1
|
Paul MW, Aaron J, Wait E, Van Genderen R, Tyagi A, Kabbech H, Smal I, Chew TL, Kanaar R, Wyman C. Distinct mobility patterns of BRCA2 molecules at DNA damage sites. Nucleic Acids Res 2024; 52:8332-8343. [PMID: 38953170 PMCID: PMC11317164 DOI: 10.1093/nar/gkae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BRCA2 is an essential tumor suppressor protein involved in promoting faithful repair of DNA lesions. The activity of BRCA2 needs to be tuned precisely to be active when and where it is needed. Here, we quantified the spatio-temporal dynamics of BRCA2 in living cells using aberration-corrected multifocal microscopy (acMFM). Using multicolor imaging to identify DNA damage sites, we were able to quantify its dynamic motion patterns in the nucleus and at DNA damage sites. While a large fraction of BRCA2 molecules localized near DNA damage sites appear immobile, an additional fraction of molecules exhibits subdiffusive motion, providing a potential mechanism to retain an increased number of molecules at DNA lesions. Super-resolution microscopy revealed inhomogeneous localization of BRCA2 relative to other DNA repair factors at sites of DNA damage. This suggests the presence of multiple nanoscale compartments in the chromatin surrounding the DNA lesion, which could play an important role in the contribution of BRCA2 to the regulation of the repair process.
Collapse
Affiliation(s)
- Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia, Ashburn VA, USA
| | - Eric Wait
- Advanced Imaging Center, HHMI Janelia, Ashburn VA, USA
- Elephas Biosciences, Madison WI, USA
| | - Romano M Van Genderen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arti Tyagi
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft, University of Technology, Delft, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Theme Biomedical Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543259. [PMID: 37333393 PMCID: PMC10274692 DOI: 10.1101/2023.06.01.543259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency in cells. The PALB2 DNA-binding domain (PALB2-DBD) supports strand exchange, a complex multistep reaction conducted by only a few proteins such as RecA-like recombinases and Rad52. Using bioinformatics analysis, small-angle X-ray scattering, circular dichroism, and electron paramagnetic spectroscopy, we determined that PALB2-DBD is an intrinsically disordered region (IDR) forming compact molten globule-like dimer. IDRs contribute to oligomerization synergistically with the coiled-coil interaction. Using confocal single-molecule FRET we demonstrated that PALB2-DBD compacts single-stranded DNA even in the absence of DNA secondary structures. The compaction is bimodal, oligomerization-dependent, and is driven by IDRs, suggesting a novel strand exchange mechanism. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome. Novel DNA binding properties of PALB2-DBD and the complexity of strand exchange mechanism significantly expands the functional repertoire of IDPs. Multivalent interactions and bioinformatics analysis suggest that PALB2 function is likely to depend on formation of protein-nucleic acids condensates. Similar intrinsically disordered DBDs may use chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Maxwell B Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
3
|
Jiang N, Li YB, Jin JY, Guo JY, Ding QR, Meng D, Zhi XL. Structural and functional insights into the epigenetic regulator MRG15. Acta Pharmacol Sin 2024; 45:879-889. [PMID: 38191914 PMCID: PMC11053006 DOI: 10.1038/s41401-023-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yong-Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia-Yu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie-Yu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiu-Rong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tuppurainen H, Laurila N, Nätynki M, Eshraghi L, Tervasmäki A, Erichsen L, Sørensen CS, Pylkäs K, Winqvist R, Peltoketo H. PALB2-mutated human mammary cells display a broad spectrum of morphological and functional abnormalities induced by increased TGFβ signaling. Cell Mol Life Sci 2024; 81:173. [PMID: 38597967 PMCID: PMC11006627 DOI: 10.1007/s00018-024-05183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFβ signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.
Collapse
Affiliation(s)
- Hanna Tuppurainen
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Niina Laurila
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Marjut Nätynki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Leila Eshraghi
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Garvan Institute of Medical Research, Sydney, Australia
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Louisa Erichsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
5
|
Robert VJ, Caron M, Gely L, Adrait A, Pakulska V, Couté Y, Chevalier M, Riedel CG, Bedet C, Palladino F. SIN-3 acts in distinct complexes to regulate the germline transcriptional program in Caenorhabditis elegans. Development 2023; 150:dev201755. [PMID: 38771303 PMCID: PMC10617626 DOI: 10.1242/dev.201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.
Collapse
Affiliation(s)
- Valerie J. Robert
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Loic Gely
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Annie Adrait
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Victoria Pakulska
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Manon Chevalier
- Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 16, 14157 Huddinge, Sweden
| | - Christian G. Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 16, 14157 Huddinge, Sweden
| | - Cecile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
6
|
Mitchell B, Thor S, Piper M. Cellular and molecular functions of SETD2 in the central nervous system. J Cell Sci 2023; 136:jcs261406. [PMID: 37921122 DOI: 10.1242/jcs.261406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The covalent modification of histones is critical for many biological functions in mammals, including gene regulation and chromatin structure. Posttranslational histone modifications are added and removed by specialised 'writer' and 'eraser' enzymes, respectively. One such writer protein implicated in a wide range of cellular processes is SET domain-containing 2 (SETD2), a histone methyltransferase that catalyses the trimethylation of lysine 36 on histone H3 (H3K36me3). Recently, SETD2 has also been found to modify proteins other than histones, including actin and tubulin. The emerging roles of SETD2 in the development and function of the mammalian central nervous system (CNS) are of particular interest as several SETD2 variants have been implicated in neurodevelopmental disorders, such as autism spectrum disorder and the overgrowth disorder Luscan-Lumish syndrome. Here, we summarise the numerous roles of SETD2 in mammalian cellular functions and development, with a focus on the CNS. We also provide an overview of the consequences of SETD2 variants in human disease and discuss future directions for understanding essential cellular functions of SETD2.
Collapse
Affiliation(s)
- Benjamin Mitchell
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Al-Harthi S, Li H, Winkler A, Szczepski K, Deng J, Grembecka J, Cierpicki T, Jaremko Ł. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes. Structure 2023; 31:1200-1207.e5. [PMID: 37527654 DOI: 10.1016/j.str.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.
Collapse
Affiliation(s)
- Samah Al-Harthi
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hao Li
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jing Deng
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| | - Łukasz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins J, Pozzi N, Korolev S. The PALB2 DNA-binding domain is an intrinsically disordered recombinase. RESEARCH SQUARE 2023:rs.3.rs-3235465. [PMID: 37790553 PMCID: PMC10543426 DOI: 10.21203/rs.3.rs-3235465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | | | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse Hopkins
- BioCat, Advanced Photon Source, Argonne National Lab, Argonne, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
9
|
Mac M, DeVico BM, Raspanti SM, Moody CA. The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway. J Virol 2023; 97:e0020123. [PMID: 37154769 PMCID: PMC10231177 DOI: 10.1128/jvi.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The human papillomavirus (HPV) life cycle takes place in the stratified epithelium, with the productive phase being activated by epithelial differentiation. The HPV genome is histone-associated, and the life cycle is epigenetically regulated, in part, by histone tail modifications that facilitate the recruitment of DNA repair factors that are required for viral replication. We previously showed that the SETD2 methyltransferase facilitates the productive replication of HPV31 through the trimethylation of H3K36 on viral chromatin. SETD2 regulates numerous cellular processes, including DNA repair via homologous recombination (HR) and alternative splicing, through the recruitment of various effectors to histone H3 lysine 36 trimethylation (H3K36me3). We previously demonstrated that the HR factor Rad51 is recruited to HPV31 genomes and is required for productive replication; however, the mechanism of Rad51 recruitment has not been defined. SET domain containing 2 (SETD2) promotes the HR repair of double-strand breaks (DSBs) in actively transcribed genes through the recruitment of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) to lens epithelium-derived growth factor (LEDGF)-bound H3K36me3, which promotes DNA end resection and thereby allows for the recruitment of Rad51 to damaged sites. In this study, we found that reducing H3K36me3 through the depletion of SETD2 or the overexpression of an H3.3K36M mutant leads to an increase in γH2AX, which is a marker of damage, on viral DNA upon epithelial differentiation. This is coincident with decreased Rad51 binding. Additionally, LEDGF and CtIP are bound to HPV DNA in a SETD2-dependent and H3K36me3-dependent manner, and they are required for productive replication. Furthermore, CtIP depletion increases DNA damage on viral DNA and blocks Rad51 recruitment upon differentiation. Overall, these studies indicate that H3K36me3 enrichment on transcriptionally active viral genes promotes the rapid repair of viral DNA upon differentiation through the LEDGF-CtIP-Rad51 axis. IMPORTANCE The productive phase of the HPV life cycle is restricted to the differentiating cells of the stratified epithelium. The HPV genome is histone-associated and subject to epigenetic regulation, though the manner in which epigenetic modifications contribute to productive replication is largely undefined. In this study, we demonstrate that SETD2-mediated H3K36me3 on HPV31 chromatin promotes productive replication through the repair of damaged DNA. We show that SETD2 facilitates the recruitment of the homologous recombination repair factors CtIP and Rad51 to viral DNA through LEDGF binding to H3K36me3. CtIP is recruited to damaged viral DNA upon differentiation, and, in turn, recruits Rad51. This likely occurs through the end resection of double-strand breaks. SETD2 trimethylates H3K36me3 during transcription, and active transcription is necessary for Rad51 recruitment to viral DNA. We propose that the enrichment of SETD2-mediated H3K36me3 on transcriptionally active viral genes upon differentiation facilitates the repair of damaged viral DNA during the productive phase of the viral life cycle.
Collapse
Affiliation(s)
- Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brianna M. DeVico
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophia M. Raspanti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cary A. Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
11
|
Fournier M, Rodrigue A, Milano L, Bleuyard JY, Couturier AM, Wall J, Ellins J, Hester S, Smerdon SJ, Tora L, Masson JY, Esashi F. KAT2-mediated acetylation switches the mode of PALB2 chromatin association to safeguard genome integrity. eLife 2022; 11:e57736. [PMID: 36269050 PMCID: PMC9671498 DOI: 10.7554/elife.57736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
The tumour suppressor PALB2 stimulates RAD51-mediated homologous recombination (HR) repair of DNA damage, whilst its steady-state association with active genes protects these loci from replication stress. Here, we report that the lysine acetyltransferases 2A and 2B (KAT2A/2B, also called GCN5/PCAF), two well-known transcriptional regulators, acetylate a cluster of seven lysine residues (7K-patch) within the PALB2 chromatin association motif (ChAM) and, in this way, regulate context-dependent PALB2 binding to chromatin. In unperturbed cells, the 7K-patch is targeted for KAT2A/2B-mediated acetylation, which in turn enhances the direct association of PALB2 with nucleosomes. Importantly, DNA damage triggers a rapid deacetylation of ChAM and increases the overall mobility of PALB2. Distinct missense mutations of the 7K-patch render the mode of PALB2 chromatin binding, making it either unstably chromatin-bound (7Q) or randomly bound with a reduced capacity for mobilisation (7R). Significantly, both of these mutations confer a deficiency in RAD51 foci formation and increase DNA damage in S phase, leading to the reduction of overall cell survival. Thus, our study reveals that acetylation of the ChAM 7K-patch acts as a molecular switch to enable dynamic PALB2 shuttling for HR repair while protecting active genes during DNA replication.
Collapse
Affiliation(s)
- Marjorie Fournier
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research CenterQuébecCanada
| | - Larissa Milano
- CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research CenterQuébecCanada
| | - Jean-Yves Bleuyard
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Anthony M Couturier
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Jacob Wall
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Jessica Ellins
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Svenja Hester
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Advanced Proteomics Facility, University of OxfordOxfordUnited Kingdom
| | | | - László Tora
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research CenterQuébecCanada
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
12
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
13
|
Functional assessment of missense variants of uncertain significance in the cancer susceptibility gene PALB2. NPJ Breast Cancer 2022; 8:86. [PMID: 35853885 PMCID: PMC9296472 DOI: 10.1038/s41523-022-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Germline PALB2 pathogenic variants are associated with an increased lifetime risk for breast, pancreatic, and ovarian cancer. However, the interpretation of the pathogenicity of numerous PALB2 missense variants of uncertain significance (VUSs) identified in germline genetic testing remains a challenge. Here we selected ten potentially pathogenic PALB2 VUSs identified in 2279 Chinese patients with breast cancer and evaluated their impacts on PALB2 function by systematic functional assays. We showed that three PALB2 VUSs p.K16M [c.47 A > T], p.L24F [c.72 G > C], and p.L35F [c.103 C > T] in the coiled-coil domain impaired PALB2-mediated homologous recombination. The p.L24F and p.L35F variants partially disrupted BRCA1-PALB2 interactions, reduced RAD51 foci formation in response to DNA damage, abrogated ionizing radiation-induced G2/M checkpoint maintenance, and conferred increased sensitivity to olaparib and cisplatin. The p.K16M variant presented mild effects on BRCA1-PALB2 interactions and RAD51 foci formation. Altogether, we identify two novel PALB2 VUSs, p.L24F and p.L35F, that compromise PALB2 function and may increase cancer risk. These two variants display marked olaparib and cisplatin sensitivity and may help predict response to targeted therapy in the clinical treatment of patients with these variants.
Collapse
|
14
|
Chen Z, Tyler JK. The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Front Cell Dev Biol 2022; 10:909696. [PMID: 35757003 PMCID: PMC9213757 DOI: 10.3389/fcell.2022.909696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs), the most deleterious DNA lesions, are primarily repaired by two pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ), the choice of which is largely dependent on cell cycle phase and the local chromatin landscape. Recent studies have revealed that post-translational modifications on histones play pivotal roles in regulating DSB repair pathways including repair pathway choice. In this review, we present our current understanding of how these DSB repair pathways are employed in various chromatin landscapes to safeguard genomic integrity. We place an emphasis on the impact of different histone post-translational modifications, characteristic of euchromatin or heterochromatin regions, on DSB repair pathway choice. We discuss the potential roles of damage-induced chromatin modifications in the maintenance of genome and epigenome integrity. Finally, we discuss how RNA transcripts from the vicinity of DSBs at actively transcribed regions also regulate DSB repair pathway choice.
Collapse
Affiliation(s)
- Zulong Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| |
Collapse
|
15
|
Devoucoux M, Roques C, Lachance C, Lashgari A, Joly-Beauparlant C, Jacquet K, Alerasool N, Prudente A, Taipale M, Droit A, Lambert JP, Hussein SMI, Côté J. MRG Proteins Are Shared by Multiple Protein Complexes With Distinct Functions. Mol Cell Proteomics 2022; 21:100253. [PMID: 35636729 PMCID: PMC9253478 DOI: 10.1016/j.mcpro.2022.100253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
MRG15/MORF4L1 is a highly conserved protein in eukaryotes that contains a chromodomain (CHD) recognizing methylation of lysine 36 on histone H3 (H3K36me3) in chromatin. Intriguingly, it has been reported in the literature to interact with several different factors involved in chromatin modifications, gene regulation, alternative mRNA splicing, and DNA repair by homologous recombination. To get a complete and reliable picture of associations in physiological conditions, we used genome editing and tandem affinity purification to analyze the stable native interactome of human MRG15, its paralog MRGX/MORF4L2 that lacks the CHD, and MRGBP (MRG-binding protein) in isogenic K562 cells. We found stable interchangeable association of MRG15 and MRGX with the NuA4/TIP60 histone acetyltransferase/chromatin remodeler, Sin3B histone deacetylase/demethylase, ASH1L histone methyltransferase, and PALB2-BRCA2 DNA repair protein complexes. These associations were further confirmed and analyzed by CRISPR tagging of endogenous proteins and comparison of expressed isoforms. Importantly, based on structural information, point mutations could be introduced that specifically disrupt MRG15 association with some complexes but not others. Most interestingly, we also identified a new abundant native complex formed by MRG15/X-MRGBP-BRD8-EP400NL (EP400 N-terminal like) that is functionally similar to the yeast TINTIN (Trimer Independent of NuA4 for Transcription Interactions with Nucleosomes) complex. Our results show that EP400NL, being homologous to the N-terminal region of NuA4/TIP60 subunit EP400, creates TINTIN by competing for BRD8 association. Functional genomics indicate that human TINTIN plays a role in transcription of specific genes. This is most likely linked to the H4ac-binding bromodomain of BRD8 along the H3K36me3-binding CHD of MRG15 on the coding region of transcribed genes. Taken together, our data provide a complete detailed picture of human MRG proteins-associated protein complexes, which are essential to understand and correlate their diverse biological functions in chromatin-based nuclear processes.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Céline Roques
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Catherine Lachance
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Anahita Lashgari
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada; Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Karine Jacquet
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Prudente
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Arnaud Droit
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada.
| |
Collapse
|
16
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int J Biochem Cell Biol 2022; 144:106155. [PMID: 34990836 DOI: 10.1016/j.biocel.2021.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Epigenetic dysregulation is an important contributor to carcinogenesis. This is not surprising, as chromatin-genomic DNA organized around structural histone scaffolding-serves as the template on which occurs essential nuclear processes, such as transcription, DNA replication and DNA repair. Histone H3 lysine 36 (H3K36) methyltransferases, such as the SET-domain 2 protein (SETD2), have emerged as critical tumor suppressors. Previous work on mammalian SETD2 and its counterpart in model organisms, Set2, has highlighted the role of this protein in governing genomic stability through transcriptional elongation and splicing, as well as in DNA damage response processes and cell cycle progression. A compendium of SETD2 mutations have been documented, garnered from sequenced cancer patient genome data, and these findings underscore the cancer-driving properties of SETD2 loss-of-function. In this review, we consolidate the molecular mechanisms regulated by SETD2/Set2 and discuss evidence of its dysregulation in tumorigenesis. Insight into the genetic interactions that exist between SETD2 and various canonical intracellular signaling pathways has not only empowered pharmacological intervention by taking advantage of synthetic lethality but underscores SETD2 as a druggable target for precision cancer therapy.
Collapse
|
18
|
Redington J, Deveryshetty J, Kanikkannan L, Miller I, Korolev S. Structural Insight into the Mechanism of PALB2 Interaction with MRG15. Genes (Basel) 2021; 12:genes12122002. [PMID: 34946951 PMCID: PMC8701324 DOI: 10.3390/genes12122002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.
Collapse
|
19
|
Sundarraj J, Taylor GC, von Kriegsheim A, Pradeepa MM. H3K36me3 and PSIP1/LEDGF associate with several DNA repair proteins, suggesting their role in efficient DNA repair at actively transcribing loci. Wellcome Open Res 2021; 2:83. [PMID: 34541330 PMCID: PMC8422350 DOI: 10.12688/wellcomeopenres.11589.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein (PSIP1/LEDGF) is a transcriptional coactivator, possesses an H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology-directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry (qMS) to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). We also performed stable isotope labelling with amino acids in cell culture (SILAC) followed by qMS for a longer isoform of PSIP1 (PSIP/p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts ( MEFs). Furthermore, immunoprecipitation followed by western blotting was performed to validate the qMS data. DNA damage in PSIP1 knockout MEFs was assayed by a comet assay. Results: Proteomic analysis shows the association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP /p75. We further validated the association of PSIP/p75 with PARP1, hnRNPU and gamma H2A.X and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP/p75 in promoting homology-directed repair (HDR), our data support a wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting proteins involved in DNA damage response pathways to the actively transcribed loci.
Collapse
Affiliation(s)
- Jayakumar Sundarraj
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 40085, India
| | - Gillian C.A. Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Madapura M Pradeepa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
20
|
Sundarraj J, Taylor GC, von Kriegsheim A, Pradeepa MM. H3K36me3 and PSIP1/LEDGF associate with several DNA repair proteins, suggesting their role in efficient DNA repair at actively transcribing loci. Wellcome Open Res 2021; 2:83. [PMID: 34541330 PMCID: PMC8422350 DOI: 10.12688/wellcomeopenres.11589.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein (PSIP1/LEDGF) is a transcriptional coactivator, possesses an H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology-directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry (qMS) to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). We also performed stable isotope labelling with amino acids in cell culture (SILAC) followed by qMS for a longer isoform of PSIP1 (PSIP/p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts ( MEFs). Furthermore, immunoprecipitation followed by western blotting was performed to validate the qMS data. DNA damage in PSIP1 knockout MEFs was assayed by a comet assay. Results: Proteomic analysis shows the association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP /p75. We further validated the association of PSIP/p75 with PARP1, hnRNPU and gamma H2A.X and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP/p75 in promoting homology-directed repair (HDR), our data support a wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting proteins involved in DNA damage response pathways to the actively transcribed loci.
Collapse
Affiliation(s)
- Jayakumar Sundarraj
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 40085, India
| | - Gillian C.A. Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Madapura M Pradeepa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
21
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Nakato R, Sakata T. Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods 2021; 187:44-53. [PMID: 32240773 DOI: 10.1016/j.ymeth.2020.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a central method in epigenomic research. Genome-wide analysis of histone modifications, such as enhancer analysis and genome-wide chromatin state annotation, enables systematic analysis of how the epigenomic landscape contributes to cell identity, development, lineage specification, and disease. In this review, we first present a typical ChIP-seq analysis workflow, from quality assessment to chromatin-state annotation. We focus on practical, rather than theoretical, approaches for biological studies. Next, we outline various advanced ChIP-seq applications and introduce several state-of-the-art methods, including prediction of gene expression level and chromatin loops from epigenome data and data imputation. Finally, we discuss recently developed single-cell ChIP-seq analysis methodologies that elucidate the cellular diversity within complex tissues and cancers.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
23
|
An Z, Yin L, Liu Y, Peng M, Shen WH, Dong A. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1010-1024. [PMID: 32324922 DOI: 10.1111/tpj.14780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.
Collapse
Affiliation(s)
- Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universitè de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
24
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
25
|
Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2020; 47:10662-10677. [PMID: 31586400 PMCID: PMC6847799 DOI: 10.1093/nar/gkz780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.
Collapse
Affiliation(s)
- Amélie Rodrigue
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Thiago Torres Gomes
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Yan Coulombe
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Gemma Montalban
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Simone da Costa E Silva Carvalho
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | - Larissa Milano
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Mandy Ducy
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Giuliana De-Gregoriis
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Wilson Araújo da Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
26
|
Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, Sun Y, Chen Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol 2020; 10:301. [PMID: 32185139 PMCID: PMC7059202 DOI: 10.3389/fonc.2020.00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Partner and localizer of BRCA2 (PALB2) is vital for homologous recombination (HR) repair in response to DNA double-strand breaks (DSBs). PALB2 functions as a tumor suppressor and participates in the maintenance of genome integrity. In this review, we summarize the current knowledge of the biological roles of the multifaceted PALB2 protein and of its regulation. Moreover, we describe the link between PALB2 pathogenic variants (PVs) and breast cancer predisposition, aggressive clinicopathological features, and adverse clinical prognosis. We also refer to both the opportunities and challenges that the identification of PALB2 PVs provides in breast cancer genetic counseling and precision medicine.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Sun
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, Fang D. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 2020; 10:9. [PMID: 32021684 PMCID: PMC6995143 DOI: 10.1186/s13578-020-0374-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone marks control many cellular processes including DNA damage repair. This review will focus primarily on the active histone mark H3K36me3 in the regulation of DNA damage repair and the maintenance of genomic stability after DNA damage. There are diverse clues showing H3K36me3 participates in DNA damage response by directly recruiting DNA repair machinery to set the chromatin at a “ready” status, leading to a quick response upon damage. Reduced H3K36me3 is associated with low DNA repair efficiency. This review will also place a main emphasis on the H3K36me3-mediated DNA damage repair in the tumorigenesis of the newly found oncohistone mutant tumors. Gaining an understanding of different aspects of H3K36me3 in DNA damage repair, especially in cancers, would share the knowledge of chromatin and DNA repair to serve to the drug discovery and patient care.
Collapse
Affiliation(s)
- Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongfei Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
28
|
Beurton F, Stempor P, Caron M, Appert A, Dong Y, Chen RAJ, Cluet D, Couté Y, Herbette M, Huang N, Polveche H, Spichty M, Bedet C, Ahringer J, Palladino F. Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3S HDAC complex in C. elegans. Nucleic Acids Res 2019; 47:11164-11180. [PMID: 31602465 PMCID: PMC6868398 DOI: 10.1093/nar/gkz880] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.
Collapse
Affiliation(s)
- Flore Beurton
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ron A-j Chen
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Marion Herbette
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hélène Polveche
- INSERM UMR 861, I-STEM, 28, Rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Martin Spichty
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
29
|
Krenning L, van den Berg J, Medema RH. Life or Death after a Break: What Determines the Choice? Mol Cell 2019; 76:346-358. [PMID: 31561953 DOI: 10.1016/j.molcel.2019.08.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
DNA double-strand breaks (DSBs) pose a constant threat to genomic integrity. Such DSBs need to be repaired to preserve homeostasis at both the cellular and organismal levels. Hence, the DNA damage response (DDR) has evolved to repair these lesions and limit their toxicity. The initiation of DNA repair depends on the activation of the DDR, and we know that the strength of DDR signaling may differentially affect cellular viability. However, we do not fully understand what determines the cytotoxicity of a DSB. Recent work has identified genomic location, (in)correct DNA repair pathway usage, and cell-cycle position as contributors to DSB-induced cytotoxicity. In this review, we discuss how these determinants affect cytotoxicity, highlight recent discoveries, and identify open questions that could help to improve our understanding about cell fate decisions after a DNA DSB.
Collapse
Affiliation(s)
- Lenno Krenning
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Deveryshetty J, Peterlini T, Ryzhikov M, Brahiti N, Dellaire G, Masson JY, Korolev S. Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells. eLife 2019; 8:44063. [PMID: 31017574 PMCID: PMC6533086 DOI: 10.7554/elife.44063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Thibaut Peterlini
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Mikhail Ryzhikov
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Nadine Brahiti
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | | | - Jean-Yves Masson
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Sergey Korolev
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| |
Collapse
|
31
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
32
|
Hajduskova M, Baytek G, Kolundzic E, Gosdschan A, Kazmierczak M, Ofenbauer A, Beato Del Rosal ML, Herzog S, Ul Fatima N, Mertins P, Seelk-Müthel S, Tursun B. MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans. Genetics 2019; 211:121-139. [PMID: 30425042 PMCID: PMC6325694 DOI: 10.1534/genetics.118.301674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.
Collapse
Affiliation(s)
- Martina Hajduskova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Gülkiz Baytek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Ena Kolundzic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Alexander Gosdschan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Marlon Kazmierczak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Andreas Ofenbauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Maria Lena Beato Del Rosal
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Sergej Herzog
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Nida Ul Fatima
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie Seelk-Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Baris Tursun
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| |
Collapse
|
33
|
Velázquez C, Esteban-Cardeñosa EM, Lastra E, Abella LE, de la Cruz V, Lobatón CD, Durán M, Infante M. A PALB2 truncating mutation: Implication in cancer prevention and therapy of Hereditary Breast and Ovarian Cancer. Breast 2018; 43:91-96. [PMID: 30521987 DOI: 10.1016/j.breast.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
Explaining genetic predisposition in Hereditary Breast and Ovarian Cancer (HBOC) families without BRCA mutations is crucial. Germline PALB2 inactivating mutations were associated with an increased risk of HBOC due to its role in DNA repair through cooperation with BRCA proteins. The prevalence and penetrance of PALB2 mutations in Spanish HBOC patients remains unexplained. PALB2 mutation screening has been conducted in 160 high-risk BRCA-negative patients and 320 controls. We evaluated four predicted splicing disruption variants and large genomic rearrangements by multiplex ligation-dependent probe amplification. We have found a frameshift mutation which segregates in an early onset cancer family; and four rare missense variants. None of the variants tested for a predicted splicing disruption showed an aberrant transcript pattern. No large genomic rearrangements were detected. Although PALB2 truncating mutations are rarely identified, segregation analysis and early onset cancer suggest a significant contribution to HBOC susceptibility in the Spanish population. PALB2 screening may improve genetic counselling through prevention measures, pedigree management and PARP inhibitor therapy selection.
Collapse
Affiliation(s)
- Carolina Velázquez
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Eva M Esteban-Cardeñosa
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, Burgos, Spain.
| | - Luis E Abella
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain.
| | - Virginia de la Cruz
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain.
| | - Carmen D Lobatón
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Mercedes Durán
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Mar Infante
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
34
|
Abstract
PALB2 (Partner and Localizer of BRCA2) was first identified as a BRCA2-interacting protein. Subsequently, PALB2 has been recognized as a cog in the cellular machinery for DNA repair by homologous recombination (HR). PALB2 also mediates S and G2 DNA damage checkpoints, and has an apparent function in protecting transcriptionally active genes from genotoxic stress. PALB2 also interacts with, is localized by, and functions downstream of BRCA1. Further, PALB2 interacts with other essential effectors of HR, including RAD51 and RAD51C, as well as BRCA2. Consistent with its function in HR and its interaction with key HR proteins, PALB2-deficient cells are hypersensitive to ionizing radiation and DNA interstrand crosslinking agents such as mitomycin C and cisplatin. Mechanistically, PALB2 is required for HR by mediating the recruitment of BRCA2 and the RAD51 recombinase to sites of DNA damage. Similar to bi-allelic loss-of-function mutations of BRCA1, BRCA2, RAD51 and RAD51C, bi-allelic mutations in PALB2 cause Fanconi anemia (FA), a rare childhood disorder which is associated with progressive bone marrow failure, congenital anomalies, and a predisposition to leukemia and solid tumors. Due to their close functional relationship, bi-allelic mutations of PALB2 and BRCA2 cause particularly severe forms of FA, called FANCN and FANCD1, both characterized by severe congenital abnormalities and very early onset of various cancers. This includes acute leukemias, Wilms tumor, medulloblastoma and neuroblastomas. Also, heterozygous germ-line mutations of PALB2, like mutations in several other essential HR genes listed above, yield an increased susceptibility to breast and pancreatic cancer.
Collapse
Affiliation(s)
- Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA
| |
Collapse
|
35
|
Gautam D, Johnson BA, Mac M, Moody CA. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathog 2018; 14:e1007367. [PMID: 30312361 PMCID: PMC6200281 DOI: 10.1371/journal.ppat.1007367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The life cycle of HPV is tied to the differentiation status of its host cell, with productive replication, late gene expression and virion production restricted to the uppermost layers of the stratified epithelium. HPV DNA is histone-associated, exhibiting a chromatin structure similar to that of the host chromosome. Although HPV chromatin is subject to histone post-translational modifications, how the viral life cycle is epigenetically regulated is not well understood. SETD2 is a histone methyltransferase that places the trimethyl mark on H3K36 (H3K36me3), a mark of active transcription. Here, we define a role for SETD2 and H3K36me3 in the viral life cycle. We have found that HPV positive cells exhibit increased levels of SETD2, with SETD2 depletion leading to defects in productive viral replication and splicing of late viral RNAs. Reducing H3K36me3 by overexpression of KDM4A, an H3K36me3 demethylase, or an H3.3K36M transgene also blocks productive viral replication, indicating a significant role for this histone modification in facilitating viral processes. H3K36me3 is enriched on the 3' end of the early region of the high-risk HPV31 genome in a SETD2-dependent manner, suggesting that SETD2 may regulate the viral life cycle through the recruitment of H3K36me3 readers to viral DNA. Intriguingly, we have found that activation of the ATM DNA damage kinase, which is required for productive viral replication, is necessary for the maintenance of H3K36me3 on viral chromatin and for processing of late viral RNAs. Additionally, we have found that the HPV31 E7 protein maintains the increased SETD2 levels in infected cells through an extension of protein half-life. Collectively, our findings highlight the importance of epigenetic modifications in driving the viral life cycle and identify a novel role for E7 as well as the DNA damage response in the regulation of viral processes through epigenetic modifications.
Collapse
Affiliation(s)
- Dipendra Gautam
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Chromatin is organized into higher-order structures that form subcompartments in interphase nuclei. Different categories of specialized enzymes act on chromatin and regulate its compaction and biophysical characteristics in response to physiological conditions. We present an overview of the function of chromatin structure and its dynamic changes in response to genotoxic stress, focusing on both subnuclear organization and the physical mobility of DNA. We review the requirements and mechanisms that cause chromatin relocation, enhanced mobility, and chromatin unfolding as a consequence of genotoxic lesions. An intriguing link has been established recently between enhanced chromatin dynamics and histone loss.
Collapse
Affiliation(s)
- Michael H Hauer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
37
|
Bleuyard JY, Butler RM, Esashi F. Perturbation of PALB2 function by the T413S mutation found in small cell lung cancer. Wellcome Open Res 2017; 2:110. [PMID: 29387807 PMCID: PMC5721578 DOI: 10.12688/wellcomeopenres.13113.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Germline mutations in the
PALB2 gene are associated with the genetic disorder Fanconi anaemia and increased predisposition to cancer. Disease-associated variants are mainly protein-truncating mutations, whereas a few missense substitutions are reported to perturb its interaction with breast cancer susceptibility proteins BRCA1 and BRCA2, which play essential roles in homology-directed repair (HDR). More recently, PALB2 was shown to associate with active genes independently of BRCA1, and through this mechanism, safeguards these regions from DNA replicative stresses. However, it is unknown whether PALB2 tumour suppressor function requires its chromatin association. Methods: Mining the public database of cancer mutations, we identified four potentially deleterious cancer-associated missense mutations within the PALB2 chromatin association motif (ChAM). To assess the impact of these mutations on PALB2 function, we generated cell lines expressing PALB2 variants harbouring corresponding ChAM mutations, and evaluated PALB2 chromatin association properties and the cellular resistance to camptothecin (CPT). Additionally, we examined the accumulation of γH2A.X and the RAD51 recombinase as readouts of DNA damage signalling and HDR, respectively. Results: We demonstrate that a small-cell lung cancer (SCLC)-associated T413S mutation in PALB2 impairs its chromatin association and confers reduced resistance to CPT, the only FDA-approved drug for relapsed SCLC. Unexpectedly, we found a less efficient γH2A.X nuclear foci formation in PALB2 T413S expressing cells, whereas a near-normal level of RAD51 nuclear foci was visible. Conclusions: These findings support the importance of PALB2 chromatin association in the suppression of tumours, including SCLC, an unusually aggressive type of cancer with poor prognosis. PALB2 T413S has little impact on RAD51 recruitment, likely due to its intact interaction with BRCA1 and BRCA2. However, this mutant shows inefficient DNA stress signalling. This finding sheds new light on the function of PALB2, playing a role in efficient DNA stress signalling through constitutive chromatin association.
Collapse
Affiliation(s)
- Jean-Yves Bleuyard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rosie M Butler
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
38
|
Bleuyard JY, Butler RM, Esashi F. Perturbation of PALB2 function by the T413S mutation found in small cell lung cancer. Wellcome Open Res 2017. [PMID: 29387807 DOI: 10.12688/wellcomeopenres.13113.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Germline mutations in the PALB2 gene are associated with the genetic disorder Fanconi anaemia and increased predisposition to cancer. Disease-associated variants are mainly protein-truncating mutations, whereas a few missense substitutions are reported to perturb its interaction with breast cancer susceptibility proteins BRCA1 and BRCA2, which play essential roles in homology-directed repair (HDR). More recently, PALB2 was shown to associate with active genes independently of BRCA1, and through this mechanism, safeguards these regions from DNA replicative stresses. However, it is unknown whether PALB2 tumour suppressor function requires its chromatin association. Methods: Mining the public database of cancer mutations, we identified four potentially deleterious cancer-associated missense mutations within the PALB2 chromatin association motif (ChAM). To assess the impact of these mutations on PALB2 function, we generated cell lines expressing PALB2 variants harbouring corresponding ChAM mutations, and evaluated PALB2 chromatin association properties and the cellular resistance to camptothecin (CPT). Additionally, we examined the accumulation of γH2A.X and the RAD51 recombinase as readouts of DNA damage signalling and HDR, respectively. Results: We demonstrate that a small-cell lung cancer (SCLC)-associated T413S mutation in PALB2 impairs its chromatin association and confers reduced resistance to CPT, the only FDA-approved drug for relapsed SCLC. Unexpectedly, we found a less efficient γH2A.X nuclear foci formation in PALB2 T413S expressing cells, whereas a near-normal level of RAD51 nuclear foci was visible. Conclusions: These findings support the importance of PALB2 chromatin association in the suppression of tumours, including SCLC, an unusually aggressive type of cancer with poor prognosis. PALB2 T413S has little impact on RAD51 recruitment, likely due to its intact interaction with BRCA1 and BRCA2. However, this mutant shows inefficient DNA stress signalling. This finding sheds new light on the function of PALB2, playing a role in efficient DNA stress signalling through constitutive chromatin association.
Collapse
Affiliation(s)
- Jean-Yves Bleuyard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rosie M Butler
- St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
39
|
Sundarraj J, Taylor GC, von Kriegsheim A, Pradeepa MM. ---Proteomic analysis of H3K36me3 and PSIP1/p75 (LEDGF) complexes reveal their wider role in DNA repair. Wellcome Open Res 2017; 2:83. [PMID: 34541330 PMCID: PMC8422350 DOI: 10.12688/wellcomeopenres.11589.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein ( PSIP1/LEDGF) is a transcriptional coactivator, possesses a H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). Furthermore, we performed stable isotope labelling with amino acids in cell culture (SILAC) for a longer isoform of PSIP1 (p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts (MEFS). Results: Proteomic analysis of H3K36me3 chromatin show association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP1/p75. We validated the association of PSIP1/p75 with gamma H2A.X, an early marker of DNA damage and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP1/p75 in promoting HDR in mammals, our data supports the wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting several DNA repair proteins to transcribed gene bodies.
Collapse
Affiliation(s)
- Jayakumar Sundarraj
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 40085, India
| | - Gillian C.A. Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Madapura M Pradeepa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
40
|
Sundarraj J, Taylor GC, von Kriegsheim A, Pradeepa MM. ---Proteomic analysis of H3K36me3 and PSIP1/p75 (LEDGF) complexes reveal their wider role in DNA repair. Wellcome Open Res 2017; 2:83. [PMID: 34541330 PMCID: PMC8422350 DOI: 10.12688/wellcomeopenres.11589.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein ( PSIP1/LEDGF) is a transcriptional coactivator, possesses a H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). Furthermore, we performed stable isotope labelling with amino acids in cell culture (SILAC) for a longer isoform of PSIP1 (p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts (MEFS). Results: Proteomic analysis of H3K36me3 chromatin show association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP1/p75. We validated the association of PSIP1/p75 with gamma H2A.X, an early marker of DNA damage and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP1/p75 in promoting HDR in mammals, our data supports the wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting several DNA repair proteins to transcribed gene bodies.
Collapse
Affiliation(s)
- Jayakumar Sundarraj
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 40085, India
| | - Gillian C.A. Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Madapura M Pradeepa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
41
|
Nepomuceno TC, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro AN, Carvalho MA. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci 2017; 18:ijms18091886. [PMID: 28858227 PMCID: PMC5618535 DOI: 10.3390/ijms18091886] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BRCA2 interacting partner, PALB2 has emerged as a pivotal tumor suppressor protein associated to hereditary cancer susceptibility to breast and pancreatic cancers. In this review, we discuss how other DDR proteins (such as the kinases Ataxia Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR), mediators BRCA1 (Breast Cancer 1)/BRCA2 and effectors RAD51/DNA Polymerase η (Polη) interact with PALB2 to orchestrate DNA repair. We also examine the involvement of PALB2 mutations in the predisposition to cancer and the role of PALB2 in stimulating error-free DNA repair through the FA/HR pathway.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Giuliana De Gregoriis
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | | | - Guilherme Suarez-Kurtz
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Marcelo A Carvalho
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro 20270-021, Brazil.
| |
Collapse
|