhibit anammox activity. The interrelationship between Ca. D. denitirificans and Ca. B. pituitae via the metabolism of aromatic compounds may govern the population balance of both species. Ca. D. denitrificans also has the potential to fix CO2 via an irregular Calvin cycle and couple denitrification to the oxidation of hydrogen and sulfur compounds under chemolithoautotrophic conditions. This metabolic versatility, which suggests a mixotrophic lifestyle, would facilitate the growth of Ca. D. denitrificans in the anammox bioreactor.
Collapse
Affiliation(s)
- Takashi Okubo
- Marine Microbiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
| | - Hideto Takami
- Marine Microbiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
| |
Collapse
|