1
|
Seyedabadi M, Gurevich VV. Flavors of GPCR signaling bias. Neuropharmacology 2024; 261:110167. [PMID: 39306191 DOI: 10.1016/j.neuropharm.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
GPCRs are inherently flexible molecules existing in an equilibrium of multiple conformations. Binding of GPCR agonists shifts this equilibrium. Certain agonists can increase the fraction of active-like conformations that predispose the receptor to coupling to a particular signal transducer or a select group of transducers. Such agonists are called biased, in contrast to balanced agonists that facilitate signaling via all transducers the receptor couples to. These biased agonists preferentially channel the signaling of a GPCR to particular G proteins, GRKs, or arrestins. Preferential activation of particular G protein or arrestin subtypes can be beneficial, as it would reduce unwanted on-target side effects, widening the therapeutic window. However, biasing GPCRs has two important limitations: a) complete bias is impossible due to inherent flexibility of GPCRs; b) receptor-independent functions of signal transducer proteins cannot be directly affected by GPCR ligands or differential receptor barcoding by GRK phosphorylation. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave South, PRB, Rm. 417D, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Cheng CC, Tsai RF, Lin CK, Tan KT, Kalendra V, Simenas M, Lin CW, Chiang YW. In-Cell DEER Spectroscopy of Nanodisc-Delivered Membrane Proteins in Living Cell Membranes. JACS AU 2024; 4:3766-3770. [PMID: 39483229 PMCID: PMC11522923 DOI: 10.1021/jacsau.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Membrane proteins are integral to numerous cellular processes, yet their conformational dynamics in native environments remains difficult to study. This study introduces a nanodelivery method using nanodiscs to transport spin-labeled membrane proteins into the membranes of living cells, enabling direct in-cell double electron-electron resonance (DEER) spectroscopy measurements. We investigated the membrane protein BsYetJ, incorporating spin labels at key positions to monitor conformational changes. Our findings demonstrate successful delivery and high-quality DEER data for BsYetJ in both Gram-negative E. coli and Gram-positive B. subtilis membranes. The delivered BsYetJ retains its ability to transport calcium ions. DEER analysis reveals distinct conformational states of BsYetJ in different membrane environments, highlighting the influence of lipid composition on the protein structure. This nanodelivery method overcomes traditional limitations, enabling the study of membrane proteins in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Chu-Chun Cheng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Ruei-Fong Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Che-Kai Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Kui-Thong Tan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Chun-Wei Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
3
|
Belyaeva J, Elgeti M. Exploring protein structural ensembles: Integration of sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling methods. eLife 2024; 13:e99770. [PMID: 39283059 PMCID: PMC11405019 DOI: 10.7554/elife.99770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure-function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.
Collapse
Affiliation(s)
- Julia Belyaeva
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
| | - Matthias Elgeti
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
- Integrative Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Burger WAC, Draper-Joyce CJ, Valant C, Christopoulos A, Thal DM. Positive allosteric modulation of a GPCR ternary complex. SCIENCE ADVANCES 2024; 10:eadp7040. [PMID: 39259792 PMCID: PMC11389776 DOI: 10.1126/sciadv.adp7040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
The activation of a G protein-coupled receptor (GPCR) leads to the formation of a ternary complex between agonist, receptor, and G protein that is characterized by high-affinity binding. Allosteric modulators bind to a distinct binding site from the orthosteric agonist and can modulate both the affinity and the efficacy of orthosteric agonists. The influence allosteric modulators have on the high-affinity active state of the GPCR-G protein ternary complex is unknown due to limitations on attempting to characterize this interaction in recombinant whole cell or membrane-based assays. Here, we use the purified M2 muscarinic acetylcholine receptor reconstituted into nanodiscs to show that, once the agonist-bound high-affinity state is promoted by the G protein, positive allosteric modulators stabilize the ternary complex that, in the presence of nucleotides, leads to an enhanced initial rate of signaling. Our results enhance our understanding of how allosteric modulators influence orthosteric ligand signaling and will aid the design of allosteric therapeutics.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Draper-Joyce
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Rohner VL, Lamothe-Molina PJ, Patriarchi T. Engineering, applications, and future perspectives of GPCR-based genetically encoded fluorescent indicators for neuromodulators. J Neurochem 2024; 168:163-184. [PMID: 38288673 DOI: 10.1111/jnc.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.
Collapse
Affiliation(s)
- Valentin Lu Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Wort JL, Ackermann K, Giannoulis A, Bode BE. Enhanced sensitivity for pulse dipolar EPR spectroscopy using variable-time RIDME. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107460. [PMID: 37167826 DOI: 10.1016/j.jmr.2023.107460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Pulse dipolar EPR spectroscopy (PDS) measurements are an important complementary tool in structural biology and are increasingly applied to macromolecular assemblies implicated in human health and disease at physiological concentrations. This requires ever higher sensitivity, and recent advances have driven PDS measurements into the mid-nanomolar concentration regime, though optimization and acquisition of such measurements remains experimentally demanding and time expensive. One important consideration is that constant-time acquisition represents a hard limit for measurement sensitivity, depending on the maximum measured distance. Determining this distance a priori has been facilitated by machine-learning structure prediction (AlphaFold2 and RoseTTAFold) but is often confounded by non-representative behaviour in frozen solution that may mandate multiple rounds of optimization and acquisition. Herein, we endeavour to simultaneously enhance sensitivity and streamline PDS measurement optimization to one-step by benchmarking a variable-time acquisition RIDME experiment applied to CuII-nitroxide and CuII-CuII model systems. Results demonstrate marked sensitivity improvements of both 5- and 6-pulse variable-time RIDME of between 2- and 5-fold over the constant-time analogues.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland.
| |
Collapse
|
7
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
8
|
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, Ernst OP. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway. Sci Rep 2022; 12:13955. [PMID: 35977989 PMCID: PMC9385722 DOI: 10.1038/s41598-022-17716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jörg Reichenwallner
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paolo De Guzman
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Anling Kuo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
10
|
Tian H, Gunnison KM, Kazmi MA, Sakmar TP, Huber T. FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin. iScience 2022; 25:104060. [PMID: 35355518 PMCID: PMC8958324 DOI: 10.1016/j.isci.2022.104060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
|
11
|
Chen S, Getter T, Salom D, Wu D, Quetschlich D, Chorev DS, Palczewski K, Robinson CV. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 2022; 604:384-390. [PMID: 35388214 PMCID: PMC9007743 DOI: 10.1038/s41586-022-04547-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell-surface receptors that respond to various stimuli to induce signalling pathways across cell membranes. Recent progress has yielded atomic structures of key intermediates1,2 and roles for lipids in signalling3,4. However, capturing signalling events of a wild-type receptor in real time, across a native membrane to its downstream effectors, has remained elusive. Here we probe the archetypal class A GPCR, rhodopsin, directly from fragments of native disc membranes using mass spectrometry. We monitor real-time photoconversion of dark-adapted rhodopsin to opsin, delineating retinal isomerization and hydrolysis steps, and further showing that the reaction is significantly slower in its native membrane than in detergent micelles. Considering the lipids ejected with rhodopsin, we demonstrate that opsin can be regenerated in membranes through photoisomerized retinal-lipid conjugates, and we provide evidence for increased association of rhodopsin with unsaturated long-chain phosphatidylcholine during signalling. Capturing the secondary steps of the signalling cascade, we monitor light activation of transducin (Gt) through loss of GDP to generate an intermediate apo-trimeric G protein, and observe Gαt•GTP subunits interacting with PDE6 to hydrolyse cyclic GMP. We also show how rhodopsin-targeting compounds either stimulate or dampen signalling through rhodopsin-opsin and transducin signalling pathways. Our results not only reveal the effect of native lipids on rhodopsin signalling and regeneration but also enable us to propose a paradigm for GPCR drug discovery in native membrane environments.
Collapse
Affiliation(s)
- Siyun Chen
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tamar Getter
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Di Wu
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Daniel Quetschlich
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Wang X, Bushra N, Muschol M, Madsen JJ, Ye L. An in-membrane NMR spectroscopic approach probing native ligand-GPCR interaction. Int J Biol Macromol 2022; 206:911-916. [PMID: 35318080 DOI: 10.1016/j.ijbiomac.2022.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
Conventional approaches to study ligand-receptor interactions using solution-state NMR often involve laborious sample preparation, isotopic labeling, and receptor reconstitution. Each of these steps remains challenging for membrane proteins such as G protein-coupled receptors (GPCRs). Here we introduce a combinational approach integrating NMR and homogenized membrane nano-discs preparation to characterize the ligand-GPCR interactions. The approach will have a great potential for drug screening as it benefits from minimal receptor preparation, minimizing non-specific binding. In addition, the approach maintains receptor structural heterogeneity essential for functional diversity, making it feasible for probing a more reliable ligand-GPCR interaction that is vital for faithful ligand discovery.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Nabila Bushra
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Martin Muschol
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Chandler B, Todd L, Smith SO. Magic angle spinning NMR of G protein-coupled receptors. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:25-43. [PMID: 35282868 PMCID: PMC10718405 DOI: 10.1016/j.pnmrs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) have a simple seven transmembrane helix architecture which has evolved to recognize a diverse number of chemical signals. The more than 800 GPCRs encoded in the human genome function as receptors for vision, smell and taste, and mediate key physiological processes. Consequently, these receptors are a major target for pharmaceuticals. Protein crystallography and electron cryo-microscopy have provided high resolution structures of many GPCRs in both active and inactive conformations. However, these structures have not sparked a surge in rational drug design, in part because GPCRs are inherently dynamic and the structural changes induced by ligand or drug binding to stabilize inactive or active conformations are often subtle rearrangements in packing or hydrogen-bonding interactions. NMR spectroscopy provides a sensitive probe of local structure and dynamics at specific sites within these receptors as well as global changes in receptor structure and dynamics. These methods can also capture intermediate states and conformations with low populations that provide insights into the activation pathways. We review the use of solid-state magic angle spinning NMR to address the structure and activation mechanisms of GPCRs. The focus is on the large and diverse class A family of receptors. We highlight three specific class A GPCRs in order to illustrate how solid-state, as well as solution-state, NMR spectroscopy can answer questions in the field involving how different GPCR classes and subfamilies are activated by their associated ligands, and how small molecule drugs can modulate GPCR activation.
Collapse
Affiliation(s)
- Bianca Chandler
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Lauren Todd
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
15
|
Wang Y, Li M, Liang W, Shi X, Fan J, Kong R, Liu Y, Zhang J, Chen T, Lu S. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput Struct Biotechnol J 2022; 20:628-639. [PMID: 35140883 PMCID: PMC8801358 DOI: 10.1016/j.csbj.2022.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/09/2023] Open
Abstract
Class B G protein-coupled receptors (GPCRs) are important targets in the treatment of metabolic syndrome and diabetes. Although multiple structures of class B GPCRs-G protein complexes have been elucidated, the detailed activation mechanism of the receptors remains unclear. Here, we combine Gaussian accelerated molecular dynamics simulations and Markov state models (MSM) to investigate the activation mechanism of a canonical class B GPCR, human glucagon receptor-GCGR, including the negative allosteric modulator-bound inactive state, the agonist glucagon-bound active state, and both glucagon- and Gs-bound fully active state. The free-energy landscapes of GCGR show the conformational ensemble consisting of three activation-associated states: inactive, active, and fully active. The structural analysis indicates the high dynamics of GCGR upon glucagon binding with both active and inactive conformations in the ensemble. Significantly, the H8 and TM6 exhibits distinct features from the inactive to the active states. The additional simulations demonstrate the role of H8 in the recruitment of Gs. Gs binding presents a crucial function of stabilizing the glucagon binding site and MSM highlights the absolute requirement of Gs to help the GCGR reach the fully active state. Together, our results reveal the detailed activation mechanism of GCGR from the view of conformational dynamics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchao Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200023, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Kao TY, Hung CL, Lan YJ, Lee SW, Chiang YW. Simple Cryoprotectant-Free Method to Advance Pulsed Dipolar ESR Spectroscopy for Capturing Protein Conformational Ensembles. J Phys Chem B 2022; 126:423-429. [PMID: 35005966 DOI: 10.1021/acs.jpcb.1c08190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double electron-electron resonance (DEER) is a powerful technique for studying protein conformations. To preserve the room-temperature ensemble, proteins are usually shock-frozen in liquid nitrogen prior to DEER measurements. The use of cryoprotectant additives is, therefore, necessary to ensure the formation of a vitrified state. Here, we present a simple modification of the freezing process using a flexible fused silica microcapillary, which increases the freezing rates and thus enables DEER measurement without the use of cryoprotectants. The Bid protein, which is highly sensitive to cryoprotectant additives, is used as a model. We show that DEER with the simple modification can successfully reveal the cold denaturation of Bid, which was not possible with the conventional DEER preparations. The DEER result reveals the nature of Bid folding. Our method advances DEER for capturing the chemically and thermally induced conformational changes of a protein in a cryoprotectant-free medium.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
17
|
Schiemann O, Heubach CA, Abdullin D, Ackermann K, Azarkh M, Bagryanskaya EG, Drescher M, Endeward B, Freed JH, Galazzo L, Goldfarb D, Hett T, Esteban Hofer L, Fábregas Ibáñez L, Hustedt EJ, Kucher S, Kuprov I, Lovett JE, Meyer A, Ruthstein S, Saxena S, Stoll S, Timmel CR, Di Valentin M, Mchaourab HS, Prisner TF, Bode BE, Bordignon E, Bennati M, Jeschke G. Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. J Am Chem Soc 2021; 143:17875-17890. [PMID: 34664948 PMCID: PMC11253894 DOI: 10.1021/jacs.1c07371] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Caspar A Heubach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Mykhailo Azarkh
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentieva aven 9, 630090 Novosibirsk, Russia
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, and ACERT, National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Laura Esteban Hofer
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Svetlana Kucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Janet Eleanor Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, U.K
| | - Andreas Meyer
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christiane R Timmel
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Bela Ernest Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Hustedt EJ, Stein RA, Mchaourab HS. Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations. J Gen Physiol 2021; 153:212643. [PMID: 34529007 PMCID: PMC8449309 DOI: 10.1085/jgp.201711954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
The potential of spin labeling to reveal the dynamic dimension of macromolecules has been recognized since the dawn of the methodology in the 1960s. However, it was the development of pulsed electron paramagnetic resonance spectroscopy to detect dipolar coupling between spin labels and the availability of turnkey instrumentation in the 21st century that realized the full promise of spin labeling. Double electron-electron resonance (DEER) spectroscopy has seen widespread applications to channels, transporters, and receptors. In these studies, distance distributions between pairs of spin labels obtained under different biochemical conditions report the conformational states of macromolecules, illuminating the key movements underlying biological function. These experimental studies have spurred the development of methods for the rigorous analysis of DEER spectroscopic data along with methods for integrating these distributions into structural models. In this tutorial, we describe a model-based approach to obtaining a minimum set of components of the distance distribution that correspond to functionally relevant protein conformations with a set of fractional amplitudes that define the equilibrium between these conformations. Importantly, we review and elaborate on the error analysis reflecting the uncertainty in the various parameters, a critical step in rigorous structural interpretation of the spectroscopic data.
Collapse
Affiliation(s)
- Eric J Hustedt
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard A Stein
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Hassane S Mchaourab
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
19
|
Electron paramagnetic resonance spectroscopy on G-protein-coupled receptors: Adopting strategies from related model systems. Curr Opin Struct Biol 2021; 69:177-186. [PMID: 34304006 DOI: 10.1016/j.sbi.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
Membrane proteins, including ion channels, transporters and G-protein-coupled receptors (GPCRs), play a significant role in various physiological processes. Many of these proteins are difficult to express in large quantities, imposing crucial experimental restrictions. Nevertheless, there is now a wide variety of studies available utilizing electron paramagnetic resonance (EPR) spectroscopic techniques that expand experimental accessibility by using relatively small quantities of protein. Here, we give an overview starting from basic strategies in EPR on membrane proteins with a focus on GPCRs, while emphasizing several applications from recent years. We highlight how the arsenal of EPR-based techniques may provide significant further contributions to understanding the complex molecular machinery and energetic phenomena responsible for seamless workflow in essential biological processes.
Collapse
|
20
|
Torricella F, Bonucci A, Polykretis P, Cencetti F, Banci L. Rapid protein delivery to living cells for biomolecular investigation. Biochem Biophys Res Commun 2021; 570:82-88. [PMID: 34274850 DOI: 10.1016/j.bbrc.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022]
Abstract
The lack of a simple, fast and efficient method for protein delivery is limiting the widespread application of in-cell experiments, which are crucial for understanding the cellular function. We present here an innovative strategy to deliver proteins into both prokaryotic and eukaryotic cells, exploiting thermal vesiculation. This method allows to internalize substantial amounts of proteins, with different molecular weight and conformation, without compromising the structural properties and cell viability. Characterizing proteins in a physiological environment is essential as the environment can dramatically affect the conformation and dynamics of biomolecules as shown by in-cell EPR spectra vs those acquired in buffer solution. Considering its versatility, this method opens the possibility to scientists to study proteins directly in living cells through a wide range of techniques.
Collapse
Affiliation(s)
- Francesco Torricella
- Magnetic Resonance Center - CERM, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessio Bonucci
- Aix Marseille, Univ, CNRS, BIP, Laboratoire de Bioénergétique et Ingégnerie des protéines, Marseille, France
| | - Panagis Polykretis
- Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, v.le GB Morgagni 50, 50134, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
21
|
Elgeti M, Hubbell WL. DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules 2021; 11:778. [PMID: 34067265 PMCID: PMC8224605 DOI: 10.3390/biom11060778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large class of transmembrane helical proteins which are involved in numerous physiological signaling pathways and therefore represent crucial pharmacological targets. GPCR function and the action of therapeutic molecules are defined by only a few parameters, including receptor basal activity, ligand affinity, intrinsic efficacy and signal bias. These parameters are encoded in characteristic receptor conformations existing in equilibrium and their populations, which are thus of paramount interest for the understanding of receptor (mal-)functions and rational design of improved therapeutics. To this end, the combination of site-directed spin labeling and EPR spectroscopy, in particular double electron-electron resonance (DEER), is exceedingly valuable as it has access to sub-Angstrom spatial resolution and provides a detailed picture of the number and populations of conformations in equilibrium. This review gives an overview of existing DEER studies on GPCRs with a focus on the delineation of structure/function frameworks, highlighting recent developments in data analysis and visualization. We introduce "conformational efficacy" as a parameter to describe ligand-specific shifts in the conformational equilibrium, taking into account the loose coupling between receptor segments observed for different GPCRs using DEER.
Collapse
Affiliation(s)
- Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Bahrenberg T, Yardeni EH, Feintuch A, Bibi E, Goldfarb D. Substrate binding in the multidrug transporter MdfA in detergent solution and in lipid nanodiscs. Biophys J 2021; 120:1984-1993. [PMID: 33771471 PMCID: PMC8204392 DOI: 10.1016/j.bpj.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
MdfA from Escherichia coli is a prototypical secondary multi-drug (Mdr) transporter that exchanges drugs for protons. MdfA-mediated drug efflux is driven by the proton gradient and enabled by conformational changes that accompany the recruitment of drugs and their release. In this work, we applied distance measurements by W-band double electron-electron resonance (DEER) spectroscopy to explore the binding of mito-TEMPO, a nitroxide-labeled substrate analog, to Gd(III)-labeled MdfA. The choice of Gd(III)-nitroxide DEER enabled measurements in the presence of excess of mito-TEMPO, which has a relatively low affinity to MdfA. Distance measurements between mito-TEMPO and MdfA labeled at the periplasmic edges of either of three selected transmembrane helices (TM3101, TM5168, and TM9310) revealed rather similar distance distributions in detergent micelles (n-dodecyl-β-d-maltopyranoside, DDM)) and in lipid nanodiscs (ND). By grafting the predicted positions of the Gd(III) tag on the inward-facing (If) crystal structure, we looked for binding positions that reproduced the maxima of the distance distributions. The results show that the location of the mito-TEMPO nitroxide in DDM-solubilized or ND-reconstituted MdfA is similar (only 0.4 nm apart). In both cases, we located the nitroxide moiety near the ligand binding pocket in the If structure. However, according to the DEER-derived position, the substrate clashes with TM11, suggesting that for mito-TEMPO-bound MdfA, TM11 should move relative to the If structure. Additional DEER studies with MdfA labeled with Gd(III) at two sites revealed that TM9 also dislocates upon substrate binding. Together with our previous reports, this study demonstrates the utility of Gd(III)-Gd(III) and Gd(III)-nitroxide DEER measurements for studying the conformational behavior of transporters.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eliane Hadas Yardeni
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akiva Feintuch
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Hilger D. The role of structural dynamics in GPCR‐mediated signaling. FEBS J 2021; 288:2461-2489. [DOI: 10.1111/febs.15841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry Philipps‐University Marburg Germany
| |
Collapse
|
24
|
Huang SK, Pandey A, Tran DP, Villanueva NL, Kitao A, Sunahara RK, Sljoka A, Prosser RS. Delineating the conformational landscape of the adenosine A 2A receptor during G protein coupling. Cell 2021; 184:1884-1894.e14. [PMID: 33743210 DOI: 10.1016/j.cell.2021.02.041] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsβ1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gβγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Nicolas L Villanueva
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adnan Sljoka
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada; RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
25
|
Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:biom11020218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin–GPCR interactions has been extensively studied and discussed from the “arrestin perspective”, focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the “receptor perspective”, focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter’s transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
|
26
|
Krug U, Gloge A, Schmidt P, Becker‐Baldus J, Bernhard F, Kaiser A, Montag C, Gauglitz M, Vishnivetskiy SA, Gurevich VV, Beck‐Sickinger AG, Glaubitz C, Huster D. The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes. Angew Chem Int Ed Engl 2020; 59:23854-23861. [PMID: 32790043 PMCID: PMC7736470 DOI: 10.1002/anie.202006075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Dynamic structural transitions within the seven-transmembrane bundle represent the mechanism by which G-protein-coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist-, and arrestin-bound states of Y2R were prepared by cell-free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were 13 C-labeled. NMR-signal assignment was achieved by dynamic-nuclear-polarization enhancement and the individual functional states of the receptor were characterized by monitoring 13 C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp2816.48 of the highly conserved SWLP motif and Trp3277.55 adjacent to the NPxxY motif. Furthermore, a conformationally preserved "cysteine lock"-Trp11623.50 was identified.
Collapse
Affiliation(s)
- Ulrike Krug
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Anika Gloge
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Peter Schmidt
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Johanna Becker‐Baldus
- Institute of Biophysical ChemistryGoethe University FrankfurtGermany
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtGermany
| | - Frank Bernhard
- Institute of Biophysical ChemistryGoethe University FrankfurtGermany
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtGermany
| | - Anette Kaiser
- Institute of BiochemistryUniversity of LeipzigLeipzigGermany
| | - Cindy Montag
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Marcel Gauglitz
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
- Berlin Joint Electron Paramagnetic Resonance LaboratoryFree University BerlinGermany
| | | | | | | | - Clemens Glaubitz
- Institute of Biophysical ChemistryGoethe University FrankfurtGermany
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtGermany
| | - Daniel Huster
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| |
Collapse
|
27
|
Krug U, Gloge A, Schmidt P, Becker‐Baldus J, Bernhard F, Kaiser A, Montag C, Gauglitz M, Vishnivetskiy SA, Gurevich VV, Beck‐Sickinger AG, Glaubitz C, Huster D. Das Konformationsgleichgewicht des Neuropeptid‐Y2‐Rezeptors in Lipidmembranen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ulrike Krug
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Anika Gloge
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Peter Schmidt
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Johanna Becker‐Baldus
- Institut für Biophysikalische Chemie Goethe-Universität Frankfurt am Main Deutschland
- Zentrum für Biomolekulare Magnetresonanz Goethe-Universität Frankfurt am Main Deutschland
| | - Frank Bernhard
- Institut für Biophysikalische Chemie Goethe-Universität Frankfurt am Main Deutschland
- Zentrum für Biomolekulare Magnetresonanz Goethe-Universität Frankfurt am Main Deutschland
| | - Anette Kaiser
- Institut für Biochemie Universität Leipzig Deutschland
| | - Cindy Montag
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Marcel Gauglitz
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
- Berlin Joint Electron Paramagnetic Resonance Laboratory Freie Universität Berlin Deutschland
| | | | | | | | - Clemens Glaubitz
- Institut für Biophysikalische Chemie Goethe-Universität Frankfurt am Main Deutschland
- Zentrum für Biomolekulare Magnetresonanz Goethe-Universität Frankfurt am Main Deutschland
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| |
Collapse
|
28
|
Reyes-Alcaraz A, Y. Lucero Garcia-Rojas E, A. Bond R, K. McConnell B. Allosteric Modulators for GPCRs as a Therapeutic Alternative with High Potential in Drug Discovery. Mol Pharmacol 2020. [DOI: 10.5772/intechopen.91838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) consists of biological microprocessors that can activate multiple signaling pathways. Most GPCRs have an orthosteric pocket where the endogenous ligand(s) typically binds. Conversely, allosteric ligands bind to GPCRs at sites that are distinct from the orthosteric binding region and they modulate the response elicited by the endogenous ligand. Allosteric ligands can also switch the response of a GPCR after ligand binding to a unique signaling pathway, these ligands are termed biased allosteric modulators. Thus, the development of allosteric ligands opens new and multiple ways in which the signaling pathways of GPCRs can be manipulated for potential therapeutic benefit. Furthermore, the mechanisms by which allosteric ligands modulate the effects of endogenous ligands have provided new insights into the interactions between allosteric ligands and GPCRs. These new findings have a high potential to improve drug discovery and development and, therefore, creating the need for better screening methods for allosteric drugs to increase the chances of success in the development of allosteric modulators as lead clinical compounds.
Collapse
|
29
|
Viewing rare conformations of the β 2 adrenergic receptor with pressure-resolved DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:31824-31831. [PMID: 33257561 DOI: 10.1073/pnas.2013904117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) is an archetypal G protein coupled receptor (GPCR). One structural signature of GPCR activation is a large-scale movement (ca. 6 to 14 Å) of transmembrane helix 6 (TM6) to a conformation which binds and activates a cognate G protein. The β2AR exhibits a low level of agonist-independent G protein activation. The structural origin of this basal activity and its suppression by inverse agonists is unknown but could involve a unique receptor conformation that promotes G protein activation. Alternatively, a conformational selection model proposes that a minor population of the canonical active receptor conformation exists in equilibrium with inactive forms, thus giving rise to basal activity of the ligand-free receptor. Previous spin-labeling and fluorescence resonance energy transfer experiments designed to monitor the positional distribution of TM6 did not detect the presence of the active conformation of ligand-free β2AR. Here we employ spin-labeling and pressure-resolved double electron-electron resonance spectroscopy to reveal the presence of a minor population of unliganded receptor, with the signature outward TM6 displacement, in equilibrium with inactive conformations. Binding of inverse agonists suppresses this population. These results provide direct structural evidence in favor of a conformational selection model for basal activity in β2AR and provide a mechanism for inverse agonism. In addition, they emphasize 1) the importance of minor populations in GPCR catalytic function; 2) the use of spin-labeling and variable-pressure electron paramagnetic resonance to reveal them in a membrane protein; and 3) the quantitative evaluation of their thermodynamic properties relative to the inactive forms, including free energy, partial molar volume, and compressibility.
Collapse
|
30
|
Lavington S, Watts A. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev 2020; 12:10.1007/s12551-020-00775-5. [PMID: 33215301 PMCID: PMC7755959 DOI: 10.1007/s12551-020-00775-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.
Collapse
Affiliation(s)
- Steven Lavington
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
31
|
Paprocki J, Biener G, Stoneman M, Raicu V. In-Cell Detection of Conformational Substates of a G Protein-Coupled Receptor Quaternary Structure: Modulation of Substate Probability by Cognate Ligand Binding. J Phys Chem B 2020; 124:10062-10076. [DOI: 10.1021/acs.jpcb.0c06081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Michael Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
32
|
Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020; 25:molecules25204724. [PMID: 33076289 PMCID: PMC7587574 DOI: 10.3390/molecules25204724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
Collapse
|
33
|
Valdez-Lopez JC, Petr ST, Donohue MP, Bailey RJ, Gebreeziabher M, Cameron EG, Wolf JB, Szalai VA, Robinson PR. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction. Biophys J 2020; 119:389-401. [PMID: 32621866 PMCID: PMC7376183 DOI: 10.1016/j.bpj.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and β-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.
Collapse
Affiliation(s)
- Juan C Valdez-Lopez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Stephen T Petr
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Matthew P Donohue
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland; Maryland NanoCenter, University of Maryland College Park, College Park, Maryland
| | - Robin J Bailey
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Meheret Gebreeziabher
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Evan G Cameron
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Julia B Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Veronika A Szalai
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland.
| |
Collapse
|
34
|
Evans EGB, Morgan JLW, DiMaio F, Zagotta WN, Stoll S. Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:10839-10847. [PMID: 32358188 PMCID: PMC7245078 DOI: 10.1073/pnas.1916375117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels are essential components of mammalian visual and olfactory signal transduction. CNG channels open upon direct binding of cyclic nucleotides (cAMP and/or cGMP), but the allosteric mechanism by which this occurs is incompletely understood. Here, we employed double electron-electron resonance (DEER) spectroscopy to measure intersubunit distance distributions in SthK, a bacterial CNG channel from Spirochaeta thermophila Spin labels were introduced into the SthK C-linker, a domain that is essential for coupling cyclic nucleotide binding to channel opening. DEER revealed an agonist-dependent conformational change in which residues of the B'-helix displayed outward movement with respect to the symmetry axis of the channel in the presence of the full agonist cAMP, but not with the partial agonist cGMP. This conformational rearrangement was observed both in detergent-solubilized SthK and in channels reconstituted into lipid nanodiscs. In addition to outward movement of the B'-helix, DEER-constrained Rosetta structural models suggest that channel activation involves upward translation of the cytoplasmic domain and formation of state-dependent interactions between the C-linker and the transmembrane domain. Our results demonstrate a previously unrecognized structural transition in a CNG channel and suggest key interactions that may be responsible for allosteric gating in these channels.
Collapse
Affiliation(s)
- Eric G B Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Jacob L W Morgan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195;
| | - Stefan Stoll
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195;
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
35
|
Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
|
36
|
Abstract
The interactions between lipids and proteins are one of the most fundamental processes in living organisms, responsible for critical cellular events ranging from replication, cell division, signaling, and movement. Enabling the central coupling responsible for maintaining the functionality of the breadth of proteins, receptors, and enzymes that find their natural home in biological membranes, the fundamental mechanisms of recognition of protein for lipid, and vice versa, have been a focal point of biochemical and biophysical investigations for many decades. Complexes of lipids and proteins, such as the various lipoprotein factions, play central roles in the trafficking of important proteins, small molecules and metabolites and are often implicated in disease states. Recently an engineered lipoprotein particle, termed the nanodisc, a modified form of the human high density lipoprotein fraction, has served as a membrane mimetic for the investigation of membrane proteins and studies of lipid-protein interactions. In this review, we summarize the current knowledge regarding this self-assembling lipid-protein complex and provide examples for its utility in the investigation of a large number of biological systems.
Collapse
|
37
|
Biter AB, Pollet J, Chen WH, Strych U, Hotez PJ, Bottazzi ME. A method to probe protein structure from UV absorbance spectra. Anal Biochem 2019; 587:113450. [DOI: 10.1016/j.ab.2019.113450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023]
|
38
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure-function continuum with intrinsic disorder-based proteoforms. Cell Mol Life Sci 2019; 76:4461-4492. [PMID: 31428838 PMCID: PMC11105632 DOI: 10.1007/s00018-019-03276-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
GPCR-G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signaling cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand-GPCR and GPCR-G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defines an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR-G protein system represents an illustrative example of the protein structure-function continuum, where structures of the involved proteins represent a complex mosaic of differently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fine-tuned by various post-translational modifications and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specific partners. In other words, GPCRs and G proteins exist as sets of conformational/basic, inducible/modified, and functioning proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, St. Petersburg, 195251, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow, Russian Federation.
| |
Collapse
|
39
|
Imamoto Y, Kojima K, Oka T, Maeda R, Shichida Y. Conformational Differences among Metarhodopsin I, Metarhodopsin II, and Opsin Probed by Wide-Angle X-ray Scattering. J Phys Chem B 2019; 123:9134-9142. [PMID: 31580080 DOI: 10.1021/acs.jpcb.9b08311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among the photoproducts of vertebrate rhodopsin, only metarhodopsin II (Meta-II) preferentially adopts the active structure in which transmembrane helices are rearranged. Light-induced helical rearrangement of rhodopsin in membrane-embedded form was directly monitored by wide-angle X-ray scattering (WAXS) using nanodiscs. The change in the WAXS curve for the formation of Meta-II was characterized by a peak at 0.2 Å-1 and a valley at 0.6 Å-1, which were not observed in metarhodopsin I and opsin. However, acid-induced active opsin (Opsin*) showed a 0.2 Å-1 peak, but no 0.6 Å-1 valley. Analyses using the model structures based on the crystal structures of dark state and Meta-II suggest that the outward movement of helix VI occurred in Opsin*. However, the displaced helices III and V in Meta-II resulting from the disruption of cytoplasmic ionic lock were restored in Opsin*, which is likely to destabilize the G-protein-activating structure of opsin.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Department of Biophysics, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Keiichi Kojima
- Department of Biophysics, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | | | - Ryo Maeda
- Department of Biophysics, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Yoshinori Shichida
- Research Organization for Science and Technology , Ritsumeikan University , Kusatsu , Shiga 525-8577 , Japan
| |
Collapse
|
40
|
Gupte TM, Ritt M, Dysthe M, Malik RU, Sivaramakrishnan S. Minute-scale persistence of a GPCR conformation state triggered by non-cognate G protein interactions primes signaling. Nat Commun 2019; 10:4836. [PMID: 31645561 PMCID: PMC6811539 DOI: 10.1038/s41467-019-12755-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/17/2019] [Indexed: 02/01/2023] Open
Abstract
Despite the crowded nature of the cellular milieu, ligand-GPCR-G protein interactions are traditionally viewed as spatially and temporally isolated events. In contrast, recent reports suggest the spatial and temporal coupling of receptor-effector interactions, with the potential to diversify downstream responses. In this study, we combine protein engineering of GPCR-G protein interactions with affinity sequestration and photo-manipulation of the crucial Gα C terminus, to demonstrate the temporal coupling of cognate and non-cognate G protein interactions through priming of the GPCR conformation. We find that interactions of the Gαs and Gαq C termini with the β2-adrenergic receptor (β2-AR), targeted at the G-protein-binding site, enhance Gs activation and cyclic AMP levels. β2-AR-Gα C termini interactions alter receptor conformation, which persists for ~90 s following Gα C terminus dissociation. Non-cognate G-protein expression levels impact cognate signaling in cells. Our study demonstrates temporal allostery in GPCRs, with implications for the modulation of downstream responses through the canonical G-protein-binding interface.
Collapse
Affiliation(s)
- Tejas M Gupte
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin-Cities, Minneapolis, Minnesota, 55455, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin-Cities, Minneapolis, Minnesota, 55455, USA
| | - Matthew Dysthe
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin-Cities, Minneapolis, Minnesota, 55455, USA
| | - Rabia U Malik
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin-Cities, Minneapolis, Minnesota, 55455, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin-Cities, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
41
|
Zhao P, Furness SGB. The nature of efficacy at G protein-coupled receptors. Biochem Pharmacol 2019; 170:113647. [PMID: 31585071 DOI: 10.1016/j.bcp.2019.113647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) participate in many pathophysiological processes as well as almost all aspects of normal physiology. They are present at the surface of all cell types making them amenable and attractive targets for pharmaceutical therapeutics. GPCRs possess complex pharmacology with the ability to be turned on to various extents, have their constitutive activity suppressed and even switch between signaling pathways to which they couple. Underlying this complex pharmacology is GPCR signaling efficacy, and differences in efficacy promoted by alternative ligands and in different tissues is of great interest to biology in general and also the pharmaceutical industry. In this review we hope to discuss what the molecular foundations of efficacy are and whether a new approach utilizing a rate-dependent model may provide new insights into this phenomenon.
Collapse
Affiliation(s)
- Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia.
| | - Sebastian G B Furness
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
42
|
Draper-Joyce C, Furness SGB. Conformational Transitions and the Activation of Heterotrimeric G Proteins by G Protein-Coupled Receptors. ACS Pharmacol Transl Sci 2019; 2:285-290. [PMID: 32259062 PMCID: PMC7088962 DOI: 10.1021/acsptsci.9b00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptors (GPCRs) are particularly attractive targets for therapeutic pharmaceuticals. This is because they are involved in almost all facets of physiology, in many pathophysiological processes, they are tractable due to their cell surface location, and can exhibit highly textured pharmacology. While the development of new drugs does not require the molecular details of the mechanism of activity for a particular target, there has been increasing interest in the GPCR field in these details. In part, this has come with the recognition that differential activity at a particular target might be a way in which to leverage drug activity, either through manipulation of efficacy or through differential coupling (signaling bias). To this end, the past few years have seen a number of publications that have specifically attempted to address one or more aspects of the molecular reaction pathway, leading to activation of heterotrimeric G proteins by GPCRs.
Collapse
|
43
|
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci Rep 2019; 9:11283. [PMID: 31375689 PMCID: PMC6677831 DOI: 10.1038/s41598-019-47445-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR’s hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR’s oligomerization state using double electron–electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
44
|
Staus DP, Wingler LM, Pichugin D, Prosser RS, Lefkowitz RJ. Detergent- and phospholipid-based reconstitution systems have differential effects on constitutive activity of G-protein-coupled receptors. J Biol Chem 2019; 294:13218-13223. [PMID: 31362983 DOI: 10.1074/jbc.ac119.009848] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
A hallmark of G-protein-coupled receptors (GPCRs) is the conversion of external stimuli into specific cellular responses. In this tightly-regulated process, extracellular ligand binding by GPCRs promotes specific conformational changes within the seven transmembrane helices, leading to the coupling and activation of intracellular "transducer" proteins, such as heterotrimeric G proteins. Much of our understanding of the molecular mechanisms that govern GPCR activation is derived from experiments with purified receptors reconstituted in detergent micelles. To elucidate the influence of the phospholipid bilayer on GPCR activation, here we interrogated the functional, pharmacological, and biophysical properties of a GPCR, the β2-adrenergic receptor (β2AR), in high-density lipoprotein (HDL) particles. Compared with detergent-reconstituted β2AR, the β2AR in HDL particles had greatly enhanced levels of basal (constitutive) activity and displayed increased sensitivity to agonist activation, as assessed by activation of heterotrimeric G protein and allosteric coupling between the ligand-binding and transducer-binding pockets. Using 19F NMR spectroscopy, we directly linked these functional differences in detergent- and HDL-reconstituted β2AR to a change in the equilibrium between inactive and active receptor states. The contrast between the low levels of β2AR constitutive activity in cells and the high constitutive activity observed in an isolated phospholipid bilayer indicates that β2AR basal activity depends on the reconstitution system and further suggests that various cellular mechanisms suppress β2AR basal activity physiologically. Our findings provide critical additional insights into GPCR activation and reveal how dramatically reconstitution systems can impact membrane protein function.
Collapse
Affiliation(s)
- Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710; Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Laura M Wingler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710; Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario L5L 1C6, Canada
| | - Robert Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario L5L 1C6, Canada.
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710; Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710; Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
45
|
Liu X, Masoudi A, Kahsai AW, Huang LY, Pani B, Staus DP, Shim PJ, Hirata K, Simhal RK, Schwalb AM, Rambarat PK, Ahn S, Lefkowitz RJ, Kobilka B. Mechanism of β 2AR regulation by an intracellular positive allosteric modulator. Science 2019; 364:1283-1287. [PMID: 31249059 DOI: 10.1126/science.aaw8981] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Drugs targeting the orthosteric, primary binding site of G protein-coupled receptors are the most common therapeutics. Allosteric binding sites, elsewhere on the receptors, are less well-defined, and so less exploited clinically. We report the crystal structure of the prototypic β2-adrenergic receptor in complex with an orthosteric agonist and compound-6FA, a positive allosteric modulator of this receptor. It binds on the receptor's inner surface in a pocket created by intracellular loop 2 and transmembrane segments 3 and 4, stabilizing the loop in an α-helical conformation required to engage the G protein. Structural comparison explains the selectivity of the compound for β2- over the β1-adrenergic receptor. Diversity in location, mechanism, and selectivity of allosteric ligands provides potential to expand the range of receptor drugs.
Collapse
Affiliation(s)
- Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ali Masoudi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul J Shim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kunio Hirata
- Advanced Photon Technology Division, Research Infrastructure Group, SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo 679-5148, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Rishabh K Simhal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Allison M Schwalb
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Paula K Rambarat
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Brian Kobilka
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. .,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
46
|
Gutierrez EDA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO, Lim BK, Chang BSW. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Mol Biol Evol 2019; 35:2422-2434. [PMID: 30010964 DOI: 10.1093/molbev/msy140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bats are excellent models for studying the molecular basis of sensory adaptation. In Chiroptera, a sensory trade-off has been proposed between the visual and auditory systems, though the extent of this association has yet to be fully examined. To investigate whether variation in visual performance is associated with echolocation, we experimentally assayed the dim-light visual pigment rhodopsin from bat species with differing echolocation abilities. While spectral tuning properties were similar among bats, we found that the rate of decay of their light-activated state was significantly slower in a nonecholocating bat relative to species that use distinct echolocation strategies, consistent with a sensory trade-off hypothesis. We also found that these rates of decay were remarkably slower compared with those of other mammals, likely indicating an adaptation to dim light. To examine whether functional changes in rhodopsin are associated with shifts in selection intensity upon bat Rh1 sequences, we implemented selection analyses using codon-based likelihood clade models. While no shifts in selection were identified in response to diverse echolocation abilities of bats, we detected a significant increase in the intensity of evolutionary constraint accompanying the diversification of Chiroptera. Taken together, this suggests that substitutions that modulate the stability of the light-activated rhodopsin state were likely maintained through intensified constraint after bats diversified, being finely tuned in response to novel sensory specializations. Our study demonstrates the power of combining experimental and computational approaches for investigating functional mechanisms underlying the evolution of complex sensory adaptations.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre of Forensic Sciences, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Livia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Senapati S, Poma AB, Cieplak M, Filipek S, Park PSH. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes. Anal Chem 2019; 91:7226-7235. [PMID: 31074606 DOI: 10.1021/acs.analchem.9b00546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane proteins, including G protein-coupled receptors (GPCRs), present a challenge in studying their structural properties under physiological conditions. Moreover, to better understand the activity of proteins requires examination of single molecule behaviors rather than ensemble averaged behaviors. Force-distance curve-based AFM (FD-AFM) was utilized to directly probe and localize the conformational states of a GPCR within the membrane at nanoscale resolution based on the mechanical properties of the receptor. FD-AFM was applied to rhodopsin, the light receptor and a prototypical GPCR, embedded in native rod outer segment disc membranes from photoreceptor cells of the retina in mice. Both FD-AFM and computational studies on coarse-grained models of rhodopsin revealed that the active state of the receptor has a higher Young's modulus compared to the inactive state of the receptor. Thus, the inactive and active states of rhodopsin could be differentiated based on the stiffness of the receptor. Differentiating the states based on the Young's modulus allowed for the mapping of the different states within the membrane. Quantifying the active states present in the membrane containing the constitutively active G90D rhodopsin mutant or apoprotein opsin revealed that most receptors adopt an active state. Traditionally, constitutive activity of GPCRs has been described in terms of two-state models where the receptor can achieve only a single active state. FD-AFM data are inconsistent with a two-state model but instead require models that incorporate multiple active states.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Adolfo B Poma
- Institute of Fundamental Technological Research , Polish Academy of Sciences , Pawińskiego 5B , 02-106 Warsaw , Poland.,Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Marek Cieplak
- Institute of Physics , Polish Academy of Sciences , Aleja Lotników 32/46 , 02-668 Warsaw , Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , 02-093 Warsaw , Poland
| | - Paul S H Park
- Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
48
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
49
|
Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019; 484:34-41. [PMID: 30703488 PMCID: PMC6377262 DOI: 10.1016/j.mce.2019.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
50
|
Srinivasan S, Guixà-González R, Cordomí A, Garriga P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem Sci 2019; 44:629-639. [PMID: 30853245 DOI: 10.1016/j.tibs.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ramon Guixà-González
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|