1
|
Refahi Y, Zoghlami A, Viné T, Terryn C, Paës G. Plant cell wall enzymatic deconstruction: Bridging the gap between micro and nano scales. BIORESOURCE TECHNOLOGY 2024; 414:131551. [PMID: 39370009 DOI: 10.1016/j.biortech.2024.131551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Understanding lignocellulosic biomass resistance to enzymatic deconstruction is crucial for its sustainable conversion into bioproducts. Despite scientific advances, quantitative morphological analysis of plant deconstruction at cell and tissue scales remains under-explored. In this study, an original pipeline is devised, involving four-dimensional (space + time) fluorescence confocal imaging, and a novel computational tool, to track and quantify deconstruction at cell and tissue scales. By applying this pipeline to poplar wood, dynamics of cellular parameters was computed and cellulose conversion during enzymatic deconstruction was measured. Results showed that enzymatic deconstruction predominantly impacts cell wall volume rather than surface area. Additionally, a negative correlation was observed between pre-hydrolysis compactness measures and volumetric cell wall deconstruction rate, whose strength was modulated by enzymatic activity. Results also revealed a strong positive correlation between average volumetric cell wall deconstruction rate and cellulose conversion rate. These findings link key deconstruction parameters across nano and micro scales.
Collapse
Affiliation(s)
- Yassin Refahi
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| | - Aya Zoghlami
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| | - Thibaut Viné
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Gabriel Paës
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims 51100, France
| |
Collapse
|
2
|
Wang Y, Strauss S, Smith RS, Sampathkumar A. Actin-mediated avoidance of tricellular junction influences global topology at the Arabidopsis shoot apical meristem. Cell Rep 2024; 43:114844. [PMID: 39418163 DOI: 10.1016/j.celrep.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Division plane orientation contributes to cell shape and topological organization, playing a key role in morphogenesis, but the precise physical and molecular mechanism influencing these processes remains largely obscure in plants. In particular, it is less clear how the placement of the new walls occurs in relation to the walls of neighboring cells. Here, we show that genetic perturbation of the actin cytoskeleton results in more rectangular cell shapes and higher incidences of four-way junctions, perturbing the global topology of cells in the shoot apical meristem of Arabidopsis thaliana. Actin mutants also exhibit changes in the expansion rate of the new versus the maternal cell wall after division, affecting the evolution of internal angles at tricellular junctions. Further, the increased width of the preprophase band in the actin mutant contributes to inaccuracy in the placement of the new cell wall. Computational simulation further substantiates this hypothesis and reproduces the observed cell shape defects.
Collapse
Affiliation(s)
- Yang Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Soeren Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Ln, NR4 7UH Norwich, UK
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Li XM, Jenke H, Strauss S, Wang Y, Bhatia N, Kierzkowski D, Lymbouridou R, Huijser P, Smith RS, Runions A, Tsiantis M. Age-associated growth control modifies leaf proximodistal symmetry and enabled leaf shape diversification. Curr Biol 2024; 34:4547-4558.e9. [PMID: 39216485 DOI: 10.1016/j.cub.2024.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Biological shape diversity is often manifested in modulation of organ symmetry and modification of the patterned elaboration of repeated shape elements.1,2,3,4,5 Whether and how these two aspects of shape determination are coordinately regulated is unclear.5,6,7 Plant leaves provide an attractive system to investigate this problem, because they often show asymmetries along the proximodistal (PD) axis of their blades, along which they can also produce repeated marginal outgrowths such as serrations or leaflets.1 One aspect of leaf shape diversity is heteroblasty, where the leaf form in a single genotype is modified with progressive plant age.8,9,10,11 In Arabidopsis thaliana, a plant with simple leaves, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) controls heteroblasty by activating CyclinD3 expression, thereby sustaining proliferative growth and retarding differentiation in adult leaves.12,13 However, the precise significance of SPL9 action for leaf symmetry and marginal patterning is unknown. By combining genetics, quantitative shape analyses, and time-lapse imaging, we show that PD symmetry of the leaf blade in A. thaliana decreases in response to an age-dependent SPL9 expression gradient, and that SPL9 action coordinately regulates the distribution and shape of marginal serrations and overall leaf form. Using comparative analyses, we demonstrate that heteroblastic growth reprogramming in Cardamine hirsuta, a complex-leafed relative of A. thaliana, also involves prolonging the duration of cell proliferation and delaying differentiation. We further provide evidence that SPL9 enables species-specific action of homeobox genes that promote leaf complexity. In conclusion, we identified an age-dependent layer of organ PD growth regulation that modulates leaf symmetry and has enabled leaf shape diversification.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
4
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
5
|
Lorrai R, Erguvan Ö, Raggi S, Jonsson K, Široká J, Tarkowská D, Novák O, Griffiths J, Jones AM, Verger S, Robert S, Ferrari S. Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation. PLANT PHYSIOLOGY 2024; 196:1562-1578. [PMID: 38976579 PMCID: PMC11444296 DOI: 10.1093/plphys/kiae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development are still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS1 (HLS1) and PHYTOCHROME INTERACTING FACTOR4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins, or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima, and PIF4 and HLS1 expression. Analyses of plants expressing a Förster resonance energy transfer-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signaling module to control differential cell elongation during hook formation.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Rome, Italy
| | - Özer Erguvan
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Sara Raggi
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Kristoffer Jonsson
- IRBV, Department of Biological Sciences, University of Montreal, QC H1X 2B2 Montreal, Quebec, Canada
| | - Jitka Široká
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, CZ-77900 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, CZ-77900 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, CZ-77900 Olomouc, Czech Republic
| | - Jayne Griffiths
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, UK
| | - Stéphane Verger
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Simone Ferrari
- Dipartimento di Biologia e biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
6
|
Nieto C, Vargas-García CA, Singh A. A Generalized Adder mechanism for Cell Size Homeostasis: Implications for Stochastic Dynamics of Clonal Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612972. [PMID: 39345437 PMCID: PMC11429681 DOI: 10.1101/2024.09.13.612972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Measurements of cell size dynamics have revealed phenomenological principles by which individual cells control their size across diverse organisms. One of the emerging paradigms of cell size homeostasis is the adder, where the cell cycle duration is established such that the cell size increase from birth to division is independent of the newborn cell size. We provide a mechanistic formulation of the adder considering that cell size follows any arbitrary non-exponential growth law. Our results show that the main requirement to obtain an adder regardless of the growth law (the time derivative of cell size) is that cell cycle regulators are produced at a rate proportional to the growth law and cell division is triggered when these molecules reach a prescribed threshold level. Among the implications of this generalized adder, we investigate fluctuations in the proliferation of single-cell derived colonies. Considering exponential cell size growth, random fluctuations in clonal size show a transient increase and then eventually decay to zero over time (i.e., clonal populations become asymptotically more similar). In contrast, several forms of non-exponential cell size dynamics (with adder-based cell size control) yield qualitatively different results: clonal size fluctuations monotonically increase over time reaching a non-zero value. These results characterize the interplay between cell size homeostasis at the single-cell level and clonal proliferation at the population level, explaining the broad fluctuations in clonal sizes seen in barcoded human cell lines.
Collapse
Affiliation(s)
- César Nieto
- Department of Electrical and Computer Engineering, University of Delaware. Newark, DE 19716, USA
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware. Newark, DE 19716, USA
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Interdisciplinary Neuroscience Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Bouchez D, Uyttewaal M, Pastuglia M. Spatiotemporal regulation of plant cell division. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102530. [PMID: 38631088 DOI: 10.1016/j.pbi.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Plant morphogenesis largely depends on the orientation and rate of cell division and elongation, and their coordination at all levels of organization. Despite recent progresses in the comprehension of pathways controlling division plane determination in plant cells, many pieces are missing to the puzzle. For example, we have a partial comprehension of formation, function and evolutionary significance of the preprophase band, a plant-specific cytoskeletal array involved in premitotic setup of the division plane, as well as the role of the nucleus and its connection to the preprophase band of microtubules. Likewise, several modeling studies point to a strong relationship between cell shape and division geometry, but the emergence of such geometric rules from the molecular and cellular pathways at play are still obscure. Yet, recent imaging technologies and genetic tools hold a lot of promise to tackle these challenges and to revisit old questions with unprecedented resolution in space and time.
Collapse
Affiliation(s)
- David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France.
| | - Magalie Uyttewaal
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| |
Collapse
|
8
|
Bou Daher F, Serra L, Carter R, Jönsson H, Robinson S, Meyerowitz EM, Gray WM. Xyloglucan deficiency leads to a reduction in turgor pressure and changes in cell wall properties, affecting early seedling establishment. Curr Biol 2024; 34:2094-2106.e6. [PMID: 38677280 PMCID: PMC11111339 DOI: 10.1016/j.cub.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Xyloglucan is believed to play a significant role in cell wall mechanics of dicot plants. Surprisingly, Arabidopsis plants defective in xyloglucan biosynthesis exhibit nearly normal growth and development. We investigated a mutant line, cslc-Δ5, lacking activity in all five Arabidopsis cellulose synthase like-C (CSLC) genes responsible for xyloglucan backbone biosynthesis. We observed that this xyloglucan-deficient line exhibited reduced cellulose crystallinity and increased pectin levels, suggesting the existence of feedback mechanisms that regulate wall composition to compensate for the absence of xyloglucan. These alterations in cell wall composition in the xyloglucan-absent plants were further linked to a decrease in cell wall elastic modulus and rupture stress, as observed through atomic force microscopy (AFM) and extensometer-based techniques. This raised questions about how plants with such modified cell wall properties can maintain normal growth. Our investigation revealed two key factors contributing to this phenomenon. First, measurements of turgor pressure, a primary driver of plant growth, revealed that cslc-Δ5 plants have reduced turgor, preventing the compromised walls from bursting while still allowing growth to occur. Second, we discovered the conservation of elastic asymmetry (ratio of axial to transverse wall elasticity) in the mutant, suggesting an additional mechanism contributing to the maintenance of normal growth. This novel feedback mechanism between cell wall composition and mechanical properties, coupled with turgor pressure regulation, plays a central role in the control of plant growth and is critical for seedling establishment in a mechanically challenging environment by affecting shoot emergence and root penetration.
Collapse
Affiliation(s)
- Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
| | - Leo Serra
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
9
|
Zhou FY, Yapp C, Shang Z, Daetwyler S, Marin Z, Islam MT, Nanes B, Jenkins E, Gihana GM, Chang BJ, Weems A, Dustin M, Morrison S, Fiolka R, Dean K, Jamieson A, Sorger PK, Danuser G. A general algorithm for consensus 3D cell segmentation from 2D segmented stacks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592249. [PMID: 38766074 PMCID: PMC11100681 DOI: 10.1101/2024.05.03.592249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell segmentation, enabling generalized solutions across cell types and imaging modalities. This has been driven by the ease of scaling up image acquisition, annotation and computation. However 3D cell segmentation, which requires dense annotation of 2D slices still poses significant challenges. Labelling every cell in every 2D slice is prohibitive. Moreover it is ambiguous, necessitating cross-referencing with other orthoviews. Lastly, there is limited ability to unambiguously record and visualize 1000's of annotated cells. Here we develop a theory and toolbox, u-Segment3D for 2D-to-3D segmentation, compatible with any 2D segmentation method. Given optimal 2D segmentations, u-Segment3D generates the optimal 3D segmentation without data training, as demonstrated on 11 real life datasets, >70,000 cells, spanning single cells, cell aggregates and tissue.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhiguo Shang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zach Marin
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Md Torikul Islam
- Children’s Research Institute and Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Nanes
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY UK
| | - Gabriel M. Gihana
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY UK
| | - Sean Morrison
- Children’s Research Institute and Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Jamieson
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for System Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Gómez-Felipe A, Branchini E, Wang B, Marconi M, Bertrand-Rakusová H, Stan T, Burkiewicz J, de Folter S, Routier-Kierzkowska AL, Wabnik K, Kierzkowski D. Two orthogonal differentiation gradients locally coordinate fruit morphogenesis. Nat Commun 2024; 15:2912. [PMID: 38575617 PMCID: PMC10995178 DOI: 10.1038/s41467-024-47325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.
Collapse
Affiliation(s)
- Andrea Gómez-Felipe
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Elvis Branchini
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Binghan Wang
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Marco Marconi
- centro De Biotecnología Y Genómica De Plantas (Universidad Politécnica De Madrid (Upm), Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (Inia, Csic), Campus De Montegancedo, Pozuelo De Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Hana Bertrand-Rakusová
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Teodora Stan
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Jérôme Burkiewicz
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP, 36824, Irapuato, Mexico
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada
| | - Krzysztof Wabnik
- centro De Biotecnología Y Genómica De Plantas (Universidad Politécnica De Madrid (Upm), Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (Inia, Csic), Campus De Montegancedo, Pozuelo De Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
11
|
Pinto SC, Stojilković B, Zhang X, Sablowski R. Plant cell size: Links to cell cycle, differentiation and ploidy. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102527. [PMID: 38484440 DOI: 10.1016/j.pbi.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Cell size affects many processes, including exchange of nutrients and external signals, cell division and tissue mechanics. Across eukaryotes, cells have evolved mechanisms that assess their own size to inform processes such as cell cycle progression or gene expression. Here, we review recent progress in understanding plant cell size regulation and its implications, relating these findings to work in other eukaryotes. Highlights include use of DNA contents as reference point to control the cell cycle in shoot meristems, a size-dependent cell fate decision during stomatal development and insights into the interconnection between ploidy, cell size and cell wall mechanics.
Collapse
Affiliation(s)
- Sara C Pinto
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Xinyu Zhang
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
12
|
Coen E, Prusinkiewicz P. Developmental timing in plants. Nat Commun 2024; 15:2674. [PMID: 38531864 PMCID: PMC10965974 DOI: 10.1038/s41467-024-46941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | - Przemyslaw Prusinkiewicz
- Department of Computer Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
13
|
Li XM, Jenke H, Strauss S, Bazakos C, Mosca G, Lymbouridou R, Kierzkowski D, Neumann U, Naik P, Huijser P, Laurent S, Smith RS, Runions A, Tsiantis M. Cell-cycle-linked growth reprogramming encodes developmental time into leaf morphogenesis. Curr Biol 2024; 34:541-556.e15. [PMID: 38244542 DOI: 10.1016/j.cub.2023.12.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
How is time encoded into organ growth and morphogenesis? We address this question by investigating heteroblasty, where leaf development and form are modified with progressing plant age. By combining morphometric analyses, fate-mapping through live-imaging, computational analyses, and genetics, we identify age-dependent changes in cell-cycle-associated growth and histogenesis that underpin leaf heteroblasty. We show that in juvenile leaves, cell proliferation competence is rapidly released in a "proliferation burst" coupled with fast growth, whereas in adult leaves, proliferative growth is sustained for longer and at a slower rate. These effects are mediated by the SPL9 transcription factor in response to inputs from both shoot age and individual leaf maturation along the proximodistal axis. SPL9 acts by activating CyclinD3 family genes, which are sufficient to bypass the requirement for SPL9 in the control of leaf shape and in heteroblastic reprogramming of cellular growth. In conclusion, we have identified a mechanism that bridges across cell, tissue, and whole-organism scales by linking cell-cycle-associated growth control to age-dependent changes in organ geometry.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Ulla Neumann
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Purva Naik
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
14
|
Eschweiler D, Yilmaz R, Baumann M, Laube I, Roy R, Jose A, Brückner D, Stegmaier J. Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets. PLoS Comput Biol 2024; 20:e1011890. [PMID: 38377165 PMCID: PMC10906858 DOI: 10.1371/journal.pcbi.1011890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Recent advances in computer vision have led to significant progress in the generation of realistic image data, with denoising diffusion probabilistic models proving to be a particularly effective method. In this study, we demonstrate that diffusion models can effectively generate fully-annotated microscopy image data sets through an unsupervised and intuitive approach, using rough sketches of desired structures as the starting point. The proposed pipeline helps to reduce the reliance on manual annotations when training deep learning-based segmentation approaches and enables the segmentation of diverse datasets without the need for human annotations. We demonstrate that segmentation models trained with a small set of synthetic image data reach accuracy levels comparable to those of generalist models trained with a large and diverse collection of manually annotated image data, thereby offering a streamlined and specialized application of segmentation models.
Collapse
Affiliation(s)
- Dennis Eschweiler
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Rüveyda Yilmaz
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Matisse Baumann
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Ina Laube
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Rijo Roy
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Abin Jose
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Daniel Brückner
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Johannes Stegmaier
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| |
Collapse
|
15
|
Samalova M, Melnikava A, Elsayad K, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya EV, Ubogoeva EV, Balkova D, Demko M, Blavet N, Alexiou P, Benes V, Mouille G, Hejatko J. Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth. PLANT PHYSIOLOGY 2023; 194:209-228. [PMID: 37073485 PMCID: PMC10762514 DOI: 10.1093/plphys/kiad228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Alesia Melnikava
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Kareem Elsayad
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Evelina Gahurova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Ioannis Spyroglou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Elena V Zemlyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Darina Balkova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Martin Demko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Nicolas Blavet
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Panagiotis Alexiou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Jan Hejatko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
16
|
Liu Y, Jin Y, Azizi E, Blumberg AJ. Cellstitch: 3D cellular anisotropic image segmentation via optimal transport. BMC Bioinformatics 2023; 24:480. [PMID: 38102537 PMCID: PMC10724925 DOI: 10.1186/s12859-023-05608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Spatial mapping of transcriptional states provides valuable biological insights into cellular functions and interactions in the context of the tissue. Accurate 3D cell segmentation is a critical step in the analysis of this data towards understanding diseases and normal development in situ. Current approaches designed to automate 3D segmentation include stitching masks along one dimension, training a 3D neural network architecture from scratch, and reconstructing a 3D volume from 2D segmentations on all dimensions. However, the applicability of existing methods is hampered by inaccurate segmentations along the non-stitching dimensions, the lack of high-quality diverse 3D training data, and inhomogeneity of image resolution along orthogonal directions due to acquisition constraints; as a result, they have not been widely used in practice. METHODS To address these challenges, we formulate the problem of finding cell correspondence across layers with a novel optimal transport (OT) approach. We propose CellStitch, a flexible pipeline that segments cells from 3D images without requiring large amounts of 3D training data. We further extend our method to interpolate internal slices from highly anisotropic cell images to recover isotropic cell morphology. RESULTS We evaluated the performance of CellStitch through eight 3D plant microscopic datasets with diverse anisotropic levels and cell shapes. CellStitch substantially outperforms the state-of-the art methods on anisotropic images, and achieves comparable segmentation quality against competing methods in isotropic setting. We benchmarked and reported 3D segmentation results of all the methods with instance-level precision, recall and average precision (AP) metrics. CONCLUSIONS The proposed OT-based 3D segmentation pipeline outperformed the existing state-of-the-art methods on different datasets with nonzero anisotropy, providing high fidelity recovery of 3D cell morphology from microscopic images.
Collapse
Affiliation(s)
- Yining Liu
- Department of Computer Science, Columbia University, New York, USA
- Irving Institute for Cancer Dynamics, New York, USA
| | - Yinuo Jin
- Department of Biomedical Engineering, Columbia University, New York, USA
- Irving Institute for Cancer Dynamics, New York, USA
| | - Elham Azizi
- Department of Computer Science, Columbia University, New York, USA.
- Department of Biomedical Engineering, Columbia University, New York, USA.
- Data Science Institute, Columbia University, New York, USA.
- Irving Institute for Cancer Dynamics, New York, USA.
| | - Andrew J Blumberg
- Department of Computer Science, Columbia University, New York, USA.
- Department of Mathematics, Columbia University, New York, USA.
- Irving Institute for Cancer Dynamics, New York, USA.
| |
Collapse
|
17
|
Kannivadi Ramakanth K, Long Y. In preprints: shrinking boundary cells reveal fluid flux in organogenesis. Development 2023; 150:dev202450. [PMID: 37922124 DOI: 10.1242/dev.202450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Affiliation(s)
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Singapore
- Mechanobiology Institute, The National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
18
|
Williamson D, Tasker-Brown W, Murray JAH, Jones AR, Band LR. Modelling how plant cell-cycle progression leads to cell size regulation. PLoS Comput Biol 2023; 19:e1011503. [PMID: 37862377 PMCID: PMC10653611 DOI: 10.1371/journal.pcbi.1011503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/16/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of "size control", whereby the cell volume at birth affects cell-cycle progression. While size control mechanisms have been elucidated in a number of other organisms, it is not yet clear how this mechanism functions in plants. Here, we present a mathematical model of the key interactions in the plant cell cycle. Model simulations reveal that the network of interactions exhibits limit-cycle solutions, with biological switches underpinning both the G1/S and G2/M cell-cycle transitions. Embedding this network model within growing cells, we test hypotheses as to how cell-cycle progression can depend on cell size. We investigate two different mechanisms at both the G1/S and G2/M transitions: (i) differential expression of cell-cycle activator and inhibitor proteins (with synthesis of inhibitor proteins being independent of cell size), and (ii) equal inheritance of inhibitor proteins after cell division. The model demonstrates that both these mechanisms can lead to larger daughter cells progressing through the cell cycle more rapidly, and can thus contribute to cell-size control. To test how these features enable size homeostasis over multiple generations, we then simulated these mechanisms in a cell-population model with multiple rounds of cell division. These simulations suggested that integration of size-control mechanisms at both G1/S and G2/M provides long-term cell-size homeostasis. We concluded that while both size independence and equal inheritance of inhibitor proteins can reduce variations in cell size across individual cell-cycle phases, combining size-control mechanisms at both G1/S and G2/M is essential to maintain size homeostasis over multiple generations. Thus, our study reveals how features of the cell-cycle network enable cell-cycle progression to depend on cell size, and provides a mechanistic understanding of how plant cell populations maintain consistent size over generations.
Collapse
Affiliation(s)
- Daniel Williamson
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - William Tasker-Brown
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Angharad R. Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Leah R. Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
19
|
Gong Y, Dale R, Fung HF, Amador GO, Smit ME, Bergmann DC. A cell size threshold triggers commitment to stomatal fate in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadf3497. [PMID: 37729402 PMCID: PMC10881030 DOI: 10.1126/sciadv.adf3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
How flexible developmental programs integrate information from internal and external factors to modulate stem cell behavior is a fundamental question in developmental biology. Cells of the Arabidopsis stomatal lineage modify the balance of stem cell proliferation and differentiation to adjust the size and cell type composition of mature leaves. Here, we report that meristemoids, one type of stomatal lineage stem cell, trigger the transition from asymmetric self-renewing divisions to commitment and terminal differentiation by crossing a critical cell size threshold. Through computational simulation, we demonstrate that this cell size-mediated transition allows robust, yet flexible termination of stem cell proliferation, and we observe adjustments in the number of divisions before the differentiation threshold under several genetic manipulations. We experimentally evaluate several mechanisms for cell size sensing, and our data suggest that this stomatal lineage transition is dependent on a nuclear factor that is sensitive to DNA content.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Hannah F. Fung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gabriel O. Amador
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Margot E. Smit
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Skinner DJ, Jeckel H, Martin AC, Drescher K, Dunkel J. Topological packing statistics of living and nonliving matter. SCIENCE ADVANCES 2023; 9:eadg1261. [PMID: 37672580 PMCID: PMC10482333 DOI: 10.1126/sciadv.adg1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/27/2023] [Indexed: 09/08/2023]
Abstract
Complex disordered matter is of central importance to a wide range of disciplines, from bacterial colonies and embryonic tissues in biology to foams and granular media in materials science to stellar configurations in astrophysics. Because of the vast differences in composition and scale, comparing structural features across such disparate systems remains challenging. Here, by using the statistical properties of Delaunay tessellations, we introduce a mathematical framework for measuring topological distances between general three-dimensional point clouds. The resulting system-agnostic metric reveals subtle structural differences between bacterial biofilms as well as between zebrafish brain regions, and it recovers temporal ordering of embryonic development. We apply the metric to construct a universal topological atlas encompassing bacterial biofilms, snowflake yeast, plant shoots, zebrafish brain matter, organoids, and embryonic tissues as well as foams, colloidal packings, glassy materials, and stellar configurations. Living systems localize within a bounded island-like region of the atlas, reflecting that biological growth mechanisms result in characteristic topological properties.
Collapse
Affiliation(s)
- Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Hannah Jeckel
- Department of Physics, Philipps-Universität Marburg, Renthof 6, 35032 Marburg, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Knut Drescher
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Formosa-Jordan P, Landrein B. Quantifying Gene Expression Domains in Plant Shoot Apical Meristems. Methods Mol Biol 2023; 2686:537-551. [PMID: 37540376 DOI: 10.1007/978-1-0716-3299-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The shoot apical meristem is the plant tissue that produces the plant aerial organs such as flowers and leaves. To better understand how the shoot apical meristem develops and adapts to the environment, imaging developing shoot meristems expressing fluorescence reporters through laser confocal microscopy is becoming increasingly important. Yet, there are not many computational pipelines enabling a systematic and high-throughput characterization of the produced microscopy images. This chapter provides a simple method to analyze 3D images obtained through laser scanning microscopy and quantitatively characterize radially or axially symmetric 3D fluorescence domains expressed in a tissue or organ by a reporter. Then, it presents different computational pipelines aiming at performing high-throughput quantitative image analysis of gene expression in plant inflorescence and floral meristems. This methodology has notably enabled the quantitative characterization of how stem cells respond to environmental perturbations in the Arabidopsis thaliana inflorescence meristem and will open new avenues in the use of quantitative analysis of gene expression in shoot apical meristems. Overall, the presented methodology provides a simple framework to analyze quantitatively gene expression domains from 3D confocal images at the tissue and organ level, which can be applied to shoot meristems and other organs and tissues.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Science (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Benoit Landrein
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| |
Collapse
|
22
|
Wood structure explained by complex spatial source-sink interactions. Nat Commun 2022; 13:7824. [PMID: 36535928 PMCID: PMC9763502 DOI: 10.1038/s41467-022-35451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Wood is a remarkable material with great cultural, economic, and biogeochemical importance. However, our understanding of its formation is poor. Key properties that have not been explained include the anatomy of growth rings (with consistent transitions from low-density earlywood to high density latewood), strong temperature-dependence of latewood density (used for historical temperature reconstructions), the regulation of cell size, and overall growth-temperature relationships in conifer and ring-porous tree species. We have developed a theoretical framework based on observations on Pinus sylvestris L. in northern Sweden. The observed anatomical properties emerge from our framework as a consequence of interactions in time and space between the production of new cells, the dynamics of developmental zone widths, and the distribution of carbohydrates across the developing wood. Here we find that the diffusion of carbohydrates is critical to determining final ring anatomy, potentially overturning current understanding of how wood formation responds to environmental variability and transforming our interpretation of tree rings as proxies of past climates.
Collapse
|
23
|
Kuan C, Yang SL, Ho CMK. Using quantitative methods to understand leaf epidermal development. QUANTITATIVE PLANT BIOLOGY 2022; 3:e28. [PMID: 37077990 PMCID: PMC10097589 DOI: 10.1017/qpb.2022.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 05/03/2023]
Abstract
As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.
Collapse
Affiliation(s)
- Chi Kuan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Chin-Min Kimmy Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
24
|
Laruelle E, Belcram K, Trubuil A, Palauqui JC, Andrey P. Large-scale analysis and computer modeling reveal hidden regularities behind variability of cell division patterns in Arabidopsis thaliana embryogenesis. eLife 2022; 11:79224. [DOI: 10.7554/elife.79224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Noise plays a major role in cellular processes and in the development of tissues and organs. Several studies have examined the origin, the integration or the accommodation of noise in gene expression, cell growth and elaboration of organ shape. By contrast, much less is known about variability in cell division plane positioning, its origin and links with cell geometry, and its impact on tissue organization. Taking advantage of the first-stereotyped-then-variable division patterns in the embryo of the model plant Arabidopsis thaliana, we combined 3D imaging and quantitative cell shape and cell lineage analysis together with mathematical and computer modeling to perform a large-scale, systematic analysis of variability in division plane orientation. Our results reveal that, paradoxically, variability in cell division patterns of Arabidopsis embryos is accompanied by a progressive reduction of heterogeneity in cell shape topology. The paradox is solved by showing that variability operates within a reduced repertoire of possible division plane orientations that is related to cell geometry. We show that in several domains of the embryo, a recently proposed geometrical division rule recapitulates observed variable patterns, suggesting that variable patterns emerge from deterministic principles operating in a variable geometrical context. Our work highlights the importance of emerging patterns in the plant embryo under iterated division principles, but also reveal domains where deviations between rule predictions and experimental observations point to additional regulatory mechanisms.
Collapse
Affiliation(s)
- Elise Laruelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
- Université Paris-Saclay, INRAE, MaIAGE
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
| | | | | | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
| |
Collapse
|
25
|
Abstract
The most fundamental feature of cellular form is size, which sets the scale of all cell biological processes. Growth, form, and function are all necessarily linked in cell biology, but we often do not understand the underlying molecular mechanisms nor their specific functions. Here, we review progress toward determining the molecular mechanisms that regulate cell size in yeast, animals, and plants, as well as progress toward understanding the function of cell size regulation. It has become increasingly clear that the mechanism of cell size regulation is deeply intertwined with basic mechanisms of biosynthesis, and how biosynthesis can be scaled (or not) in proportion to cell size. Finally, we highlight recent findings causally linking aberrant cell size regulation to cellular senescence and their implications for cancer therapies.
Collapse
Affiliation(s)
- Shicong Xie
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California, USA;
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
26
|
Matz TW, Wang Y, Kulshreshtha R, Sampathkumar A, Nikoloski Z. Topological properties accurately predict cell division events and organization of shoot apical meristem in Arabidopsis thaliana. Development 2022; 149:276347. [DOI: 10.1242/dev.201024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.
Collapse
Affiliation(s)
- Timon W. Matz
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam 1 , 14476 Potsdam , Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology 2 , 14476 Potsdam , Germany
| | - Yang Wang
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Ritika Kulshreshtha
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Arun Sampathkumar
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam 1 , 14476 Potsdam , Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology 2 , 14476 Potsdam , Germany
| |
Collapse
|
27
|
Le Gloanec C, Collet L, Silveira SR, Wang B, Routier-Kierzkowska AL, Kierzkowski D. Cell type-specific dynamics underlie cellular growth variability in plants. Development 2022; 149:276118. [DOI: 10.1242/dev.200783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT
Coordination of growth, patterning and differentiation is required for shaping organs in multicellular organisms. In plants, cell growth is controlled by positional information, yet the behavior of individual cells is often highly heterogeneous. The origin of this variability is still unclear. Using time-lapse imaging, we determined the source and relevance of cellular growth variability in developing organs of Arabidopsis thaliana. We show that growth is more heterogeneous in the leaf blade than in the midrib and petiole, correlating with higher local differences in growth rates between neighboring cells in the blade. This local growth variability coincides with developing stomata. Stomatal lineages follow a specific, time-dependent growth program that is different from that of their surroundings. Quantification of cellular dynamics in the leaves of a mutant lacking stomata, as well as analysis of floral organs, supports the idea that growth variability is mainly driven by stomata differentiation. Thus, the cell-autonomous behavior of specialized cells is the main source of local growth variability in otherwise homogeneously growing tissue. Those growth differences are buffered by the immediate neighbors of stomata and trichomes to achieve robust organ shapes.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Loann Collet
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Sylvia R. Silveira
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Binghan Wang
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Anne-Lise Routier-Kierzkowska
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| | - Daniel Kierzkowski
- Institut de Recherche en Biologie Végétale , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
- Université de Montréal , Département de Sciences Biologiques , , 4101 Sherbrooke St E, Montréal, QC H1X 2B2 , Canada
| |
Collapse
|
28
|
EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data. Med Image Anal 2022; 81:102523. [DOI: 10.1016/j.media.2022.102523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
|
29
|
Wu X, Yan A, Yang X, Banks JA, Zhang S, Zhou Y. Cell growth dynamics in two types of apical meristems in fern gametophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:149-163. [PMID: 35451138 PMCID: PMC9541313 DOI: 10.1111/tpj.15784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 05/02/2023]
Abstract
In contrast to seed plants, the gametophytes of seed-free plants develop pluripotent meristems, which promote and sustain their independent growth and development. To date, the cellular basis of meristem development in gametophytes of seed-free ferns remains largely unknown. In this study, we used Woodsia obtusa, the blunt-lobe cliff fern, to quantitatively determine cell growth dynamics in two different types of apical meristems - the apical initial centered meristem and the multicellular apical meristem in gametophytes. Through confocal time-lapse live imaging and computational image analysis and quantification, we determined unique patterns of cell division and growth that sustain or terminate apical initials, dictate the transition from apical initials to multicellular apical meristems, and drive proliferation of apical meristems in ferns. Quantitative results showed that small cells correlated to active cell division in fern gametophytes. The marginal cells of multicellular apical meristems in fern gametophytes undergo division in both anticlinal and periclinal orientations, not only increasing cell numbers but also playing a dominant role in increasing cell layers during gametophyte development. All these findings provide insights into the function and regulation of meristems in gametophytes of seed-free vascular plants, suggesting both conserved and diversified mechanisms underlying meristem cell proliferation across land plants.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology ResearchNanjing Agricultural UniversityNanjingJiangsu210095China
| | - An Yan
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCalifornia91125USA
- Howard Hughes Medical InstituteCalifornia Institute of TechnologyPasadenaCalifornia91125USA
| | - Xi Yang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
| | - Jo Ann Banks
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology ResearchNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Yun Zhou
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
| |
Collapse
|
30
|
Banwarth-Kuhn M, Rodriguez K, Michael C, Ta CK, Plong A, Bourgain-Chang E, Nematbakhsh A, Chen W, Roy-Chowdhury A, Reddy GV, Alber M. Combined computational modeling and experimental analysis integrating chemical and mechanical signals suggests possible mechanism of shoot meristem maintenance. PLoS Comput Biol 2022; 18:e1010199. [PMID: 35727850 PMCID: PMC9249181 DOI: 10.1371/journal.pcbi.1010199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/01/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell maintenance in multilayered shoot apical meristems (SAMs) of plants requires strict regulation of cell growth and division. Exactly how the complex milieu of chemical and mechanical signals interact in the central region of the SAM to regulate cell division plane orientation is not well understood. In this paper, simulations using a newly developed multiscale computational model are combined with experimental studies to suggest and test three hypothesized mechanisms for the regulation of cell division plane orientation and the direction of anisotropic cell expansion in the corpus. Simulations predict that in the Apical corpus, WUSCHEL and cytokinin regulate the direction of anisotropic cell expansion, and cells divide according to tensile stress on the cell wall. In the Basal corpus, model simulations suggest dual roles for WUSCHEL and cytokinin in regulating both the direction of anisotropic cell expansion and cell division plane orientation. Simulation results are followed by a detailed analysis of changes in cell characteristics upon manipulation of WUSCHEL and cytokinin in experiments that support model predictions. Moreover, simulations predict that this layer-specific mechanism maintains both the experimentally observed shape and structure of the SAM as well as the distribution of WUSCHEL in the tissue. This provides an additional link between the roles of WUSCHEL, cytokinin, and mechanical stress in regulating SAM growth and proper stem cell maintenance in the SAM.
Collapse
Affiliation(s)
- Mikahl Banwarth-Kuhn
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Applied Mathematics, University of California, Merced, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Kevin Rodriguez
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Christian Michael
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Calvin-Khang Ta
- Computer Science and Engineering Department, University of California, Riverside, California, United States of America
| | - Alexander Plong
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Eric Bourgain-Chang
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Ali Nematbakhsh
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Weitao Chen
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Amit Roy-Chowdhury
- Computer Science and Engineering Department, University of California, Riverside, California, United States of America
- Department of Electrical and Computer Engineering, University of California, Riverside, California, United States of America
| | - G. Venugopala Reddy
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Mark Alber
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| |
Collapse
|
31
|
Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarría-Poza A, Yakunin I, Parra-Rojas JP, Terrett OM, Saez-Aguayo S, Dupree R, Orellana A, Hong M, Dupree P. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. NATURE PLANTS 2022; 8:656-669. [PMID: 35681018 DOI: 10.1038/s41477-022-01156-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Polysaccharide methylation, especially that of pectin, is a common and important feature of land plant cell walls. Polysaccharide methylation takes place in the Golgi apparatus and therefore relies on the import of S-adenosyl methionine (SAM) from the cytosol into the Golgi. However, so far, no Golgi SAM transporter has been identified in plants. Here we studied major facilitator superfamily members in Arabidopsis that we identified as putative Golgi SAM transporters (GoSAMTs). Knockout of the two most highly expressed GoSAMTs led to a strong reduction in Golgi-synthesized polysaccharide methylation. Furthermore, solid-state NMR experiments revealed that reduced methylation changed cell wall polysaccharide conformations, interactions and mobilities. Notably, NMR revealed the existence of pectin 'egg-box' structures in intact cell walls and showed that their formation is enhanced by reduced methyl esterification. These changes in wall architecture were linked to substantial growth and developmental phenotypes. In particular, anisotropic growth was strongly impaired in the double mutant. The identification of putative transporters involved in import of SAM into the Golgi lumen in plants provides new insights into the paramount importance of polysaccharide methylation for plant cell wall structure and function.
Collapse
Affiliation(s)
- Henry Temple
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pyae Phyo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weibing Yang
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS) and CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Yakunin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Strauss S, Runions A, Lane B, Eschweiler D, Bajpai N, Trozzi N, Routier-Kierzkowska AL, Yoshida S, Rodrigues da Silveira S, Vijayan A, Tofanelli R, Majda M, Echevin E, Le Gloanec C, Bertrand-Rakusova H, Adibi M, Schneitz K, Bassel G, Kierzkowski D, Stegmaier J, Tsiantis M, Smith RS. Using positional information to provide context for biological image analysis with MorphoGraphX 2.0. eLife 2022; 11:72601. [PMID: 35510843 PMCID: PMC9159754 DOI: 10.7554/elife.72601] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.
Collapse
Affiliation(s)
- Sören Strauss
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Dennis Eschweiler
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Namrata Bajpai
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Saiko Yoshida
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Athul Vijayan
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rachele Tofanelli
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Emillie Echevin
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | | | | | - Milad Adibi
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kay Schneitz
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - George Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Daniel Kierzkowski
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
33
|
Youngstrom CE, Withers KA, Irish EE, Cheng CL. Vascular function of the T3/modern clade WUSCHEL-Related HOMEOBOX transcription factor genes predate apical meristem-maintenance function. BMC PLANT BIOLOGY 2022; 22:210. [PMID: 35462532 PMCID: PMC9036803 DOI: 10.1186/s12870-022-03590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plants have the lifelong ability to generate new organs due to the persistent functioning of stem cells. In seed plants, groups of stem cells are housed in the shoot apical meristem (SAM), root apical meristem (RAM), and vascular cambium (VC). In ferns, a single shoot stem cell, the apical cell, is located in the SAM, whereas each root initiates from a single shoot-derived root initial. WUSCHEL-RELATED HOMEOBOX (WOX) family transcription factors play important roles to maintain stem-cell identity. WOX genes are grouped phylogenetically into three clades. The T3WOX/modern clade has expanded greatly in angiosperms, with members functioning in multiple meristems and complex developmental programs. The model fern Ceratopteris richardii has only one well-supported T3WOX/modern WOX gene, CrWUL. Its orthologs in Arabidopsis, AtWUS, AtWOX5, and AtWOX4, function in the SAM, RAM, and VC, respectively. Identifying the function of CrWUL will provide insights on the progenitor function and the diversification of the modern WOX genes in seed plants. RESULTS To investigate the role of CrWUL in the fern, we examined the expression and function of CrWUL and found it expresses during early root development and in vasculature but not in the SAM. Knockdown of CrWUL by RNAi produced plants with fewer roots and fewer phloem cells. When expressed in Arabidopsis cambium, CrWUL was able to complement AtWOX4 function in an atwox4 mutant, suggesting that the WOX function in VC is conserved between ferns and angiosperms. Additionally, the proposed progenitor of T3WOX genes from Selaginella kraussiana is expressed in the vasculature but not in the shoot apical meristem. In contrast to the sporophyte, the expression of CrWUL in the gametophyte exhibits a more general expression pattern and when knocked down, offered little discernable phenotypes. CONCLUSIONS The results presented here support the occurrence of co-option of the T3WOX/modern clade gene from the gametophyte to function in vasculature and root development in the sporophyte. The function in vasculature is likely to have existed in the progenitor of lycophyte T3WOX/modern clade genes and this function predates its SAM function found in many seed plants.
Collapse
Affiliation(s)
| | - Kelley A Withers
- Department of Biology, 129 E. Jefferson St. Iowa City, Iowa, 52242-1324, USA
| | - Erin E Irish
- Department of Biology, 129 E. Jefferson St. Iowa City, Iowa, 52242-1324, USA
| | - Chi-Lien Cheng
- Department of Biology, 129 E. Jefferson St. Iowa City, Iowa, 52242-1324, USA.
| |
Collapse
|
34
|
Åhl H, Zhang Y, Jönsson H. High-Throughput 3D Phenotyping of Plant Shoot Apical Meristems From Tissue-Resolution Data. FRONTIERS IN PLANT SCIENCE 2022; 13:827147. [PMID: 35519801 PMCID: PMC9062647 DOI: 10.3389/fpls.2022.827147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Confocal imaging is a well-established method for investigating plant phenotypes on the tissue and organ level. However, many differences are difficult to assess by visual inspection and researchers rely extensively on ad hoc manual quantification techniques and qualitative assessment. Here we present a method for quantitatively phenotyping large samples of plant tissue morphologies using triangulated isosurfaces. We successfully demonstrate the applicability of the approach using confocal imaging of aerial organs in Arabidopsis thaliana. Automatic identification of flower primordia using the surface curvature as an indication of outgrowth allows for high-throughput quantification of divergence angles and further analysis of individual flowers. We demonstrate the throughput of our method by quantifying geometric features of 1065 flower primordia from 172 plants, comparing auxin transport mutants to wild type. Additionally, we find that a paraboloid provides a simple geometric parameterisation of the shoot inflorescence domain with few parameters. We utilise parameterisation methods to provide a computational comparison of the shoot apex defined by a fluorescent reporter of the central zone marker gene CLAVATA3 with the apex defined by the paraboloid. Finally, we analyse the impact of mutations which alter mechanical properties on inflorescence dome curvature and compare the results with auxin transport mutants. Our results suggest that region-specific expression domains of genes regulating cell wall biosynthesis and local auxin transport can be important in maintaining the wildtype tissue shape. Altogether, our results indicate a general approach to parameterise and quantify plant development in 3D, which is applicable also in cases where data resolution is limited, and cell segmentation not possible. This enables researchers to address fundamental questions of plant development by quantitative phenotyping with high throughput, consistency and reproducibility.
Collapse
Affiliation(s)
- Henrik Åhl
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Yi Zhang
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- Computational Biology and Biological Physics, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Kar A, Petit M, Refahi Y, Cerutti G, Godin C, Traas J. Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets. PLoS Comput Biol 2022; 18:e1009879. [PMID: 35421081 PMCID: PMC9009699 DOI: 10.1371/journal.pcbi.1009879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segmenting three-dimensional (3D) microscopy images is essential for understanding phenomena like morphogenesis, cell division, cellular growth, and genetic expression patterns. Recently, deep learning (DL) pipelines have been developed, which claim to provide high accuracy segmentation of cellular images and are increasingly considered as the state of the art for image segmentation problems. However, it remains difficult to define their relative performances as the concurrent diversity and lack of uniform evaluation strategies makes it difficult to know how their results compare. In this paper, we first made an inventory of the available DL methods for 3D cell segmentation. We next implemented and quantitatively compared a number of representative DL pipelines, alongside a highly efficient non-DL method named MARS. The DL methods were trained on a common dataset of 3D cellular confocal microscopy images. Their segmentation accuracies were also tested in the presence of different image artifacts. A specific method for segmentation quality evaluation was adopted, which isolates segmentation errors due to under- or oversegmentation. This is complemented with a 3D visualization strategy for interactive exploration of segmentation quality. Our analysis shows that the DL pipelines have different levels of accuracy. Two of them, which are end-to-end 3D and were originally designed for cell boundary detection, show high performance and offer clear advantages in terms of adaptability to new data.
Collapse
Affiliation(s)
- Anuradha Kar
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon INRAE, INRIA, CNRS, UCBL, Lyon, France
- Institut du Cerveau–Paris Brain Institute, Paris, France
| | - Manuel Petit
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon INRAE, INRIA, CNRS, UCBL, Lyon, France
| | - Yassin Refahi
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Guillaume Cerutti
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon INRAE, INRIA, CNRS, UCBL, Lyon, France
| | - Christophe Godin
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon INRAE, INRIA, CNRS, UCBL, Lyon, France
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon INRAE, INRIA, CNRS, UCBL, Lyon, France
| |
Collapse
|
36
|
Suen JY, Navlakha S. A feedback control principle common to several biological and engineered systems. J R Soc Interface 2022; 19:20210711. [PMID: 35232277 PMCID: PMC8889180 DOI: 10.1098/rsif.2021.0711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022] Open
Abstract
Feedback control is used by many distributed systems to optimize behaviour. Traditional feedback control algorithms spend significant resources to constantly sense and stabilize a continuous control variable of interest, such as vehicle speed for implementing cruise control, or body temperature for maintaining homeostasis. By contrast, discrete-event feedback (e.g. a server acknowledging when data are successfully transmitted, or a brief antennal interaction when an ant returns to the nest after successful foraging) can reduce costs associated with monitoring a continuous variable; however, optimizing behaviour in this setting requires alternative strategies. Here, we studied parallels between discrete-event feedback control strategies in biological and engineered systems. We found that two common engineering rules-additive-increase, upon positive feedback, and multiplicative-decrease, upon negative feedback, and multiplicative-increase multiplicative-decrease-are used by diverse biological systems, including for regulating foraging by harvester ant colonies, for maintaining cell-size homeostasis, and for synaptic learning and adaptation in neural circuits. These rules support several goals of these systems, including optimizing efficiency (i.e. using all available resources); splitting resources fairly among cooperating agents, or conversely, acquiring resources quickly among competing agents; and minimizing the latency of responses, especially when conditions change. We hypothesize that theoretical frameworks from distributed computing may offer new ways to analyse adaptation behaviour of biology systems, and in return, biological strategies may inspire new algorithms for discrete-event feedback control in engineering.
Collapse
Affiliation(s)
- Jonathan Y. Suen
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| | - Saket Navlakha
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| |
Collapse
|
37
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
39
|
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong JH, Ren H, Cohen JD, Li C, Gray WM. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. SCIENCE ADVANCES 2022; 8:eabj1570. [PMID: 35020423 PMCID: PMC8754305 DOI: 10.1126/sciadv.abj1570] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Steward
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (C.L.); (W.M.G.)
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Corresponding author. (C.L.); (W.M.G.)
| |
Collapse
|
40
|
Wang A, Zhang Q, Han Y, Megason S, Hormoz S, Mosaliganti KR, Lam JCK, Li VOK. A novel deep learning-based 3D cell segmentation framework for future image-based disease detection. Sci Rep 2022; 12:342. [PMID: 35013443 PMCID: PMC8748745 DOI: 10.1038/s41598-021-04048-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022] Open
Abstract
Cell segmentation plays a crucial role in understanding, diagnosing, and treating diseases. Despite the recent success of deep learning-based cell segmentation methods, it remains challenging to accurately segment densely packed cells in 3D cell membrane images. Existing approaches also require fine-tuning multiple manually selected hyperparameters on the new datasets. We develop a deep learning-based 3D cell segmentation pipeline, 3DCellSeg, to address these challenges. Compared to the existing methods, our approach carries the following novelties: (1) a robust two-stage pipeline, requiring only one hyperparameter; (2) a light-weight deep convolutional neural network (3DCellSegNet) to efficiently output voxel-wise masks; (3) a custom loss function (3DCellSeg Loss) to tackle the clumped cell problem; and (4) an efficient touching area-based clustering algorithm (TASCAN) to separate 3D cells from the foreground masks. Cell segmentation experiments conducted on four different cell datasets show that 3DCellSeg outperforms the baseline models on the ATAS (plant), HMS (animal), and LRP (plant) datasets with an overall accuracy of 95.6%, 76.4%, and 74.7%, respectively, while achieving an accuracy comparable to the baselines on the Ovules (plant) dataset with an overall accuracy of 82.2%. Ablation studies show that the individual improvements in accuracy is attributable to 3DCellSegNet, 3DCellSeg Loss, and TASCAN, with the 3DCellSeg demonstrating robustness across different datasets and cell shapes. Our results suggest that 3DCellSeg can serve a powerful biomedical and clinical tool, such as histo-pathological image analysis, for cancer diagnosis and grading.
Collapse
Affiliation(s)
- Andong Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Qi Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Yang Han
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Sean Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sahand Hormoz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jacqueline C K Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Victor O K Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Alejo-Vinogradova MT, Ornelas-Ayala D, Vega-León R, Garay-Arroyo A, García-Ponce B, R Álvarez-Buylla E, Sanchez MDLP. Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:38-49. [PMID: 34518884 DOI: 10.1093/jxb/erab421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.
Collapse
Affiliation(s)
- M Teresa Alejo-Vinogradova
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| |
Collapse
|
42
|
Lemière J, Real-Calderon P, Holt LJ, Fai TG, Chang F. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe. eLife 2022; 11:76075. [PMID: 35856499 PMCID: PMC9410708 DOI: 10.7554/elife.76075] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States,Centro Andaluz de Biología del DesarrolloSevillaSpain
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone HealthNew YorkUnited States
| | - Thomas G Fai
- Department of Mathematics and Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
43
|
Wu X, Yan A, Liu X, Zhang S, Zhou Y. Quantitative live-imaging reveals the dynamics of apical cells during gametophyte development in ferns. QUANTITATIVE PLANT BIOLOGY 2022; 3:e25. [PMID: 37077984 PMCID: PMC10095955 DOI: 10.1017/qpb.2022.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 05/02/2023]
Abstract
Meristems in land plants share conserved functions but develop highly variable structures. Meristems in seed-free plants, including ferns, usually contain one or a few pyramid-/wedge-shaped apical cells (ACs) as initials, which are lacking in seed plants. It remained unclear how ACs promote cell proliferation in fern gametophytes and whether any persistent AC exists to sustain fern gametophyte development continuously. Here, we uncovered previously undefined ACs maintained even at late developmental stages in fern gametophytes. Through quantitative live-imaging, we determined division patterns and growth dynamics that maintain the persistent AC in Sphenomeris chinensis, a representative fern. The AC and its immediate progenies form a conserved cell packet, driving cell proliferation and prothallus expansion. At the apical centre of gametophytes, the AC and its adjacent progenies display small dimensions resulting from active cell division instead of reduced cell expansion. These findings provide insight into diversified meristem development in land plants.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana47907, USA
- Purdue Centre for Plant Biology, Purdue University, West Lafayette, Indiana47907, USA
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - An Yan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California91125, USA
| | - Xing Liu
- Purdue Centre for Plant Biology, Purdue University, West Lafayette, Indiana47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana47907, USA
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Authors for correspondence: S. Zhang, Y. Zhou, E-mail: ;
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana47907, USA
- Purdue Centre for Plant Biology, Purdue University, West Lafayette, Indiana47907, USA
- Authors for correspondence: S. Zhang, Y. Zhou, E-mail: ;
| |
Collapse
|
44
|
Eschweiler D, Rethwisch M, Jarchow M, Koppers S, Stegmaier J. 3D fluorescence microscopy data synthesis for segmentation and benchmarking. PLoS One 2021; 16:e0260509. [PMID: 34855812 PMCID: PMC8639001 DOI: 10.1371/journal.pone.0260509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Automated image processing approaches are indispensable for many biomedical experiments and help to cope with the increasing amount of microscopy image data in a fast and reproducible way. Especially state-of-the-art deep learning-based approaches most often require large amounts of annotated training data to produce accurate and generalist outputs, but they are often compromised by the general lack of those annotated data sets. In this work, we propose how conditional generative adversarial networks can be utilized to generate realistic image data for 3D fluorescence microscopy from annotation masks of 3D cellular structures. In combination with mask simulation approaches, we demonstrate the generation of fully-annotated 3D microscopy data sets that we make publicly available for training or benchmarking. An additional positional conditioning of the cellular structures enables the reconstruction of position-dependent intensity characteristics and allows to generate image data of different quality levels. A patch-wise working principle and a subsequent full-size reassemble strategy is used to generate image data of arbitrary size and different organisms. We present this as a proof-of-concept for the automated generation of fully-annotated training data sets requiring only a minimum of manual interaction to alleviate the need of manual annotations.
Collapse
Affiliation(s)
- Dennis Eschweiler
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Malte Rethwisch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Mareike Jarchow
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Simon Koppers
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
45
|
Hilty J, Muller B, Pantin F, Leuzinger S. Plant growth: the What, the How, and the Why. THE NEW PHYTOLOGIST 2021; 232:25-41. [PMID: 34245021 DOI: 10.1111/nph.17610] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/19/2021] [Indexed: 05/28/2023]
Abstract
Growth is a widely used term in plant science and ecology, but it can have different meanings depending on the context and the spatiotemporal scale of analysis. At the meristem level, growth is associated with the production of cells and initiation of new organs. At the organ or plant scale and over short time periods, growth is often used synonymously with tissue expansion, while over longer time periods the increase in biomass is a common metric. At even larger temporal and spatial scales, growth is mostly described as net primary production. Here, we first address the question 'what is growth?'. We propose a general framework to distinguish between the different facets of growth, and the corresponding physiological processes, environmental drivers and mathematical formalisms. Based on these different definitions, we then review how plant growth can be measured and analysed at different organisational, spatial and temporal scales. We conclude by discussing why gaining a better understanding of the different facets of plant growth is essential to disentangle genetic and environmental effects on the phenotype, and to uncover the causalities around source or sink limitations of plant growth.
Collapse
Affiliation(s)
- Jonas Hilty
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| |
Collapse
|
46
|
Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, Legrand J, Faure E, Vachez L, Armezzani A, Risson AE, Zhao F, Das P, Prunet N, Meyerowitz EM, Godin C, Malandain G, Jönsson H, Traas J. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Dev Cell 2021; 56:540-556.e8. [PMID: 33621494 PMCID: PMC8519405 DOI: 10.1016/j.devcel.2021.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform. Using computational models, we found that the literature-based molecular network only explained a minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step toward mechanistic models of flower development.
Collapse
Affiliation(s)
- Yassin Refahi
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France; Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51097 Reims, France.
| | - Argyris Zardilis
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Gaël Michelin
- Université Côte d'Azur, Inria, Sophia Antipolis, CNRS, I3S, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Bruno Leggio
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Jonathan Legrand
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Laetitia Vachez
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Alessia Armezzani
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Anne-Evodie Risson
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Feng Zhao
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Pradeep Das
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Nathanaël Prunet
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elliot M Meyerowitz
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christophe Godin
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden; Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, UK.
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France.
| |
Collapse
|
47
|
Tissue folding at the organ-meristem boundary results in nuclear compression and chromatin compaction. Proc Natl Acad Sci U S A 2021; 118:2017859118. [PMID: 33608459 PMCID: PMC7923354 DOI: 10.1073/pnas.2017859118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Artificial mechanical perturbations affect chromatin in animal cells in culture. Whether this is also relevant to growing tissues in living organisms remains debated. In plants, aerial organ emergence occurs through localized outgrowth at the periphery of the shoot apical meristem, which also contains a stem cell niche. Interestingly, organ outgrowth has been proposed to generate compression in the saddle-shaped organ-meristem boundary domain. Yet whether such growth-induced mechanical stress affects chromatin in plant tissues is unknown. Here, by imaging the nuclear envelope in vivo over time and quantifying nucleus deformation, we demonstrate the presence of active nuclear compression in that domain. We developed a quantitative pipeline amenable to identifying a subset of very deformed nuclei deep in the boundary and in which nuclei become gradually narrower and more elongated as the cell contracts transversely. In this domain, we find that the number of chromocenters is reduced, as shown by chromatin staining and labeling, and that the expression of linker histone H1.3 is induced. As further evidence of the role of forces on chromatin changes, artificial compression with a MicroVice could induce the ectopic expression of H1.3 in the rest of the meristem. Furthermore, while the methylation status of chromatin was correlated with nucleus deformation at the meristem boundary, such correlation was lost in the h1.3 mutant. Altogether, we reveal that organogenesis in plants generates compression that is able to have global effects on chromatin in individual cells.
Collapse
|
48
|
D'Ario M, Tavares R, Schiessl K, Desvoyes B, Gutierrez C, Howard M, Sablowski R. Cell size controlled in plants using DNA content as an internal scale. Science 2021; 372:1176-1181. [PMID: 34112688 DOI: 10.1126/science.abb4348] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
How eukaryotic cells assess and maintain sizes specific for their species and cell type remains unclear. We show that in the Arabidopsis shoot stem cell niche, cell size variability caused by asymmetric divisions is corrected by adjusting the growth period before DNA synthesis. KIP-related protein 4 (KRP4) inhibits progression to DNA synthesis and associates with mitotic chromosomes. The F BOX-LIKE 17 (FBL17) protein removes excess KRP4. Consequently, daughter cells are born with comparable amounts of KRP4. Inhibitor dilution models predicted that KRP4 inherited through chromatin would robustly regulate size, whereas inheritance of excess free KRP4 would disrupt size homeostasis, as confirmed by mutant analyses. We propose that a cell cycle regulator, stabilized by association with mitotic chromosomes, reads DNA content as a cell size-independent scale.
Collapse
Affiliation(s)
- Marco D'Ario
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Rafael Tavares
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Robert Sablowski
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
49
|
Mikuła A, Tomaszewicz W, Dziurka M, Kaźmierczak A, Grzyb M, Sobczak M, Zdańkowski P, Rybczyński J. The Origin of the Cyathea delgadii Sternb. Somatic Embryos Is Determined by the Developmental State of Donor Tissue and Mutual Balance of Selected Metabolites. Cells 2021; 10:cells10061388. [PMID: 34199921 PMCID: PMC8229038 DOI: 10.3390/cells10061388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Somatic embryogenesis is the formation of a plant embryo from a cell other than the product of gametic fusion. The need to recognize the determinants of somatic cell fate has prompted investigations on how endogenous factors of donor tissues can determine the pattern of somatic embryo origin. The undertaking of this study was enabled by the newly developed experimental system of somatic embryogenesis of the tree fern Cyathea delgadii Sternb., in which the embryos are produced in hormone-free medium. The contents of 89 endogenous compounds (such as sugars, auxins, cytokinins, gibberellins, stress-related hormones, phenolic acids, polyamines, and amino acids) and cytomorphological features were compared between two types of explants giving rise to somatic embryos of unicellular or multicellular origin. We found that a large content of maltose, 1-kestose, abscisic acid, biologically active gibberellins, and phenolic acids was characteristic for single-cell somatic embryo formation pattern. In contrast, high levels of starch, callose, kinetin riboside, arginine, and ethylene promoted their multicellular origin. Networks for visualization of the relations between studied compounds were constructed based on the data obtained from analyses of a Pearson correlation coefficient heatmap. Our findings present for the first time detailed features of donor tissue that can play an important role in the somatic-to-embryogenic transition and the somatic embryo origin.
Collapse
Affiliation(s)
- Anna Mikuła
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
- Correspondence:
| | - Wojciech Tomaszewicz
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland;
| | - Małgorzata Grzyb
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787 Warsaw, Poland;
| | - Piotr Zdańkowski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland;
| | - Jan Rybczyński
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
| |
Collapse
|
50
|
Vernoux T, Besnard F, Godin C. What shoots can teach about theories of plant form. NATURE PLANTS 2021; 7:716-724. [PMID: 34099903 DOI: 10.1038/s41477-021-00930-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Plants generate a large variety of shoot forms with regular geometries. These forms emerge primarily from the activity of a stem cell niche at the shoot tip. Recent efforts have established a theoretical framework of form emergence at the shoot tip, which has empowered the use of modelling in conjunction with biological approaches to begin to disentangle the biochemical and physical mechanisms controlling form development at the shoot tip. Here, we discuss how these advances get us closer to identifying the construction principles of plant shoot tips. Considering the current limits of our knowledge, we propose a roadmap for developing a general theory of form development at the shoot tip.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France.
| | - Fabrice Besnard
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| |
Collapse
|