1
|
Jung J, Kim TH, Park JY, Kwon S, Sung JS, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. SARS-CoV-2 vaccine based on ferritin complexes with screened immunogenic sequences from the Fv-antibody library. J Mater Chem B 2025; 13:1383-1394. [PMID: 39668674 DOI: 10.1039/d4tb01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this study, the vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed using ferritin complexes with the immunogenic sequences screened against the SARS-CoV-2 spike protein (SP) from the Fv-antibody library. The Fv-antibody library was prepared on the outer membrane of E. coli by the expression of the VH region of immunoglobulin G (IgG) with a randomized complementarity-determining region 3 (CDR3). Four Fv-antibodies to the receptor-binding domain (RBD) were screened from the Fv-antibody library, which had a comparable binding constant (KD) between SARS-CoV-2 SP and the angiotensin-converting enzyme 2 (ACE2) receptor. The binding sites of screened Fv-antibodies on the RBD were analyzed using a docking analysis, and these binding sites were used as immunogenic sequences for the vaccine. The four immunogenic sequences were modified and co-expressed as a part of ferritin which was assembled into a ferritin complex. After the vaccination of ferritin complexes to mice, the anti-sera were analyzed to have a high enough titer. Additionally, the immune responses were found to be activated by vaccination, such as the expression of IgG subclasses and the increased level of cytokines. The neutralizing activity of the anti-sera was estimated using a cell-based infection assay based on pseudo-virus expressing the SP of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Munster, Münster (48149), Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
2
|
Sen S, Thaker A, Haymaker A, Williams D, Chiu PL, Nannenga BL. Observation of the Protein-Inorganic Interface of Ferritin by Cryo-Electron Microscopy. J Am Chem Soc 2025. [PMID: 39815632 DOI: 10.1021/jacs.4c13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Visualizing the structure of the protein-inorganic interface is critically important for a more complete understanding of biomineralization. Unfortunately, there are limited approaches for the direct and detailed study of biomolecules that interact with inorganic materials. Here, we use single-particle cryo-electron microscopy (cryo-EM) to study the protein-nanoparticle (NP) interactions of human light chain ferritin and visualize the high-resolution details of the protein-inorganic interface. In this work, we determined the 2.85 Å structure of human light chain ferritin bound to its native iron oxide NP substrate. The resulting cryo-EM maps confirmed and enhanced previously proposed interactions of the protein with the material along the B-helix and revealed new interaction at the C-terminus of light chain ferritin. This work sheds new light on the mechanisms of ferritin biomineralization and further demonstrates the application of cryo-EM for the study of protein-inorganic systems.
Collapse
Affiliation(s)
- Sagnik Sen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, Arizona 85281, United States
| | - Amar Thaker
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, Arizona 85281, United States
| | - Alison Haymaker
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, Arizona 85281, United States
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, Arizona 85287, United States
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, Arizona 85281, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Quah T, Modica KJ, Rawlings JB, Takatori SC. Model predictive control of non-interacting active Brownian particles. SOFT MATTER 2024; 20:8581-8588. [PMID: 39417392 DOI: 10.1039/d4sm00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Active matter systems are strongly driven to assume non-equilibrium distributions owing to their self-propulsion, e.g., flocking and clustering. Controlling the active matter systems' spatiotemporal distributions offers exciting applications such as directed assembly, programmable materials, and microfluidic actuation. However, these applications involve environments with coupled dynamics and complex tasks, making intuitive control strategies insufficient. This necessitates the development of an automatic feedback control framework, where an algorithm determines appropriate actions based on the system's current state. In this work, we control the distribution of active Brownian particles by applying model predictive control (MPC), a model-based control algorithm that predicts future states and optimizes the control inputs to drive the system along a user-defined objective. The MPC model is based on the Smoluchowski equation with a self-propulsive convective term and an actuated spatiotemporal-varying external field that aligns particles with the applied direction, similar to a magnetic field. We apply the MPC framework to control a Brownian dynamics simulation of non-interacting active particles and illustrate the controller capabilities with two objectives: splitting and juggling sub-populations, and polar order flocking control.
Collapse
Affiliation(s)
- Titus Quah
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Kevin J Modica
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - James B Rawlings
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Yao Z, Jiao Q, Du X, Jia F, Chen X, Yan C, Jiang H. Ferroptosis in Parkinson's disease -- The iron-related degenerative disease. Ageing Res Rev 2024; 101:102477. [PMID: 39218077 DOI: 10.1016/j.arr.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
5
|
Shee A, Henkes S, Huepe C. Emergent mesoscale correlations in active solids with noisy chiral dynamics. SOFT MATTER 2024; 20:7865-7879. [PMID: 39315646 DOI: 10.1039/d4sm00958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present the linear response theory for an elastic solid composed of active Brownian particles with intrinsic individual chirality, deriving both a normal mode formulation and a continuum elastic formulation. Using this theory, we compute analytically the velocity correlations and energy spectra under different conditions, showing an excellent agreement with simulations. We generate the corresponding phase diagram, identifying chiral and achiral disordered regimes (for high chirality or noise levels), as well as chiral and achiral states with mesoscopic-range order (for low chirality and noise). The chiral ordered states display mesoscopic spatial correlations and oscillating time correlations, but no wave propagation. In the high chirality regime, we find a peak in the elastic energy spectrum that leads to a non-monotonic behavior with increasing noise strength that is consistent with the emergence of the 'hammering state' recently identified in chiral glasses. Finally, we show numerically that our theory, despite its linear response nature, can be applied beyond the idealized homogeneous solid assumed in our derivations. Indeed, by increasing the level of activity, we show that it remains a good approximation of the system dynamics until just below the melting transition. In addition, we show that there is still an excellent agreement between our analytical results and simulations when we extend our results to heterogeneous solids composed of mixtures of active particles with different intrinsic chirality and noise levels. The derived linear response theory is therefore robust and applicable to a broad range of real-world active systems. Our work provides a thorough analytical and numerical description of the emergent states in a densely packed system of chiral self-propelled Brownian disks, thus allowing a detailed understanding of the phases and dynamics identified in a minimal chiral active system.
Collapse
Affiliation(s)
- Amir Shee
- Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, IL 60208, USA
| | - Silke Henkes
- Lorentz Institute for Theoretical Physics, LION, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands.
| | - Cristián Huepe
- Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, IL 60208, USA
- School of Systems Science, Beijing Normal University, Beijing, People's Republic of China
- CHuepe Labs, 2713 West August Blvd #1, Chicago, IL 60622, USA.
| |
Collapse
|
6
|
Wang W, Xi H, Fu D, Ma D, Gong W, Zhao Y, Li X, Wu L, Guo Y, Zhao G, Wang H. Growth Process of Fe-O Nanoclusters with Different Sizes Biosynthesized by Protein Nanocages. J Am Chem Soc 2024; 146:11657-11668. [PMID: 38641862 DOI: 10.1021/jacs.3c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.
Collapse
Affiliation(s)
- Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfang Xi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Danyang Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiaomei Li
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| | - Lijie Wu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Jiao R, Zhao G, Zhang T. Structural Insights into the Reaction between Hydrogen Peroxide and Di-iron Complexes at the Ferroxidase Center of Ferritin. Inorg Chem 2024; 63:3359-3365. [PMID: 38315811 DOI: 10.1021/acs.inorgchem.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The Fe(II) oxidation mechanism in the ferroxidase center of heavy chain ferritin has been studied extensively. However, the actual production of H2O2 was found to be substantially lower than expected at low flux of Fe(II) to ferritin subunits. Here, we demonstrated that H2O2 could interact with the di-iron nuclear center, leading to the production of hydroxyl radicals and oxygen. Two reaction intermediates were captured in the ferroxidase center by using the time-lapse crystallographic techniques in a shellfish ferritin. The crystal structures revealed the binding of H2O2 as a μ -1,2-peroxo-diferric species and the binding of O2 to the diferric structure. This investigation sheds light on the reaction between the di-iron nuclear center and H2O2 and provides insights for the exploitation of metalloenzymes.
Collapse
Affiliation(s)
- Ruonan Jiao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tuo Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Zhang S, Deng X, Guo X, Zhang J. Sustained release of chlorogenic acid by co-encapsulation of sodium alginate binding to the Northern pike (Esox Lucius) liver ferritin. Food Chem 2023; 429:136924. [PMID: 37490819 DOI: 10.1016/j.foodchem.2023.136924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
Ferritin has a unique hollow spherical structure, which makes it a promising nanocarrier for food functional substances. In this study, a new ferritin was successfully extracted from the liver of Northern pike, purified, and identified. We used the reversible self-assembly characteristics of ferritin to fabricate chlorogenic acid (CA)-loaded apoferritin (Apo) complex (Apo-CA) and sodium alginate (SA)-apoferritin (Apo) co-encapsulate system. Apo-CA was encapsulated into the SA system to form SA-Apo-CA. The fabricated composites were analyzed using particle size, UV-Vis absorption spectroscopy, fluorescence spectroscopy, flourier transform infrared spectroscopy and transmission electron microscope. Physicochemical property of analysis confirmed th successful preparation of Apo-CA/SA-Apo-CA and improved thermal and UV radiation stability. The effect of sustained-release of CA were tested in vitro of simulated gastrointestinal tract digestion. SA-Apo-CA exhibited greater release ability than unencapsulated CA and Apo-CA. This study provides a new strategy for designing a multilayer delivery system with improved stability and sustained-release property.
Collapse
Affiliation(s)
- Siying Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi, Xinjiang 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi, Xinjiang 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
9
|
Jobichen C, Ying Chong T, Rattinam R, Basak S, Srinivasan M, Choong YK, Pandey KP, Ngoc TB, Shi J, Angayarkanni J, Sivaraman J. Bacterioferritin nanocage structures uncover the biomineralization process in ferritins. PNAS NEXUS 2023; 2:pgad235. [PMID: 37529551 PMCID: PMC10388152 DOI: 10.1093/pnasnexus/pgad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and is involved in iron oxidation, storage, and mineralization. Although several structures of human ferritins and bacterioferritins have been solved, there is still no complete structure that shows both the trapped Fe-biomineral cluster and the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, structural details on the biomineralization process (i.e. the formation of the mineral itself) are generally lacking. Here, we report the cryo-electron microscopy (cryo-EM) structures of apoform and biomineral bound form (holoforms) of the Streptomyces coelicolor bacterioferritin (ScBfr) nanocage and the subunit crystal structure. The holoforms show different stages of Fe-biomineral accumulation inside the nanocage, in which the connections exist in two of the fourfold channels of the nanocage between the C-terminal of the ScBfr monomers and the Fe-biomineral cluster. The mutation and truncation of the bacterioferritin residues involved in these connections significantly reduced the iron and phosphate binding in comparison with those of the wild type and together explain the underlying mechanism. Collectively, our results represent a prototype for the bacterioferritin nanocage, which reveals insight into its biomineralization and the potential channel for bacterioferritin-associated iron trafficking.
Collapse
Affiliation(s)
| | - Tan Ying Chong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Rajesh Rattinam
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sandip Basak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yeu Khai Choong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Kannu Priya Pandey
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tran Bich Ngoc
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jayaraman Angayarkanni
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | |
Collapse
|
10
|
Cosottini L, Zineddu S, Massai L, Ghini V, Turano P. 19F: A small probe for a giant protein. J Inorg Biochem 2023; 244:112236. [PMID: 37146532 DOI: 10.1016/j.jinorgbio.2023.112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Herein we describe a method for the efficient production (∼90% fluorination) of 5-F-Trp human H ferritin via the selective incorporation of 19F into the side chain of W93 using 5-fluoroindole as the fluorinated precursor of the amino acid. Human H ferritin is a nanocage composed of 24 identical subunits, each containing a single Trp belonging to a loop exposed on the external surface of the protein nanocage. This makes 5-F-Trp a potential probe for the study of intermolecular interactions in solution by exploiting its intrinsic fluorescence. More interestingly, albeit the large size of the cage (12 nm external diameter, ∼500 kDa molecular mass) we observe a broad but well defined NMR 19F resonance that can be used for the dual purpose of detecting solution intermolecular interactions via chemical shift perturbation mapping and monitoring the uptake of ferritin by cells treated with ferritin-based drug carriers, the latter being an application area of increasing importance.
Collapse
Affiliation(s)
- Lucrezia Cosottini
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Stefano Zineddu
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy.
| |
Collapse
|
11
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Srivastava AK, Scalcione LJ, Arosio P, Bou‐Abdallah F. Hyperthermostable recombinant human heteropolymer ferritin derived from a novel plasmid design. Protein Sci 2023; 32:e4543. [PMID: 36519270 PMCID: PMC9798250 DOI: 10.1002/pro.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mammalian ferritins are predominantly heteropolymeric species consisting of 2 structurally similar, but functionally and genetically distinct subunit types, called H (Heavy) and L (Light). The two subunits co-assemble in different H and L ratios to form 24-mer shell-like protein nanocages where thousands of iron atoms can be mineralized inside a hollow cavity. Here, we use differential scanning calorimetry (DSC) to study ferritin stability and understand how various combinations of H and L subunits confer aspects of protein structure-function relationships. Using a recently engineered plasmid design that enables the synthesis of complex ferritin nanostructures with specific H to L subunit ratios, we show that homopolymer L and heteropolymer L-rich ferritins have a remarkable hyperthermostability (Tm = 115 ± 1°C) compared to their H-ferritin homologues (Tm = 93 ± 1°C). Our data reveal a significant linear correlation between protein thermal stability and the number of L subunits present on the ferritin shell. A strong and unexpected iron-induced protein thermal destabilization effect (ΔTm up to 20°C) is observed. To our knowledge, this is the first report of recombinant human homo- and hetero-polymer ferritins that exhibit surprisingly high dissociation temperatures, the highest among all known ferritin species, including many known hyperthermophilic proteins and enzymes. This extreme thermostability of our L and L-rich ferritins may have great potential for biotechnological applications.
Collapse
Affiliation(s)
| | | | - Paolo Arosio
- Department of Molecular & Translational MedicineUniversity of BresciaBresciaItaly
| | - Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| |
Collapse
|
13
|
Longo T, Kim S, Srivastava AK, Hurley L, Ji K, Viescas AJ, Flint N, Foucher AC, Yates D, Stach EA, Bou-Abdallah F, Papaefthymiou GC. Micromagnetic and morphological characterization of heteropolymer human ferritin cores. NANOSCALE ADVANCES 2022; 5:208-219. [PMID: 36605807 PMCID: PMC9765448 DOI: 10.1039/d2na00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
Collapse
Affiliation(s)
- Thomas Longo
- Department of Physics, Villanova University Villanova PA USA
| | - Steve Kim
- Department of Physics, Villanova University Villanova PA USA
| | | | - Lauren Hurley
- Department of Physics, Villanova University Villanova PA USA
| | - Kaixuan Ji
- Department of Physics, Villanova University Villanova PA USA
| | | | - Nicholas Flint
- Department of Chemistry, State University of New York Potsdam NY USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA USA
| | - Douglas Yates
- Singh Center for Nanotechnology, University of Pennsylvania Philadelphia PA USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA USA
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York Potsdam NY USA
| | | |
Collapse
|
14
|
|
15
|
Zhang N, Yu X, Song L, Xiao Z, Xie J, Xu H. Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP +-induced MES23.5 dopaminergic cells. Free Radic Biol Med 2022; 193:751-763. [PMID: 36395957 DOI: 10.1016/j.freeradbiomed.2022.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Ferritin is the main iron storage protein and plays an important role in maintaining iron homeostasis. In a previous study, we reported that apoferritin exerted a neuroprotective effect against MPTP by regulation of brain iron metabolism and ferroptosis. However, the precise cellular mechanisms of extracellular ferritin underlying this protection are not fully elucidated. Ferritin was reported to be localized in different intracellular compartments, cytoplasm or released outside cells. Here we demonstrated that the intracellular iron increased after iron treatment in primary cultured astrocytes. These iron-loaded astrocytes released more ferritin in order to buffer extracellular iron. Using co-culture system of primary cultured astrocytes and MES23.5 dopaminergic cells, we showed that ferritin released by astrocytes could enter MES23.5 dopaminergic cells. And primary cultured astrocytes protected MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity and ferroptosis. In addition, we found that exogenous Apoferritin or Ferritin pretreatment could significantly inhibit MPP+-induced cell damage by restoring the cell viability and mitochondrial transmembrane potential (ΔΨm). Furthermore, exogenous Apoferritin and Ferritin might also protect MES23.5 dopaminergic cells against MPP+ by decreasing reactive oxygen species (ROS) and inhibiting the increase of the labile iron pool (LIP). This suggests that astrocytes increased ferritin release to respond to iron overload, which might inhibit iron-mediated oxidative damage and ferroptosis of dopamine (DA) neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Limei Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhixin Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
16
|
van Roon DM, Volpe G, Telo da Gama MM, Araújo NAM. The role of disorder in the motion of chiral active particles in the presence of obstacles. SOFT MATTER 2022; 18:6899-6906. [PMID: 36043894 DOI: 10.1039/d2sm00694d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of obstacles is intuitively expected to hinder the diffusive transport of active particles. However, for chiral active particles, a low density of obstacles near a surface can enhance their diffusive behavior. Here, we study numerically the role that disorder plays in determining the transport dynamics of chiral active particles on surfaces with obstacles. We consider different densities of regularly spaced obstacles and distinct types of disorder: noise in the dynamics of the particle, quenched noise in the positions of the obstacles as well as obstacle size polydispersity. We show that, depending on the type and strength of the disorder, the presence of obstacles can either enhance or hinder transport, and discuss implications for the control of active transport in disordered media.
Collapse
Affiliation(s)
- Danne M van Roon
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P1-1749-016, Lisboa, Portugal.
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P1-1749-016, Lisboa, Portugal.
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P1-1749-016, Lisboa, Portugal.
| |
Collapse
|
17
|
Kato AN, Takeuchi KA, Sano M. Active colloid with externally induced periodic bipolar motility and its cooperative motion. SOFT MATTER 2022; 18:5435-5445. [PMID: 35820174 DOI: 10.1039/d2sm00363e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active matter physics has been developed with various types of self-propelled particles, including those with polar and bipolar motility and beyond. However, the bipolar motions experimentally realized so far have been either random along the axis or periodic at intrinsic frequencies. Here we report another kind of bipolar active particles, whose periodic bipolar self-propulsion is set externally at a controllable frequency. We used Quincke rollers-dielectric particles suspended in a conducting liquid driven by an electric field-under an AC electric field instead of the usually used DC field. Reciprocating motion of a single particle at the external frequency was observed experimentally and characterized theoretically as stable periodic motion. Experimentally, we observed not only the reciprocating motion but also non-trivial active Brownian particle (ABP)-like persistent motion in a long time scale. This resulted in a Lorentzian spectrum around zero frequency, which is not accounted for by a simple extension of the conventional model of Quincke rollers to the AC field. It was found that ABP-like motion can be reproduced by considering the top-bottom asymmetry in the experimental system. Moreover, we found a rotational diffusion coefficient much larger than the thermal one, as also reported in previous experiments, which may have resulted from roughness of the electrode surface. We also found self-organized formation of small clusters, such as doublets and triplets, and characterized cooperative motion of particles therein. The AC Quincke rollers reported here may serve as a model experimental system of bipolar active matter, which appears to deserve further investigations.
Collapse
Affiliation(s)
- Airi N Kato
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Kazumasa A Takeuchi
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Vuijk HD, Klempahn S, Merlitz H, Sommer JU, Sharma A. Active colloidal molecules in activity gradients. Phys Rev E 2022; 106:014617. [PMID: 35974656 DOI: 10.1103/physreve.106.014617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
We consider a rigid assembly of two active Brownian particles, forming an active colloidal dimer, in a gradient of activity. We show analytically that depending on the relative orientation of the two particles the active dimer accumulates in regions of either high or low activity, corresponding to, respectively, chemotaxis and antichemotaxis. Certain active dimers show both chemotactic and antichemotactic behavior, depending on the strength of the activity. Our coarse-grained Fokker-Planck approach yields an effective potential, which we use to construct a nonequilibrium phase diagram that classifies the dimers according to their tactic behavior. Moreover, we show that for certain dimers a higher persistence of the motion is achieved similar to the effect of a steering wheel in macroscopic devices. This work could be useful for designing autonomous active colloidal structures which adjust their motion depending on the local activity gradients.
Collapse
Affiliation(s)
- Hidde D Vuijk
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
| | - Sophie Klempahn
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- School of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Germany
| | - Abhinav Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Germany
| |
Collapse
|
19
|
Manceau A. Comment on "New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues". JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128583. [PMID: 35278961 DOI: 10.1016/j.jhazmat.2022.128583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Some birds and cetaceans can demethylate the toxic methylmercury cysteinate (MeHgCys) complex into inert mercury sulfide (HgSe) through the formation of an intermediate tetrahedral selenolate complex with selenocysteine (Sec) residues (Hg(Sec)4). The nucleation of the HgSe biominerals involves the substitution of the Se ligand for the Sec residues, which is considered to occur in the form of multinuclear Hgx(Se,Sec)y clusters mediated by proteins. Queipo-Abad et al. (2022) isolated HgSe nanoparticles from the biological tissues of giant petrels and measured the mass-dependent fractionation of the 202Hg isotope (δ202Hg). They concluded that the δ202Hg values of the HgSe nanoparticles from each tissue of individual petrels are specific to the HgSe species alone and that the Hg(Sec)4 → HgSe reaction occurs without fractionation of the 202Hg isotope. We show (1) that the HgSe nanoparticles are likely mixtures of MeHgCys, Hg(Sec)4, and HgSe, and therefore that the δ202Hg values are not species-specific, and (2) that the 202Hg isotope is actually fractionated during the Hg(Sec)4 → HgSe reaction, and therefore that this isotope can be used to trace the Hg metabolic pathways between tissues in a single individual and in different animals.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, ISTerre, CNRS, 38000 Grenoble, France.
| |
Collapse
|
20
|
Sen S, Thaker A, Sirajudeen L, Williams D, Nannenga BL. Protein-Nanoparticle Complex Structure Determination by Cryo-Electron Microscopy. ACS APPLIED BIO MATERIALS 2022; 5:4696-4700. [PMID: 35587230 DOI: 10.1021/acsabm.2c00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods that allow the study of the structure of proteins in complex with nanomaterials promise to enhance our understanding of how biological molecules interface with inorganic materials. We used single-particle cryo-electron microscopy (cryo-EM) to demonstrate the potential for cryo-EM analysis to reveal structural details of protein-nanoparticle complexes. Two protein-nanomaterial complexes, namely, GroEL bound to platinum nanoparticles (GroEL-PtNP) and ferritin bound to an iron oxide nanoparticle, were used as model samples. For the GroEL-PtNP complex, a final reconstruction was obtained to 3.93 Å, which allowed us to fit the atomic model of GroEL into the resulting map. This sets the stage for future work and improvements on the use of cryo-EM for the study of protein-nanomaterial complexes.
Collapse
Affiliation(s)
- Sagnik Sen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe 85287, Arizona, United States
| | - Amar Thaker
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe 85287, Arizona, United States
| | - Luqmanal Sirajudeen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe 85287, Arizona, United States
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe 85281, Arizona, United States
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe 85287, Arizona, United States
| |
Collapse
|
21
|
Ming T, Jiang Q, Huo C, Huan H, Wu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Han J, Zhang Z, Su X. Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam Tegillarca granosa. Front Mol Biosci 2022; 9:800008. [PMID: 35359603 PMCID: PMC8961696 DOI: 10.3389/fmolb.2022.800008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its role as an iron storage protein, ferritin can function as a major detoxification component in the innate immune defense, and Cu2+ ions can also play crucial antibacterial roles in the blood clam, Tegillarca granosa. However, the mechanism of interaction between iron and copper in recombinant Tegillarca granosa ferritin (TgFer) remains to be investigated. In this study, we investigated the crystal structure of TgFer and examined the effects of Fe2+ and Cu2+ ions on the TgFer structure and catalytic activity. The crystal structure revealed that TgFer presented a typically 4–3–2 symmetry in a cage-like, spherical shell composed of 24 identical subunits, featuring highly conserved organization in both the ferroxidase center and the 3-fold channel. Structural and biochemical analyses indicated that the 4-fold channel of TgFer could be serviced as potential binding sites of metal ions. Cu2+ ions appear to bind preferentially with the 3-fold channel as well as ferroxidase site over Fe2+ ions, possibly inhibiting the ferroxidase activity of TgFer. Our results present a structural and functional characterization of TgFer, providing mechanistic insight into the interactions between TgFer and both Fe2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Xiurong Su,
| |
Collapse
|
22
|
Xing Y, Ma J, Yao Q, Chen X, Zang J, Zhao G. The Change in the Structure and Functionality of Ferritin during the Production of Pea Seed Milk. Foods 2022; 11:557. [PMID: 35206035 PMCID: PMC8871097 DOI: 10.3390/foods11040557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the effect of thermal treatment on the physical and chemical properties of protein and its mechanisms has important theoretical implications in food science. Pea seed ferritin (PSF) is an iron storage protein naturally occurring in pea seeds, which represents a promising iron supplement. However, how thermal processing affects the structure and function of PSF remains unknown. In this work, during the production of pea seed milk, we investigated the effect of thermal treatments at boiling temperature for two different times (5 and 10 min), respectively, on the structure and function of PSF. The results demonstrated that thermal treatment resulted in a pronounced change in the primary, secondary, and tertiary structure, iron content, and iron oxidation activity of PSF. However, the shell-like structure of PSF can be kept during the processing of pea seed milk. Interestingly, upon thermal treatment, both thermal-treated samples exhibit larger higher iron absorption rate by Caco-2 than untreated PSF at the same protein concentration. Such an investigation provides a better understanding of the relationship between the structure and function of food protein, as affected by thermal treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanghua Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.X.); (J.M.); (Q.Y.); (X.C.); (J.Z.)
| |
Collapse
|
23
|
Wu Y, Ming T, Huo C, Qiu X, Su C, Lu C, Zhou J, Li Y, Su X. Crystallographic characterization of a marine invertebrate ferritin from the sea cucumber Apostichopus japonicus. FEBS Open Bio 2022; 12:664-674. [PMID: 35090095 PMCID: PMC8886333 DOI: 10.1002/2211-5463.13375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
Ferritin is considered to be an ubiquitous and conserved iron-binding protein that plays a crucial role in iron storage, detoxification and immune response. Although ferritin is of critical importance for almost all kingdoms of life, there is a lack of knowledge about its role in the marine invertebrate sea cucumber (Apostichopus japonicus). In this study, we characterized the first crystal structure of Apostichopus japonicas ferritin (AjFER) at 2.75 Å resolution. The structure of AjFER shows a 4-3-2 symmetry cage-like hollow shell composed of 24 subunits, mostly similar to the structural characteristics of other known ferritin species, including the conserved ferroxidase center and 3-fold channel. The 3-fold channel consisting of three 3-fold negative amino acid rings suggests a potential pathway in which metal ions can be first captured by Asp120 from the outside environment, attracted by His116 and Cys128 when entering the channel, and then transferred by Glu138 from the 3-fold channel to the ferroxidase site. Overall, the presented crystal structure of AjFER may provide insights into the potential mechanism of the metal transport pathway for related marine invertebrate ferritins.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, Zhejiang, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Conti L, Ciambellotti S, Giacomazzo GE, Ghini V, Cosottini L, Puliti E, Severi M, Fratini E, Cencetti F, Bruni P, Valtancoli B, Giorgi C, Turano P. Ferritin nanocomposites for the selective delivery of photosensitizing ruthenium-polypyridyl compounds to cancer cells. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01268a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human ferritin platforms containing Ru(ii)-polypyridyl-based photosensitizers effectively target cancer cells and provide cytotoxic effects upon light-activation.
Collapse
Affiliation(s)
- Luca Conti
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Silvia Ciambellotti
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Veronica Ghini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Lucrezia Cosottini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| | - Elisa Puliti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Mirko Severi
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Emiliano Fratini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence 50134, Italy
| | - Barbara Valtancoli
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Claudia Giorgi
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Paola Turano
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
25
|
|
26
|
Massai L, Ciambellotti S, Cosottini L, Messori L, Turano P, Pratesi A. Direct detection of iron clusters in L ferritins through ESI-MS experiments. Dalton Trans 2021; 50:16464-16467. [PMID: 34729572 DOI: 10.1039/d1dt03106f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cytoplasmic ferritins are heteropolymers of H and L subunits containing a catalytic ferroxidase center and a nucleation site for iron biomineralization, respectively. Here, ESI-MS successfully detected labile metal-protein interactions revealing the formation of tetra- and octa-iron clusters bound to L subunits, as previously underscored by X-ray crystallography.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
27
|
Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin. Chemistry 2021; 27:14690-14701. [PMID: 34343376 DOI: 10.1002/chem.202102270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Mangani
- Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| |
Collapse
|
28
|
Wang Y, Zang J, Wang C, Zhang X, Zhao G. Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin. Int J Mol Sci 2021; 22:ijms22157859. [PMID: 34360624 PMCID: PMC8346123 DOI: 10.3390/ijms22157859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Although apoferritin has been widely utilized as a new class of natural protein nanovehicles for encapsulation and delivery of nutraceuticals, its ability to remove metal heavy ions has yet to be explored. In this study, for the first time, we demonstrated that the ferritin from kuruma prawns (Marsupenaeus japonicus), named MjF, has a pronouncedly larger ability to resist denaturation induced by Cd2+ and Hg2+ as compared to its analogue, human H-chain ferritin (HuHF), despite the fact that these two proteins share a high similarity in protein structure. Treatment of HuHF with Cd2+ or Hg2+ at a metal ion/protein shell ratio of 100/1 resulted in marked protein aggregation, while the MjF solution was kept constantly clear upon treatment with Cd2+ and Hg2+ at different protein shell/metal ion ratios (50/1, 100/1, 250/1, 500/1, 1000/1, and 2500/1). Structural comparison analyses in conjunction with the newly solved crystal structure of the complex of MjF plus Cd2+ or Hg2+ revealed that cysteine (Cys) is a major residue responsible for such binding, and that the large difference in the ability to resist denaturation induced by these two heavy metal ions between MjF and HuHF is mainly derived from the different positions of Cys residues in these two proteins; namely, Cys residues in HuHF are located on the outer surface, while Cys residues from MjF are buried within the protein shell. All of these findings raise the high possibility that prawn ferritin, as a food-derived protein, could be developed into a novel bio-template to remove heavy metal ions from contaminated food systems.
Collapse
Affiliation(s)
- Yingjie Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China;
| | - Xiuqing Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| |
Collapse
|
29
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
30
|
Caldas Nogueira ML, Pastore AJ, Davidson VL. Diversity of structures and functions of oxo-bridged non-heme diiron proteins. Arch Biochem Biophys 2021; 705:108917. [PMID: 33991497 PMCID: PMC8165033 DOI: 10.1016/j.abb.2021.108917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxo-bridged diiron proteins are a distinct class of non-heme iron proteins. Their active sites are composed of two irons that are coordinated by amino acid side chains, and a bridging oxygen that interacts with each iron. These proteins are members of the ferritin superfamily and share the structural feature of a four α-helix bundle that provides the residues that coordinate the irons. The different proteins also display a wide range of structures and functions. A prototype of this family is hemerythrin, which functions as an oxygen transporter. Several other hemerythrin-like proteins have been described with a diversity of functions including oxygen and iron sensing, and catalytic activities. Rubrerythrins react with hydrogen peroxide and rubrerythrin-like proteins possess a rubredoxin domain, in addition to the oxo-bridged diiron center. Other redox enzymes with oxo-bridged irons include flavodiiron proteins that act as O2 or NO reductases, ribonucleotide reductase and methane monooxygenase. Ferritins have an oxo-bridged diiron in the ferroxidase center of the protein, which plays a role in the iron storage function of these proteins. There are also bacterial ferritins that exhibit catalytic activities. The structures and functions of this broad class of oxo-bridged diiron proteins are described and compared in this review.
Collapse
Affiliation(s)
- Maria Luiza Caldas Nogueira
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Anthony J Pastore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|
31
|
Ikenoue Y, Tahara YO, Miyata M, Nishioka T, Aono S, Nakajima H. Use of a Ferritin L134P Mutant for the Facile Conjugation of Prussian Blue in the Apoferritin Cavity. Inorg Chem 2021; 60:4693-4704. [PMID: 33733771 DOI: 10.1021/acs.inorgchem.0c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the bullfrog H-ferritin L134P mutant in which leucine 134 is replaced with proline was found to exhibit a flexible conformation in the C3 axis channel, homologous ferritins with the corresponding mutation have often been studied in terms of a mechanism of iron release from the mineral core within the protein cavity. Meanwhile, a ferritin mutant with the flexible channel is an attractive material in developing a method to encapsulate functional molecules larger than mononuclear ions into the protein cavity. This study describes the clathrate with a horse spleen L-ferritin L134P mutant containing Prussian blue (PB) without a frequently used technique, disassembly and reassembly of the protein subunits. The spherical shell of ferritin was confirmed in a TEM image of the clathrate. The produced clathrate (PB@L134P) was soluble in water and reproduced the spectroscopic and electrochemical properties of PB prepared using the conventional method. The catalytic activity for an oxidoreductive reaction with H2O2, one of the major applications of conventional PB, was also observed for the clathrate. The instability of PB in alkaline solutions, limiting its wide applications in aqueous media, was significantly improved in PB@L134P, showing the protective effect of the protein shell. The method developed here shows that horse spleen L-ferritin L134P is a useful scaffold to produce clathrates of three-dimensional complexes with ferritin.
Collapse
Affiliation(s)
- Yuta Ikenoue
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuhei O Tahara
- Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Miyata
- Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takanori Nishioka
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
32
|
Manceau A, Nagy KL, Glatzel P, Bourdineaud JP. Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in Escherichia coli and Bacillus subtilis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3612-3623. [PMID: 33629845 DOI: 10.1021/acs.est.0c05202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, CS 40700, 38058 Grenoble, France
| | - Kathryn L Nagy
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, MC-186, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Jean-Paul Bourdineaud
- Institut Européen de Chimie et Biologie, Université de Bordeaux, CNRS, UMR 5234, 2 rue Escarpit, 33607 Pessac, France
| |
Collapse
|
33
|
Ming T, Huan H, Su C, Huo C, Wu Y, Jiang Q, Qiu X, Lu C, Zhou J, Li Y, Su X. Structural comparison of two ferritins from the marine invertebrate Phascolosoma esculenta. FEBS Open Bio 2021; 11:793-803. [PMID: 33448656 PMCID: PMC7931202 DOI: 10.1002/2211-5463.13080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022] Open
Abstract
For marine invertebrates with no adaptive immune system, ferritin is a major intracellular iron-storage protein with a critical role in innate immunity. Here, we present the crystal structures of two novel ferritins [Fer147 and Phascolosoma esculenta ferritin (PeFer)] from the marine invertebrate P. esculenta, which resides in muddy-bottom coastal regions. Fer147 and PeFer exhibit the 4-3-2 symmetry of cage-like hollow shells containing 24 subunits, similar to other known ferritins. Fer147 and PeFer contain both the conserved ferroxidase center and threefold channels. Subtle structural differences in the putative nucleation sites suggest possible routes of metal ion movement in the protein shells. However, the marked variation in the electrostatic potential of the threefold channels in Fer147 and the fourfold channels in PeFer suggests significant diversity between Fer147 and PeFer in terms of metal ion aggregation and cation exclusion. In summary, the presented crystal structures may serve as references for studies of the iron-storage mechanism of additional ferritins from marine invertebrates.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| |
Collapse
|
34
|
Manceau A, Gaillot AC, Glatzel P, Cherel Y, Bustamante P. In Vivo Formation of HgSe Nanoparticles and Hg-Tetraselenolate Complex from Methylmercury in Seabirds-Implications for the Hg-Se Antagonism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1515-1526. [PMID: 33476140 DOI: 10.1021/acs.est.0c06269] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In vivo and in vitro evidence for detoxification of methylmercury (MeHg) as insoluble mercury selenide (HgSe) underlies the central paradigm that mercury exposure is not or little hazardous when tissue Se is in molar excess (Se:Hg > 1). However, this hypothesis overlooks the binding of Hg to selenoproteins, which lowers the amount of bioavailable Se that acts as a detoxification reservoir for MeHg, thereby underestimating the toxicity of mercury. This question was addressed by determining the chemical forms of Hg in various tissues of giant petrels Macronectes spp. using a combination of high energy-resolution X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopy, and transmission electron microscopy coupled to elemental mapping. Three main Hg species were identified, a MeHg-cysteinate complex, a four-coordinate selenocysteinate complex (Hg(Sec)4), and a HgSe precipitate, together with a minor dicysteinate complex Hg(Cys)2. The amount of HgSe decreases in the order liver > kidneys > brain = muscle, and the amount of Hg(Sec)4 in the order muscle > kidneys > brain > liver. On the basis of biochemical considerations and structural modeling, we hypothesize that Hg(Sec)4 is bound to the carboxy-terminus domain of selenoprotein P (SelP) which contains 12 Sec residues. Structural flexibility allows SelP to form multinuclear Hgx(Se,Sec)y complexes, which can be biomineralized to HgSe by protein self-assembly. Because Hg(Sec)4 has a Se:Hg molar ratio of 4:1, this species severely depletes the stock of bioavailable Se for selenoprotein synthesis and activity to one μg Se/g dry wet in the muscle of several birds. This concentration is still relatively high because selenium is naturally abundant in seawater, therefore it probably does not fall below the metabolic need for essential selenium. However, this study shows that this may not be the case for terrestrial animals, and that muscle may be the first tissue potentially injured by Hg toxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
| | - Anne-Claire Gaillot
- Université Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, 44000 Nantes, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- La Rochelle Université, CNRS, Littoral Environnement et Sociétés (LIENSs), 17000, La Rochelle, France
| |
Collapse
|
35
|
Manceau A, Bourdineaud JP, Oliveira RB, Sarrazin SLF, Krabbenhoft DP, Eagles-Smith CA, Ackerman JT, Stewart AR, Ward-Deitrich C, Del Castillo Busto ME, Goenaga-Infante H, Wack A, Retegan M, Detlefs B, Glatzel P, Bustamante P, Nagy KL, Poulin BA. Demethylation of Methylmercury in Bird, Fish, and Earthworm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1527-1534. [PMID: 33476127 DOI: 10.1021/acs.est.0c04948] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Toxicity of methylmercury (MeHg) to wildlife and humans results from its binding to cysteine residues of proteins, forming MeHg-cysteinate (MeHgCys) complexes that hinder biological functions. MeHgCys complexes can be detoxified in vivo, yet how this occurs is unknown. We report that MeHgCys complexes are transformed into selenocysteinate [Hg(Sec)4] complexes in multiple animals from two phyla (a waterbird, freshwater fish, and earthworms) sampled in different geographical areas and contaminated by different Hg sources. In addition, high energy-resolution X-ray absorption spectroscopy (HR-XANES) and chromatography-inductively coupled plasma mass spectrometry of the waterbird liver support the binding of Hg(Sec)4 to selenoprotein P and biomineralization of Hg(Sec)4 to chemically inert nanoparticulate mercury selenide (HgSe). The results provide a foundation for understanding mercury detoxification in higher organisms and suggest that the identified MeHgCys to Hg(Sec)4 demethylation pathway is common in nature.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, ISTerre, CNRS, Grenoble 38000, France
| | - Jean-Paul Bourdineaud
- Université de Bordeaux, Institut Européen de Chimie et Biologie, CNRS, Pessac 33600, France
| | - Ricardo B Oliveira
- Universidade Federal do Oeste Pará, LabBBEx, Santarém 68180-000, Pará, Brazil
| | - Sandra L F Sarrazin
- Universidade Federal do Oeste Pará, LabBBEx, Santarém 68180-000, Pará, Brazil
| | - David P Krabbenhoft
- Upper Midwest Water Science Center, U.S. Geological Survey, Middleton 53562, Wisconsin, United States
| | - Collin A Eagles-Smith
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis 97330, Oregon, United States
| | - Joshua T Ackerman
- Western Ecological Research Center, U.S. Geological Survey, Dixon Field Station, Dixon 95620, California, United States
| | - A Robin Stewart
- U.S. Geological Survey, Water Resources Mission Area, Menlo Park 94025, California, United States
| | | | | | | | - Aude Wack
- Université Grenoble Alpes, ISTerre, CNRS, Grenoble 38000, France
| | - Marius Retegan
- European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Blanka Detlefs
- European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Paco Bustamante
- Université La Rochelle, CNRS, Littoral Environnement et Sociétés, La Rochelle 17000, France
| | - Kathryn L Nagy
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago 60607, Illinois, United States
| | - Brett A Poulin
- U.S. Geological Survey, Water Resources Mission Area, Boulder 80303, Colorado, United States
- Department of Environmental Toxicology, University of California Davis, Davis 95616, California, United States
| |
Collapse
|
36
|
Golan MP, Piłsyk S, Muszewska A, Wawrzyniak A. Ferritins in Chordata: Potential evolutionary trajectory marked by discrete selective pressures: History and reclassification of ferritins in chordates and geological events' influence on their evolution and radiation. Bioessays 2020; 43:e2000207. [PMID: 33226145 DOI: 10.1002/bies.202000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022]
Abstract
Ferritins (FTs) are iron storage proteins that are involved in managing iron-oxygen balance. In our work, we present a hypothesis on the putative effect of geological changes that have affected the evolution and radiation of ferritin proteins. Based on sequence analysis and phylogeny reconstruction, we hypothesize that two significant factors have been involved in the evolution of ferritin proteins: fluctuations of atmospheric oxygen concentrations, altering redox potential, and changing availability of water rich in bioavailable ferric ions. Fish, ancient amphibians, reptiles, and placental mammals developed the broadest repertoire of singular FTs, attributable to embryonic growth in aquatic environments containing low oxygen levels and abundant forms of soluble iron. In contrast, oviparous land vertebrates, like reptiles and birds, that have developed in high oxygen levels and limited levels of environmental Fe2+ exhibit a lower diversity of singular FTs, but display a broad repertoire of subfamilies, particularly notable in early reptiles.
Collapse
Affiliation(s)
- Maciej P Golan
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Wawrzyniak
- Morphological Sciences Department, College for Medical Sciences of University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
37
|
Davidov G, Abelya G, Zalk R, Izbicki B, Shaibi S, Spektor L, Shagidov D, Meyron-Holtz EG, Zarivach R, Frank GA. Folding of an Intrinsically Disordered Iron-Binding Peptide in Response to Sedimentation Revealed by Cryo-EM. J Am Chem Soc 2020; 142:19551-19557. [PMID: 33166133 PMCID: PMC7677926 DOI: 10.1021/jacs.0c07565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Biomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs). Here we used the cavity of ferritin as a nanoreactor where the interaction between M6A, an intrinsically disordered iron-binding domain, and an iron oxide particle was visualized at high resolution by cryo-EM. Taking advantage of the differences in the electron-dose sensitivity of the protein and the iron oxide particles, we developed a method to determine the irregular shape of the particles found in our density maps. We found that the folding of M6A correlates with the detection of mineral particles in its vicinity. M6A interacts with the iron oxide particles through its C-terminal side, resulting in the stabilization of a helix at its N-terminal side. The stabilization of the helix at a region that is not in direct contact with the iron oxide particle demonstrates the ability of IDPs to respond to signals from their surroundings by conformational changes. These findings provide the first glimpse toward the long-suspected mechanism for biomineralization protein control over mineral microstructure, where unstructured regions of these proteins become more ordered in response to their interaction with the nascent mineral particles.
Collapse
Affiliation(s)
- Geula Davidov
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Gili Abelya
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
| | - Ran Zalk
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Benjamin Izbicki
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
| | - Sharon Shaibi
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
| | - Lior Spektor
- Faculty
of Biotechnology and Food Engineering, Technion−Israel
Institute of Technology, Technion City, Haifa 3200000, Israel
| | - Dayana Shagidov
- Faculty
of Biotechnology and Food Engineering, Technion−Israel
Institute of Technology, Technion City, Haifa 3200000, Israel
| | - Esther G. Meyron-Holtz
- Faculty
of Biotechnology and Food Engineering, Technion−Israel
Institute of Technology, Technion City, Haifa 3200000, Israel
| | - Raz Zarivach
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Gabriel A. Frank
- Department
of Life Sciences, Ben-Gurion University
of the Negev, Beer Sheva 8410501, Israel
- The
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
38
|
Melman A, Bou-Abdallah F. Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochim Biophys Acta Gen Subj 2020; 1864:129700. [DOI: 10.1016/j.bbagen.2020.129700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023]
|
39
|
Peng X, Chen Z, Kollipara PS, Liu Y, Fang J, Lin L, Zheng Y. Opto-thermoelectric microswimmers. LIGHT, SCIENCE & APPLICATIONS 2020; 9:141. [PMID: 32864116 PMCID: PMC7429954 DOI: 10.1038/s41377-020-00378-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 05/26/2023]
Abstract
Inspired by the "run-and-tumble" behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - Yaoran Liu
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jie Fang
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
40
|
Hishikawa Y, Maity B, Ito N, Abe S, Lu D, Ueno T. Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. CHEM LETT 2020. [DOI: 10.1246/cl.200217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuki Hishikawa
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Nozomi Ito
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
41
|
Ciambellotti S, Pozzi C, Mangani S, Turano P. Iron Biomineral Growth from the Initial Nucleation Seed in L-Ferritin. Chemistry 2020; 26:5770-5773. [PMID: 32027764 DOI: 10.1002/chem.202000064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 11/06/2022]
Abstract
X-ray structures of homopolymeric human L-ferritin and horse spleen ferritin were solved by freezing protein crystals at different time intervals after exposure to a ferric salt and revealed the growth of an octa-nuclear iron cluster on the inner surface of the protein cage with a key role played by some glutamate residues. An atomic resolution view of how the cluster formation develops starting from a (μ3 -oxo)tris[(μ2 -glutamato-κO:κO')](glutamato-κO)(diaquo)triiron(III) seed is provided. The results support the idea that iron biomineralization in ferritin is a process initiating at the level of the protein surface, capable of contributing coordination bonds and electrostatic guidance.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
42
|
Silver nanoparticle synthesis in human ferritin by photochemical reduction. J Inorg Biochem 2020; 206:111016. [DOI: 10.1016/j.jinorgbio.2020.111016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
|
43
|
Narayanan S, Shahbazian-Yassar R, Shokuhfar T. In Situ Visualization of Ferritin Biomineralization via Graphene Liquid Cell-Transmission Electron Microscopy. ACS Biomater Sci Eng 2020; 6:3208-3216. [PMID: 33463263 DOI: 10.1021/acsbiomaterials.9b01889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ferritin biomineralization is essential to regulate the toxic Fe2+ iron ions in the human body. Unravelling the mechanism of biomineralization in ferritin facilitates our understanding of the causes underlying many iron disorder-related diseases. Until now, no report of in situ visualization of ferritin biomineralization events at nanoscale exists due to the requirement for high-resolution imaging of nanometer-sized ferritin proteins in their hydrated states. Herein, for the first time, we show that the biomineralization processes within individual ferritin proteins can be visualized by means of graphene liquid cell-transmission electron microscopy (GLC-TEM). The increase in the ratio of Fe3+/Fe2+ ions over time monitored via electron energy loss spectroscopy (EELS) reveals the change in oxidation state of iron oxide phases with time. This study lays a foundation for future investigations on iron regulation mechanisms in healthy and dysfunctional ferritins.
Collapse
Affiliation(s)
- Surya Narayanan
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States
| |
Collapse
|
44
|
Li S, Chen W, Hu X, Feng F. Self-Assembly of Albumin and [FeFe]-Hydrogenase Mimics for Photocatalytic Hydrogen Evolution. ACS APPLIED BIO MATERIALS 2020; 3:2482-2488. [DOI: 10.1021/acsabm.0c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
|
46
|
Masuda T, Zang J, Zhao G, Mikami B. The first crystal structure of crustacean ferritin that is a hybrid type of H and L ferritin. Protein Sci 2019; 27:1955-1960. [PMID: 30099791 DOI: 10.1002/pro.3495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Ferritin, a ubiquitous iron storage protein, has a crucial role in innate immunity in arthropods, which have no adaptive immune system. Arthropods are thought to have two types of ferritin molecules: the secreted type and the cytosolic type. Here, we present the first crystal structure of ferritin from crustacean, kuruma prawn (Marsupenaeus japonicus), at 1.16 Å resolution. This shrimp ferritin (MjFer) is the cytosolic type, and its structure shows well-conserved ferritin fold composed of a 4-helix bundle that assembles into a cage-like 24-mer. The structure of MjFer was more similar to those of human and vertebrate ferritins than to that of the secreted-type arthropod ferritin from an insect. MjFer possesses both a ferroxidase site and a nucleation site, which are the main characteristics of vertebrate H and L chain ferritins, respectively. The first crystal structure of crustacean ferritin, MjFer, has exceptionally high quality that provides the detailed structural information of metal moving pathway in ferritin.
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, 611-0011, Japan
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Effect of the point mutation H54N on the ferroxidase process of Rana catesbeiana H′ ferritin. J Inorg Biochem 2019; 197:110697. [DOI: 10.1016/j.jinorgbio.2019.110697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023]
|
49
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
50
|
Carmona D, Treccani L, Michaelis M, Lid S, Debus C, Ciacchi LC, Rezwan K, Maas M. Mineralization of iron oxide by ferritin homopolymers immobilized on SiO2 nanoparticles. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Carmona
- Advanced Ceramics, University of Bremen, Bremen, Germany
| | | | - Monika Michaelis
- Hybrid Materials Interfaces Group, University of Bremen, Bremen, Germany
| | - Steffen Lid
- Hybrid Materials Interfaces Group, University of Bremen, Bremen, Germany
| | - Christian Debus
- Physical Chemistry, University of Konstanz, Konstanz, Germany
| | | | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen, Bremen, Germany
| |
Collapse
|