1
|
Zhang Y, Zhang H, Liu J, Sun J, Xu Y, Shi N, Zhang H, Yan J, Chen J, Wang H, Yu T. Tuina alleviates the muscle atrophy induced by sciatic nerve injury in rats through regulation of PI3K/Akt signaling. J Orthop Surg Res 2024; 19:892. [PMID: 39736730 DOI: 10.1186/s13018-024-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Tuina is an effective treatment for the decrease of skeletal muscle atrophy after peripheral nerve injury. However, the underlying mechanism of action remains unclear. This study aimed to explore the underlying mechanisms of tuina in rats with sciatic nerve injury (SNI). METHODS We established an SNI rat model. After Tuina intervention, curative effects were evaluated by behavioral assessment, nerve function index, and muscle atrophy index (MAI). Pathological changes were observed by transmission electron microscopy and immunofluorescence. Insulin-like growth factor 1 (IGF-1), forkhead box O (FoxO) and p-FoxO levels were detected using enzyme-linked immunosorbent assay. Western blotting was performed to detect the expression of proteins involved in the PI3K/AKT signaling pathway. RESULT Behavioral assessment, nerve function index, and MAI revealed that the tuina had significantly improved muscle atrophy after SNI compared with the SNI model group. Transmission electron microscopy showed that tuina improved muscle ultramicrostructure. CD31 immunofluorescence revealed that tuina improved microcirculation. Furthermore, we observed that tuina differentially regulated the levels of IGF-1, FoxO and p-FoxO, and the protein expression of p-Phosphoinositide 3-kinase (p-PI3K), p-AKT, and vascular endothelial growth factor in the anterior tibial muscle and soleus muscles. CONCLUSION Tuina could effectively inhibit skeletal muscle atrophy via the microcirculation pathway in a rat model of SNI by regulating the expression of IGF-1 and FoxO. The underlying mechanism of action may involve the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yingqi Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hanyu Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiayue Liu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiawei Sun
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yue Xu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Narentuya Shi
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hongzheng Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiawang Yan
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jinping Chen
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hourong Wang
- Department of Acupuncture and Massage, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Tianyuan Yu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Hu Y, Xue Y, Wang K, Mao D, Pan XY, Rui Y. PMMA-induced biofilm promotes Schwann cells migration and proliferation mediated by EGF/Tnc/FN1 to improve sciatic nerve defect. Heliyon 2024; 10:e37231. [PMID: 39296039 PMCID: PMC11409128 DOI: 10.1016/j.heliyon.2024.e37231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Objective The purpose of this study is to investigate the role of PMMA-induced biofilm in nerve regeneration compared with silicone-induced biofilm involved in the mechanism. Methods PMMA or silicon rods were placed next to the sciatic nerve to induce a biological membrane which was assayed by PCR, Western blot, immunohistochemistry, immunofluorescence and proteomics. A 10 mm sciatic nerve gaps were repaired with the autologous nerve wrapped in an induced biological membrane. The repair effects were observed through general observation, functional evaluation of nerve regeneration, ultrasound examination, neural electrophysiology, the wet weight ratio of bilateral pretibial muscle and histological evaluation. Cell proliferation and migration of Schwann cells co-cultured with EGF-treated fibroblasts combined with siRNA were investigated. Results The results indicated that expression of GDNF, NGF and VEGF along with neovascularization was similar in the silicone and PMMA group and as the highest at 6 weeks after operation. Nerve injury repair mediated by toluidine blue and S100β/NF200 expression, the sensory and motor function evaluation, ultrasound, target organ muscle wet-weight ratio, percentage of collagen fiber, electromyography and histochemical staining were not different between the two groups and better than blank group. EGF-treated fibroblasts promoted proliferation and migration may be Tnc expression dependently. Conclusion Our study suggested that PMMA similar to silicon induced biofilm may promote autogenous nerve transplantation to repair nerve defects through EGF/Tnc/FN1 to increase Schwann cells proliferation and migration.
Collapse
Affiliation(s)
- Jun Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - YuXuan Hu
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Xiao-Yun Pan
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - YongJun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| |
Collapse
|
3
|
Li C, Song Y, Meng X. The Role of Macrophages in Nerve Regeneration: Polarization and Combination with Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38832865 DOI: 10.1089/ten.teb.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Peripheral nerve regeneration after trauma poses a substantial clinical challenge that has already been investigated for many years. Infiltration of immune cells is a critical step in the response to nerve damage that creates a supportive microenvironment for regeneration. In this work, we focus on a special type of immune cell, macrophage, in addressing the problem of neuronal regeneration. We discuss the complex endogenous mechanisms of peripheral nerve injury and regrowth vis-à-vis macrophages, including their recruitment, polarization, and interplay with Schwann cells post-trauma. Furthermore, we elucidate the underlying mechanisms by which exogenous stimuli govern the above events. Finally, we summarize the necessary roles of macrophages in peripheral nerve lesions and reconstruction. There are many challenges in controlling macrophage functions to achieve complete neuronal regeneration, even though considerable progress has been made in understanding the connection between these cells and peripheral nerve damage.
Collapse
Affiliation(s)
- Changqing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyu Song
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Acevedo Cintrón JA, Hunter DA, Schellhardt L, Pan D, Mackinnon SE, Wood MD. Limited Nerve Regeneration across Acellular Nerve Allografts (ANAs) Coincides with Changes in Blood Vessel Morphology and the Development of a Pro-Inflammatory Microenvironment. Int J Mol Sci 2024; 25:6413. [PMID: 38928119 PMCID: PMC11204013 DOI: 10.3390/ijms25126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.A.C.); (D.A.H.); (L.S.); (D.P.); (S.E.M.)
| |
Collapse
|
5
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
6
|
Wasman Smail S, Ziyad Abdulqadir S, Omar Khudhur Z, Elia Ishaq S, Faqiyazdin Ahmed A, Ghayour MB, Abdolmaleki A. IL-33 promotes sciatic nerve regeneration in mice by modulating macrophage polarization. Int Immunopharmacol 2023; 123:110711. [PMID: 37531832 DOI: 10.1016/j.intimp.2023.110711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Despite the innate regenerative capacity of peripheral nerves, regeneration after a severe injury is insufficient, and sensorimotor recovery is incomplete. As a result, finding alternative methods for improving regeneration and sensorimotor recovery is essential. In this regard, we investigated the effect of IL-33 treatment as a chemokine with neuroprotective properties. IL-33 can facilitate tissue healing by potentiating the type 2 immune response and polarizing macrophages toward the pro-healing M2 phenotype. However, its effects on nerve regeneration remain unclear. Therefore, this research aimed to evaluate the neuroprotective effects of IL-33 on sciatic nerve injury in male C57BL/6 mice. After crushing the left sciatic nerve, the animals were given 10, 25, or 50 µg/kg IL-33 intraperitoneally for seven days. The sensorimotor recovery was then assessed eight weeks after surgery. In addition, immunohistochemistry, ELISA, and real-time PCR were used to assess macrophage polarization, cytokine secretion, and neurotrophic factor expression in the injured nerves. IL-33 at 50 and 25 µg/kg doses could significantly accelerate nerve regeneration and improve sensorimotor recovery when compared to 10 µg/kg IL-33 and control groups. Furthermore, at 50 and 25 µg/kg doses, IL-33 polarized macrophages toward an M2 phenotype and reduced proinflammatory cytokines at the injury site. It also increased the mRNA expression of NGF, VEGF, and BDNF. These findings suggest that a seven-day IL-33 treatment had neuroprotective effects in a mouse sciatic nerve crush model, most likely by inducing macrophage polarization toward M2 and regulating inflammatory microenvironments.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University - Erbil, Kurdistan Region, Iraq.
| | - Sonia Elia Ishaq
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | | | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
7
|
Bernard M, McOnie R, Tomlinson JE, Blum E, Prest TA, Sledziona M, Willand M, Gordon T, Borschel GH, Soletti L, Brown BN, Cheetham J. Peripheral Nerve Matrix Hydrogel Promotes Recovery after Nerve Transection and Repair. Plast Reconstr Surg 2023; 152:458e-467e. [PMID: 36946873 PMCID: PMC10461719 DOI: 10.1097/prs.0000000000010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/08/2022] [Indexed: 03/23/2023]
Abstract
BACKGROUND Nerve transection is the most common form of peripheral nerve injury. Treatment of peripheral nerve injury has primarily focused on stabilization and mechanical cues to guide extension of the regenerating growth cone across the site of transection. The authors investigated the effects of a peripheral nerve matrix (PNM) hydrogel on recovery after nerve transection. METHODS The authors used rodent models to determine the effect of PNM on axon extension, electrophysiologic nerve conduction, force generation, and neuromuscular junction formation after nerve transection and repair. The authors complemented this work with in vivo and in vitro fluorescence-activated cell sorting and immunohistochemistry approaches to determine the effects of PNM on critical cell populations early after repair. RESULTS Extension of axons from the proximal stump and overall green fluorescent protein-positive axon volume within the regenerative bridge were increased in the presence of PNM compared with an empty conduit ( P < 0.005) 21 days after repair. PNM increased electrophysiologic conduction (compound muscle action potential amplitude) across the repair site ( P < 0.05) and neuromuscular junction formation ( P = 0.04) 56 days after repair. PNM produced a shift in macrophage phenotype in vitro and in vivo ( P < 0.05) and promoted regeneration in a murine model used to characterize the early immune response to PNM ( P < 0.05). CONCLUSION PNM, delivered by subepineural injection, promoted recovery after nerve transection with immediate repair, supporting a beneficial macrophage response, axon extension, and downstream remodeling using a range of clinically relevant outcome measures. CLINICAL RELEVANCE STATEMENT This article describes an approach for subepineural injection at the site of nerve coaptation to modulate the response to injury and improve outcomes.
Collapse
Affiliation(s)
- Megan Bernard
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | - Rebecca McOnie
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | - Joy E. Tomlinson
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | - Ethan Blum
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | | | - Mike Sledziona
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | | | - Tessa Gordon
- The Hospital for Sick Children, University of Toronto
| | | | | | | | - Jonathan Cheetham
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
- Renerva, LLC
| |
Collapse
|
8
|
Baruch EN, Nagarajan P, Gleber-Netto FO, Rao X, Xie T, Akhter S, Adewale A, Shajedul I, Mattson BJ, Ferrarotto R, Wong MK, Davies MA, Jindal S, Basu S, Harwood C, Leigh I, Ajami N, Futreal A, Castillo M, Gunaratne P, Goepfert RP, Khushalani N, Wang J, Watowich S, Calin GA, Migden MR, Vermeer P, D’Silva N, Yaniv D, Burks JK, Gomez J, Dougherty PM, Tsai KY, Allison JP, Sharma P, Wargo J, Myers JN, Gross ND, Amit M. Inflammation induced by tumor-associated nerves promotes resistance to anti-PD-1 therapy in cancer patients and is targetable by interleukin-6 blockade. RESEARCH SQUARE 2023:rs.3.rs-3161761. [PMID: 37503252 PMCID: PMC10371163 DOI: 10.21203/rs.3.rs-3161761/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.
Collapse
Affiliation(s)
- Erez N. Baruch
- Division of Cancer Medicine, Hematology and Oncology Fellowship program, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Frederico O. Gleber-Netto
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shamima Akhter
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adebayo Adewale
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Islam Shajedul
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi J Mattson
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Head and Neck Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael K. Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Catherine Harwood
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Irene Leigh
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Nadim Ajami
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX, USA
| | - Ryan P. Goepfert
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Watowich
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R. Migden
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Nisha D’Silva
- Department of Dentistry & Pathology, the University of Michigan, Ann Arbor, MI, USA
| | - Dan Yaniv
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier Gomez
- Department of Leukemia, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Y. Tsai
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | - James P Allison
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil D. Gross
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
9
|
Golshadi M, Claffey EF, Grenier JK, Miller A, Willand M, Edwards MG, Moore TP, Sledziona M, Gordon T, Borschel GH, Cheetham J. Delay modulates the immune response to nerve repair. NPJ Regen Med 2023; 8:12. [PMID: 36849720 PMCID: PMC9970988 DOI: 10.1038/s41536-023-00285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Effective regeneration after peripheral nerve injury requires macrophage recruitment. We investigated the activation of remodeling pathways within the macrophage population when repair is delayed and identified alteration of key upstream regulators of the inflammatory response. We then targeted one of these regulators, using exogenous IL10 to manipulate the response to injury at the repair site. We demonstrate that this approach alters macrophage polarization, promotes macrophage recruitment, axon extension, neuromuscular junction formation, and increases the number of regenerating motor units reaching their target. We also demonstrate that this approach can rescue the effects of delayed nerve graft.
Collapse
Affiliation(s)
- Masoud Golshadi
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Elaine F Claffey
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Jennifer K Grenier
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Andrew Miller
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Willand
- Epineuron Technologies Inc, 5100 Orbitor Dr., Mississauga, ON, L4W 5R8, Canada
| | | | - Tim P Moore
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Sledziona
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Tessa Gordon
- Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1×8, Canada
| | | | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Piñero G, Vence M, Aranda ML, Cercato MC, Soto PA, Usach V, Setton-Avruj PC. All the PNS is a Stage: Transplanted Bone Marrow Cells Play an Immunomodulatory Role in Peripheral Nerve Regeneration. ASN Neuro 2023; 15:17590914231167281. [PMID: 37654230 PMCID: PMC10475269 DOI: 10.1177/17590914231167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 09/02/2023] Open
Abstract
SUMMARY STATEMENT Bone marrow cell transplant has proven to be an effective therapeutic approach to treat peripheral nervous system injuries as it not only promoted regeneration and remyelination of the injured nerve but also had a potent effect on neuropathic pain.
Collapse
Affiliation(s)
- Gonzalo Piñero
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Pathology, Mount Sinai Hospital, New York, NY, USA
| | - Marianela Vence
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcos L. Aranda
- Universidad de Buenos Aires-CONICET, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Magalí C. Cercato
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina Usach
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia C. Setton-Avruj
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Reshamwala R, Shah M. Regenerative Approaches in the Nervous System. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come. The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
13
|
Tiwari AP, Lokai T, Albin B, Yang IH. A Review on the Technological Advances and Future Perspectives of Axon Guidance and Regeneration in Peripheral Nerve Repair. Bioengineering (Basel) 2022; 9:bioengineering9100562. [PMID: 36290530 PMCID: PMC9598559 DOI: 10.3390/bioengineering9100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Despite a significant advance in the pathophysiological understanding of peripheral nerve damage, the successful treatment of large nerve defects remains an unmet medical need. In this article, axon growth guidance for peripheral nerve regeneration was systematically reviewed and discussed mainly from the engineering perspective. In addition, the common approaches to surgery, bioengineering approaches to emerging technologies such as optogenetic stimulation and magnetic stimulation for functional recovery were discussed, along with their pros and cons. Additionally, clear future perspectives of axon guidance and nerve regeneration were addressed.
Collapse
|
14
|
Tang X, Li Q, Huang T, Zhang H, Chen X, Ling J, Yang Y. Regenerative Role of T Cells in Nerve Repair and Functional Recovery. Front Immunol 2022; 13:923152. [PMID: 35865551 PMCID: PMC9294345 DOI: 10.3389/fimmu.2022.923152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immune system is essential in the process of nerve repair after injury. Successful modulation of the immune response is regarded as an effective approach to improving treatment outcomes. T cells play an important role in the immune response of the nervous system, and their beneficial roles in promoting regeneration have been increasingly recognized. However, the diversity of T-cell subsets also delivers both neuroprotective and neurodegenerative functions. Therefore, this review mainly discusses the beneficial impact of T-cell subsets in the repair of both peripheral nervous system and central nervous system injuries and introduces studies on various therapies based on T-cell regulation. Further discoveries in T-cell mechanisms and multifunctional biomaterials will provide novel strategies for nerve regeneration.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tingting Huang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Han Zhang
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaoli Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| |
Collapse
|
15
|
Liu J, Zou T, Zhang Y, Koh J, Li H, Wang Y, Zhao Y, Zhang C. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla. BIOMATERIALS ADVANCES 2022; 138:212868. [PMID: 35913250 DOI: 10.1016/j.bioadv.2022.212868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The radical treatment of neurological impairments remains a major clinical challenge. Stem cells with high neural differentiation ability delivered by electroconductive hydrogel scaffolds have demonstrated promising applications in neural tissue regeneration. However, there are still challenges in designing bioactive scaffolds with good biocompatibility, appropriate electrical conductivity, and neurogenic niche. Herein, a three-dimensional (3D) electroconductive gelatin methacryloyl-multi-walled carbon nanotube/cobalt (GelMA-MWCNTs/Co) hydrogel scaffold was fabricated by incorporating MWCNTs/Co composites into a GelMA hydrogel matrix. The surface morphology, pore size, elastic modulus, swelling ratio, and conductivity of the hydrogels were measured. GelMA-MWCNTs/Co exhibited higher electrical conductivity than GelMA-MWCNTs. Live/dead and CCK8 assays demonstrated the good biocompatibility of the hydrogel for stem cells from apical papilla (SCAP) growth and differentiation. The cells encapsulated in the GelMA-MWCNTs and GelMA-MWCNTs/Co hydrogel scaffolds exhibited significant neuronal cell-like changes and a notable level of neuronal-specific marker expression after the electrical stimulation (ES) for 7 days, compared to that in the hydrogels without ES. Notably, the neurite spreading and Tuj1 fluorescent intensity of the SCAP in the electrically conductive GelMA-MWCNTs/Co hydrogel were more prominent compared to those of the other two groups. In addition, the 3D conductive hydrogel scaffolds advanced the neural differentiation of SCAP to an earlier time point. Considering these aspects, the novel electroconductive GelMA-MWCNTs/Co hydrogel synergized with ES greatly promotes SCAP neuronal differentiation.
Collapse
Affiliation(s)
- Junqing Liu
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuchen Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong, China
| | - Junhao Koh
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Hongwen Li
- Department of Dentistry, Longgang ENT Hospital, Shenzhen, Guangdong, China; Shenzhen Longgang Institute of Stomatology, Longgang, Shenzhen, Guangdong, China
| | - Yan Wang
- Department of VIP Center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yi Zhao
- Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong, China..
| |
Collapse
|
16
|
Zhang J, Tao J, Cheng H, Liu H, Wu W, Dong Y, Liu X, Gou M, Yang S, Xu J. Nerve transfer with 3D-printed branch nerve conduits. BURNS & TRAUMA 2022; 10:tkac010. [PMID: 35441080 PMCID: PMC9012979 DOI: 10.1093/burnst/tkac010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Nerve transfer is an important clinical surgical procedure for nerve repair by the coaptation of a healthy donor nerve to an injured nerve. Usually, nerve transfer is performed in an end-to-end manner, which will lead to functional loss of the donor nerve. In this study, we aimed to evaluate the efficacy of 3D-printed branch nerve conduits in nerve transfer. Methods Customized branch conduits were constructed using gelatine-methacryloyl by 3D printing. The nerve conduits were characterized both in vitro and in vivo. The efficacy of 3D-printed branch nerve conduits in nerve transfer was evaluated in rats through electrophysiology testing and histological evaluation. Results The results obtained showed that a single nerve stump could form a complex nerve network in the 3D-printed multibranch conduit. A two-branch conduit was 3D printed for transferring the tibial nerve to the peroneal nerve in rats. In this process, the two branches were connected to the distal tibial nerve and peroneal nerve. It was found that the two nerves were successfully repaired with functional recovery. Conclusions It is implied that the two-branch conduit could not only repair the peroneal nerve but also preserve partial function of the donor tibial nerve. This work demonstrated that 3D-printed branch nerve conduits provide a potential method for nerve transfer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yinchu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuesong Liu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing 100853, P.R. China
| | - Jianguo Xu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
17
|
Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00132. [PMID: 35446025 PMCID: PMC11097895 DOI: 10.1021/acsabm.2c00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.
Collapse
Affiliation(s)
- Cheuk Sun Edwin Lai
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Victoria H Kong
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Tania L Lopez-Silva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Angiogenesis is critical for the exercise-mediated enhancement of axon regeneration following peripheral nerve injury. Exp Neurol 2022; 353:114029. [DOI: 10.1016/j.expneurol.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
|
19
|
Yu J, Lin Y, Wang G, Song J, Hayat U, Liu C, Raza A, Huang X, Lin H, Wang JY. Zein-induced immune response and modulation by size, pore structure and drug-loading: Application for sciatic nerve regeneration. Acta Biomater 2022; 140:289-301. [PMID: 34843952 DOI: 10.1016/j.actbio.2021.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Zein is a biodegradable material with great potential in biomedical applications. However, as a plant-derived protein material, body's immune response is the key factor to determine its clinical performance. Herein, for the first time, the zein-induced immune response is evaluated systemically and locally, comparing with typical materials including alginate (ALG), poly(lactic-co-glycolic) acid (PLGA) and polystyrene (PS). Zein triggers an early inflammatory response consistent with the non-degradable PS, but this response decreases to the same level of the biosafe ALG and PLGA with zein degradation. Changing sphere sizes, pore structure and encapsulating dexamethasone can effectively modulate the zein-induced immune response, especially the pore structure which also inhibits neutrophil recruitment and promotes macrophages polarizing towards M2 phenotype. Thus, porous zein conduits with high and low porosity are further fabricated for the 15 mm sciatic nerve defect repair in rats. The conduits with high porosity induce more M2 macrophages to accelerate nerve regeneration with shorter degradation period and better nerve repair efficacy. These findings suggest that the pore structure in zein materials can alleviate the zein-induced early inflammation and promote M2 macrophage polarization to accelerate nerve regeneration. STATEMENT OF SIGNIFICANCE: Zein is a biodegradable material with great potential in biomedical applications. However, as a plant protein, its possible immune response in vivo is always the key issue. Until now, the systemic study on the immune responses of zein in vivo is still very limited, especially as an implant. Herein, for the first time, the zein-induced immune response was evaluated systemically and locally, comparing with typical biomaterials including alginate, poly(lactic-co-glycolic) acid and polystyrene. Changing sphere sizes, pore structure and encapsulating dexamethasone could effectively modulate the zein-induced immune response, especially the pore structure which also inhibited neutrophil recruitment and promoted macrophages polarizing towards M2 phenotype. Furthermore, the pore structure in zein nerve conduits was proved to alleviate the early inflammation and promote M2 macrophage polarization to accelerate nerve regeneration.
Collapse
|
20
|
Zhang X, Hasani-Sadrabadi MM, Zarubova J, Dashtimighadam E, Haghniaz R, Khademhosseini A, Butte MJ, Moshaverinia A, Aghaloo T, Li S. Immunomodulatory Microneedle Patch for Periodontal Tissue Regeneration. MATTER 2022; 5:666-682. [PMID: 35340559 PMCID: PMC8942382 DOI: 10.1016/j.matt.2021.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Periodontal diseases are caused by microbial infection and the recruitment of destructive immune cells. Current therapies mainly deal with bacteria elimination, but the regeneration of periodontal tissues remains a challenge. Here we developed a modular microneedle (MN) patch that delivered both antibiotic and cytokines into the local gingival tissue to achieve immunomodulation and tissue regeneration. This MN patch included a quickly dissolvable gelatin membrane for an immediate release of tetracycline and biodegradable GelMA MNs that contained tetracycline-loaded poly(lactic-co-glycolic acid) nanoparticles and cytokine-loaded silica microparticles for a sustained release. Antibiotic release completely inhibited bacteria growth, and the release of IL-4 and TGF-β induced the repolarization of anti-inflammatory macrophages and the formation of regulatory T cells in vitro. In vivo delivery of MN patch into periodontal tissues suppressed proinflammatory factors and promoted pro-regenerative signals and tissue healing, which demonstrated the therapeutic potential of local immunomodulation for tissue regeneration.
Collapse
Affiliation(s)
- Xuexiang Zhang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | | | - Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Erfan Dashtimighadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290 United States
| | - Reihaneh Haghniaz
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064 USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064 USA
| | - Manish J. Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
- Corresponding Author: (S.L.)
| |
Collapse
|
21
|
Xin N, Liu X, Chen S, Zhang Y, Wei D, Sun J, Zhou L, Wu C, Fan H. Neuroinduction and neuroprotection co-enhanced spinal cord injury repair based on IL-4@ZIF-8-loaded hyaluronan-collagen hydrogels with nano-aligned and viscoelastic cues. J Mater Chem B 2022; 10:6315-6327. [DOI: 10.1039/d2tb01111e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spontaneous recovery after spinal cord injury (SCI) is extremely limited since the severe inflammatory responses lead to secondary damage, and the diseased extracellular matrix (ECM) fails to provide inductive cues...
Collapse
|
22
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
23
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Suhar RA, Marquardt LM, Song S, Buabbas H, Doulames VM, Johansson PK, Klett KC, Dewi RE, Enejder AMK, Plant GW, George PM, Heilshorn SC. Elastin-like Proteins to Support Peripheral Nerve Regeneration in Guidance Conduits. ACS Biomater Sci Eng 2021; 7:4209-4220. [PMID: 34510904 DOI: 10.1021/acsbiomaterials.0c01053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic nerve guidance conduits (NGCs) offer an alternative to harvested nerve grafts for treating peripheral nerve injury (PNI). NGCs have been made from both naturally derived and synthesized materials. While naturally derived materials typically have an increased capacity for bioactivity, synthesized materials have better material control, including tunability and reproducibility. Protein engineering is an alternative strategy that can bridge the benefits of these two classes of materials by designing cell-responsive materials that are also systematically tunable and consistent. Here, we tested a recombinantly derived elastin-like protein (ELP) hydrogel as an intraluminal filler in a rat sciatic nerve injury model. We demonstrated that ELPs enhance the probability of forming a tissue bridge between the proximal and distal nerve stumps compared to an empty silicone conduit across the length of a 10 mm nerve gap. These tissue bridges have evidence of myelinated axons, and electrophysiology demonstrated that regenerated axons innervated distal muscle groups. Animals implanted with an ELP-filled conduit had statistically higher functional control at 6 weeks than those that had received an empty silicone conduit, as evaluated by the sciatic functional index. Taken together, our data support the conclusion that ELPs support peripheral nerve regeneration in acute complete transection injuries when used as an intraluminal filler. These results support the further study of protein engineered recombinant ELP hydrogels as a reproducible, off-the-shelf alternative for regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hana Buabbas
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Vanessa M Doulames
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Katarina C Klett
- Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ruby E Dewi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Annika M K Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Giles W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Modified Hyaluronic Acid-Laminin-Hydrogel as Luminal Filler for Clinically Approved Hollow Nerve Guides in a Rat Critical Defect Size Model. Int J Mol Sci 2021; 22:ijms22126554. [PMID: 34207389 PMCID: PMC8235360 DOI: 10.3390/ijms22126554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Hollow nerve guidance conduits are approved for clinical use for defect lengths of up to 3 cm. This is because also in pre-clinical evaluation they are less effective in the support of nerve regeneration over critical defect lengths. Hydrogel luminal fillers are thought to improve the regeneration outcome by providing an optimized matrix inside bioartificial nerve grafts. We evaluated here a modified hyaluronic acid-laminin-hydrogel (M-HAL) as luminal filler for two clinically approved hollow nerve guides. Collagen-based and chitosan-based nerve guides were filled with M-HAL in two different concentrations and the regeneration outcome comprehensively studied in the acute repair rat sciatic nerve 15 mm critical defect size model. Autologous nerve graft (ANG) repair served as gold-standard control. At 120 days post-surgery, all ANG rats demonstrated electrodiagnostically detectable motor recovery. Both concentrations of the hydrogel luminal filler induced improved regeneration outcome over empty nerve guides. However, neither combination with collagen- nor chitosan-based nerve guides resulted in functional recovery comparable to the ANG repair. In contrast to our previous studies, we demonstrate here that M-HAL slightly improved the overall performance of either empty nerve guide type in the critical defect size model.
Collapse
|
27
|
Giakoumettis D, Sgouros S. Nanotechnology in neurosurgery: a systematic review. Childs Nerv Syst 2021; 37:1045-1054. [PMID: 33462733 DOI: 10.1007/s00381-020-05008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The application of nanotechnology in medicine encompasses an interdisciplinary field of sciences for the diagnosis, treatment, and monitoring of medical conditions. This study aims to systematically review and summarize the advances of nanotechnology applicable to neurosurgery. METHODS We performed a PubMed advanced search of reports exploring the advances of nanotechnology and nanomedicine relating to diagnosis, treatment, or both, in neurosurgery, for the last decade. The search was performed according to PRISMA guidelines, and the following data were extracted from each paper: title; authors; article type; PMID; DOI; year of publication; in vitro, in vivo model; nanomedical, nanotechnological material; nanofield; neurosurgical field; the application of the system; and main conclusions of the study. RESULTS A total of 78 original studies were included in this review. The results were organized into the following categories: functional neurosurgery, head trauma, neurodegenerative diseases, neuro-oncology, spinal surgery and peripheral nerves, vascular neurosurgery, and studies that apply to more than one field. A further categorization applied in terms of nanomedical field such as neuroimaging, neuro-nanotechnology, neuroregeneration, theranostics, and neuro-nanotherapy. CONCLUSION In reviewing the literature, significant advances in imaging and treatment of central nervous system diseases are underway and are expected to reach clinical practice in the next decade by the application of the rapidly evolving nanotechnology techniques.
Collapse
Affiliation(s)
- Dimitrios Giakoumettis
- Department of Neurosurgery, "Evangelismos" Hospital, Athens, Greece
- Department of Neurosurgery, Medical School, National and "Kapodistrian" University of Athens, Athens, Greece
| | - Spyros Sgouros
- Department of Neurosurgery, Medical School, National and "Kapodistrian" University of Athens, Athens, Greece.
- Department of Pediatric Neurosurgery, "Iaso" Children's Hospital, Kifisias Avenue 37-39, 151 23 Marousi, Athens, Greece.
| |
Collapse
|
28
|
Park E, Lyon JG, Alvarado-Velez M, Betancur MI, Mokarram N, Shin JH, Bellamkonda RV. Enriching neural stem cell and anti-inflammatory glial phenotypes with electrical stimulation after traumatic brain injury in male rats. J Neurosci Res 2021; 99:1864-1884. [PMID: 33772860 PMCID: PMC8360147 DOI: 10.1002/jnr.24834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) by an external physical impact results in compromised brain function via undesired neuronal death. Following the injury, resident and peripheral immune cells, astrocytes, and neural stem cells (NSCs) cooperatively contribute to the recovery of the neuronal function after TBI. However, excessive pro‐inflammatory responses of immune cells, and the disappearance of endogenous NSCs at the injury site during the acute phase of TBI, can exacerbate TBI progression leading to incomplete healing. Therefore, positive outcomes may depend on early interventions to control the injury‐associated cellular milieu in the early phase of injury. Here, we explore electrical stimulation (ES) of the injury site in a rodent model (male Sprague–Dawley rats) to investigate its overall effect on the constituent brain cell phenotype and composition during the acute phase of TBI. Our data showed that a brief ES for 1 hr on day 2 of TBI promoted anti‐inflammatory phenotypes of microglia as assessed by CD206 expression and increased the population of NSCs and Nestin+ astrocytes at 7 days post‐TBI. Also, ES effectively increased the number of viable neurons when compared to the unstimulated control group. Given the salience of microglia and neural stem cells for healing after TBI, our results strongly support the potential benefit of the therapeutic use of ES during the acute phase of TBI to regulate neuroinflammation and to enhance neuroregeneration.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Johnathan G Lyon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Melissa Alvarado-Velez
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha I Betancur
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Nassir Mokarram
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
30
|
Liu Y, Li J, Song S, Kang J, Tsao Y, Chen S, Mottini V, McConnell K, Xu W, Zheng YQ, Tok JBH, George PM, Bao Z. Morphing electronics enable neuromodulation in growing tissue. Nat Biotechnol 2020. [PMID: 32313193 DOI: 10.1038/s41587-41020-40495-41582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases1-3. However, their fixed dimensions cannot accommodate rapid tissue growth4,5 and may impair development6. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications6-8. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jinxing Li
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiheong Kang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yuchi Tsao
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Shucheng Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Vittorio Mottini
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Kelly McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenhui Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yu-Qing Zheng
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020; 15:1421-1431. [PMID: 31997801 PMCID: PMC7059590 DOI: 10.4103/1673-5374.271668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review, we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular (commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies. But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| |
Collapse
|
32
|
Pan D, Hunter DA, Schellhardt L, Fuchs A, Halevi AE, Snyder-Warwick AK, Mackinnon SE, Wood MD. T cells modulate IL-4 expression by eosinophil recruitment within decellularized scaffolds to repair nerve defects. Acta Biomater 2020; 112:149-163. [PMID: 32434080 DOI: 10.1016/j.actbio.2020.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Decellularized nerve, or acellular nerve allografts (ANAs), are an increasingly used alternative to nerve autografts to repair nerve gaps to facilitate regeneration. The adaptive immune system, specifically T cells, plays a role in promoting regeneration upon these ANA scaffolds. However, how T cells promote regeneration across ANAs is not clear. Here, we show that T cells accumulate within ANAs repairing nerve gaps resulting in regulation of cytokine expression within the ANA environment. This in turn ultimately leads to robust nerve regeneration and functional recovery. Nerve regeneration across ANAs and functional recovery in Rag1KO mice was limited compared to wild-type (WT) mice. Prior to appreciable nerve regeneration, ANAs from Rag1KO mice contained fewer eosinophils and reduced IL-4 expression compared to ANAs from WT mice. During this period, both T cells and eosinophils regulated IL-4 expression within ANAs. Eosinophils represented the majority of IL-4 expressing cells within ANAs, while T cells regulated IL-4 expression. Finally, an essential role for IL-4 during nerve regeneration across ANAs was confirmed as nerves repaired using ANAs had reduced regeneration in IL-4 KO mice compared to WT mice. Our data demonstrate T cells regulate the expression of IL-4 within the ANA environment via their effects on eosinophils. STATEMENT OF SIGNIFICANCE: The immune system has been emerging as a critical component for tissue regeneration, especially when regeneration is supported upon biomaterials. The role of T cells, and their roles in the regeneration of nerve repaired with biomaterials, is still unclear. We demonstrated that when nerves are repaired with decellularized nerve scaffolds, T cells contribute to regeneration by regulating cytokines. We focused on their regulation of cytokine IL-4. Unexpectedly, T cells do not produce IL-4, but instead regulate IL-4 by recruiting eosinophils, which are major cellular sources of IL-4 within these scaffolds. Thus, our work demonstrated how IL-4 is regulated in a model biomaterial, and has implications for improving the design of biomaterials and understanding immune responses to biomaterials.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Anja Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexandra E Halevi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Enam SF, Kader SR, Bodkin N, Lyon JG, Calhoun M, Azrak C, Tiwari PM, Vanover D, Wang H, Santangelo PJ, Bellamkonda RV. Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. J Neuroinflammation 2020; 17:197. [PMID: 32563258 PMCID: PMC7306141 DOI: 10.1186/s12974-020-01860-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Appropriately modulating inflammation after traumatic brain injury (TBI) may prevent disabilities for the millions of those inflicted annually. In TBI, cellular mediators of inflammation, including macrophages and microglia, possess a range of phenotypes relevant for an immunomodulatory therapeutic approach. It is thought that early phenotypic modulation of these cells will have a cascading healing effect. In fact, an anti-inflammatory, "M2-like" macrophage phenotype after TBI has been associated with neurogenesis, axonal regeneration, and improved white matter integrity (WMI). There already exist clinical trials seeking an M2-like bias through mesenchymal stem/stromal cells (MSCs). However, MSCs do not endogenously synthesize key signals that induce robust M2-like phenotypes such as interleukin-4 (IL-4). METHODS To enrich M2-like macrophages in a clinically relevant manner, we augmented MSCs with synthetic IL-4 mRNA to transiently express IL-4. These IL-4 expressing MSCs (IL-4 MSCs) were characterized for expression and functionality and then delivered in a modified mouse TBI model of closed head injury. Groups were assessed for functional deficits and MR imaging. Brain tissue was analyzed through flow cytometry, multi-plex ELISA, qPCR, histology, and RNA sequencing. RESULTS We observed that IL-4 MSCs indeed induce a robust M2-like macrophage phenotype and promote anti-inflammatory gene expression after TBI. However, here we demonstrate that acute enrichment of M2-like macrophages did not translate to improved functional or histological outcomes, or improvements in WMI on MR imaging. To further understand whether dysfunctional pathways underlie the lack of therapeutic effect, we report transcriptomic analysis of injured and treated brains. Through this, we discovered that inflammation persists despite acute enrichment of M2-like macrophages in the brain. CONCLUSION The results demonstrate that MSCs can be engineered to induce a stronger M2-like macrophage response in vivo. However, they also suggest that acute enrichment of only M2-like macrophages after diffuse TBI cannot orchestrate neurogenesis, axonal regeneration, or improve WMI. Here, we also discuss our modified TBI model and methods to assess severity, behavioral studies, and propose that IL-4 expressing MSCs may also have relevance in other cavitary diseases or in improving biomaterial integration into tissues.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Nicholas Bodkin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Johnathan G Lyon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mark Calhoun
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cesar Azrak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Pooja Munnilal Tiwari
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daryll Vanover
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haichen Wang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Philip J Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
34
|
Pan D, Acevedo-Cintrón JA, Sayanagi J, Snyder-Warwick AK, Mackinnon SE, Wood MD. The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration. Exp Neurol 2020; 331:113363. [PMID: 32450192 DOI: 10.1016/j.expneurol.2020.113363] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Abstract
Acellular nerve allografts (ANAs) are increasingly used to repair nerve gaps following injuries. However, these nerve scaffolds have yet to surpass the regenerative capabilities of cellular nerve autografts; improved understanding of their regenerative mechanisms could improve design. Due to their acellular nature, both angiogenesis and diverse cell recruitment is necessary to repopulate these scaffolds to promote functional regeneration. We determined the contribution of angiogenesis to initial cellular repopulation of ANAs used to repair nerve gaps, as well as the signaling that drives a significant portion of this angiogenesis. Wild-type (WT) mice with nerve gaps repaired using ANAs that were treated with an inhibitor of VEGF receptor signaling severely impaired angiogenesis within ANAs, as well as hampered cell repopulation and axon extension into ANAs. Similarly, systemic depletion of hematogenous-derived macrophages, but not neutrophils, in these mice models severely impeded angiogenesis and subsequent nerve regeneration across ANAs suggesting hematogenous-derived macrophages were major contributors to angiogenesis within ANAs. This finding was reinforced using CCR2 knockout (KO) models. As macrophages represented the majority of CCR2 expressing cells, a CCR2 deficiency impaired angiogenesis and subsequent nerve regeneration across ANAs. Furthermore, an essential role for CCL2 during nerve regeneration across ANAs was identified, as nerves repaired using ANAs had reduced angiogenesis and subsequent nerve regeneration in CCL2 KO vs WT mice. Our data demonstrate the CCL2/CCR2 axis is important for macrophage recruitment, which promotes angiogenesis, cell repopulation, and subsequent nerve regeneration and recovery across ANAs used to repair nerve gaps.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesús A Acevedo-Cintrón
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junichi Sayanagi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Chang W, Shah MB, Zhou G, Walsh K, Rudraiah S, Kumbar SG, Yu X. Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. ACTA ACUST UNITED AC 2020; 15:035003. [PMID: 31918424 DOI: 10.1088/1748-605x/ab6994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Artificial nerve guidance conduits (NGCs) are being investigated as an alternative to autografts, since autografts are limited in supply. A polycaprolactone (PCL)-based spiral NGC with crosslinked laminin on aligned nanofibers was evaluated in vivo post a successful in vitro assessment. PC-12 cell assays confirmed that the aligned nanofibers functionalized with laminin were able to guide and enhance neurite outgrowth. In the rodent model, the data demonstrated that axons were able to regenerate across the critical nerve gap, when laminin was present. Without laminin, the spiral NGC with aligned nanofibers group resulted in a random cluster of extracellular matrix tissue following injuries. The reversed autograft group performed best, showing the most substantial improvement based on nerve histological assessment and gastrocnemius muscle measurement. Nevertheless, the recovery time was too short to obtain meaningful data for the motor functional assessments. A full motor recovery may take up to years. An interesting observation was noted in the crosslinked laminin group. Numerous new blood capillary-like structures were found around the regenerated nerve. Owing to recent studies, we hypothesized that new blood vessel formation could be one of the key factors to increase the successful rate of nerve regeneration in the current study. Overall, these findings indicated that the incorporation of laminin into polymeric nerve conduits is a promising strategy for enhancing peripheral nerve regeneration. However, the best combination of contact-guidance cues, haptotactic cues, and chemotactic cues have yet to be realized. The natural sequence of nerve regeneration should be studied more in-depth before modulating any strategies.
Collapse
Affiliation(s)
- Wei Chang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | | | | | | | | | | | | |
Collapse
|
36
|
Pan D, Mackinnon SE, Wood MD. Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle Nerve 2020; 61:726-739. [PMID: 31883129 DOI: 10.1002/mus.26797] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Despite advances in surgery, the reconstruction of segmental nerve injuries continues to pose challenges. In this review, current neurobiology regarding regeneration across a nerve defect is discussed in detail. Recent findings include the complex roles of nonneuronal cells in nerve defect regeneration, such as the role of the innate immune system in angiogenesis and how Schwann cells migrate within the defect. Clinically, the repair of nerve defects is still best served by using nerve autografts with the exception of small, noncritical sensory nerve defects, which can be repaired using autograft alternatives, such as processed or acellular nerve allografts. Given current clinical limits for when alternatives can be used, advanced solutions to repair nerve defects demonstrated in animals are highlighted. These highlights include alternatives designed with novel topology and materials, delivery of drugs specifically known to accelerate axon growth, and greater attention to the role of the immune system.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Wu S, Kuss M, Qi D, Hong J, Wang HJ, Zhang W, Chen S, Ni S, Duan B. Development of Cryogel-Based Guidance Conduit for Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4864-4871. [DOI: 10.1021/acsabm.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | | | | | | | | | | | - Shaojuan Chen
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250100, China
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
39
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
40
|
Tao J, He Y, Wang S, Mao J. 3D-printed nerve conduit with vascular networks to promote peripheral nerve regeneration. Med Hypotheses 2019; 133:109395. [PMID: 31522108 DOI: 10.1016/j.mehy.2019.109395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023]
Abstract
Peripheral nerve regeneration remains a challenge in tissue engineering and regenerative medicine. However, the existing approaches have limited regenerative capability. 3D-printed nerve conduits with well-defined properties are potent tools to facilitate peripheral nerve regeneration after injuries. Meanwhile, the vascular networks within the constructs can promote the exchange of oxygen, neurotrophic factors, and removal of waste products, thereby providing an advantageous microenvironment for tissue regeneration. It will be an interesting approach to integrate 3D-printed nerve conduit with vascular networks for the guidance of regenerated nerves. We hypothesize that 3D-printed vascularized nerve conduit will be an effective platform to promote nerve regeneration and functional restoration.
Collapse
Affiliation(s)
- Jie Tao
- School of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan He
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shuai Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jian Mao
- School of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
41
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
42
|
Pan D, Hunter DA, Schellhardt L, Jo S, Santosa KB, Larson EL, Fuchs AG, Snyder-Warwick AK, Mackinnon SE, Wood MD. The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Exp Neurol 2019; 318:216-231. [PMID: 31085199 DOI: 10.1016/j.expneurol.2019.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Repair of traumatic nerve injuries can require graft material to bridge the defect. The use of alternatives to bridge the defect, such as acellular nerve allografts (ANAs), is becoming more common and desired. Although ANAs support axon regeneration across short defects (<3 cm), axon regeneration across longer defects (>3 cm) is limited. It is unclear why alternatives, including ANAs, are functionally limited by length. After repairing Lewis rat nerve defects using short (2 cm) or long (4 cm) ANAs, we showed that long ANAs have severely reduced axon regeneration across the grafts and contain Schwann cells with a unique phenotype. But additionally, we found that long ANAs have disrupted angiogenesis and altered leukocyte infiltration compared to short ANAs as early as 2 weeks after repair. In particular, long ANAs contained fewer T cells compared to short ANAs. These outcomes were accompanied with reduced expression of select cytokines, including IFN-γ and IL-4, within long versus short ANAs. T cells within ANAs did not express elevated levels of IL-4, but expressed elevated levels of IFN-γ. We also directly assessed the contribution of T cells to regeneration across nerve grafts using athymic rats. Interestingly, T cell deficiency had minimal impact on axon regeneration across nerve defects repaired using isografts. Conversely, T cell deficiency reduced axon regeneration across nerve defects repaired using ANAs. Our data demonstrate that T cells contribute to nerve regeneration across ANAs and suggest that reduced T cells accumulation within long ANAs could contribute to limiting axon regeneration across these long ANAs.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sally Jo
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B Santosa
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ellen L Larson
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anja G Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Dietzmeyer N, Förthmann M, Leonhard J, Helmecke O, Brandenberger C, Freier T, Haastert-Talini K. Two-Chambered Chitosan Nerve Guides With Increased Bendability Support Recovery of Skilled Forelimb Reaching Similar to Autologous Nerve Grafts in the Rat 10 mm Median Nerve Injury and Repair Model. Front Cell Neurosci 2019; 13:149. [PMID: 31133803 PMCID: PMC6523043 DOI: 10.3389/fncel.2019.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Tension-free surgical reconstruction of transected digital nerves in humans is regularly performed using autologous nerve grafts (ANGs) or bioartificial nerve grafts. Nerve grafts with increased bendability are needed to protect regenerating nerves in highly mobile extremity parts. We have recently demonstrated increased bendability and regeneration supporting properties of chitosan nerve guides with a corrugated outer wall (corrCNGs) in the common rat sciatic nerve model (model of low mobility). Here, we further modified the hollow corrCNGs into two-chambered nerve guides by inserting a perforated longitudinal chitosan-film (corrCNG[F]s) and comprehensively monitored functional recovery in the advanced rat median nerve model. In 16 adult female Lewis rats, we bilaterally reconstructed 10 mm median nerve gaps with either ANGs, standard chitosan nerve guides (CNGs), CNGs (CNG[F]s), or corrCNG[F]s (n = 8, per group). Over 16 weeks, functional recovery of each forelimb was separately surveyed using the grasping test (reflex-based motor task), the staircase test (skilled forelimb reaching task), and non-invasive electrophysiological recordings from the thenar muscles. Finally, regenerated tissue harvested from the distal part of the nerve grafts was paraffin-embedded and cross-sections were analyzed regarding the number of Neurofilament 200-immunopositive axons and the area of newly formed blood vessels. Nerve tissue harvested distal to the grafts was epon-embedded and semi-thin cross-sections underwent morphometrical analyses (e.g., number of myelinated axons, axon and fiber diameters, and myelin thicknesses). Functional recovery was fastest and most complete in the ANG group (100% recovery rate regarding all parameters), but corrCNG[F]s accelerated the recovery of all functions evaluated in comparison to the other nerve guides investigated. Furthermore, corrCNG[F]s supported recovery of reflex-based grasping (87.5%) and skilled forelimb reaching (100%) to eventually significantly higher rates than the other nerve guides (grasping test: CNGs: 75%, CNG[F]s: 62.5%; staircase test: CNGs: 66.7%, CNG[F]s: 83.3%). Histological and nerve morphometrical evaluations, in accordance to the functional results, demonstrated best outcome in the ANG group and highest myelin thicknesses in the corrCNG[F] group compared to the CNG and CNG[F] groups. We thus clearly demonstrate that corrCNG[F]s represent promising innovative nerve grafts for nerve repair in mobile body parts such as digits.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Julia Leonhard
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany
| | | | | | | | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| |
Collapse
|
44
|
Akhter KF, Mumin MA, Lui EMK, Charpentier PA. Immunoengineering with Ginseng Polysaccharide Nanobiomaterials through Oral Administration in Mice. ACS Biomater Sci Eng 2019; 5:2916-2925. [DOI: 10.1021/acsbiomaterials.9b00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Falcone JD, Sohal HS, Kyriakides TR, Bellamkonda RV. The impact of modulating the blood-brain barrier on the electrophysiological and histological outcomes of intracortical electrodes. J Neural Eng 2019; 16:046005. [PMID: 31048574 DOI: 10.1088/1741-2552/ab1ef9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Successful application of chronic intracortical electrodes remains highly variable. The biological mechanisms leading to electrode failure are still being explored. Recent work has shown a correlation between blood-brain barrier (BBB) integrity and long-term recordings. Here we proposed to modulate the BBB healing after intracortical electrode implantation, while evaluating the functional electrophysiology. The CCL2/CCR2 pathway was chosen based on previous work demonstrating the positive histological effects in an intracortical electrode model, as well as in other neurodegenerative models. By disrupting this pathway, recruitment of pro-inflammatory monocytes (a result of a breached BBB) is potentially reduced at the electrode interface. APPROACH Michigan electrodes were implanted for 2 and 12 weeks in rats, and a CCR2 antagonist (RS 102895) was administered daily to the treatment group. Functional electrodes were used for the 12 week cohort, and weekly electrophysiological recordings were taken. At 2 and 12 weeks, histology was analyzed. MAIN RESULTS At 12 weeks, the CCR2-antagonist group had significantly higher signal-to-noise ratios (SNRs) than control. CCR2-antagonism at 2 weeks significantly increased the neural population and decreased BBB breach. At 12 weeks, CCR2-antagonism significantly increased number of neurons and BBB + vasculature within 100 µm of the electrode interface. SIGNIFICANCE This work demonstrates that for intracortical electrodes, disruption of the CCL2/CCR2 pathway improves chronic outcomes in electrophysiology and histology.
Collapse
Affiliation(s)
- Jessica D Falcone
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | | | | | | |
Collapse
|
46
|
Jia Y, Yang W, Zhang K, Qiu S, Xu J, Wang C, Chai Y. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes. Acta Biomater 2019; 83:291-301. [PMID: 30541701 DOI: 10.1016/j.actbio.2018.10.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Topographical cues presented by aligned nanofibers have been demonstrated to stimulate peripheral nerve regeneration across long gaps, but the underlying mechanisms remain incompletely elucidated. Because macrophages play a crucial role in peripheral nerve regeneration and can be phenotypically modulated by topographical cues, we hypothesized that aligned nanofibers might induce the development of macrophage phenotypes that facilitate the regeneration of peripheral nerves. Here, macrophages were seeded on aligned and random poly(l-lactic acid-co-ε-caprolactone) nanofibers and their morphology and phenotypes were compared. Aligned nanofibers drastically stimulated macrophage elongation along the nanofibers, and, more importantly, induced the development of a pro-healing macrophage phenotype (M2 type), whereas random nanofibers induced a proinflammatory phenotype (M1 type). Notably, the macrophages polarized by aligned nanofibers potently promoted the proliferation and migration of Schwann cells in vitro. Thus, we constructed nerve-guidance conduits by using aligned and random nanofibers and evaluated their effects on macrophage polarization and nerve regeneration in a rat sciatic nerve defect model. Our in vivo results showed that the ratio of pro-healing macrophages was again higher in the aligned-nanofiber group, and further that Schwann cell infiltration and axon numbers were 2.0- and 2.84-fold higher in the aligned group than in the random group, respectively. This study demonstrates that nanofiber arrangement differentially regulates macrophage activation and that nerve-guidance conduits constructed from aligned nanofibers markedly facilitate peripheral nerve regeneration at least partly by promoting the pro-healing phenotype in macrophages. STATEMENT OF SIGNIFICANCE: The effect of aligned nanofibers on peripheral nerve regeneration has been well established. However, the underlying mechanism remains unclear. Since macrophages play an important role in peripheral nerve regeneration, and can be phenotypically modulated by topographical cues, we hypothesized that aligned nanofibers may exert their beneficial effects via modulating macrophage phenotypes. This study demonstrates for the first time that nanofiber arrangement differentially modulates macrophage shape and polarization, and this subsequently influences the outcome of peripheral nerve regeneration. These findings reveals a novel relationship between biomaterial structure and macrophage activation, contributes to clarifying the mechanism of surface topography in tissue regeneration, and highlight the potential application prospect of aligned nanofiber scaffolds in nerve regeneration and wound healing.
Collapse
Affiliation(s)
- Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weichao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Zhejiang 314001, China
| | - Shuo Qiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
47
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Kang H, Jung HJ, Kim SK, Wong DSH, Lin S, Li G, Dravid VP, Bian L. Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages. ACS NANO 2018; 12:5978-5994. [PMID: 29767957 DOI: 10.1021/acsnano.8b02226] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Macrophages are key immune cells that perform various physiological functions, such as the maintenance of homeostasis, host defense, disease progression, and tissue regeneration. Macrophages adopt distinctly polarized phenotypes, such as pro-inflammatory M1 phenotype or anti-inflammatory (pro-healing) M2 phenotype, to execute disparate functions. The remotely controlled reversible uncaging of bioactive ligands, such as Arg-Gly-Asp (RGD) peptide, is an appealing approach for temporally regulating the adhesion and resultant polarization of macrophages on implants in vivo. Here, we utilize physical and reversible uncaging of RGD by a magnetic field that allows facile tissue penetration. We first conjugated a RGD-bearing gold nanoparticle (GNP) to the substrate and then a magnetic nanocage (MNC) to the GNP via a flexible linker to form the heterodimeric nanostructure. We magnetically manipulated nanoscale displacement of MNC and thus its proximity to the GNP to reversibly uncage and cage RGD. The uncaging of RGD temporally promoted the adhesion and subsequent M2 polarization of macrophages while inhibiting their M1 polarization both in vitro and in vivo. The RGD uncaging-mediated adhesion and M2 polarization of macrophages involved rho-associated protein kinase signaling. This study demonstrates physical and reversible uncaging of RGD to regulate the adhesion and polarization of host macrophages in vivo. This approach of magnetically regulating the heterodimer conformation for physical and reversible uncaging of RGD offers the promising potential to manipulate inflammatory or tissue-regenerative immune responses to the implants in vivo.
Collapse
Affiliation(s)
- Heemin Kang
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Ma Liu Shui , Hong Kong, China
| | - Hee Joon Jung
- International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Sung Kyu Kim
- International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Dexter Siu Hong Wong
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Ma Liu Shui , Hong Kong, China
| | - Sien Lin
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang , Guangdong 510000 , China
| | - Gang Li
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System , The Chinese University of Hong Kong Shenzhen Research Institute , Shenzhen 518172 , China
| | - Vinayak P Dravid
- International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Liming Bian
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Ma Liu Shui , Hong Kong, China
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs , Guangdong Medical University , Zhanjiang , Guangdong 510000 , China
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University , The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , Guangdong 510000 , China
- Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen 518172 , China
- China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
49
|
Tomlinson JE, Žygelytė E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation 2018; 15:185. [PMID: 29907154 PMCID: PMC6003127 DOI: 10.1186/s12974-018-1219-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Macrophages play a key role in peripheral nerve repair and demonstrate complex phenotypes that are highly dependent on microenvironmental cues. METHODS We determined temporal changes in macrophage gene expression over time using RNA sequencing after fluorescence-activated cell sorting (FACS) macrophage populations from injured peripheral nerve. We identified key upstream regulators and dominant pathways using ingenuity pathway analysis and confirmed these changes with NanoString technology. We then investigate the effects of extreme polarizers of macrophage phenotype (IL4 and IFNγ) on nerve regeneration. We determined macrophage gene expression in vivo at the site of peripheral nerve injury with NanoString technology, and assessed recovery from sciatic nerve injury by cranial tibial muscle weights and retrograde labeling motor neurons in mice with deletion of IL4 or IFNγ receptors. RESULTS We demonstrate that IL4R and IFNγR deletions provide complementary responses to polarization, and alter expression of genes associated with angiogenesis and axonal extension, but do not influence recovery from peripheral nerve transection at 8 weeks after repair. CONCLUSIONS Overall, this study provides a framework to evaluate the phenotype of macrophages over time, and provides a broader and more precise assessment of gene expression changes than has previously been commonly used. This data suggests ways in which polarization may be modulated to improve repair.
Collapse
Affiliation(s)
- Joy E. Tomlinson
- Cornell University College of Veterinary Medicine, Ithaca, NY USA
| | - Emilija Žygelytė
- Cornell University College of Veterinary Medicine, Ithaca, NY USA
| | | | | | | |
Collapse
|
50
|
Smits AI, Bouten CV. Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|