1
|
Zhu Y, Cao C, Li Z, Xu Z, Qian S, Zhang J, Li M, Hu X, Zhang A, Du N, Pan X, Wang X, Sun Y, Wang J, Huang Y. ASIC1a regulates ferroptosis in hepatic stellate cells via the Hippo/Yap-1 pathway in liver fibrosis. Int Immunopharmacol 2024; 143:113226. [PMID: 39353388 DOI: 10.1016/j.intimp.2024.113226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Liver fibrosis is a sustained process of liver tissue damage and repair caused by various physiological and pathological factors, with the activation and proliferation of hepatic stellate cells being central. Therefore, understanding and clarifying the relevant mechanisms of hepatic stellate cell activation and death is of great clinical significance for the treatment of liver fibrosis diseases. METHODS In vivo, recombinant adeno-associated virus was used to infect the liver of experimental mice, overexpressing ASIC1a, and based on this, a liver fibrosis model treated with sorafenib was constructed. In vitro, using RNA plasmid technology to transfect HSC-T6 cells, ASIC1a was overexpressed or silenced in the cells, and on this basis, PDGF-BB and Sorafenib were used to stimulate HSC-T6 cells, causing activated HSC-T6 to undergo ferroptosis. RESULTS The ferroptosis inducers Sorafenib and erastin can induce ferroptosis in HSCs, effectively inhibiting or reversing the progression of liver fibrosis. We found that the expression level of ASIC1a was significantly reduced in the livers of mice with liver fibrosis treated with Sorafenib. After treatment with an adeno-associated virus overexpressing ASIC1a, the therapeutic effect of Sorafenib was inhibited, and the level of ferroptosis induced by Sorafenib was also inhibited. The induction of ferroptosis in hepatic stellate cells in vitro depends on the presence of ASIC1a. By further exploring the potential mechanism, we observed that the overexpression of ASIC1a can promote an increase in YAP nuclear translocation, thereby regulating the activity of Hippo/YAP pathway signaling. After treatment with Sorafenib, the influx of Ca2+ significantly increased when ASIC1a was overexpressed, and BAPTA-AM intervention eliminated the intracellular Ca2+ accumulation induced by ASIC1a overexpression. CONCLUSIONS This indicated that the activation of YAP depends on the calcium ion influx induced by ASIC1a, which regulates ferroptosis in hepatic stellate cells by regulating the calcium ion-dependent Hippo/YAP pathway.
Collapse
Affiliation(s)
- Yueqin Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Chun Cao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Mengxue Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Du
- Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Xuesheng Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinchen Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Yancai Sun
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Berger KD, MacLean DM. Mechanism of acid-sensing ion channel modulation by Hi1a. J Gen Physiol 2024; 156:e202313519. [PMID: 39446054 PMCID: PMC11513431 DOI: 10.1085/jgp.202313519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by extracellular acidification. Amongst many pathological roles, ASICs are an important mediator of ischemic cell death and hence an attractive drug target for stroke treatment as well as other conditions. A peptide called Hi1a, isolated from Australian funnel web spider venom, inhibits ASIC1a and attenuates cell death in a stroke model up to 8 h after stroke induction. Here, we set out to understand the molecular basis for Hi1a's action. Hi1a is a bivalent toxin with two inhibitory cystine knot domains joined by a short linker. We found that both Hi1a domains modulate human ASIC1a gating with the N-terminal domain impairing channel activation while the C-terminal domain produces a "pro-open" phenotype even at submicromolar concentrations. Interestingly, both domains bind at the same site since a single point mutation, F352A, abolishes functional effects and reduces toxin affinity in surface plasmon resonance measurements. Therefore, the action of Hi1a at ASIC1a appears to arise through a mutually exclusive binding model where either the N or C domain of a single Hi1a binds one ASIC1a subunit. An ASIC1a trimer may bind several inhibitory N domains and one or more pro-open C domains at any one time, accounting for the incomplete inhibition of wild type Hi1a. We also found that the functional differences between these two domains are partially transferred by mutagenesis, affording new insight into the channel function and possible novel avenues of drug design.
Collapse
Affiliation(s)
- Kyle D. Berger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Farkas E, Rose CR. A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia. J Cereb Blood Flow Metab 2024:271678X241289756. [PMID: 39535276 DOI: 10.1177/0271678x241289756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.
Collapse
Affiliation(s)
- Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Budusan E, Payne CD, Gonzalez TI, Obergrussberger A, Becker N, Clark RJ, Johan Rosengren K, Rash LD, Cristofori-Armstrong B. The funnel-web spider venom derived single knot peptide Hc3a modulates acid-sensing ion channel 1a desensitisation. Biochem Pharmacol 2024; 228:116175. [PMID: 38552850 DOI: 10.1016/j.bcp.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.
Collapse
Affiliation(s)
- Elena Budusan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Colton D Payne
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Tye I Gonzalez
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | | | | | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Ben Cristofori-Armstrong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
5
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
6
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
7
|
Hwang S, Balana AT, Martin B, Clarkson M, Di Lello P, Wu H, Li Y, Fuhrmann J, Dagdas Y, Holder P, Schroeder CI, Miller SE, Gao X. Bioproduction Platform to Generate Functionalized Disulfide-Constrained Peptide Analogues. ACS BIO & MED CHEM AU 2024; 4:190-203. [PMID: 39184057 PMCID: PMC11342346 DOI: 10.1021/acsbiomedchemau.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/27/2024]
Abstract
Disulfide-constrained peptides (DCPs) have gained increased attention as a drug modality due to their exceptional stability and combined advantages of large biologics and small molecules. Chemical synthesis, although widely used to produce DCPs, is associated with high cost, both economically and environmentally. To reduce the dependence on solid phase peptide synthesis and the negative environmental footprint associated with it, we present a highly versatile, low-cost, and environmentally friendly bioproduction platform to generate DCPs and their conjugates as well as chemically modified or isotope-labeled DCPs. Using the DCP against the E3 ubiquitin ligase Zinc and Ring Finger 3, MK1-3.6.10, as a model peptide, we have demonstrated the use of bacterial expression, combined with Ser ligation or transglutaminase-mediated XTEN ligation, to produce multivalent MK1-3.6.10 and MK1-3.6.10 with N-terminal functional groups. We have also developed a bioproduction method for the site-specific incorporation of unnatural amino acids into recombinant DCPs by the amber codon suppression system. Lastly, we produced 15N/13C-labeled MK1-3.6.10 with high yield and assessed the performance of a semiautomated resonance assignment workflow that could be used to accelerate binding studies and structural characterization of DCPs. This study provides a proof of concept to generate functionalized DCPs using bioproduction, providing a potential solution to alleviate the reliance on hazardous chemicals, reduce the cost, and expedite the timeline for DCP discovery.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Aaron T. Balana
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Bryan Martin
- Department
of Structural Biology, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Michael Clarkson
- Department
of Structural Biology, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Paola Di Lello
- Department
of Structural Biology, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Hao Wu
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Yanjie Li
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Jakob Fuhrmann
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Yavuz Dagdas
- Department
of Protein Chemistry, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Patrick Holder
- Department
of Protein Chemistry, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Christina I. Schroeder
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Stephen E. Miller
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| | - Xinxin Gao
- Department
of Peptide Therapeutics, Genentech Incorporated, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Mumtaz SM, Khan MA, Jamal A, Hattiwale SH, Parvez S. Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments. Life Sci 2024; 351:122777. [PMID: 38851419 DOI: 10.1016/j.lfs.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.
Collapse
Affiliation(s)
- Sayed Md Mumtaz
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Chow CY, King GF. Shining a Light on Venom-Peptide Receptors: Venom Peptides as Targeted Agents for In Vivo Molecular Imaging. Toxins (Basel) 2024; 16:307. [PMID: 39057947 PMCID: PMC11281729 DOI: 10.3390/toxins16070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular imaging has revolutionised the field of biomedical research by providing a non-invasive means to visualise and understand biochemical processes within living organisms. Optical fluorescent imaging in particular allows researchers to gain valuable insights into the dynamic behaviour of a target of interest in real time. Ion channels play a fundamental role in cellular signalling, and they are implicated in diverse pathological conditions, making them an attractive target in the field of molecular imaging. Many venom peptides exhibit exquisite selectivity and potency towards ion channels, rendering them ideal agents for molecular imaging applications. In this review, we illustrate the use of fluorescently-labelled venom peptides for disease diagnostics and intraoperative imaging of brain tumours and peripheral nerves. Finally, we address challenges for the development and clinical translation of venom peptides as nerve-targeted imaging agents.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australia Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australia Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Lai K, Pritišanac I, Liu ZQ, Liu HW, Gong LN, Li MX, Lu JF, Qi X, Xu TL, Forman-Kay J, Shi HB, Wang LY, Yin SK. Glutamate acts on acid-sensing ion channels to worsen ischaemic brain injury. Nature 2024; 631:826-834. [PMID: 38987597 PMCID: PMC11269185 DOI: 10.1038/s41586-024-07684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.
Collapse
Affiliation(s)
- Ke Lai
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Iva Pritišanac
- Program in Molecular Medicine, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Zhen-Qi Liu
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Xian Li
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Fei Lu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Qi
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Julie Forman-Kay
- Program in Molecular Medicine, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Krämer J, Hölker P, Predel R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins (Basel) 2024; 16:272. [PMID: 38922166 PMCID: PMC11209139 DOI: 10.3390/toxins16060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The larvae of some lampyrid beetles are highly specialized predators of snails. They have been observed to climb on the shells of their prey and use this exposed position to bite and inject secretions potentially originating from the midgut. Besides serving the purpose of extra-oral digestion (EOD), injected compounds also seem to have a paralyzing effect. Up to now, the toxins causing this paralyzing activity have not been identified. In the current study, we provide a first compositional analysis of the midgut secretion from lampyrid larvae, with a focus on identifying putative neurotoxins causing the observed paralyzing effect. For this purpose, we utilized a combined proteo-transcriptomic approach to characterize the compounds present in the midgut secretion of larval stages of Lampyris noctiluca. In terms of the absolute numbers of identified compounds, the midgut secretion is dominated by hydrolyzing enzymes comprising peptidases, carboxylesterases, and glycosidases. However, when considering expression levels, a few rather short cysteine-rich peptides exceed all other compounds. Some of these compounds show moderate similarity to putative neurotoxins identified in the venom of other arthropods and could be responsible for paralyzing effects. In addition to these potential toxins, we provide a list of peptides typical of the midgut secretion of L. noctiluca, supplemented by the corresponding precursor sequences.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Patrick Hölker
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
12
|
Redd MA, Yoshikawa Y, Khan N, Waqar M, Saez NJ, Outhwaite JE, Russell JS, Hanna AD, Chiu HS, Er SY, Butcher NJ, Mardon K, Fraser JF, Smythe ML, Rash LD, Thomas WG, King GF, Reichelt ME, Palpant NJ. Acid-sensing ion channel 1a blockade reduces myocardial injury in rodent models of myocardial infarction. Eur Heart J 2024; 45:1571-1574. [PMID: 38095341 DOI: 10.1093/eurheartj/ehad793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 05/09/2024] Open
Affiliation(s)
- Meredith A Redd
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
- Critical Care Research Group, The Prince Charles Hospital Northside Clinical Unit and Faculty of Medicine, University of Queensland, Australia
| | - Yusuke Yoshikawa
- School of Biomedical Sciences, University of Queensland, Australia
| | - Nemat Khan
- School of Biomedical Sciences, University of Queensland, Australia
| | - Maleeha Waqar
- School of Biomedical Sciences, University of Queensland, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Australia
- Infensa Bioscience Pty Ltd, Brisbane, QLD 4101, Australia
| | - Jennifer E Outhwaite
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
- School of Biomedical Sciences, University of Queensland, Australia
| | - Jake S Russell
- School of Biomedical Sciences, University of Queensland, Australia
| | - Amy D Hanna
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
| | - Han S Chiu
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
- Infensa Bioscience Pty Ltd, Brisbane, QLD 4101, Australia
| | - Sing Yan Er
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
| | | | - Karine Mardon
- Center for Advanced Imaging, University of Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital Northside Clinical Unit and Faculty of Medicine, University of Queensland, Australia
| | - Mark L Smythe
- Infensa Bioscience Pty Ltd, Brisbane, QLD 4101, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, University of Queensland, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Australia
- Infensa Bioscience Pty Ltd, Brisbane, QLD 4101, Australia
| | | | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St.Lucia, QLD 4072, Australia
- Infensa Bioscience Pty Ltd, Brisbane, QLD 4101, Australia
| |
Collapse
|
13
|
You Y, Tang Y, Yin W, Liu X, Gao P, Zhang C, Tembrock LR, Zhao Y, Yang Z. From genome to proteome: Comprehensive identification of venom toxins from the Chinese funnel-web spider (Macrothelidae: Macrothele yani). Int J Biol Macromol 2024; 268:131780. [PMID: 38657926 DOI: 10.1016/j.ijbiomac.2024.131780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Macrothelidae is a family of mygalomorph spiders containing the extant genera Macrothele and Vacrothele. China is an important center of diversity for Macrothele with 65 % of the known species occurring there. Previous work on Macrothele was able to uncover several important toxin compounds including Raventoxin which may have applications in biomedicine and agricultural chemistry. Despite the importance of Macrothele spiders, high-quality reference genomes are still lacking, which hinders our understanding and application of the toxin compounds. In this study, we assembled the genome of the Macrothele yani to help fill gaps in our understanding of toxin biology in this lineage of spiders to encourage the future study and applications of these compounds. The final assembled genome was 6.79 Gb in total length, had a contig N50 of 21.44 Mb, and scaffold N50 of 156.16 Mb. Hi-C scaffolding assigned 98.19 % of the genome to 46 pseudo-chromosomes with a BUSCO score of 95.7 % for the core eukaryotic gene set. The assembled genome was found to contain 75.62 % repetitive DNA and a total of 39,687 protein-coding genes were annotated making it the spider genome with highest number of genes. Through integrated analysis of venom gland transcriptomics and venom proteomics, a total of 194 venom toxins were identified, including 38 disulfide-rich peptide neurotoxins, among which 12 were ICK knottin peptides. In summary, we present the first high-quality genome assembly at the chromosomal level for any Macrothelidae spider, filling an important gap in our knowledge of these spiders. Such high-quality genomic data will be invaluable as a reference in resolving Araneae spider phylogenies and in screening different spider species for novel compounds applicable to numerous medical and agricultural applications.
Collapse
Affiliation(s)
- Yongming You
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Yani Tang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, South Waihuan Road, Chenggong District, Kunming 650500, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Wenhao Yin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Xinxin Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA..
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| |
Collapse
|
14
|
Knezic A, Budusan E, Saez NJ, Broughton BRS, Rash LD, King GF, Widdop RE, McCarthy CA. Hi1a Improves Sensorimotor Deficit following Endothelin-1-Induced Stroke in Rats but Does Not Improve Functional Outcomes following Filament-Induced Stroke in Mice. ACS Pharmacol Transl Sci 2024; 7:1043-1054. [PMID: 38638162 PMCID: PMC11022283 DOI: 10.1021/acsptsci.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Activation of acid-sensing ion channel 1a (ASIC1a) plays a major role in mediating acidosis-induced neuronal injury following a stroke. Therefore, the inhibition of ASIC1a is a potential therapeutic avenue for the treatment of stroke. Venom-peptide Hi1a, a selective and highly potent ASIC1a inhibitor, reduces the infarct size and functional deficits when injected into the brain after stroke in rodents. However, its efficacy when administered using a clinically relevant route of administration remains to be established. Therefore, the current investigation aims to examine the efficacy of systemically administered Hi1a, using two different models of stroke in different species. Mice were subjected to the filament model of middle cerebral artery occlusion (MCAO) and treated with Hi1a systemically using either a single- or multiple-dosing regimen. 24 h poststroke, mice underwent functional testing, and the brain infarct size was assessed. Rats were subjected to endothelin-1 (ET-1)-induced MCAO and treated with Hi1a intravenously 2 h poststroke. Rats underwent functional tests prior to and for 3 days poststroke, when infarct volume was assessed. Mice receiving Hi1a did not show any improvements in functional outcomes, despite a trend toward reduced infarct size. This trend for reduced infarct size in mice was consistent regardless of the dosing regimen. There was also a trend toward lower infarct size in rats treated with Hi1a. More specifically, Hi1a reduced the amount of damage occurring within the somatosensory cortex, which was associated with an improved sensorimotor function in Hi1a-treated rats. Thus, this study suggests that Hi1a or more brain-permeable ASIC1a inhibitors are a potential stroke treatment.
Collapse
Affiliation(s)
- Adriana Knezic
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Elena Budusan
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Brad R. S. Broughton
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Lachlan D. Rash
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Claudia A. McCarthy
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| |
Collapse
|
15
|
Gründer S, Vanek J, Pissas KP. Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link? Pflugers Arch 2024; 476:659-672. [PMID: 38175291 PMCID: PMC11006730 DOI: 10.1007/s00424-023-02902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jakob Vanek
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | |
Collapse
|
16
|
Ramanujam V, Crawford T, Cristofori‐Armstrong B, Deuis JR, Jia X, Maxwell MJ, Jami S, Ma L, Vetter I, Mobli M. Structural Basis of the Bivalency of the TRPV1 Agonist DkTx. Angew Chem Int Ed Engl 2024; 63:e202314621. [PMID: 37953402 PMCID: PMC10952689 DOI: 10.1002/anie.202314621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Bivalency is a prevalent natural mechanism to enhance receptor avidity. Various two-domain disulfide-rich peptides exhibiting bivalent action have been identified from animal venoms. A unique characteristic of these peptides is that they induce a pharmacological response different from that provoked by any of the constituent domains. The enhanced potency and avidity of such peptides is therefore a consequence of their domain fusion by a peptide linker. The role of the linker itself, beyond conjugation, remains unclear. Here, we investigate how the linker affects the bivalency of the capsaicin receptor (TRPV1) agonist DkTx. We recombinantly produced isotope labelled DkTx using a protein splicing approach, to solve the high-resolution solution structure of DkTx, revealing residual linker order stabilised by linker-domain interactions leading to biased domain orientations. The significance of this was studied using a combination of mutagenesis, spin relaxation studies and electrophysiology measurements. Our results reveal that disrupting the pre-organisation of the domains of DkTx is accompanied by reductions in potency and onset of avidity. Our findings support a model of pre-configured two-domain binding, in favour of the previously suggested sequential binding model. This highlights the significance of ordered elements in linker design and the natural evolution of these in bivalent toxins.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Theo Crawford
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Ben Cristofori‐Armstrong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Jennifer R. Deuis
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Xinying Jia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Michael J. Maxwell
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Sina Jami
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Linlin Ma
- Griffith Institute for Drug DiscoverySchool of Environment and ScienceGriffith UniversityNathan4111QueenslandAustralia
| | - Irina Vetter
- Institute for Molecular BiosciencesSchool of PharmacyThe University of QueenslandSt Lucia4072QueenslandAustralia
| | - Mehdi Mobli
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt Lucia4072QueenslandAustralia
| |
Collapse
|
17
|
Xiao X, Luo X, Huang C, Feng X, Wu M, Lu M, Kuang J, Peng S, Guo Y, Zhang Z, Hu Z, Zhou X, Chen M, Liu Z. Transcriptome analysis reveals the peptide toxins diversity of Macrothele palpator venom. Int J Biol Macromol 2023; 253:126577. [PMID: 37648132 DOI: 10.1016/j.ijbiomac.2023.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.
Collapse
Affiliation(s)
- Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cuiling Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jiating Kuang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyi Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yingmei Guo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zixuan Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua College, Huaihua, Hunan 418008, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
18
|
Cullinan MM, Klipp RC, Camenisch A, Bankston JR. Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a. eLife 2023; 12:RP90755. [PMID: 38054969 PMCID: PMC10699805 DOI: 10.7554/elife.90755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
19
|
Hernandez Duran L, Wilson DT, Rymer TL. Exploring behavioral traits over different contexts in four species of Australian funnel-web spiders. Curr Zool 2023; 69:766-774. [PMID: 37876639 PMCID: PMC10591153 DOI: 10.1093/cz/zoac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 10/26/2023] Open
Abstract
Australian funnel-web spiders are arguably the most venomous spiders in the world, with much research focusing on this aspect of their biology. However, other aspects related to their life history, ecology and behaviour have been overlooked. For the first time, we assessed repeatability, namely risk-taking behaviour, aggressiveness and activity in the contexts of predation, conspecific tolerance and exploration of a new territory in four species of Australian funnel-web spiders: two are closely related, Hadronyche valida and H. infensa, and two have overlapping distributions but occupy different habitats, H. cerberea and Atrax robustus. We also compared behaviors between species. At the species level, we found that H. valida showed consistency in risk-taking behavior when exposed to a predator stimulus, aggressiveness against conspecifics, and exploration of a new territory. In contrast, in the other species, only A. robustus showed repeatability in the context of exploration of a new territory. These results suggest that some behavioral traits are likely more flexible than others, and that the repeatability of behaviors may be species-specific in funnel-webs. When we compared species, we found differences in risk-taking behavior and defensiveness. This study provides novel insights to understanding variation in behavioral traits within and between species of funnel-web spiders, suggesting that some behavioral traits are likely context and/or species dependent, as a result of their evolutionary history. These findings provide key insights for understanding the ecological role of behavior and venom deployment in venomous animals, and a greater understanding of behavior in these medically significant and iconic spiders that are of conservation concern.
Collapse
Affiliation(s)
- Linda Hernandez Duran
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| |
Collapse
|
20
|
Foster VS, Saez N, King GF, Rank MM. Acute inhibition of acid sensing ion channel 1a after spinal cord injury selectively affects excitatory synaptic transmission, but not intrinsic membrane properties, in deep dorsal horn interneurons. PLoS One 2023; 18:e0289053. [PMID: 37939057 PMCID: PMC10631665 DOI: 10.1371/journal.pone.0289053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/10/2023] [Indexed: 11/10/2023] Open
Abstract
Following a spinal cord injury (SCI), secondary damage mechanisms are triggered that cause inflammation and cell death. A key component of this secondary damage is a reduction in local blood flow that initiates a well-characterised ischemic cascade. Downstream hypoxia and acidosis activate acid sensing ion channel 1a (ASIC1a) to trigger cell death. We recently showed that administration of a potent venom-derived inhibitor of ASIC1a, Hi1a, leads to tissue sparing and improved functional recovery when delivered up to 8 h after ischemic stroke. Here, we use whole-cell patch-clamp electrophysiology in a spinal cord slice preparation to assess the effect of acute ASIC1a inhibition, via a single dose of Hi1a, on intrinsic membrane properties and excitatory synaptic transmission long-term after a spinal cord hemisection injury. We focus on a population of interneurons (INs) in the deep dorsal horn (DDH) that play a key role in relaying sensory information to downstream motoneurons. DDH INs in mice treated with Hi1a 1 h after a spinal cord hemisection showed no change in active or passive intrinsic membrane properties measured 4 weeks after SCI. DDH INs, however, exhibit significant changes in the kinetics of spontaneous excitatory postsynaptic currents after a single dose of Hi1a, when compared to naive animals (unlike SCI mice). Our data suggest that acute ASIC1a inhibition exerts selective effects on excitatory synaptic transmission in DDH INs after SCI via specific ligand-gated receptor channels, and has no effect on other voltage-activated channels long-term after SCI.
Collapse
Affiliation(s)
- Victoria S. Foster
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- St George’s, University of London, Medical School, London, England
| | - Natalie Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle M. Rank
- Department of Anatomy and Physiology, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Cullinan MM, Klipp RC, Camenisch A, Bankston JR. Dynamic landscape of the intracellular termini of acid-sensing ion channel 1a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547693. [PMID: 37461628 PMCID: PMC10350031 DOI: 10.1101/2023.07.05.547693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recently it has been shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of the channel is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C-terminus and the N-terminus which blocks the RIPK1 binding site. Here, we use a combination of two transition metal ion FRET methods to investigate the conformational dynamics of the termini while the channel is closed and desensitized. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together when desensitized. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.
Collapse
Affiliation(s)
- Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Abigail Camenisch
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
Iurova E, Rastorgueva E, Beloborodov E, Pogodina E, Fomin A, Sugak D, Viktorov D, Tumozov I, Saenko Y. Protective Effect of Peptide Calcium Channel Blocker Omega-Hexatoxin-Hv1a on Epithelial Cell during Ischemia-Reperfusion Injury. Pharmaceuticals (Basel) 2023; 16:1314. [PMID: 37765122 PMCID: PMC10538190 DOI: 10.3390/ph16091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common phenomenon that develops both from natural causes and during major operations. Many intracellular processes mediated by calcium ions are involved in the development of IRI. Currently, chemical calcium channel blockers are used but they have a number of limitations. In this article, we study the effect of the omega-hexatoxin-Hv1a peptide toxin, an alternative to chemical calcium channel blockers, on the mechanisms of IRI development in epithelial cell culture. The toxin was produced using solid phase peptide synthesis. IRI was caused by deprivation of glucose, serum and oxygen. The data obtained demonstrate that the omega-hexatoxin-Hv1a toxin in nanomolar concentrations is able to prevent the development of apoptosis and necrosis in epithelial cells by reducing the concentration of calcium, sodium and potassium ions, as well as by delaying rapid normalization of the pH level, affecting the mitochondrial potential and oxidative stress. This toxin can be used as an alternative to chemical calcium channel blockers for preventing tissue and organ IRI due to its low-dose requirement and high bioavailability.
Collapse
Affiliation(s)
- Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, 432017 Ulyanovsk, Russia
| | - Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Evgeniya Pogodina
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Dmitrii Sugak
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Denis Viktorov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Ivan Tumozov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S. P. Kapitsa Technological Research Institute, Ulyanovsk State University, 432017 Ulyanovsk, Russia; (E.I.); (E.R.); (E.B.); (E.P.); (A.F.); (D.S.); (D.V.); (I.T.)
| |
Collapse
|
23
|
Ahmadi S, Benard-Valle M, Boddum K, Cardoso FC, King GF, Laustsen AH, Ljungars A. From squid giant axon to automated patch-clamp: electrophysiology in venom and antivenom research. Front Pharmacol 2023; 14:1249336. [PMID: 37693897 PMCID: PMC10484000 DOI: 10.3389/fphar.2023.1249336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Ion channels play a crucial role in diverse physiological processes, including neurotransmission and muscle contraction. Venomous creatures exploit the vital function of ion channels by producing toxins in their venoms that specifically target these ion channels to facilitate prey capture upon a bite or a sting. Envenoming can therefore lead to ion channel dysregulation, which for humans can result in severe medical complications that often necessitate interventions such as antivenom administration. Conversely, the discovery of highly potent and selective venom toxins with the capability of distinguishing between different isoforms and subtypes of ion channels has led to the development of beneficial therapeutics that are now in the clinic. This review encompasses the historical evolution of electrophysiology methodologies, highlighting their contributions to venom and antivenom research, including venom-based drug discovery and evaluation of antivenom efficacy. By discussing the applications and advancements in patch-clamp techniques, this review underscores the profound impact of electrophysiology in unravelling the intricate interplay between ion channels and venom toxins, ultimately leading to the development of drugs for envenoming and ion channel-related pathologies.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, University of Queensland, St Lucia, QLD, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, University of Queensland, St Lucia, QLD, Australia
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Richards NJ, Alqallaf A, Mitchell RD, Parnell A, Haidar HB, Almeida JR, Williams J, Vijayakumar P, Balogun A, Matsakas A, Trim SA, Patel K, Vaiyapuri S. Indian Ornamental Tarantula ( Poecilotheria regalis) Venom Affects Myoblast Function and Causes Skeletal Muscle Damage. Cells 2023; 12:2074. [PMID: 37626884 PMCID: PMC10453882 DOI: 10.3390/cells12162074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Envenomation by the Indian ornamental tarantula (Poecilotheria regalis) is medically relevant to humans, both in its native India and worldwide, where they are kept as pets. Muscle-related symptoms such as cramps and pain are commonly reported in humans following envenomation by this species. There is no specific treatment, including antivenom, for its envenomation. Moreover, the scientific knowledge of the impact of this venom on skeletal muscle function is highly limited. Therefore, we carried out this study to better understand the myotoxic properties of Poecilotheria regalis venom by determining its effects in cultured myoblasts and in the tibialis anterior muscle in mice. While there was no effect found on undifferentiated myoblasts, the venom affected differentiated multinucleated myotubes resulting in the reduction of fusion and atrophy of myotubes. Similarly, intramuscular administration of this venom in the tibialis anterior muscle in mice resulted in extensive muscle damage on day 5. However, by day 10, the regeneration was evident, and the regeneration process continued until day 20. Nevertheless, some tissue abnormalities including reduced dystrophin expression and microthrombi presence were observed on day 20. Overall, this study demonstrates the ability of this venom to induce significant muscle damage and affect its regeneration in the early stages. These data provide novel mechanistic insights into this venom-induced muscle damage and guide future studies to isolate and characterise individual toxic component(s) that induce muscle damage and their significance in developing better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Richards
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Medical Services Authority, Ministry of Defence, Kuwait City 13012, Kuwait
| | | | - Andrew Parnell
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Micregen Ltd., Thames Valley Science Park, Reading RG2 9LH, UK;
| | - Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Pradeep Vijayakumar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Adedoyin Balogun
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| |
Collapse
|
25
|
Tran P, Crawford T, Ragnarsson L, Deuis JR, Mobli M, Sharpe SJ, Schroeder CI, Vetter I. Structural Conformation and Activity of Spider-Derived Inhibitory Cystine Knot Peptide Pn3a Are Modulated by pH. ACS OMEGA 2023; 8:26276-26286. [PMID: 37521635 PMCID: PMC10373202 DOI: 10.1021/acsomega.3c02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline cis/trans isomerization but has also been observed in peptides that do not contain a proline residue. Pn3a is one such peptide forming two chromatographically distinguishable peaks that readily interconvert following the purification of either conformer. The nature of this exchange was previously uncharacterized due to the fast rate of conversion in solution, making isolation of the conformers impossible. In the present study, an N-terminal modification of Pn3a enabled the isolation of the individual conformers, allowing activity assays to be conducted on the individual conformers using electrophysiology. The conformers were analyzed separately by nuclear magnetic resonance spectroscopy (NMR) to study their structural differences. RP-HPLC and NMR were used to study the mechanism of exchange. The later-eluting conformer was the active conformer with a rigid structure that corresponds to the published structure of Pn3a, while NMR analysis revealed the earlier-eluting conformer to be inactive and disordered. The exchange was found to be pH-dependent, arising in acidic solutions, possibly due to reversible disruption and formation of intramolecular salt bridges. This study reveals the nature of non-proline conformational exchange observed in Pn3a and possibly other disulfide-rich peptides, highlighting that the structure and activity of some disulfide-stabilized peptides can be dramatically susceptible to disruption.
Collapse
Affiliation(s)
- Poanna Tran
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Theo Crawford
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R. Deuis
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Mehdi Mobli
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Sharpe
- Molecular
Medicine Program, Research Institute, The
Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christina I. Schroeder
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Irina Vetter
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
26
|
Singh Y, Sarkar D, Duari S, G S, Indra Guru PK, M V H, Singh D, Bhardwaj S, Kalia J. Dissecting the contributions of membrane affinity and bivalency of the spider venom protein DkTx to its sustained mode of TRPV1 activation. J Biol Chem 2023; 299:104903. [PMID: 37302551 PMCID: PMC10404664 DOI: 10.1016/j.jbc.2023.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
The spider venom protein, double-knot toxin (DkTx), partitions into the cellular membrane and binds bivalently to the pain-sensing ion channel, TRPV1, triggering long-lasting channel activation. In contrast, its monovalent single knots membrane partition poorly and invoke rapidly reversible TRPV1 activation. To discern the contributions of the bivalency and membrane affinity of DkTx to its sustained mode of action, here, we developed diverse toxin variants including those containing truncated linkers between individual knots, precluding bivalent binding. Additionally, by appending the single-knot domains to the Kv2.1 channel-targeting toxin, SGTx, we created monovalent double-knot proteins that demonstrated higher membrane affinity and more sustained TRPV1 activation than the single-knots. We also produced hyper-membrane affinity-possessing tetra-knot proteins, (DkTx)2 and DkTx-(SGTx)2, that demonstrated longer-lasting TRPV1 activation than DkTx, establishing the central role of the membrane affinity of DkTx in endowing it with its sustained TRPV1 activation properties. These results suggest that high membrane affinity-possessing TRPV1 agonists can potentially serve as long-acting analgesics.
Collapse
Affiliation(s)
- Yashaswi Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Debayan Sarkar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Subhadeep Duari
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Shashaank G
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Pawas Kumar Indra Guru
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Hrishikesh M V
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Dheerendra Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Sahil Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Jeet Kalia
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India; Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India; Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
27
|
Tran HNT, Budusan E, Saez NJ, Norman A, Tucker IJ, King GF, Payne RJ, Rash LD, Vetter I, Schroeder CI. Evaluation of Peptide Ligation Strategies for the Synthesis of the Bivalent Acid-Sensing Ion Channel Inhibitor Hi1a. Org Lett 2023; 25:4439-4444. [PMID: 37306339 DOI: 10.1021/acs.orglett.3c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hi1a is a naturally occurring bivalent spider-venom peptide that is being investigated as a promising molecule for limiting ischemic damage in strokes, myocardial infarction, and organ transplantation. However, the challenges associated with the synthesis and production of the peptide in large quantities have slowed the progress in this area; hence, access to synthetic Hi1a is an essential milestone for the development of Hi1a as a pharmacological tool and potential therapeutic.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Elena Budusan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Research, https://cipps.org.au/
| | - Alexander Norman
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Isaac J Tucker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Research, https://cipps.org.au/
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Research, https://cipps.org.au/
| | - Richard J Payne
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Research, https://cipps.org.au/
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Research, https://cipps.org.au/
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
28
|
López-Ramírez O, González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front Physiol 2023; 14:1194948. [PMID: 37389121 PMCID: PMC10300344 DOI: 10.3389/fphys.2023.1194948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Acid Sensing Ion Channels (ASIC) are proton sensors involved in several physiological and pathophysiological functions including synaptic plasticity, sensory systems and nociception. ASIC channels have been ubiquitously localized in neurons and play a role in their excitability. Information about ASIC channels in cardiomyocyte function is limited. Evidence indicates that ASIC subunits are expressed in both, plasma membrane and intracellular compartments of mammalian cardiomyocytes, suggesting unrevealing functions in the cardiomyocyte physiology. ASIC channels are expressed in neurons of the peripheral nervous system including the nodose and dorsal root ganglia (DRG), both innervating the heart, where they play a dual role as mechanosensors and chemosensors. In baroreceptor neurons from nodose ganglia, mechanosensation is directly associated with ASIC2a channels for detection of changes in arterial pressure. ASIC channels expressed in DRG neurons have several roles in the cardiovascular function. First, ASIC2a/3 channel has been proposed as the molecular sensor of cardiac ischemic pain for its pH range activation, kinetics and the sustained current. Second, ASIC1a seems to have a critical role in ischemia-induced injury. And third, ASIC1a, 2 and 3 are part of the metabolic component of the exercise pressure reflex (EPR). This review consists of a summary of several reports about the role of ASIC channels in the cardiovascular system and its innervation.
Collapse
Affiliation(s)
- Omar López-Ramírez
- Instituto de Oftalmología Fundación de Asistencia Privada Conde de Valenciana, I.A.P., Mexico City, Mexico
| | - Antonia González-Garrido
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
29
|
Lyukmanova EN, Mironov PA, Kulbatskii DS, Shulepko MA, Paramonov AS, Chernaya EM, Logashina YA, Andreev YA, Kirpichnikov MP, Shenkarev ZO. Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer. Toxins (Basel) 2023; 15:378. [PMID: 37368679 DOI: 10.3390/toxins15060378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Phα1β (PnTx3-6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1β and its 15N-labeled analogue. Spatial structure and dynamics of Phα1β were determined via NMR spectroscopy. The N-terminal domain (Ala1-Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41-Cys52) stapled to ICK by two disulfides exhibits the µs-ms time-scale fluctuations. The Phα1β structure with the disulfide bond patterns Cys1-5, Cys2-7, Cys3-12, Cys4-10, Cys6-11, Cys8-9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1β has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1β significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1β as a gating modifier toxin, probably interacting with S1-S4 gating domains from a membrane-bound state.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel A Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Mikhail A Shulepko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Elizaveta M Chernaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
30
|
Tran P, Tran HNT, McMahon KL, Deuis JR, Ragnarsson L, Norman A, Sharpe SJ, Payne RJ, Vetter I, Schroeder CI. Changes in Potency and Subtype Selectivity of Bivalent Na V Toxins are Knot-Specific. Bioconjug Chem 2023. [PMID: 37262436 DOI: 10.1021/acs.bioconjchem.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker μ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.
Collapse
Affiliation(s)
- Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Simon J Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way South San Francisco, California 94080, United States
| |
Collapse
|
31
|
Ge H, Zhou T, Zhang C, Cun Y, Chen W, Yang Y, Zhang Q, Li H, Zhong J, Zhang X, Feng H, Hu R. Targeting ASIC1a Promotes Neural Progenitor Cell Migration and Neurogenesis in Ischemic Stroke. RESEARCH (WASHINGTON, D.C.) 2023; 6:0105. [PMID: 37275123 PMCID: PMC10234266 DOI: 10.34133/research.0105] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 06/07/2023]
Abstract
Cell replacement therapy using neural progenitor cells (NPCs) has been shown to be an effective treatment for ischemic stroke. However, the therapeutic effect is unsatisfactory due to the imbalanced homeostasis of the local microenvironment after ischemia. Microenvironmental acidosis is a common imbalanced homeostasis in the penumbra and could activate acid-sensing ion channels 1a (ASIC1a), a subunit of proton-gated cation channels following ischemic stroke. However, the role of ASIC1a in NPCs post-ischemia remains elusive. Here, our results indicated that ASIC1a was expressed in NPCs with channel functionality, which could be activated by extracellular acidification. Further evidence revealed that ASIC1a activation inhibited NPC migration and neurogenesis through RhoA signaling-mediated reorganization of filopodia formation, which could be primarily reversed by pharmacological or genetic disruption of ASIC1a. In vivo data showed that the knockout of the ASIC1a gene facilitated NPC migration and neurogenesis in the penumbra to improve behavioral recovery after stroke. Subsequently, ASIC1a gain of function partially abrogated this effect. Moreover, the administration of ASIC1a antagonists (amiloride or Psalmotoxin 1) promoted functional recovery by enhancing NPC migration and neurogenesis. Together, these results demonstrate targeting ASIC1a is a novel strategy potentiating NPC migration toward penumbra to repair lesions following ischemic stroke and even for other neurological diseases with the presence of niche acidosis.
Collapse
Affiliation(s)
- Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Chao Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Yupeng Cun
- Pediatric Research Institute,
Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, 400014 Chongqing, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Qian Zhang
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xuyang Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
- Medical Research Center, Southwest Hospital,
Third Military Medical University (Army Medical University), 400038 Chongqing, China
| |
Collapse
|
32
|
Cao Y, Redd MA, Fang C, Mizikovsky D, Li X, Macdonald PS, King GF, Palpant NJ. New Drug Targets and Preclinical Modelling Recommendations for Treating Acute Myocardial Infarction. Heart Lung Circ 2023:S1443-9506(23)00139-7. [PMID: 37230806 DOI: 10.1016/j.hlc.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide and the primary underlying risk factor for heart failure. Despite decades of research and clinical trials, there are no drugs currently available to prevent organ damage from acute ischaemic injuries of the heart. In order to address the increasing global burden of heart failure, drug, gene, and cell-based regeneration technologies are advancing into clinical testing. In this review we highlight the burden of disease associated with AMI and the therapeutic landscape based on market analyses. New studies revealing the role of acid-sensitive cardiac ion channels and other proton-gated ion channels in cardiac ischaemia are providing renewed interest in pre- and post-conditioning agents with novel mechanisms of action that may also have implications for gene- and cell-based therapeutics. Furthermore, we present guidelines that couple new cell technologies and data resources with traditional animal modelling pipelines to help de-risk drug candidates aimed at treating AMI. We propose that improved preclinical pipelines and increased investment in drug target identification for AMI is critical to stem the increasing global health burden of heart failure.
Collapse
Affiliation(s)
- Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Chen Fang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Xichun Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Peter S Macdonald
- Cardiopulmonary Transplant Unit, St Vincent's Hospital, Sydney, NSW, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
33
|
Duran LH, Wilson DT, Salih M, Rymer TL. Interactions between physiology and behaviour provide insights into the ecological role of venom in Australian funnel-web spiders: Interspecies comparison. PLoS One 2023; 18:e0285866. [PMID: 37216354 PMCID: PMC10202279 DOI: 10.1371/journal.pone.0285866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Australian funnel-web spiders are iconic species, characterized as being the most venomous spiders in the world. They are also valued for the therapeutics and natural bioinsecticides potentially hidden in their venom molecules. Although numerous biochemical and molecular structural approaches have tried to determine the factors driving venom complexity, these approaches have not considered behaviour, physiology and environmental conditions collectively, which can play a role in the evolution, complexity, and function of venom components in funnel-webs. This study used a novel interdisciplinary approach to understand the relationships between different behaviours (assessed in different ecological contexts) and morphophysiological variables (body condition, heart rate) that may affect venom composition in four species of Australian funnel-web spiders. We tested defensiveness, huddling behaviour, frequency of climbing, and activity for all species in three ecological contexts: i) predation using both indirect (puff of air) and direct (prodding) stimuli; ii) conspecific tolerance; and iii) exploration of a new territory. We also assessed morphophysiological variables and venom composition of all species. For Hadronyche valida, the expression of some venom components was associated with heart rate and defensiveness during the predation context. However, we did not find any associations between behavioural traits and morphophysiological variables in the other species, suggesting that particular associations may be species-specific. When we assessed differences between species, we found that the species separated out based on the venom profiles, while activity and heart rate are likely more affected by individual responses and microhabitat conditions. This study demonstrates how behavioural and morphophysiological traits are correlated with venom composition and contributes to a broader understanding of the function and evolution of venoms in funnel-web spiders.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - Mohamed Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
34
|
Gladkikh IN, Klimovich AA, Kalina RS, Kozhevnikova YV, Khasanov TA, Osmakov DI, Koshelev SG, Monastyrnaya MM, Andreev YA, Leychenko EV, Kozlov SA. Anxiolytic, Analgesic and Anti-Inflammatory Effects of Peptides Hmg 1b-2 and Hmg 1b-4 from the Sea Anemone Heteractis magnifica. Toxins (Basel) 2023; 15:toxins15050341. [PMID: 37235375 DOI: 10.3390/toxins15050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.
Collapse
Affiliation(s)
- Irina N Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna A Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Rimma S Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yulia V Kozhevnikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Margarita M Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Elena V Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
35
|
Lüddecke T, Dersch L, Schulte L, Hurka S, Paas A, Oberpaul M, Eichberg J, Hardes K, Klimpel S, Vilcinskas A. Functional Profiling of the A-Family of Venom Peptides from the Wolf Spider Lycosa shansia. Toxins (Basel) 2023; 15:toxins15050303. [PMID: 37235338 DOI: 10.3390/toxins15050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The venoms of spiders from the RTA (retro-lateral tibia apophysis) clade contain diverse short linear peptides (SLPs) that offer a rich source of therapeutic candidates. Many of these peptides have insecticidal, antimicrobial and/or cytolytic activities, but their biological functions are unclear. Here, we explore the bioactivity of all known members of the A-family of SLPs previously identified in the venom of the Chinese wolf spider (Lycosa shansia). Our broad approach included an in silico analysis of physicochemical properties and bioactivity profiling for cytotoxic, antiviral, insecticidal and antibacterial activities. We found that most members of the A-family can form α-helices and resemble the antibacterial peptides found in frog poison. The peptides we tested showed no cytotoxic, antiviral or insecticidal activities but were able to reduce the growth of bacteria, including clinically relevant strains of Staphylococcus epidermidis and Listeria monocytogenes. The absence of insecticidal activity may suggest that these peptides have no role in prey capture, but their antibacterial activity may help to defend the venom gland against infection.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Ludwig Dersch
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Markus Oberpaul
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sven Klimpel
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
36
|
Animal toxins: As an alternative therapeutic target following ischemic stroke condition. Life Sci 2023; 317:121365. [PMID: 36640901 DOI: 10.1016/j.lfs.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Globally, Ischemic stroke (IS) has become the second leading cause of mortality and chronic disability. The process of IS has triggered by the blockages of blood vessels to form clots in the brain which initiates multiple interactions with the key signaling pathways, counting excitotoxicity, acidosis, ionic imbalance, inflammation, oxidative stress, and neuronal dysfunction of cells, and ultimately cells going under apoptosis. Currently, FDA has approved only tissue plasminogen activator therapy, which is effective against IS with few limitations. However, the mechanism of excitotoxicity and acidosis has spurred the investigation of a potential candidate for IS therapy. Acid-sensing ion channels (ASICs) and Voltage-gated Ca2+ channels (VDCCs) get activated and disturb the brain's normal physiology. Animal toxins are novel inhibitors of ASICs and VDCCs channels and have provided neuroprotective insights into the pathophysiology of IS. This review will discuss the potential directions of translational ASICs and VDCCs inhibitors research for clinical therapies.
Collapse
|
37
|
Thakur AK, Miller SE, Liau NPD, Hwang S, Hansen S, de Sousa E Melo F, Sudhamsu J, Hannoush RN. Synthetic Multivalent Disulfide-Constrained Peptide Agonists Potentiate Wnt1/β-Catenin Signaling via LRP6 Coreceptor Clustering. ACS Chem Biol 2023; 18:772-784. [PMID: 36893429 DOI: 10.1021/acschembio.2c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wnt ligands are critical for tissue homeostasis and form a complex with LRP6 and frizzled coreceptors to initiate Wnt/β-catenin signaling. Yet, how different Wnts achieve various levels of signaling activation through distinct domains on LRP6 remains elusive. Developing tool ligands that target individual LRP6 domains could help elucidate the mechanism of Wnt signaling regulation and uncover pharmacological approaches for pathway modulation. We employed directed evolution of a disulfide constrained peptide (DCP) to identify molecules that bind to the third β-propeller domain of LRP6. The DCPs antagonize Wnt3a while sparing Wnt1 signaling. Using PEG linkers with different geometries, we converted the Wnt3a antagonist DCPs to multivalent molecules that potentiated Wnt1 signaling by clustering the LRP6 coreceptor. The mechanism of potentiation is unique as it occurred only in the presence of extracellular secreted Wnt1 ligand. While all DCPs recognized a similar binding interface on LRP6, they displayed different spatial orientations that influenced their cellular activities. Moreover, structural analyses revealed that the DCPs exhibited new folds that were distinct from the parent DCP framework they were evolved from. The multivalent ligand design principles highlighted in this study provide a path for developing peptide agonists that modulate different branches of cellular Wnt signaling.
Collapse
Affiliation(s)
- Avinash K Thakur
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Stephen E Miller
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech, South San Francisco, California 94080, United States
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Simon Hansen
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Felipe de Sousa E Melo
- Department of Molecular Oncology, Genentech, South San Francisco, California 94080, United States
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California 94080, United States
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
38
|
A bivalent remipede toxin promotes calcium release via ryanodine receptor activation. Nat Commun 2023; 14:1036. [PMID: 36823422 PMCID: PMC9950431 DOI: 10.1038/s41467-023-36579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.
Collapse
|
39
|
Liu J, Maxwell M, Cuddihy T, Crawford T, Bassetti M, Hyde C, Peigneur S, Tytgat J, Undheim EAB, Mobli M. ScrepYard: An online resource for disulfide-stabilized tandem repeat peptides. Protein Sci 2023; 32:e4566. [PMID: 36644825 PMCID: PMC9885460 DOI: 10.1002/pro.4566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Receptor avidity through multivalency is a highly sought-after property of ligands. While readily available in nature in the form of bivalent antibodies, this property remains challenging to engineer in synthetic molecules. The discovery of several bivalent venom peptides containing two homologous and independently folded domains (in a tandem repeat arrangement) has provided a unique opportunity to better understand the underpinning design of multivalency in multimeric biomolecules, as well as how naturally occurring multivalent ligands can be identified. In previous work, we classified these molecules as a larger class termed secreted cysteine-rich repeat-proteins (SCREPs). Here, we present an online resource; ScrepYard, designed to assist researchers in identification of SCREP sequences of interest and to aid in characterizing this emerging class of biomolecules. Analysis of sequences within the ScrepYard reveals that two-domain tandem repeats constitute the most abundant SCREP domain architecture, while the interdomain "linker" regions connecting the functional domains are found to be abundant in amino acids with short or polar sidechains and contain an unusually high abundance of proline residues. Finally, we demonstrate the utility of ScrepYard as a virtual screening tool for discovery of putatively multivalent peptides, by using it as a resource to identify a previously uncharacterized serine protease inhibitor and confirm its predicted activity using an enzyme assay.
Collapse
Affiliation(s)
- Junyu Liu
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Michael Maxwell
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Thom Cuddihy
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia,Centre for Clinical ResearchThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Theo Crawford
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Madeline Bassetti
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia,University of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - Steve Peigneur
- Toxicology and PharmacologyUniversity of Leuven (KU Leuven)LeuvenBelgium
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven (KU Leuven)LeuvenBelgium
| | - Eivind A. B. Undheim
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia,Centre for Ecological and Evolutionary Synthesis, Department of BiosciencesUniversity of OsloOsloNorway
| | - Mehdi Mobli
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
40
|
Liu Y, Zhu Y, Wang L, Li K, Du N, Pan X, Li Y, Cao R, Li B, Lin H, Song Y, Zhang Y, Wu X, Hu C, Wang Y, Liao S, Huang Y. Acid-sensitive ion channel 1a regulates TNF-α expression in LPS-induced acute lung injury via ERS-CHOP-C/EBPα signaling pathway. Mol Immunol 2023; 153:25-35. [PMID: 36403431 DOI: 10.1016/j.molimm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is the local inflammatory response of the lungs involved in a variety of inflammatory cells. Macrophages are immune cells and inflammatory cells widely distributed in the body. Acid-sensitive ion channel 1a (ASIC1a) is involved in the occurrence of ALI, but the mechanism is still unclear. METHODS Kunming mouse were stimulated by Lipopolysaccharides (LPS) to establish ALI model in vivo, and RAW264.7 cells were stimulated by LPS to establish inflammatory model in vitro. Amiloride was used as a blocker of ASIC1a to treat mice, and dexamethasone was used as a positive drug for ALI. After blockers and RNAi blocked or silenced the expression of ASIC1a, the expressions of ASIC1a, endoplasmic reticulum-related proteins GRP78, CHOP, C/EBPα and TNF-α were detected. The Ca2+ concentration was measured by a laser confocal microscope. The interaction between CHOP and C/EBPα and the effect of C/EBPα on the activity of TNF-α promoter were detected by immunoprecipitation and luciferase reporter. RESULTS The expressions of ASIC1a and TNF-α were increased significantly in LPS group. After the blocker and RNAi blocked or silenced ASIC1a, the expressions of TNF-α, GRP78, CHOP were reduced, and the intracellular Ca2+ influx was weakened. The results of immunoprecipitation showed that CHOP and C/EBPα interacted in the macrophages. After silencing CHOP, C/EBPα expression was increased, and TNF-α expression was decreased. The results of the luciferase reporter indicated that C/EBPα directly binds to TNF-α. CONCLUSION ASIC1a regulates the expression of TNF-α in LPS-induced acute lung injury via ERS-CHOP-C/EBPα signaling pathway.
Collapse
Affiliation(s)
- Yanyi Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Lili Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuayue Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Na Du
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yangyang Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Rui Cao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yonghu Song
- Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Yunting Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Xian Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Chengmu Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Songyan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China.
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Anhui Laboratory of Inflammatory and Immune Disease, Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
41
|
Lüddecke T, Paas A, Harris RJ, Talmann L, Kirchhoff KN, Billion A, Hardes K, Steinbrink A, Gerlach D, Fry BG, Vilcinskas A. Venom biotechnology: casting light on nature's deadliest weapons using synthetic biology. Front Bioeng Biotechnol 2023; 11:1166601. [PMID: 37207126 PMCID: PMC10188951 DOI: 10.3389/fbioe.2023.1166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- *Correspondence: Tim Lüddecke,
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lea Talmann
- Syngenta Crop Protection, Stein, Switzerland
| | - Kim N. Kirchhoff
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
42
|
Chougale A, Vedante S, Kulkarni G, Patnawar S. Recent Progress on Biosensors for the Early Detection of Neurological Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202203155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Amit Chougale
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Shruti Vedante
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Guruprasad Kulkarni
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India 416234
| | - Sneha Patnawar
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India. 416234
| |
Collapse
|
43
|
The Deadly Toxin Arsenal of the Tree-Dwelling Australian Funnel-Web Spiders. Int J Mol Sci 2022; 23:ijms232113077. [PMID: 36361863 PMCID: PMC9658043 DOI: 10.3390/ijms232113077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.
Collapse
|
44
|
Nishiduka ES, Abreu TF, Abukawa FM, Oliveira UC, Tardivo CEO, Nascimento SM, Meissner GO, Chaim OM, Juliano MA, Kitano ES, Zelanis A, Serrano SMT, da Silva PI, Junqueira-de-Azevedo IL, Nishiyama-Jr MY, Tashima AK. Multiomics Profiling of Toxins in the Venom of the Amazonian Spider Acanthoscurria juruenicola. J Proteome Res 2022; 21:2783-2797. [PMID: 36260604 DOI: 10.1021/acs.jproteome.2c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.
Collapse
Affiliation(s)
- Erika S Nishiduka
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Thiago F Abreu
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Fernanda Midori Abukawa
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Ursula C Oliveira
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Caio E O Tardivo
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Soraia M Nascimento
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Gabriel O Meissner
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, Puerto Rico, Brazil
| | - Olga M Chaim
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, Puerto Rico, Brazil.,Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Eduardo S Kitano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos 12231-280, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Pedro I da Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Inácio L Junqueira-de-Azevedo
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Milton Y Nishiyama-Jr
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| |
Collapse
|
45
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
46
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Wang CK, Craik DJ. CIPPS, an Australian Centre for Peptide and Protein Research, goes live! Peptides 2022; 155:170835. [PMID: 35753503 DOI: 10.1016/j.peptides.2022.170835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
48
|
Acidosis induces RIPK1-dependent death of glioblastoma stem cells via acid-sensing ion channel 1a. Cell Death Dis 2022; 13:702. [PMID: 35961983 PMCID: PMC9374719 DOI: 10.1038/s41419-022-05139-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
Eliciting regulated cell death, like necroptosis, is a potential cancer treatment. However, pathways eliciting necroptosis are poorly understood. It has been reported that prolonged activation of acid-sensing ion channel 1a (ASIC1a) induces necroptosis in mouse neurons. Glioblastoma stem cells (GSCs) also express functional ASIC1a, but whether prolonged activation of ASIC1a induces necroptosis in GSCs is unknown. Here we used a tumorsphere formation assay to show that slight acidosis (pH 6.6) induces necrotic cell death in a manner that was sensitive to the necroptosis inhibitor Nec-1 and to the ASIC1a antagonist PcTx1. In addition, genetic knockout of ASIC1a rendered GSCs resistant to acid-induced reduction in tumorsphere formation, while the ASIC1 agonist MitTx1 reduced tumorsphere formation also at neutral pH. Finally, a 20 amino acid fragment of the ASIC1 C-terminus, thought to interact with the necroptosis kinase RIPK1, was sufficient to reduce the formation of tumorspheres. Meanwhile, the genetic knockout of MLKL, the executive protein in the necroptosis cascade, did not prevent a reduction in tumor sphere formation, suggesting that ASIC1a induced an alternative cell death pathway. These findings demonstrate that ASIC1a is a death receptor on GSCs that induces cell death during prolonged acidosis. We propose that this pathway shapes the evolution of a tumor in its acidic microenvironment and that pharmacological activation of ASIC1a might be a potential new strategy in tumor therapy.
Collapse
|
49
|
Bursill CA, Smith NJ, Palpant N, Tan I, Sunde M, Harvey RP, Lewis B, Figtree GA, Vandenberg JI. Don't Turn Off the Tap! The Importance of Discovery Science to the Australian Cardiovascular Sector and Improving Clinical Outcomes Into the Future. Heart Lung Circ 2022; 31:1321-1332. [PMID: 35961820 DOI: 10.1016/j.hlc.2022.06.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 10/15/2022]
Abstract
Despite significant advances in interventional and therapeutic approaches, cardiovascular disease (CVD) remains the leading cause of death and mortality. To lower this health burden, cardiovascular discovery scientists need to play an integral part in the solution. Successful clinical translation is achieved when built upon a strong foundational understanding of the disease mechanisms involved. Changes in the Australian funding landscape, to place greater emphasis on translation, however, have increased job insecurity for discovery science researchers and especially early-mid career researchers. To highlight the importance of discovery science in cardiovascular research, this review compiles six science stories in which fundamental discoveries, often involving Australian researchers, has led to or is advancing to clinical translation. These stories demonstrate the importance of the role of discovery scientists and the need for their work to be prioritised now and in the future. Australia needs to keep discovery scientists supported and fully engaged within the broader cardiovascular research ecosystem so they can help realise the next game-changing therapy or diagnostic approach that diminishes the burden of CVD on society.
Collapse
Affiliation(s)
- Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Faculty of Health and Medical Research, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP).
| | - Nicola J Smith
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Isabella Tan
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Melbourne, Vic, Australia; The George Institute of Global Health, Sydney, NSW, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW, Australia
| | - Benjamin Lewis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Gemma A Figtree
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
50
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|