1
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of a dimeric full-length ABC transporter. Nat Commun 2024; 15:9946. [PMID: 39550367 PMCID: PMC11569179 DOI: 10.1038/s41467-024-54147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Activities of ATP binding cassette (ABC) proteins are regulated by multiple mechanisms, including protein interactions, phosphorylation, proteolytic processing, and/or oligomerization of the ABC protein itself. Here we present the structure of yeast cadmium factor 1 (Ycf1p) in its mature form following cleavage by Pep4p protease. Ycf1p, a C subfamily ABC protein (ABCC), is homologue of human multidrug resistance protein 1. Remarkably, a portion of cleaved Ycf1p forms a well-ordered dimer, alongside monomeric particles also present in solution. While numerous other ABC proteins have been proposed to dimerize, no high-resolution structures have been reported. Both phosphorylation of the regulatory (R) region and ATPase activity are lower in the Ycf1p dimer compared to the monomer, indicating that dimerization affects Ycf1p function. The interface between Ycf1p protomers features protein-protein interactions and contains bound lipids, suggesting that lipids stabilize the dimer. The Ycf1p dimer structure may inform the dimerization interfaces of other ABCC dimers.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Abubakar-Waziri H, Edwards DA, Bhatta DB, Hull JH, Rudd M, Small P, Chung KF. Inhaled alkaline hypertonic divalent salts reduce refractory chronic cough frequency. ERJ Open Res 2024; 10:00241-2024. [PMID: 39377090 PMCID: PMC11456969 DOI: 10.1183/23120541.00241-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 10/09/2024] Open
Abstract
Background Treatment of chronic cough remains a challenge. We hypothesised that inhaled alkaline hypertonic divalent salts (alkaline HDS) might provide relief for refractory chronic cough by laryngeal and tracheal hydration. Methods We conducted an exploratory, single-blinded, nasal saline-controlled study in 12 refractory chronic cough patients to examine cough suppression efficacy of an alkaline HDS composition (SC001) at pH 8 or pH 9 administered by nasal inhalation. As control, we used nasal saline with the same hand-held pump spray aerosol device. Each subject was monitored continuously using a digital cough monitor watch for 1 week of baseline, 1 week of control treatment and 1 week of active treatment. Results Baseline daily cough rates ranged from 4 to 34 coughs·h-1 with mean visual analogue score 65±17 pre- and post-baseline testing. Control-adjusted efficacy of cough rate reduction ranged from 15% (p=0.015) (from Day 1) to 23% (p=0.002) (from Day 3). Control-adjusted efficacy was highest with SC001 pH 9 (n=5), ranging from 25% (p=0.03) (from Day 1) to 35% (p=0.02) (from Day 3), and lowest for SC001 pH 8 (n=7), ranging from 9% (p=0.08) (from Day 1) to 16% (p=0.02) (from Day 3). Hourly cough counts and visual analogue score correlated for baseline (r=0.254, p=0.02) and control (r=0.299, p=0.007) monitoring weeks. Treatment improved this correlation (r=0.434, p=0.00006). No adverse events were reported. Conclusions Alkaline (pH 9) HDS aerosol is a promising treatment for refractory chronic cough and should be further evaluated.
Collapse
Affiliation(s)
- Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield Hospital, London, UK
| | - David A. Edwards
- Center for Nanomedicine, Johns Hopkins University Medical School, Baltimore, MD, USA
- John Paulson School of Engineering and Applied Sciences, Harvard University, MA, USA
- Sensory Cloud Inc., Boston, MA, USA
| | | | - James H. Hull
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield Hospital, London, UK
| | - Matthew Rudd
- Hyfe Inc., Wilmington, DE, USA
- Department of Mathematics and Computer Science, The University of the South, Seewanee, TN, USA
| | - Peter Small
- Hyfe Inc., Wilmington, DE, USA
- Department of Global Health, University Washington, Seattle, WA, USA
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield Hospital, London, UK
| |
Collapse
|
3
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
4
|
Escobedo-Monge MF, Marcos-Temprano M, Parodi-Román J, Escobedo-Monge MA, Alonso-Vicente C, Torres-Hinojal MC, Marugán-Miguelsanz JM. Calcium, Phosphorus, and Vitamin D Levels in a Series of Cystic Fibrosis Patients: A Cross-Sectional Study. Int J Mol Sci 2024; 25:1900. [PMID: 38339178 PMCID: PMC10856093 DOI: 10.3390/ijms25031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease with different types of mutations that mainly affect the respiratory-digestive system. Calcium (Ca), phosphorus (P), and vitamin D (Vit-D) are essential nutrients for maintaining adequate growth and development, as well as key components in crucial metabolic pathways. Proper diagnosis, treatment, and response are decisive components of precision medicine. Therefore, we conducted a cross-sectional study to evaluate Ca, P, and Vit-D levels along with health and nutritional indicators, regarding their non-skeletal functions, in a series of CF patients. Anthropometric and clinical evaluation, biochemical analysis, dietary survey, and respiratory and pancreatic status were performed. Even though the results showed that all patients had normal dietary and serum Ca levels, 47% of patients had deficient Vit-D intake, 53% of patients had hypovitaminosis D, 35% had insufficient Vit-D levels, 18% had hypophosphatemia, 76% had elevated alkaline phosphate levels, 29% had hypercalciuria, and 65% had hyperphosphaturia. There were no significant differences between homozygous and compound heterozygous patients. Ca, P, and Vit-D levels were associated with body mass index; body composition; physical activity; diet; growth hormones; and the immune, liver, and kidney systems. We suggest a periodically evaluation of Ca and P losses.
Collapse
Affiliation(s)
| | - Marianela Marcos-Temprano
- Castilla y León Cystic Fibrosis Unit, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain;
| | - Joaquín Parodi-Román
- Science Faculty, University of Cadiz, Paseo de Carlos III, 28, 11003 Cádiz, Spain;
| | | | - Carmen Alonso-Vicente
- Department of Pediatrics of the Faculty of Medicine, University of Valladolid; Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain; (C.A.-V.); (J.M.M.-M.)
| | | | - José Manuel Marugán-Miguelsanz
- Department of Pediatrics of the Faculty of Medicine, University of Valladolid; Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain; (C.A.-V.); (J.M.M.-M.)
| |
Collapse
|
5
|
Lin S, Wang Y. Drug Optimization for Cystic Fibrosis Patients Based on Disease Pathways Crosstalk. RESEARCH ANTHOLOGY ON BIOINFORMATICS, GENOMICS, AND COMPUTATIONAL BIOLOGY 2023:594-605. [DOI: 10.4018/979-8-3693-3026-5.ch028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cystic fibrosis (CF) is a common autosomal recessive disease characterized by pancreatic insufficiency and progressive deterioration of lung function. It has been shown that CF is caused by the presence of mutations in both alleles at the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The severity of CF disease reflects the change of molecular mechanism, including DNA mutations on CFTR gene and polymorphic variations in disease modifier genes. Better understanding the differences among different CF severity group is helpful for improving therapeutic plans for patients. In this paper, the authors present a computational network biology approach to screen precision drugs for CF patients, which is based on the intensity of drugs impact on the pathway crosstalk mediated by differential methylation genes. The results indicate that ivacaftor, tezacaftor, and lumacaftor are applicable to all severity cohorts, gefitinib, sorafenib, sunitinib, and imatinib mesylate have the potential to treat intermediary CF patients, and tamoxifen may be useful to mild and sever CF patients.
Collapse
Affiliation(s)
- Shuting Lin
- School of Biological Sciences, Georgia Institute of Technology, USA
| | - Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, USA
| |
Collapse
|
6
|
Kunzelmann K, Centeio R, Ousingsawat J, Talbi K, Seidler U, Schreiber R. SLC26A9 in airways and intestine: secretion or absorption? Channels (Austin) 2023; 17:2186434. [PMID: 36866602 PMCID: PMC9988340 DOI: 10.1080/19336950.2023.2186434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
SLC26A9 is one out of 11 proteins that belong to the SLC26A family of anion transporters. Apart from expression in the gastrointestinal tract, SLC26A9 is also found in the respiratory system, in male tissues and in the skin. SLC26A9 has gained attention because of its modifier role in the gastrointestinal manifestation of cystic fibrosis (CF). SLC26A9 appears to have an impact on the extent of intestinal obstruction caused by meconium ileus. SLC26A9 supports duodenal bicarbonate secretion, but was assumed to provide a basal Cl- secretory pathway in airways. However, recent results show that basal airway Cl- secretion is due to cystic fibrosis conductance regulator (CFTR), while SLC26A9 may rather secrete HCO3-, thereby maintaining proper airway surface liquid (ASL) pH. Moreover, SLC26A9 does not secrete but probably supports reabsorption of fluid particularly in the alveolar space, which explains early death by neonatal distress in Slc26a9-knockout animals. While the novel SLC26A9 inhibitor S9-A13 helped to unmask the role of SLC26A9 in the airways, it also provided evidence for an additional role in acid secretion by gastric parietal cells. Here we discuss recent data on the function of SLC26A9 in airways and gut, and how S9-A13 may be useful in unraveling the physiological role of SLC26A9.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
- CONTACT Karl Kunzelmann
| | - Raquel Centeio
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Khaoula Talbi
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität, Universitätsstraße 31, Regensburg, Germany
| |
Collapse
|
7
|
Delpiano L, Rodenburg LW, Burke M, Nelson G, Amatngalim GD, Beekman JM, Gray MA. Dynamic regulation of airway surface liquid pH by TMEM16A and SLC26A4 in cystic fibrosis nasal epithelia with rare mutations. Proc Natl Acad Sci U S A 2023; 120:e2307551120. [PMID: 37967223 PMCID: PMC10666107 DOI: 10.1073/pnas.2307551120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 11/17/2023] Open
Abstract
In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.
Collapse
Affiliation(s)
- Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of the European Reference Network-LUNG, Utrecht 3584 EA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Matthew Burke
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Glyn Nelson
- Bioimaging Unit, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, United Kingdom
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of the European Reference Network-LUNG, Utrecht 3584 EA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of the European Reference Network-LUNG, Utrecht 3584 EA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CT, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University and Research, Utrecht University, University Medical Center Utrecht, Utrecht 3584 CB, The Netherlands
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
8
|
Sato Y, Kim D, Turner MJ, Luo Y, Zaidi SSZ, Thomas DY, Hanrahan JW. Ionocyte-Specific Regulation of Cystic Fibrosis Transmembrane Conductance Regulator. Am J Respir Cell Mol Biol 2023; 69:281-294. [PMID: 36952679 DOI: 10.1165/rcmb.2022-0241oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a tightly regulated anion channel that mediates chloride and bicarbonate conductance in many epithelia and in other tissues, but whether its regulation varies depending on the cell type has not been investigated. Epithelial CFTR expression is highest in rare cells called ionocytes. We studied CFTR regulation in control and ionocyte-enriched cultures by transducing bronchial basal cells with adenoviruses that encode only eGFP or FOXI1 (forkhead box I1) + eGFP as separate polypeptides. FOXI1 dramatically increased the number of transcripts for ionocyte markers ASCL3 (Achaete-Scute Family BHLH Transcription Factor 3), BSND, ATP6V1G3, ATP6V0D2, KCNMA1, and CFTR without altering those for secretory (SCGB1A1), basal (KRT5, KRT6, TP63), goblet (MUC5AC), or ciliated (FOXJ1) cells. The number of cells displaying strong FOXI1 expression was increased 7-fold, and there was no evidence for a broad increase in background immunofluorescence. Total CFTR mRNA and protein levels increased 10-fold and 2.5-fold, respectively. Ionocyte-enriched cultures displayed elevated basal current, increased adenylyl cyclase 5 expression, and tonic suppression of CFTR activity by the phosphodiesterase PDE1C, which has not been shown previously to regulate CFTR activity. The results indicate that CFTR regulation depends on cell type and identifies PDE1C as a potential target for therapeutics that aim to increase CFTR function specifically in ionocytes.
Collapse
Affiliation(s)
- Yukiko Sato
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Dusik Kim
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Mark J Turner
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | - Yishan Luo
- Department of Physiology
- Cystic Fibrosis Translational Research Center
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Center
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, and
| | - John W Hanrahan
- Department of Physiology
- Cystic Fibrosis Translational Research Center
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Kunzelmann K, Ousingsawat J, Kraus A, Park JH, Marquardt T, Schreiber R, Buchholz B. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 2023; 24:13278. [PMID: 37686084 PMCID: PMC10487509 DOI: 10.3390/ijms241713278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Julien H. Park
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, 48149 Münster, Germany; (J.H.P.); (T.M.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053 Regensburg, Germany; (J.O.); (R.S.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| |
Collapse
|
10
|
Sarker R, Lin R, Singh V, Donowitz M, Tse CM. SLC26A3 (DRA) is stimulated in a synergistic, intracellular Ca 2+-dependent manner by cAMP and ATP in intestinal epithelial cells. Am J Physiol Cell Physiol 2023; 324:C1263-C1273. [PMID: 37154494 PMCID: PMC10243534 DOI: 10.1152/ajpcell.00523.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ruxian Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Varsha Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chung-Ming Tse
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Cook DP, Thomas CM, Wu AY, Rusznak M, Zhang J, Zhou W, Cephus JY, Gibson-Corley KN, Polosukhin VV, Norlander AE, Newcomb DC, Stoltz DA, Peebles RS. Cystic Fibrosis Reprograms Airway Epithelial IL-33 Release and Licenses IL-33-Dependent Inflammation. Am J Respir Crit Care Med 2023; 207:1486-1497. [PMID: 36952660 PMCID: PMC10263140 DOI: 10.1164/rccm.202211-2096oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
Rationale: Type 2 inflammation has been described in people with cystic fibrosis (CF). Whether loss of CFTR (cystic fibrosis transmembrane conductance regulator) function contributes directly to a type 2 inflammatory response has not been fully defined. Objectives: The potent alarmin IL-33 has emerged as a critical regulator of type 2 inflammation. We tested the hypothesis that CFTR deficiency increases IL-33 expression and/or release and deletion of IL-33 reduces allergen-induced inflammation in the CF lung. Methods: Human airway epithelial cells (AECs) grown from non-CF and CF cell lines and Cftr+/+ and Cftr-/- mice were used in this study. Pulmonary inflammation in Cftr+/+ and Cftr-/- mice with and without IL-33 or ST2 (IL-1 receptor-like 1) germline deletion was determined by histological analysis, BAL, and cytokine analysis. Measurements and Main Results: After allergen challenge, both CF human AECs and Cftr-/- mice had increased IL-33 expression compared with control AECs and Cftr+/+ mice, respectively. DUOX1 (dual oxidase 1) expression was increased in CF human AECs and Cftr-/- mouse lungs compared with control AECs and lungs from Cftr+/+ mice and was necessary for the increased IL-33 release in Cftr-/- mice compared with Cftr+/+ mice. IL-33 stimulation of Cftr-/- CD4+ T cells resulted in increased type 2 cytokine production compared with Cftr+/+ CD4+ T cells. Deletion of IL-33 or ST2 decreased both type 2 inflammation and neutrophil recruitment in Cftr-/- mice compared with Cftr+/+ mice. Conclusions: Absence of CFTR reprograms airway epithelial IL-33 release and licenses IL-33-dependent inflammation. Modulation of the IL-33/ST2 axis represents a novel therapeutic target in CF type 2-high and neutrophilic inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Dawn C. Newcomb
- Department of Internal Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David A. Stoltz
- Department of Internal Medicine and
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; and
| | - R. Stokes Peebles
- Department of Internal Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
12
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
13
|
Infield DT, Schene ME, Fazan FS, Galles GD, Galpin JD, Ahern CA. Real-time observation of functional specialization among phosphorylation sites in CFTR. J Gen Physiol 2023; 155:e202213216. [PMID: 36695813 PMCID: PMC9930130 DOI: 10.1085/jgp.202213216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Phosphoregulation is ubiquitous in biology. Defining the functional roles of individual phosphorylation sites within a multivalent system remains particularly challenging. We have therefore applied a chemical biology approach to light-control the state of single candidate phosphoserines in the canonical anion channel CFTR while simultaneously measuring channel activity. The data show striking non-equivalency among protein kinase A consensus sites, which vary from <10% to >1,000% changes in channel activity upon phosphorylation. Of note, slow phosphorylation of S813 suggests that this site is rate-limiting to the full activation of CFTR. Further, this approach reveals an unexpected coupling between the phosphorylation of S813 and a nearby site, S795. Overall, these data establish an experimental route to understanding roles of specific phosphoserines within complex phosphoregulatory domains. This strategy may be employed in the study of phosphoregulation of other eukaryotic proteins.
Collapse
Affiliation(s)
- Daniel T. Infield
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Miranda E. Schene
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Frederico S. Fazan
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Grace D. Galles
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Jason D. Galpin
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics and Iowa Neuroscience Institute, University of Iowa, Carver College of Medicine, Iowa, IA, USA
| |
Collapse
|
14
|
Ahmed R, Forman-Kay JD. NMR insights into dynamic, multivalent interactions of intrinsically disordered regions: from discrete complexes to condensates. Essays Biochem 2022; 66:863-873. [PMID: 36416859 PMCID: PMC9760423 DOI: 10.1042/ebc20220056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022]
Abstract
The spatial and temporal organization of interactions between proteins underlie the regulation of most cellular processes. The requirement for such interactions to be specific predisposes a view that protein-protein interactions are relatively static and are formed through the stable complementarity of the interacting partners. A growing body of reports indicate, however, that many interactions lead to fuzzy complexes with an ensemble of conformations in dynamic exchange accounting for the observed binding. Here, we discuss how NMR has facilitated the characterization of these discrete, dynamic complexes and how such characterization has aided the understanding of dynamic, condensed phases of phase-separating proteins with exchanging multivalent interactions.
Collapse
Affiliation(s)
- Rashik Ahmed
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Madácsy T, Varga Á, Papp N, Tél B, Pallagi P, Szabó V, Kiss A, Fanczal J, Rakonczay Z, Tiszlavicz L, Rázga Z, Hohwieler M, Kleger A, Gray M, Hegyi P, Maléth J. Impaired regulation of PMCA activity by defective CFTR expression promotes epithelial cell damage in alcoholic pancreatitis and hepatitis. Cell Mol Life Sci 2022; 79:265. [PMID: 35484438 PMCID: PMC11073305 DOI: 10.1007/s00018-022-04287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes. Human and mouse pancreas and liver samples and organoids were used to study ion secretion, intracellular signaling, protein expression and interaction. The effect of PMCA4 inhibition was analyzed in a mouse model of alcohol-induced pancreatitis. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.
Collapse
Affiliation(s)
- Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Bálint Tél
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Júlia Fanczal
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, 6720, Hungary
| | | | - Zsolt Rázga
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Mike Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine and Division for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
16
|
Escobedo-Monge MF, Barrado E, Parodi-Román J, Escobedo-Monge MA, Marcos-Temprano M, Marugán-Miguelsanz JM. Magnesium Status and Calcium/Magnesium Ratios in a Series of Cystic Fibrosis Patients. Nutrients 2022; 14:1793. [PMID: 35565764 PMCID: PMC9104329 DOI: 10.3390/nu14091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Magnesium (Mg) is an essential micronutrient that participates in various enzymatic reactions that regulate vital biological functions. The main aim was to assess the Mg status and its association with nutritional indicators in seventeen cystic fibrosis (CF) patients. The serum Mg and calcium (Ca) levels were determined using standardized methods and the dietary Mg intake by prospective 72 h dietary surveys. The mean serum Ca (2.45 mmol/L) and Mg (0.82 mmol/L) had normal levels, and the mean dietary intake of the Ca (127% DRI: Dietary Reference Intake) and Mg (125% DRI) were high. No patients had an abnormal serum Ca. A total of 47% of the subjects had hypomagnesemia and 12% insufficient Mg consumption. One patient had a serum Mg deficiency and inadequate Mg intake. A total of 47 and 82% of our series had a high serum Ca/Mg ratio of >4.70 (mean 4.89) and a low Ca/Mg intake ratio of <1.70 (mean 1.10), respectively. The likelihood of a high Ca/Mg ratio was 49 times higher in patients with a serum Mg deficiency than in normal serum Mg patients. Both Ca/Mg ratios were associated with the risk of developing cardiovascular disease (CVD), type 2 diabetes (T2D), metabolic syndrome (MetS), and even several cancers. Therefore, 53% of the CF patients were at high risk of a Mg deficiency and developing other chronic diseases.
Collapse
Affiliation(s)
- Marlene Fabiola Escobedo-Monge
- Department of Pediatrics of the Faculty of Medicine, Valladolid University, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - Enrique Barrado
- Department of Analytical Chemistry, Science Faculty, Campus Miguel Delibes, University of Valladolid, Calle Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | | | | - Marianela Marcos-Temprano
- Pediatric Service, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain;
| | - José Manuel Marugán-Miguelsanz
- Department of Pediatrics of the Faculty of Medicine, Valladolid University, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain;
- Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 3, 47003 Valladolid, Spain
| |
Collapse
|
17
|
Zhong L, Gleason EL. Adenylate Cyclase 1 Links Calcium Signaling to CFTR-Dependent Cytosolic Chloride Elevations in Chick Amacrine Cells. Front Cell Neurosci 2021; 15:726605. [PMID: 34456687 PMCID: PMC8385318 DOI: 10.3389/fncel.2021.726605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The strength and sign of synapses involving ionotropic GABA and glycine receptors are dependent upon the Cl- gradient. We have shown that nitric oxide (NO) elicits the release of Cl- from internal acidic stores in retinal amacrine cells (ACs); temporarily altering the Cl- gradient and the strength or even sign of incoming GABAergic or glycinergic synapses. The underlying mechanism for this effect of NO requires the cystic fibrosis transmembrane regulator (CFTR) but the link between NO and CFTR activation has not been determined. Here, we test the hypothesis that NO-dependent Ca2+ elevations activate the Ca2+-dependent adenylate cyclase 1 (AdC1) leading to activation of protein kinase A (PKA) whose activity is known to open the CFTR channel. Using the reversal potential of GABA-gated currents to monitor cytosolic Cl-, we established the requirement for Ca2+ elevations. Inhibitors of AdC1 suppressed the NO-dependent increases in cytosolic Cl- whereas inhibitors of other AdC subtypes were ineffective suggesting that AdC1 is involved. Inhibition of PKA also suppressed the action of NO. To address the sufficiency of this pathway in linking NO to elevations in cytosolic Cl-, GABA-gated currents were measured under internal and external zero Cl- conditions to isolate the internal Cl- store. Activators of the cAMP pathway were less effective than NO in producing GABA-gated currents. However, coupling the cAMP pathway activators with the release of Ca2+ from stores produced GABA-gated currents indistinguishable from those stimulated with NO. Together, these results demonstrate that cytosolic Ca2+ links NO to the activation of CFTR and the elevation of cytosolic Cl-.
Collapse
Affiliation(s)
- Li Zhong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Evanna L Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
18
|
SFPQ rescues F508del-CFTR expression and function in cystic fibrosis bronchial epithelial cells. Sci Rep 2021; 11:16645. [PMID: 34404863 PMCID: PMC8371023 DOI: 10.1038/s41598-021-96141-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.
Collapse
|
19
|
Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics (Basel) 2021; 10:antibiotics10070766. [PMID: 34202495 PMCID: PMC8300688 DOI: 10.3390/antibiotics10070766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.
Collapse
|
20
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters. Proc Natl Acad Sci U S A 2021; 118:e2025853118. [PMID: 34021087 PMCID: PMC8166025 DOI: 10.1073/pnas.2025853118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is composed of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homolog of human MRP1, determined by electron cryo-microscopy (cryo-EM). A comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a ∼145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggest how posttranslational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
21
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Yang HW, Jiang YF, Lee HG, Jeon YJ, Ryu B. Ca 2+-Dependent Glucose Transport in Skeletal Muscle by Diphlorethohydroxycarmalol, an Alga Phlorotannin: In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8893679. [PMID: 33628395 PMCID: PMC7889350 DOI: 10.1155/2021/8893679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Diphlorethohydroxycarmalol (DPHC), a type of phlorotannin isolated from the marine alga Ishige okamurae, reportedly alleviates impaired glucose tolerance. However, the molecular mechanisms of DPHC regulatory activity and by which it exerts potential beneficial effects on glucose transport into skeletal myotubes to control glucose homeostasis remain largely unexplored. The aim of this study was to evaluate the effect of DPHC on cytosolic Ca2+ levels and its correlation with blood glucose transport in skeletal myotubes in vitro and in vivo. Cytosolic Ca2+ levels upon DPHC treatment were evaluated in skeletal myotubes and zebrafish larvae by Ca2+ imaging using Fluo-4. We investigated the effect of DPHC on the blood glucose level and glucose transport pathway in a hyperglycemic zebrafish. DPHC was shown to control blood glucose levels by accelerating glucose transport; this effect was associated with elevated cytosolic Ca2+ levels in skeletal myotubes. Moreover, the increased cytosolic Ca2+ level caused by DPHC can facilitate the Glut4/AMPK pathways of the skeletal muscle in activating glucose metabolism, thereby regulating muscle contraction through the regulation of expression of troponin I/C, CaMKII, and ATP. Our findings provide insights into the mechanism of DPHC activity in skeletal myotubes, suggesting that increased cytosolic Ca2+ levels caused by DPHC can promote glucose transport into skeletal myotubes to modulate blood glucose levels, thus indicating the potential use of DPHC in the prevention of diabetes.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Fei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
23
|
Grebert C, Becq F, Vandebrouck C. Phospholipase C controls chloride-dependent short-circuit current in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 320:L205-L219. [PMID: 33236921 DOI: 10.1152/ajplung.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride secretion by airway epithelial cells is primordial for water and ion homeostasis and airways surface prevention of infections. This secretion is impaired in several human diseases, including cystic fibrosis, a genetic pathology due to CFTR gene mutations leading to chloride channel defects. A potential therapeutic approach is aiming at increasing chloride secretion either by correcting the mutated CFTR itself or by stimulating non-CFTR chloride channels at the plasma membrane. Here, we studied the role of phospholipase C in regulating the transepithelial chloride secretion in human airway epithelial 16HBE14o- and CFBE cells over-expressing wild type (WT)- or F508del-CFTR. Western blot analysis shows expression of the three endogenous phospholipase C (PLC) isoforms, namely, PLCδ1, PLCγ1, and PLCβ3 in 16HBE14o- cells. In 16HBE14o- cells, we performed Ussing chamber experiments after silencing each of these PLC isoforms or using the PLC inhibitor U73122 or its inactive analogue U73343. Our results show the involvement of PLCβ3 and PLCγ1 in CFTR-dependent short-circuit current activated by forskolin, but not of PLCδ1. In CFBE-WT CFTR and corrected CFBE-F508del CFTR cells, PLCβ3 silencing also inhibits CFTR-dependent current activated by forskolin and UTP-activated calcium-dependent chloride channels (CaCC). Our study supports the importance of PLC in maintaining CFTR-dependent chloride secretion over time, getting maximal CFTR-dependent current and increasing CaCC activation in bronchial epithelial cells.
Collapse
Affiliation(s)
- Chloé Grebert
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
24
|
The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proc Natl Acad Sci U S A 2020; 117:28485-28495. [PMID: 33097666 PMCID: PMC7668088 DOI: 10.1073/pnas.2003111117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Odorant sensing GPCRs are the largest gene family in the human genome. We previously found multiple olfactory receptors and their obligate downstream effectors expressed in the smooth muscle of human bronchi. However, the extent to which odorant-sensing receptors (and the ligands to which they respond) on airway smooth muscle (ASM) are physiologically relevant is not established. Here we show that a monoterpene nerol activates the odorant receptor OR2W3 to relax ASM in both cell and tissue models. Surprisingly, the mechanism of action of OR2W3-mediated ASM relaxation involves paradoxical increases in [Ca2+]i that invoke a cooperative activation of TMEM16A and CFTR to compartmentalize calcium and regulate excitation-contraction coupling in human ASM cells. The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.
Collapse
|
25
|
Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Proc Natl Acad Sci U S A 2020; 117:21740-21746. [PMID: 32817533 PMCID: PMC7474675 DOI: 10.1073/pnas.2007910117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel is essential for epithelial salt-water balance. CFTR mutations cause cystic fibrosis, a lethal incurable disease. In cells CFTR is activated through the cAMP signaling pathway, overstimulation of which during cholera leads to CFTR-mediated intestinal salt-water loss. Channel activation is achieved by phosphorylation of its regulatory (R) domain by cAMP-dependent protein kinase catalytic subunit (PKA). Here we show using two independent approaches--an ATP analog that can drive CFTR channel gating but is unsuitable for phosphotransfer by PKA, and CFTR mutants lacking phosphorylatable serines--that PKA efficiently opens CFTR channels through simple binding, under conditions that preclude phosphorylation. Unlike when phosphorylation happens, CFTR activation by PKA binding is completely reversible. Thus, PKA binding promotes release of the unphosphorylated R domain from its inhibitory position, causing full channel activation, whereas phosphorylation serves only to maintain channel activity beyond termination of the PKA signal. The results suggest two levels of CFTR regulation in cells: irreversible through phosphorylation, and reversible through R-domain binding to PKA--and possibly also to other members of a large network of proteins known to interact with the channel.
Collapse
|
26
|
Ahmadi S, Wu YS, Li M, Ip W, Lloyd-Kuzik A, Di Paola M, Du K, Xia S, Lew A, Bozoky Z, Forman-Kay J, Bear CE, Gonska T. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 61:755-764. [PMID: 31189070 DOI: 10.1165/rcmb.2019-0094oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SLC6A14-mediated l-arginine transport has been shown to augment the residual anion channel activity of the major mutant, F508del-CFTR, in the murine gastrointestinal tract. It is not yet known if this transporter augments residual and pharmacological corrected F508del-CFTR in primary airway epithelia. We sought to determine the role of l-arginine uptake via SLC6A14 in modifying F508del-CFTR channel activity in airway cells from patients with cystic fibrosis (CF). Human bronchial epithelial (HBE) cells from lung explants of patients without CF (HBE) and those with CF (CF-HBE) were used for H3-flux, airway surface liquid, and Ussing chamber studies. We used α-methyltryptophan as a specific inhibitor for SLC6A14. CFBE41o-, a commonly used CF airway cell line, was employed for studying the mechanism of the functional interaction between SLC6A14 and F508del-CFTR. SLC6A14 is functionally expressed in CF-HBE cells. l-arginine uptake via SLC6A14 augmented F508del-CFTR function at baseline and after treatment with lumacaftor. SLC6A14-mediated l-arginine uptake also increased the airway surface liquid in CF-HBE cells. Using CFBE41o cells, we showed that the positive SLC6A14 effect was mainly dependent on the nitric oxide (NO) synthase activity, nitrogen oxides, including NO, and phosphorylation by protein kinase G. These finding were confirmed in CF-HBE, as inducible NO synthase inhibition abrogated the functional interaction between SLC6A14 and pharmacological corrected F508del-CFTR. In summary, SLC6A14-mediated l-arginine transport augments residual F508del-CFTR channel function via a noncanonical, NO pathway. This effect is enhanced with increasing pharmacological rescue of F508del-CFTR to the membrane. The current study demonstrates how endogenous pathways can be used for the development of companion therapy in CF.
Collapse
Affiliation(s)
- Saumel Ahmadi
- Department of Physiology.,Programme in Molecular Medicine.,Programme in Genetics and Genome Biology, and
| | - Yu-Sheng Wu
- Department of Physiology.,Programme in Molecular Medicine
| | - Mingyuan Li
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wan Ip
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Lloyd-Kuzik
- Department of Physiology.,Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Kai Du
- Department of Biochemistry, and
| | - Sunny Xia
- Department of Physiology.,Programme in Molecular Medicine
| | | | | | - Julie Forman-Kay
- Department of Biochemistry, and.,Programme in Molecular Medicine
| | - Christine E Bear
- Department of Physiology.,Department of Biochemistry, and.,Programme in Molecular Medicine
| | - Tanja Gonska
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Bickers SC, Sayewich JS, Kanelis V. Intrinsically disordered regions regulate the activities of ATP binding cassette transporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183202. [PMID: 31972165 DOI: 10.1016/j.bbamem.2020.183202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
ATP binding cassette (ABC) proteins are a large family of membrane proteins present in all kingdoms of life. These multi-domain proteins are comprised, at minimum, of two membrane-spanning domains (MSD1, MSD2) and two cytosolic nucleotide binding domains (NBD1, NBD2). ATP binding and hydrolysis at the NBDs enables ABC proteins to actively transport solutes across membranes, regulate activities of other proteins, or function as channels. Like most eukaryotic membrane proteins, ABC proteins contain intrinsically disordered regions (IDRs). These conformationally dynamic regions in ABC proteins possess residual structure, are sites of phosphorylation, and mediate protein-protein interactions. Here, we review the role of IDRs in regulating ABC protein activity.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Jonathan S Sayewich
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Cui G, Hong J, Chung-Davidson YW, Infield D, Xu X, Li J, Simhaev L, Khazanov N, Stauffer B, Imhoff B, Cottrill K, Blalock JE, Li W, Senderowitz H, Sorscher E, McCarty NA, Gaggar A. An Ancient CFTR Ortholog Informs Molecular Evolution in ABC Transporters. Dev Cell 2019; 51:421-430.e3. [PMID: 31679858 DOI: 10.1016/j.devcel.2019.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/30/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport. Here, we describe the earliest known CFTR, expressed in sea lamprey (Petromyzon marinus), with unique structural features, altered kinetics of activation and sensitivity to inhibition, and altered single-channel conductance compared to human CFTR. Our data provide the earliest evolutionary evidence of CFTR, offering insight regarding changes in gene and protein structure that underpin evolution from transporter to anion channel. Importantly, these data provide a unique platform to enhance our understanding of vertebrate phylogeny over a critical period of evolutionary expansion.
Collapse
Affiliation(s)
- Guiying Cui
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Jeong Hong
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA; Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Daniel Infield
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Xin Xu
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Jindong Li
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Luba Simhaev
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Brandon Stauffer
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Barry Imhoff
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Kirsten Cottrill
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - J Edwin Blalock
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | | | - Eric Sorscher
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA; Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nael A McCarty
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, and Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
29
|
Marklew AJ, Patel W, Moore PJ, Tan CD, Smith AJ, Sassano MF, Gray MA, Tarran R. Cigarette Smoke Exposure Induces Retrograde Trafficking of CFTR to the Endoplasmic Reticulum. Sci Rep 2019; 9:13655. [PMID: 31541117 PMCID: PMC6754399 DOI: 10.1038/s41598-019-49544-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is most commonly caused by cigarette smoke (CS) exposure, is the third leading cause of death worldwide. The cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane anion channel that is widely expressed in epithelia throughout the body. In the airways, CFTR plays an important role in fluid homeostasis and helps flush mucus and inhaled pathogens/toxicants out of the lung. Inhibition of CFTR leads to mucus stasis and severe airway disease. CS exposure also inhibits CFTR, leading to the decreased anion secretion/hydration seen in COPD patients. However, the underlying mechanism is poorly understood. Here, we report that CS causes CFTR to be internalized in a clathrin/dynamin-dependent fashion. This internalization is followed by retrograde trafficking of CFTR to the endoplasmic reticulum. Although this internalization pathway has been described for bacterial toxins and cargo machinery, it has never been reported for mammalian ion channels. Furthermore, the rapid internalization of CFTR is dependent on CFTR dephosphorylation by calcineurin, a protein phosphatase that is upregulated by CS. These results provide new insights into the mechanism of CFTR internalization, and may help in the development of new therapies for CFTR correction and lung rehydration in patients with debilitating airway diseases such as COPD.
Collapse
Affiliation(s)
- Abigail J Marklew
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Waseema Patel
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Patrick J Moore
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda J Smith
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - M Flori Sassano
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Michael A Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
32
|
Patel W, Moore PJ, Sassano MF, Lopes-Pacheco M, Aleksandrov AA, Amaral MD, Tarran R, Gray MA. Increases in cytosolic Ca 2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cell Mol Life Sci 2019; 76:977-994. [PMID: 30547226 PMCID: PMC6394554 DOI: 10.1007/s00018-018-2989-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated, apical anion channel that regulates ion and fluid transport in many epithelia including the airways. We have previously shown that cigarette smoke (CS) exposure to airway epithelia causes a reduction in plasma membrane CFTR expression which correlated with a decrease in airway surface hydration. The effect of CS on CFTR was dependent on an increase in cytosolic Ca2+. However, the underlying mechanism for this Ca2+-dependent, internalisation of CFTR is unknown. To gain a better understanding of the effect of Ca2+ on CFTR, we performed whole cell current recordings to study the temporal effect of raising cytosolic Ca2+ on CFTR function. We show that an increase in cytosolic Ca2+ induced a time-dependent reduction in whole cell CFTR conductance, which was paralleled by a loss of cell surface CFTR expression, as measured by confocal and widefield fluorescence microscopy. The decrease in CFTR conductance and cell surface expression were both dynamin-dependent. Single channel reconstitution studies showed that raising cytosolic Ca2+ per se had no direct effect on CFTR. In fact, the loss of CFTR plasma membrane activity correlated with activation of calcineurin, a Ca2+-dependent phosphatase, suggesting that dephosphorylation of CFTR was linked to the loss of surface expression. In support of this, the calcineurin inhibitor, cyclosporin A, prevented the Ca2+-induced decrease in cell surface CFTR. These results provide a hitherto unrecognised role for cytosolic Ca2+ in modulating the residency of CFTR at the plasma membrane through a dynamin- and calcineurin-dependent mechanism.
Collapse
Affiliation(s)
- Waseema Patel
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick J Moore
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Flori Sassano
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miquéias Lopes-Pacheco
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics, Cystic Fibrosis Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, Cystic Fibrosis Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
33
|
Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca 2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018; 9:1585. [PMID: 30618777 PMCID: PMC6306458 DOI: 10.3389/fphys.2018.01585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder that causes a significant damage in secretory epithelial cells due to the defective ion flux across the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Pancreas is one of the organs most frequently damaged by the disease leading to pancreatic insufficiency, abdominal pain and an increased risk of acute pancreatitis in CF patients causing a significant decrease in the quality of life. CFTR plays a central role in the pancreatic ductal secretory functions by carrying Cl- and HCO3 - ions across the apical membrane. Therefore pathophysiological studies in CF mostly focused on the effects of impaired ion secretion by pancreatic ductal epithelial cells leading to exocrine pancreatic damage. However, several studies indicated that CFTR has a central role in the regulation of intracellular signaling processes and is now more widely considered as a signaling hub in epithelial cells. In contrast, elevated intracellular Ca2+ level was observed in the lack of functional CFTR in different cell types including airway epithelial cells. In addition, impaired CFTR expression has been correlated with damaged mitochondrial function in epithelial cells. These alterations of intracellular signaling in CF are not well characterized in the exocrine pancreas yet. Therefore in this review we would like to summarize the complex role of CFTR in the exocrine pancreas with a special focus on the intracellular signaling and mitochondrial function.
Collapse
Affiliation(s)
- Tamara Madácsy
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary.,Department of Public Health, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Sooklal CR, López-Alonso JP, Papp N, Kanelis V. Phosphorylation Alters the Residual Structure and Interactions of the Regulatory L1 Linker Connecting NBD1 to the Membrane-Bound Domain in SUR2B. Biochemistry 2018; 57:6278-6292. [PMID: 30273482 DOI: 10.1021/acs.biochem.8b00503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels in vascular smooth muscle are comprised of four pore-forming Kir6.1 subunits and four copies of the sulfonylurea receptor 2B (SUR2B), which acts as a regulator of channel gating. Recent electron cryo-microscopy (cryo-EM) structures of the pancreatic KATP channel show a central Kir6.2 pore that is surrounded by the SUR1 subunits. Mutations in the L1 linker connecting the first membrane-spanning domain and the first nucleotide binding domain (NBD1) in SUR2B cause cardiac disease; however, this part of the protein is not resolved in the cryo-EM structures. Phosphorylation of the L1 linker, by protein kinase A, disrupts its interactions with NBD1, which increases the MgATP affinity of NBD1 and KATP channel gating. To elucidate the mode by which the L1 linker regulates KATP channels, we have probed the effects of phosphorylation on its structure and interactions using nuclear magnetic resonance (NMR) spectroscopy and other techniques. We demonstrate that the L1 linker is an intrinsically disordered region of SUR2B but possesses residual secondary and compact structure, both of which are disrupted with phosphorylation. NMR binding studies demonstrate that phosphorylation alters the mode by which the L1 linker interacts with NBD1. The data show that L1 linker residues with the greatest α-helical propensity also form the most stable interaction with NBD1, highlighting a hot spot within the L1 linker. This hot spot is the site of disease-causing mutations and is associated with other processes that regulate KATP channel gating. These data provide insights into the mode by which the phospho-regulatory L1 linker regulates KATP channels.
Collapse
Affiliation(s)
- Clarissa R Sooklal
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Jorge P López-Alonso
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Natalia Papp
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Voula Kanelis
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6.,Department of Cell and Systems Biology , University of Toronto , Toronto , ON , Canada M5S 3G5
| |
Collapse
|
35
|
Robledo-Avila FH, Ruiz-Rosado JDD, Brockman KL, Kopp BT, Amer AO, McCoy K, Bakaletz LO, Partida-Sanchez S. Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:2016-2027. [PMID: 30120123 DOI: 10.4049/jimmunol.1800076] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), one of the most common human genetic diseases worldwide, is caused by a defect in the CF transmembrane conductance regulator (CFTR). Patients with CF are highly susceptible to infections caused by opportunistic pathogens (including Burkholderia cenocepacia), which induce excessive lung inflammation and lead to the eventual loss of pulmonary function. Abundant neutrophil recruitment into the lung is a key characteristic of bacterial infections in CF patients. In response to infection, inflammatory neutrophils release reactive oxygen species and toxic proteins, leading to aggravated lung tissue damage in patients with CF. The present study shows a defect in reactive oxygen species production by mouse Cftr-/- , human F508del-CFTR, and CF neutrophils; this results in reduced antimicrobial activity against B. cenocepacia Furthermore, dysregulated Ca2+ homeostasis led to increased intracellular concentrations of Ca2+ that correlated with significantly diminished NADPH oxidase response and impaired secretion of neutrophil extracellular traps in human CF neutrophils. Functionally deficient human CF neutrophils recovered their antimicrobial killing capacity following treatment with pharmacological inhibitors of Ca2+ channels and CFTR channel potentiators. Our findings suggest that regulation of neutrophil Ca2+ homeostasis (via CFTR potentiation or by the regulation of Ca2+ channels) can be used as a new therapeutic approach for reestablishing immune function in patients with CF.
Collapse
Affiliation(s)
- Frank H Robledo-Avila
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Juan de Dios Ruiz-Rosado
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205.,Section of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus, OH 43205
| | - Amal O Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210; and
| | - Karen McCoy
- Section of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus, OH 43205.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205; .,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
36
|
Liu Y, Feng L, Wang H, Wang YJ, Chan HC, Jiang XH, Fu WM, Li G, Zhang JF. Identification of an Anti-Inflammation Protein, Annexin A1, in Tendon Derived Stem Cells (TDSCs) of Cystic Fibrosis Mice: A Comparative Proteomic Analysis. Proteomics Clin Appl 2018; 12:e1700162. [PMID: 29781578 DOI: 10.1002/prca.201700162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/21/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE A previous study reported an elevated inflammation during tendon injury in mice with cystic fibrosis (CF), indicating the inadequate management of inflammation due to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). The objective of this study is to identify the targets of CFTR that contribute to the abnormal inflammation during tendon injury. EXPERIMENTAL DESIGN A 2D gel electrophoresis and mass-spectrometry-based comparative proteomics is performed to find the molecular targets of CFTR. And the targeted protein is further confirmed at both mRNA and protein levels. RESULTS It is identified that 14 proteins are differentially expressed, with annexin A1 being one of the most significantly downregulated protein. Further confirmation shows that annexin A1 is significantly decreased in TDSCs isolated from DF508 mice. As an essential anti-inflammation mediator, it is also downregulated in the injured tendon tissue of DF508 mice when compared with WT mice. CONCLUSIONS AND CLINICAL RELEVANCE Decreased annexin A1 expression can contribute to the elevated inflammation in DF508 mice during tendon injury. Therefore, annexin A1 can be considered as a new potential biomarker or drug target for a possible therapeutic approach in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hua Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Jia Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hsiao-Chang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Hua Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Ming Fu
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.,Laboratory of Orthopaedics and Traumatology of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| |
Collapse
|
37
|
Thomas A, Ramananda Y, Mun K, Naren AP, Arora K. AC6 is the major adenylate cyclase forming a diarrheagenic protein complex with cystic fibrosis transmembrane conductance regulator in cholera. J Biol Chem 2018; 293:12949-12959. [PMID: 29903911 DOI: 10.1074/jbc.ra118.003378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization(WHO) has reported a worldwide surge in cases of cholera caused by the intestinal pathogen Vibrio cholerae, and, combined, such surges have claimed several million lives, mostly in early childhood. Elevated cAMP production in intestinal epithelial cells challenged with cholera toxin (CTX) results in diarrhea due to chloride transport by a cAMP-activated channel, the cystic fibrosis transmembrane conductance regulator (CFTR). However, the identity of the main cAMP-producing proteins that regulate CFTR in the intestine and may be relevant for secretory diarrhea is unclear. Here, using RNA-Seq to identify the predominant AC isoform in mouse and human cells and extensive biochemical analyses for further characterization, we found that the cAMP-generating enzyme adenylate cyclase 6 (AC6) physically and functionally associates with CFTR at the apical surface of intestinal epithelial cells. We generated epithelium-specific AC6 knockout mice and demonstrated that CFTR-dependent fluid secretion is nearly abolished in AC6 knockout mice upon CTX challenge in ligated ileal loops. Furthermore, loss of AC6 function dramatically impaired CTX-induced CFTR activation in human and mouse intestinal spheroids. Our finding that the CFTR-AC6 protein complex is the key mediator of CTX-associated diarrhea may facilitate development of antidiarrheal agents to manage cholera symptoms and improve outcomes.
Collapse
Affiliation(s)
- Andrew Thomas
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Yashaswini Ramananda
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; Department of Biomedical Sciences, University of Illinois, Chicago, Illinois 60607
| | - KyuShik Mun
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229.
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229.
| |
Collapse
|
38
|
Muimo R, Alothaid HM, Mehta A. NM23 proteins: innocent bystanders or local energy boosters for CFTR? J Transl Med 2018; 98:272-282. [PMID: 29251738 DOI: 10.1038/labinvest.2017.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.
Collapse
Affiliation(s)
- Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Hani Mm Alothaid
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Anil Mehta
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
39
|
Csizmok V, Montecchio M, Lin H, Tyers M, Sunnerhagen M, Forman-Kay JD. Multivalent Interactions with Fbw7 and Pin1 Facilitate Recognition of c-Jun by the SCF Fbw7 Ubiquitin Ligase. Structure 2017; 26:28-39.e2. [PMID: 29225075 DOI: 10.1016/j.str.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Many regulatory proteins, including the transcription factor c-Jun, are highly enriched in disordered protein regions that govern growth, division, survival, differentiation, and response to signals. The stability of c-Jun is controlled by poorly understood regulatory interactions of its disordered region with both the E3 ubiquitin ligase SCFFbw7 and prolyl cis-trans isomerase Pin1. We use nuclear magnetic resonance and fluorescence studies of c-Jun to demonstrate that multisite c-Jun phosphorylation is required for high-affinity interaction with Fbw7. We show that the Pin1 WW and PPIase domains interact in a dynamic complex with multiply phosphorylated c-Jun. Importantly, Pin1 isomerizes a pSer-Pro peptide bond at the c-Jun N terminus that affects binding to Fbw7 and thus modulates the ubiquitin-mediated degradation of c-Jun. Our findings support the general principle that multiple weak binding motifs within disordered regions can synergize to yield high-affinity interactions and provide rapidly evolvable means to build and fine-tune regulatory events.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Meri Montecchio
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Hong Lin
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Julie D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
40
|
Calvez ML, Benz N, Huguet F, Saint-Pierre A, Rouillé E, Coraux C, Férec C, Kerbiriou M, Trouvé P. Buserelin alleviates chloride transport defect in human cystic fibrosis nasal epithelial cells. PLoS One 2017; 12:e0187774. [PMID: 29145426 PMCID: PMC5690610 DOI: 10.1371/journal.pone.0187774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride (Cl-) channel regulated by protein kinases, phosphatases, divalent cations and by protein-protein interactions. Among protein-protein interactions, we previously showed that Annexin A5 (AnxA5) binds to CFTR and is involved in the channel localization within membranes and in its Cl- channel function. The deletion of phenylalanine at position 508 (F508del) is the most common mutation in CF which leads to an altered protein (F508del-CFTR) folding with a nascent protein retained within the ER and is quickly degraded. We previously showed that AnxA5 binds to F508del-CFTR and that its increased expression due to a Gonadoliberin (GnRH) augments Cl- efflux in cells expressing F508del-CFTR. The aim of the present work was to use the GnRH analog buserelin which is already used in medicine. Human nasal epithelial cells from controls and CF patients (F508del/F508del) were treated with buserelin and we show here that the treatment alleviates Cl- channel defects in CF cells. Using proteomics we highlighted some proteins explaining this result. Finally, we propose that buserelin is a potential new pharmaceutical compound that can be used in CF and that bronchus can be targeted since we show here that they express GnRH-R.
Collapse
Affiliation(s)
- Marie-Laure Calvez
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- Association G Saleun, Brest, France
| | - Nathalie Benz
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Association G Saleun, Brest, France
| | - Florentin Huguet
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- Association G Saleun, Brest, France
| | - Aude Saint-Pierre
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Elise Rouillé
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | | | - Claude Férec
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- Etablissement Français du Sang—Bretagne, Brest, France
| | - Mathieu Kerbiriou
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Pascal Trouvé
- Inserm, UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Univ Brest, EFS, IBSAM, Brest, France
| |
Collapse
|
41
|
Callebaut I, Chong PA, Forman-Kay JD. CFTR structure. J Cyst Fibros 2017; 17:S5-S8. [PMID: 28866450 DOI: 10.1016/j.jcf.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/06/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023]
Abstract
Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) protein are critical to understand molecular mechanisms involved in gating of the apical anion channel as well as the way in which the gating is regulated, especially by the regulatory region (R region). They are also instrumental for understanding the root cause of cystic fibrosis (CF) and supporting the development of therapeutic strategies. In this short review, we summarize recent progress in the knowledge of the CFTR 3D structure and briefly discuss implications for CF drug development.
Collapse
Affiliation(s)
- Isabelle Callebaut
- IMPMC, Sorbonne Universités - UPMC Université Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, Paris, France.
| | - P Andrew Chong
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Julie D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| |
Collapse
|
42
|
Chong PA, Forman-Kay JD. Liquid-liquid phase separation in cellular signaling systems. Curr Opin Struct Biol 2016; 41:180-186. [PMID: 27552079 DOI: 10.1016/j.sbi.2016.08.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Liquid-liquid demixing or phase separation of protein with RNA is now recognized to be a key part of the mechanism for assembly of ribonucleoprotein granules. Cellular signaling also appears to employ phase separation as a mechanism for amplification or control of signal transduction both within the cytoplasm and at the membrane. The concept of receptor clustering, identified more than 3 decades ago, is now being examined through the lens of phase separation leading to new insights. Intrinsically disordered proteins or regions are central to these processes owing to their flexibility and accessibility for dynamic protein-protein interactions and post-translational modifications. We review some recent examples, examine the mechanisms driving phase separation and delineate the implications for signal transduction systems.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie D Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|