1
|
Mackay S, Reber TP, Bausch M, Boström J, Elger CE, Mormann F. Concept and location neurons in the human brain provide the 'what' and 'where' in memory formation. Nat Commun 2024; 15:7926. [PMID: 39256373 PMCID: PMC11387663 DOI: 10.1038/s41467-024-52295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Our brains create new memories by capturing the 'who/what', 'where' and 'when' of everyday experiences. On a neuronal level, mechanisms facilitating a successful transfer into episodic memory are still unclear. We investigated this by measuring single neuron activity in the human medial temporal lobe during encoding of item-location associations. While previous research has found predictive effects in population activity in human MTL structures, we could attribute such effects to two specialized sub-groups of neurons: concept cells in the hippocampus, amygdala and entorhinal cortex (EC), and a second group of parahippocampal location-selective neurons. In both item- and location-selective populations, firing rates were significantly higher during successfully encoded trials. These findings are in line with theories of hippocampal indexing, since selective index neurons may act as pointers to neocortical representations. Overall, activation of distinct populations of neurons could directly support the connection of the 'what' and 'where' of episodic memory.
Collapse
Affiliation(s)
- Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Thomas P Reber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Marcel Bausch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Bin Khalid I, Reifenstein ET, Auer N, Kunz L, Kempter R. Quantitative modeling of the emergence of macroscopic grid-like representations. eLife 2024; 13:e85742. [PMID: 39212203 PMCID: PMC11364436 DOI: 10.7554/elife.85742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
When subjects navigate through spatial environments, grid cells exhibit firing fields that are arranged in a triangular grid pattern. Direct recordings of grid cells from the human brain are rare. Hence, functional magnetic resonance imaging (fMRI) studies proposed an indirect measure of entorhinal grid-cell activity, quantified as hexadirectional modulation of fMRI activity as a function of the subject's movement direction. However, it remains unclear how the activity of a population of grid cells may exhibit hexadirectional modulation. Here, we use numerical simulations and analytical calculations to suggest that this hexadirectional modulation is best explained by head-direction tuning aligned to the grid axes, whereas it is not clearly supported by a bias of grid cells toward a particular phase offset. Firing-rate adaptation can result in hexadirectional modulation, but the available cellular data is insufficient to clearly support or refute this option. The magnitude of hexadirectional modulation furthermore depends considerably on the subject's navigation pattern, indicating that future fMRI studies could be designed to test which hypothesis most likely accounts for the fMRI measure of grid cells. Our findings also underline the importance of quantifying the properties of human grid cells to further elucidate how hexadirectional modulations of fMRI activity may emerge.
Collapse
Affiliation(s)
- Ikhwan Bin Khalid
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Eric T Reifenstein
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Department of Mathematics and Computer Science, Freie Universität BerlinBerlinGermany
| | - Naomi Auer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Lukas Kunz
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Richard Kempter
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| |
Collapse
|
3
|
Tian Y, Geng S, Liu T, Wang Q, Lian J, Lin L, Li J, Gong T, Duan J, Wang D, Liu P. Unveiling MRI markers for Parkinson's Disease: GABAergic dysfunction and cortical changes. Neuroimage Clin 2024; 43:103661. [PMID: 39241547 PMCID: PMC11405913 DOI: 10.1016/j.nicl.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE The study aimed to investigate changes in basal levels of the inhibitory γ-aminobutyric acid (GABA) neurotransmitter in the sensorimotor cortex (SMC) and cortical gyrification in patients with Parkinson's disease (PD), which could further identify potential imaging biomarkers for PD, particularly in patients with early-onset Parkinson's disease (EOPD). METHOD Fifty patients with PD (EOPD: 10, late-onset Parkinson's disease [LOPD]: 40) and fifty-two age- and gender-matched healthy controls (HC) underwent GABA-edited 1H MRS of the SMC and high-resolution 3D T1-weighted brain imaging. GABA levels and local gyrification index (LGI) were calculated to assess GABAergic and cortical gyrification deficits in PD. RESULT The Pearson correlation coefficients revealed significant negative associations between eight indicators, including GABA/Cr level and local gyrification index (LGI) of specific cortical regions (precentral, postcentral, entorhinal, superiortemporal, posteriorcingulate, cuneus, and transversetemporal cortex), and the likelihood of Parkinson's disease (r < -0.4, p < 0.001). Additionally, GABA levels were significantly lower in the SMC region of both EOPD and LOPD patients compared to healthy controls (mean ± SD [u.i.]: EOPD=0.081 ± 0.022 vs. Young-HC=0.112 ± 0.021, p = 0.003; LOPD=0.054 ± 0.024 vs. Old-HC=0.099 ± 0.021, p < 0.001). The logistic regression model was established by using multivariate analysis, identifying two statistically significant indicators: GABA/Cr and LGI of the transversetemporal. The combined model exhibited the highest AUC values in both younger and older populations. CONCLUSION GABAergic dysfunction may play an important role in the pathogenesis of PD patients. Changes in neurotransmitter and morphological may serve as potential markers for the preclinical diagnosis and progression of PD, including EOPD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, PR China.
| | - Sijia Geng
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, PR China.
| | - Tianyi Liu
- The First Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, PR China.
| | - Qi Wang
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, PR China.
| | - Jianxiu Lian
- Clinical and Technical Support, Philips Healthcare, Beijing, PR China.
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, PR China.
| | - Jiayu Li
- Department of Radiology, the third People's Hospital of Chengdu, Sichuan, PR China.
| | - Tao Gong
- Departments of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| | - Junhong Duan
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan, PR China.
| | - Dan Wang
- Department of Medical Imaging, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, PR China.
| | - Pengfei Liu
- Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, PR China.
| |
Collapse
|
4
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
5
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
6
|
Chen D, Axmacher N, Wang L. Grid codes underlie multiple cognitive maps in the human brain. Prog Neurobiol 2024; 233:102569. [PMID: 38232782 DOI: 10.1016/j.pneurobio.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes-empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
7
|
Hanert A, Schönfeld R, Weber FD, Nowak A, Döhring J, Philippen S, Granert O, Burgalossi A, Born J, Berg D, Göder R, Häussermann P, Bartsch T. Reduced overnight memory consolidation and associated alterations in sleep spindles and slow oscillations in early Alzheimer's disease. Neurobiol Dis 2024; 190:106378. [PMID: 38103701 DOI: 10.1016/j.nbd.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.
Collapse
Affiliation(s)
- Annika Hanert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robby Schönfeld
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Frederik D Weber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Alexander Nowak
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Juliane Döhring
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany; Institute for General Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Oliver Granert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Werner-Reichardt Center for Integrative Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Peter Häussermann
- Department of Geriatric Psychiatry, LVR Klinik Köln, Academic Teaching Hospital, University of Cologne, Köln, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany.
| |
Collapse
|
8
|
Datta D, Perone I, Morozov YM, Arellano J, Duque A, Rakic P, van Dyck CH, Arnsten AFT. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer's disease. Cereb Cortex 2023; 33:11501-11516. [PMID: 37874022 PMCID: PMC10724870 DOI: 10.1093/cercor/bhad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Isabella Perone
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jon Arellano
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alvaro Duque
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Amy F T Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Moon HJ, Wu HP, De Falco E, Blanke O. Physical Body Orientation Impacts Virtual Navigation Experience and Performance. eNeuro 2023; 10:ENEURO.0218-23.2023. [PMID: 37932043 PMCID: PMC10683533 DOI: 10.1523/eneuro.0218-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Most human navigation studies in MRI rely on virtual navigation. However, the necessary supine position in MRI makes it fundamentally different from daily ecological navigation. Nonetheless, until now, no study has assessed whether differences in physical body orientation (BO) affect participants' experienced BO during virtual navigation. Here, combining an immersive virtual reality navigation task with subjective BO measures and implicit behavioral measures, we demonstrate that physical BO (either standing or supine) modulates experienced BO. Also, we show that standing upright BO is preferred during spatial navigation: participants were more likely to experience a standing BO and were better at spatial navigation when standing upright. Importantly, we report that showing a supine virtual agent reduces the conflict between the preferred BO and physical supine BO. Our study provides critical, but missing, information regarding experienced BO during virtual navigation, which should be considered cautiously when designing navigation studies, especially in MRI.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Hsin-Ping Wu
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Emanuela De Falco
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Giari G, Vignali L, Xu Y, Bottini R. MEG frequency tagging reveals a grid-like code during attentional movements. Cell Rep 2023; 42:113209. [PMID: 37804506 DOI: 10.1016/j.celrep.2023.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Grid-cells firing fields tile the environment with a 6-fold periodicity during both locomotion and visual exploration. Here, we tested, in humans, whether movements of covert attention elicit grid-like coding using frequency tagging. Participants observed visual trajectories presented sequentially at fixed rate, allowing different spatial periodicities (e.g., 4-, 6-, and 8-fold) to have corresponding temporal periodicities (e.g., 1, 1.5, and 2 Hz), thus resulting in distinct spectral responses. We found a higher response for the (grid-like) 6-fold periodicity and localized this effect in medial-temporal sources. In a control experiment featuring the same temporal periodicity but lacking spatial structure, the 6-fold effect did not emerge, suggesting its dependency on spatial movements of attention. We report evidence that grid-like signals in the human medial-temporal lobe can be elicited by covert attentional movements and suggest that attentional coding may provide a suitable mechanism to support the activation of cognitive maps during conceptual navigation.
Collapse
Affiliation(s)
- Giuliano Giari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| |
Collapse
|
11
|
Kern KL, McMains SA, Storer TW, Moffat SD, Schon K. Cardiorespiratory fitness is associated with fMRI signal in right cerebellum lobule VIIa Crus I and II during spatial navigation in older adult women. Front Aging Neurosci 2022; 14:979741. [PMID: 36506472 PMCID: PMC9727394 DOI: 10.3389/fnagi.2022.979741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Spatial navigation is a cognitive skill critical for accomplishing daily goal-directed behavior in a complex environment; however, older adults exhibit marked decline in navigation performance with age. Neuroprotective interventions that enhance the functional integrity of navigation-linked brain regions, such as those in the medial temporal lobe memory system, may preserve spatial navigation performance in older adults. Importantly, a well-established body of literature suggests that cardiorespiratory fitness has measurable effects on neurobiological integrity in the medial temporal lobes, as well as in other brain areas implicated in spatial navigation, such as the precuneus and cerebellum. However, whether cardiorespiratory fitness modulates brain activity in these regions during navigation in older adults remains unknown. Thus, the primary objective of the current study was to examine cardiorespiratory fitness as a modulator of fMRI activity in navigation-linked brain regions in cognitively healthy older adults. To accomplish this objective, cognitively intact participants (N = 22, aged 60-80 years) underwent cardiorespiratory fitness testing to estimate maximal oxygen uptake (V · O2max) and underwent whole-brain high-resolution fMRI while performing a virtual reality navigation task. Our older adult sample demonstrated significant fMRI signal in the right and left retrosplenial cortex, right precuneus, right and left inferior parietal cortex, right and left cerebellum lobule VIIa Crus I and II, right fusiform gyrus, right parahippocampal cortex, right lingual gyrus, and right hippocampus during encoding of a virtual environment. Most importantly, in women but not men (N = 16), cardiorespiratory fitness was positively associated with fMRI activity in the right cerebellum lobule VIIa Crus I and II, but not other navigation-linked brain areas. These findings suggest that the influence of cardiorespiratory fitness on brain function extends beyond the hippocampus, as observed in other work, to the cerebellum lobule VIIa Crus I and II, a component of the cerebellum that has recently been linked to cognition and more specifically, spatial processing.
Collapse
Affiliation(s)
- Kathryn L. Kern
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Center for Memory and Brain, Boston University, Boston, MA, United States
| | | | - Thomas W. Storer
- Men’s Health, Aging, and Metabolism Unit, Brigham and Women’s Hospital, Boston, MA, United States
| | - Scott D. Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Karin Schon
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Center for Memory and Brain, Boston University, Boston, MA, United States
- Cognitive Neuroimaging Center, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
12
|
Mao D. Neural Correlates of Spatial Navigation in Primate Hippocampus. Neurosci Bull 2022; 39:315-327. [PMID: 36319893 PMCID: PMC9905402 DOI: 10.1007/s12264-022-00968-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022] Open
Abstract
The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.
Collapse
Affiliation(s)
- Dun Mao
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Chen ZS, Zhang X, Long X, Zhang SJ. Are Grid-Like Representations a Component of All Perception and Cognition? Front Neural Circuits 2022; 16:924016. [PMID: 35911570 PMCID: PMC9329517 DOI: 10.3389/fncir.2022.924016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Grid cells or grid-like responses have been reported in the rodent, bat and human brains during various spatial and non-spatial tasks. However, the functions of grid-like representations beyond the classical hippocampal formation remain elusive. Based on accumulating evidence from recent rodent recordings and human fMRI data, we make speculative accounts regarding the mechanisms and functional significance of the sensory cortical grid cells and further make theory-driven predictions. We argue and reason the rationale why grid responses may be universal in the brain for a wide range of perceptual and cognitive tasks that involve locomotion and mental navigation. Computational modeling may provide an alternative and complementary means to investigate the grid code or grid-like map. We hope that the new discussion will lead to experimentally testable hypotheses and drive future experimental data collection.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Xiaohan Zhang
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Abstract
Vision and learning have long been considered to be two areas of research linked only distantly. However, recent developments in vision research have changed the conceptual definition of vision from a signal-evaluating process to a goal-oriented interpreting process, and this shift binds learning, together with the resulting internal representations, intimately to vision. In this review, we consider various types of learning (perceptual, statistical, and rule/abstract) associated with vision in the past decades and argue that they represent differently specialized versions of the fundamental learning process, which must be captured in its entirety when applied to complex visual processes. We show why the generalized version of statistical learning can provide the appropriate setup for such a unified treatment of learning in vision, what computational framework best accommodates this kind of statistical learning, and what plausible neural scheme could feasibly implement this framework. Finally, we list the challenges that the field of statistical learning faces in fulfilling the promise of being the right vehicle for advancing our understanding of vision in its entirety. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- József Fiser
- Department of Cognitive Science, Center for Cognitive Computation, Central European University, Vienna 1100, Austria;
| | - Gábor Lengyel
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Nadasdy Z, Howell DHP, Török Á, Nguyen TP, Shen JY, Briggs DE, Modur PN, Buchanan RJ. Phase coding of spatial representations in the human entorhinal cortex. SCIENCE ADVANCES 2022; 8:eabm6081. [PMID: 35507662 PMCID: PMC9067922 DOI: 10.1126/sciadv.abm6081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The grid-like activity pattern of cells in the mammalian entorhinal cortex provides an internal reference frame for allocentric self-localization. The same neurons maintain robust phase couplings with local field oscillations. We found that neurons of the human entorhinal cortex display consistent spatial and temporal phase locking between spikes and slow gamma band local field potentials (LFPs) during virtual navigation. The phase locking maintained an environment-specific map over time. The phase tuning of spikes to the slow gamma band LFP revealed spatially periodic phase grids with environment-dependent scaling and consistent alignment with the environment. Using a Bayesian decoding model, we could predict the avatar's position with near perfect accuracy and, to a lesser extent, that of heading direction as well. These results imply that the phase of spikes relative to spatially modulated gamma oscillations encode allocentric spatial positions. We posit that a joint spatiotemporal phase code can implement the combined neural representation of space and time in the human entorhinal cortex.
Collapse
Affiliation(s)
- Zoltan Nadasdy
- Zeto Inc., Santa Clara, CA 95054, USA
- Department of Psychology, The University of Texas at Austin at Austin, Austin, TX 78712, USA
- Department of Cognitive Psychology, Eötvös Loránd University, 1064 Budapest, Hungary
| | - Daniel H. P. Howell
- Department of Psychology, The University of Texas at Austin at Austin, Austin, TX 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ágoston Török
- Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences, 1111 Budapest, Hungary
| | - T. Peter Nguyen
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Y. Shen
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Deborah E. Briggs
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pradeep N. Modur
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J. Buchanan
- Department of Psychology, The University of Texas at Austin at Austin, Austin, TX 78712, USA
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Surgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Psychiatry, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Moon HJ, Gauthier B, Park HD, Faivre N, Blanke O. Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex. Commun Biol 2022; 5:406. [PMID: 35501331 PMCID: PMC9061856 DOI: 10.1038/s42003-022-03361-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
Grid cells in entorhinal cortex (EC) encode an individual's location in space and rely on environmental cues and self-motion cues derived from the individual's body. Body-derived signals are also primary signals for the sense of self and based on integrated sensorimotor signals (proprioceptive, tactile, visual, motor) that have been shown to enhance self-centered processing. However, it is currently unknown whether such sensorimotor signals that modulate self-centered processing impact grid cells and spatial navigation. Integrating the online manipulation of bodily signals, to modulate self-centered processing, with a spatial navigation task and an fMRI measure to detect grid cell-like representation (GCLR) in humans, we report improved performance in spatial navigation and decreased GCLR in EC. This decrease in entorhinal GCLR was associated with an increase in retrosplenial cortex activity, which was correlated with participants' navigation performance. These data link self-centered processes during spatial navigation to entorhinal and retrosplenial activity and highlight the role of different bodily factors at play when navigating in VR.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland.,Center for Bionics, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Baptiste Gauthier
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland
| | - Hyeong-Dong Park
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland.,Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Nathan Faivre
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland.,University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Olaf Blanke
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland. .,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland. .,Department of Neurology, University Hospital Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Mao D, Avila E, Caziot B, Laurens J, Dickman JD, Angelaki DE. Spatial modulation of hippocampal activity in freely moving macaques. Neuron 2021; 109:3521-3534.e6. [PMID: 34644546 DOI: 10.1016/j.neuron.2021.09.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
The hippocampal formation is linked to spatial navigation, but there is little corroboration from freely moving primates with concurrent monitoring of head and gaze stances. We recorded neural activity across hippocampal regions in rhesus macaques during free foraging in an open environment while tracking their head and eye. Theta activity was intermittently present at movement onset and modulated by saccades. Many neurons were phase-locked to theta, with few showing phase precession. Most neurons encoded a mixture of spatial variables beyond place and grid tuning. Spatial representations were dominated by facing location and allocentric direction, mostly in head, rather than gaze, coordinates. Importantly, eye movements strongly modulated neural activity in all regions. These findings reveal that the macaque hippocampal formation represents three-dimensional (3D) space using a multiplexed code, with head orientation and eye movement properties being dominant during free exploration.
Collapse
Affiliation(s)
- Dun Mao
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Eric Avila
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Baptiste Caziot
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jean Laurens
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Tandon School of Engineering, New York University, New York, NY 11201, USA.
| |
Collapse
|
18
|
Chen D, Kunz L, Lv P, Zhang H, Zhou W, Liang S, Axmacher N, Wang L. Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. SCIENCE ADVANCES 2021; 7:eabj0200. [PMID: 34705507 PMCID: PMC8550230 DOI: 10.1126/sciadv.abj0200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Grid cells and theta oscillations are fundamental constituents of the brain’s navigation system and have been described in the entorhinal cortex (EC). Recent fMRI studies reveal that the ventromedial prefrontal cortex (vmPFC) contains grid-like representations. However, the neural mechanisms underlying human vmPFC grid-like representations and their interactions with EC grid activity have remained unknown. We conducted intracranial electroencephalography (iEEG) recordings from epilepsy patients during a virtual spatial navigation task. Oscillatory theta power in the vmPFC exhibited a sixfold rotational symmetry that was coordinated with grid-like representations in the EC. We found that synchronous theta oscillations occurred between these regions that predicted navigational performance. Analysis of information transfer revealed a unidirectional signal from vmPFC to EC during memory retrieval. Together, this study provides insights into the previously unknown neural signature and functional role of grid-like representations outside the EC and their synchronization with the entorhinal grid during human spatial navigation.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lukas Kunz
- Epilepsy Center, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Pengcheng Lv
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author.
| |
Collapse
|
19
|
OpenMaze: An open-source toolbox for creating virtual navigation experiments. Behav Res Methods 2021; 54:1374-1387. [PMID: 34471962 DOI: 10.3758/s13428-021-01664-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/08/2022]
Abstract
Incorporating 3D virtual environments into psychological experiments offers an innovative solution for balancing experimental control and ecological validity. Their flexible application to virtual navigation experiments, however, has been limited because accessible development tools best support only a subset of desirable task design features. We created OpenMaze, an open-source toolbox for the Unity game engine, to overcome this barrier. OpenMaze offers researchers the ability to conduct a wide range of first-person spatial navigation experiment paradigms in fully customized 3D environments. Crucially, because all experiments are defined using human-readable configuration files, our toolbox allows even those with no prior coding experience to build bespoke tasks. OpenMaze is also compatible with a variety of input devices and operating systems, broadening its possible applications. To demonstrate its advantages and limitations, we review and contrast other available software options before providing an overview of our design objectives and walking the reader through the process of building an experiment in OpenMaze.
Collapse
|
20
|
Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior. Nat Neurosci 2021; 24:863-872. [PMID: 33859438 DOI: 10.1038/s41593-021-00835-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/08/2021] [Indexed: 02/02/2023]
Abstract
To guide spatial behavior, the brain must retrieve memories that are appropriately associated with different navigational contexts. Contextual memory might be mediated by cell ensembles in the hippocampal formation that alter their responses to changes in context, processes known as remapping and realignment in the hippocampus and entorhinal cortex, respectively. However, whether remapping and realignment guide context-dependent spatial behavior is unclear. To address this issue, human participants learned object-location associations within two distinct virtual reality environments and subsequently had their memory tested during functional MRI (fMRI) scanning. Entorhinal grid-like representations showed realignment between the two contexts, and coincident changes in fMRI activity patterns consistent with remapping were observed in the hippocampus. Critically, in a third ambiguous context, trial-by-trial remapping and realignment in the hippocampal-entorhinal network predicted context-dependent behavior. These results reveal the hippocampal-entorhinal mechanisms mediating human contextual memory and suggest that the hippocampal formation plays a key role in spatial behavior under uncertainty.
Collapse
|
21
|
Abstract
In 2005, the Moser group identified a new type of cell in the entorhinal cortex (ERC): the grid cell (Hafting, Nature, 436, 2005, pp. 801-806). A landmark series of studies from these investigators showed that grid cells support spatial navigation by encoding position, direction as well as distance information, and they subsequently found grid cells in pre- and para-subiculum areas adjacent to the ERC (Boccara, Nature Neuroscience, 13, 2010, pp. 987-994). Fast forward to 2010, when some clever investigators developed fMRI analysis methods to document grid-like responses in the human ERC (Doeller, Nature, 463, 2010, pp. 657-661). What was not at all expected was the co-identification of grid-like fMRI responses outside of the ERC, in particular, the orbitofrontal cortex (OFC) and the ventromedial prefrontal cortex (vmPFC). Here we provide a compact overview of the burgeoning literature on grid cells in both rodent and human species, while considering the intriguing question: what are grid-like responses doing in the OFC and vmPFC? (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Clara U. Raithel
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA 19104, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| | - Jay A. Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA 19104, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Kubska ZR, Kamiński J. How Human Single-Neuron Recordings Can Help Us Understand Cognition: Insights from Memory Studies. Brain Sci 2021; 11:brainsci11040443. [PMID: 33808391 PMCID: PMC8067009 DOI: 10.3390/brainsci11040443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding human cognition is a key goal of contemporary neuroscience. Due to the complexity of the human brain, animal studies and noninvasive techniques, however valuable, are incapable of providing us with a full understanding of human cognition. In the light of existing cognitive theories, we describe findings obtained thanks to human single-neuron recordings, including the discovery of concept cells and novelty-dependent cells, or activity patterns behind working memory, such as persistent activity. We propose future directions for studies using human single-neuron recordings and we discuss possible opportunities of investigating pathological brain.
Collapse
|
23
|
Rudrauf D, Bennequin D, Williford K. The Moon illusion explained by the projective consciousness model. J Theor Biol 2020; 507:110455. [PMID: 32827502 DOI: 10.1016/j.jtbi.2020.110455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Models of consciousness should account for the phenomenology of subjective experience, including perceptual illusions. The Moon Illusion is a paradigmatic example that has yet to be accounted for. The Moon often appears larger near the perceptual horizon and smaller high in the sky, though the visual angle subtended is invariant. We show how this illusion can result from the optimization of a 3D projective geometrical frame through free energy minimization, following the principles of the Projective Consciousness Model. The model accounts for all documented modulations of the illusion without anomalies (e.g., the "size-distance paradox"), surpasses other theories in explanatory power, makes sense of inter- and intra-subjective variability vis-à-vis the illusion, and yields new quantitative and qualitative predictions. Empirical data from a virtual reality experiment support the predictions of the model. We also discuss how the model suggests explanations for other relevant illusions, concerning objects both at far and nearer distances, including the sky dome illusion, illusions of perceived size observed in the context of crowding experiments, and the Ames Room illusion.
Collapse
Affiliation(s)
- David Rudrauf
- FAPSE, Section of Psychology, Swiss Center for Affective Sciences, Computer Science University Center, Campus Biotech, University of Geneva, Geneva, Switzerland.
| | - Daniel Bennequin
- Department of Mathematics, IMJ, University of Paris 7, Paris, France
| | - Kenneth Williford
- Department of Philosophy and Humanities, University of Texas, Arlington, USA
| |
Collapse
|
24
|
Keinath AT, Rechnitz O, Balasubramanian V, Epstein RA. Environmental deformations dynamically shift human spatial memory. Hippocampus 2020; 31:89-101. [PMID: 32941670 DOI: 10.1002/hipo.23265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022]
Abstract
Place and grid cells in the hippocampal formation are commonly thought to support a unified and coherent cognitive map of space. This mapping mechanism faces a challenge when a navigator is placed in a familiar environment that has been deformed from its original shape. Under such circumstances, many transformations could plausibly serve to map a navigator's familiar cognitive map to the deformed space. Previous empirical results indicate that the firing fields of rodent place and grid cells stretch or compress in a manner that approximately matches the environmental deformation, and human spatial memory exhibits similar distortions. These effects have been interpreted as evidence that reshaping a familiar environment elicits an analogously reshaped cognitive map. However, recent work has suggested an alternative explanation, whereby deformation-induced distortions of the grid code are attributable to a mechanism that dynamically anchors grid fields to the most recently experienced boundary, thus causing history-dependent shifts in grid phase. This interpretation raises the possibility that human spatial memory will exhibit similar history-dependent dynamics. To test this prediction, we taught participants the locations of objects in a virtual environment and then probed their memory for these locations in deformed versions of this environment. Across three experiments with variable access to visual and vestibular cues, we observed the predicted pattern, whereby the remembered locations of objects were shifted from trial to trial depending on the boundary of origin of the participant's movement trajectory. These results provide evidence for a dynamic anchoring mechanism that governs both neuronal firing and spatial memory.
Collapse
Affiliation(s)
- Alexandra T Keinath
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ohad Rechnitz
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Bellmund JLS, de Cothi W, Ruiter TA, Nau M, Barry C, Doeller CF. Deforming the metric of cognitive maps distorts memory. Nat Hum Behav 2020; 4:177-188. [PMID: 31740749 DOI: 10.1038/s41562-019-0767-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2019] [Indexed: 01/13/2023]
Abstract
Environmental boundaries anchor cognitive maps that support memory. However, trapezoidal boundary geometry distorts the regular firing patterns of entorhinal grid cells, proposedly providing a metric for cognitive maps. Here we test the impact of trapezoidal boundary geometry on human spatial memory using immersive virtual reality. Consistent with reduced regularity of grid patterns in rodents and a grid-cell model based on the eigenvectors of the successor representation, human positional memory was degraded in a trapezoid environment compared with a square environment-an effect that was particularly pronounced in the narrow part of the trapezoid. Congruent with changes in the spatial frequency of eigenvector grid patterns, distance estimates between remembered positions were persistently biased, revealing distorted memory maps that explained behaviour better than the objective maps. Our findings demonstrate that environmental geometry affects human spatial memory in a similar manner to rodent grid-cell activity and, therefore, strengthen the putative link between grid cells and behaviour along with their cognitive functions beyond navigation.
Collapse
Affiliation(s)
- Jacob L S Bellmund
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - William de Cothi
- Institute of Behavioural Neuroscience, University College London, London, UK
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - Tom A Ruiter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Nau
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caswell Barry
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
26
|
Reactivated Spatial Context Guides Episodic Recall. J Neurosci 2020; 40:2119-2128. [PMID: 31974207 DOI: 10.1523/jneurosci.1640-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/01/2023] Open
Abstract
The medial temporal lobe (MTL) is known as the locus of spatial coding and episodic memory, but the interaction between these cognitive domains as well as the extent to which they rely on common neurophysiological mechanisms is poorly understood. Here, we use intracranial electroencephalography and a hybrid spatial-episodic memory task (29 subjects, 15 female) to determine how spatial information is dynamically reactivated in subregions of the human MTL and how this reactivation guides recall of episodic information. Our results implicate theta oscillations across the MTL as a common neurophysiological substrate for spatial coding in navigation and episodic recall. We further show that our index of retrieved spatial context is high in the hippocampus (HC) in an early time window preceding recall. Closer to recall, it decreases in the HC and increases in the parahippocampal gyrus. Finally, we demonstrate that hippocampal theta phase modulates parahippocampal gamma amplitude during retrieval of spatial context, suggesting a role for cross-frequency coupling in coding and transmitting retrieved spatial information.SIGNIFICANCE STATEMENT By recording from the human medial temporal lobe (MTL) while subjects recall items experienced in a virtual environment, we establish a direct relation between the strength of theta activity during memory search and the extent to which memories are organized by their spatial locations. We thereby pinpoint a role for theta oscillations in accessing the "cognitive map" during episodic retrieval and further highlight the dynamic interplay of hippocampus and extrahippocampal MTL in representing retrieved spatial context. Our results provide an important step toward a unified theory of MTL function encompassing its role in spatial navigation and episodic memory.
Collapse
|
27
|
França TFA, Monserrat JM. Hippocampal place cells are topographically organized, but physical space has nothing to do with it. Brain Struct Funct 2019; 224:3019-3029. [DOI: 10.1007/s00429-019-01968-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
|
28
|
Bicanski A, Burgess N. A Computational Model of Visual Recognition Memory via Grid Cells. Curr Biol 2019; 29:979-990.e4. [PMID: 30853437 PMCID: PMC6428694 DOI: 10.1016/j.cub.2019.01.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/23/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Models of face, object, and scene recognition traditionally focus on massively parallel processing of low-level features, with higher-order representations emerging at later processing stages. However, visual perception is tightly coupled to eye movements, which are necessarily sequential. Recently, neurons in entorhinal cortex have been reported with grid cell-like firing in response to eye movements, i.e., in visual space. Following the presumed role of grid cells in vector navigation, we propose a model of recognition memory for familiar faces, objects, and scenes, in which grid cells encode translation vectors between salient stimulus features. A sequence of saccadic eye-movement vectors, moving from one salient feature to the expected location of the next, potentially confirms an initial hypothesis (accumulating evidence toward a threshold) about stimulus identity, based on the relative feature layout (i.e., going beyond recognition of individual features). The model provides an explicit neural mechanism for the long-held view that directed saccades support hypothesis-driven, constructive perception and recognition; is compatible with holistic face processing; and constitutes the first quantitative proposal for a role of grid cells in visual recognition. The variance of grid cell activity along saccade trajectories exhibits 6-fold symmetry across 360 degrees akin to recently reported fMRI data. The model suggests that disconnecting grid cells from occipitotemporal inputs may yield prosopagnosia-like symptoms. The mechanism is robust with regard to partial visual occlusion, can accommodate size and position invariance, and suggests a functional explanation for medial temporal lobe involvement in visual memory for relational information and memory-guided attention.
Collapse
Affiliation(s)
- Andrej Bicanski
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, WC1N 3AZ London, UK.
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, WC1N 3AZ London, UK.
| |
Collapse
|
29
|
Rolls ET, Wirth S. Spatial representations in the primate hippocampus, and their functions in memory and navigation. Prog Neurobiol 2018; 171:90-113. [DOI: 10.1016/j.pneurobio.2018.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
|
30
|
Keinath AT, Epstein RA, Balasubramanian V. Environmental deformations dynamically shift the grid cell spatial metric. eLife 2018; 7:38169. [PMID: 30346272 PMCID: PMC6203432 DOI: 10.7554/elife.38169] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023] Open
Abstract
In familiar environments, the firing fields of entorhinal grid cells form regular triangular lattices. However, when the geometric shape of the environment is deformed, these time-averaged grid patterns are distorted in a grid scale-dependent and local manner. We hypothesized that this distortion in part reflects dynamic anchoring of the grid code to displaced boundaries, possibly through border cell-grid cell interactions. To test this hypothesis, we first reanalyzed two existing rodent grid rescaling datasets to identify previously unrecognized boundary-tethered shifts in grid phase that contribute to the appearance of rescaling. We then demonstrated in a computational model that boundary-tethered phase shifts, as well as scale-dependent and local distortions of the time-averaged grid pattern, could emerge from border-grid interactions without altering inherent grid scale. Together, these results demonstrate that environmental deformations induce history-dependent shifts in grid phase, and implicate border-grid interactions as a potential mechanism underlying these dynamics.
Collapse
Affiliation(s)
- Alexandra T Keinath
- Department of Psychology, University of Pennsylvania, Pennsylvania, United States
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Pennsylvania, United States
| | | |
Collapse
|
31
|
Hexadirectional Modulation of Theta Power in Human Entorhinal Cortex during Spatial Navigation. Curr Biol 2018; 28:3310-3315.e4. [PMID: 30318350 DOI: 10.1016/j.cub.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Grid cells and theta oscillations are fundamental components of the brain's navigation system. Grid cells provide animals [1, 2] and humans [3, 4] with a spatial map of the environment by exhibiting multiple firing fields arranged in a regular grid of equilateral triangles. This unique firing pattern presumably constitutes the neural basis for path integration [5-8] and may also enable navigation in visual and conceptual spaces [9-12]. Theta frequency oscillations are a prominent mesoscopic network phenomenon during navigation in both rodents and humans [13, 14] and encode movement speed [15-17], distance traveled [18], and proximity to spatial boundaries [19]. Whether theta oscillations may also carry a grid-like signal remains elusive, however. Capitalizing on previous fMRI studies revealing a macroscopic proxy of sum grid cell activity in human entorhinal cortex (EC) [20-22], we examined intracranial EEG recordings from the EC of epilepsy patients (n = 9) performing a virtual navigation task. We found that the power of theta oscillations (4-8 Hz) exhibits 6-fold rotational modulation by movement direction, reminiscent of grid cell-like representations detected using fMRI. Modulation of theta power was specific to 6-fold rotational symmetry and to the EC. Hexadirectional modulation of theta power by movement direction only emerged during fast movements, stabilized over the course of the experiment, and showed sensitivity to the environmental boundary. Our results suggest that oscillatory power in the theta frequency range carries an imprint of sum grid cell activity potentially enabled by a common grid orientation of neighboring grid cells [23].
Collapse
|
32
|
Elahian B, Lado NE, Mankin E, Vangala S, Misra A, Moxon K, Fried I, Sharan A, Yeasin M, Staba R, Bragin A, Avoli M, Sperling MR, Engel J, Weiss SA. Low-voltage fast seizures in humans begin with increased interneuron firing. Ann Neurol 2018; 84:588-600. [PMID: 30179277 DOI: 10.1002/ana.25325] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Intracellular recordings from cells in entorhinal cortex tissue slices show that low-voltage fast (LVF) onset seizures are generated by inhibitory events. Here, we determined whether increased firing of interneurons occurs at the onset of spontaneous mesial-temporal LVF seizures recorded in patients. METHODS The seizure onset zone (SOZ) was identified using visual inspection of the intracranial electroencephalogram. We used wavelet clustering and temporal autocorrelations to characterize changes in single-unit activity during the onset of LVF seizures recorded from microelectrodes in mesial-temporal structures. Action potentials generated by principal neurons and interneurons (ie, putative excitatory and inhibitory neurons) were distinguished using waveform morphology and K-means clustering. RESULTS From a total of 200 implanted microelectrodes in 9 patients during 13 seizures, we isolated 202 single units; 140 (69.3%) of these units were located in the SOZ, and 40 (28.57%) of them were classified as inhibitory. The waveforms of both excitatory and inhibitory units remained stable during the LVF epoch (p > > 0.05). In the mesial-temporal SOZ, inhibitory interneurons increased their firing rate during LVF seizure onset (p < 0.01). Excitatory neuron firing rates peaked 10 seconds after the inhibitory neurons (p < 0.01). During LVF spread to the contralateral mesial temporal lobe, an increase in inhibitory neuron firing rate was also observed (p < 0.01). INTERPRETATION Our results suggest that seizure generation and spread during spontaneous mesial-temporal LVF onset events in humans may result from increased inhibitory neuron firing that spawns a subsequent increase in excitatory neuron firing and seizure evolution. Ann Neurol 2018;84:588-600.
Collapse
Affiliation(s)
- Bahareh Elahian
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA.,Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN
| | - Nathan E Lado
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Emily Mankin
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sitaram Vangala
- Department of Medicine, Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amrit Misra
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Karen Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Shennan A Weiss
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
33
|
Abstract
We present a model of how neural representations of egocentric spatial experiences in parietal cortex interface with viewpoint-independent representations in medial temporal areas, via retrosplenial cortex, to enable many key aspects of spatial cognition. This account shows how previously reported neural responses (place, head-direction and grid cells, allocentric boundary- and object-vector cells, gain-field neurons) can map onto higher cognitive function in a modular way, and predicts new cell types (egocentric and head-direction-modulated boundary- and object-vector cells). The model predicts how these neural populations should interact across multiple brain regions to support spatial memory, scene construction, novelty-detection, 'trace cells', and mental navigation. Simulated behavior and firing rate maps are compared to experimental data, for example showing how object-vector cells allow items to be remembered within a contextual representation based on environmental boundaries, and how grid cells could update the viewpoint in imagery during planning and short-cutting by driving sequential place cell activity.
Collapse
Affiliation(s)
- Andrej Bicanski
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUnited Kingdom
| | - Neil Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
35
|
Herweg NA, Kahana MJ. Spatial Representations in the Human Brain. Front Hum Neurosci 2018; 12:297. [PMID: 30104966 PMCID: PMC6078001 DOI: 10.3389/fnhum.2018.00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
While extensive research on the neurophysiology of spatial memory has been carried out in rodents, memory research in humans had traditionally focused on more abstract, language-based tasks. Recent studies have begun to address this gap using virtual navigation tasks in combination with electrophysiological recordings in humans. These studies suggest that the human medial temporal lobe (MTL) is equipped with a population of place and grid cells similar to that previously observed in the rodent brain. Furthermore, theta oscillations have been linked to spatial navigation and, more specifically, to the encoding and retrieval of spatial information. While some studies suggest a single navigational theta rhythm which is of lower frequency in humans than rodents, other studies advocate for the existence of two functionally distinct delta-theta frequency bands involved in both spatial and episodic memory. Despite the general consensus between rodent and human electrophysiology, behavioral work in humans does not unequivocally support the use of a metric Euclidean map for navigation. Formal models of navigational behavior, which specifically consider the spatial scale of the environment and complementary learning mechanisms, may help to better understand different navigational strategies and their neurophysiological mechanisms. Finally, the functional overlap of spatial and declarative memory in the MTL calls for a unified theory of MTL function. Such a theory will critically rely upon linking task-related phenomena at multiple temporal and spatial scales. Understanding how single cell responses relate to ongoing theta oscillations during both the encoding and retrieval of spatial and non-spatial associations appears to be key toward developing a more mechanistic understanding of memory processes in the MTL.
Collapse
Affiliation(s)
- Nora A. Herweg
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. Kahana
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Yin A, Tseng PH, Rajangam S, Lebedev MA, Nicolelis MAL. Place Cell-Like Activity in the Primary Sensorimotor and Premotor Cortex During Monkey Whole-Body Navigation. Sci Rep 2018; 8:9184. [PMID: 29907789 PMCID: PMC6003955 DOI: 10.1038/s41598-018-27472-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022] Open
Abstract
Primary motor (M1), primary somatosensory (S1) and dorsal premotor (PMd) cortical areas of rhesus monkeys previously have been associated only with sensorimotor control of limb movements. Here we show that a significant number of neurons in these areas also represent body position and orientation in space. Two rhesus monkeys (K and M) used a wheelchair controlled by a brain-machine interface (BMI) to navigate in a room. During this whole-body navigation, the discharge rates of M1, S1, and PMd neurons correlated with the two-dimensional (2D) room position and the direction of the wheelchair and the monkey head. This place cell-like activity was observed in both monkeys, with 44.6% and 33.3% of neurons encoding room position in monkeys K and M, respectively, and the overlapping populations of 41.0% and 16.0% neurons encoding head direction. These observations suggest that primary sensorimotor and premotor cortical areas in primates are likely involved in allocentrically representing body position in space during whole-body navigation, which is an unexpected finding given the classical hierarchical model of cortical processing that attributes functional specialization for spatial processing to the hippocampal formation.
Collapse
Affiliation(s)
- A Yin
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - P H Tseng
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Rajangam
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - M A Lebedev
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - M A L Nicolelis
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA. .,Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, 59066060, Brazil.
| |
Collapse
|
37
|
Leaps of Faith: A Reply to Everaert et al. Trends Cogn Sci 2017; 21:571-572. [DOI: 10.1016/j.tics.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/18/2022]
|