1
|
Kronenberg M, Ascui G. The α glycolipid rules the NKT cell TCR. J Exp Med 2025; 222:e20242099. [PMID: 39714312 DOI: 10.1084/jem.20242099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this issue of JEM, Hosono et al. (https://doi.org/10.1084/jem.20240728) characterize a putative self- glycolipid that engages the iNKT cell TCR when bound to CD1d. The expression and distribution of this compound helps to explain some of the unusual properties of invariant NKT cells.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- La Jolla Institute for Immunology , La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Ascui
- La Jolla Institute for Immunology , La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Hosono Y, Tomiyasu N, Kasai H, Ishikawa E, Takahashi M, Imamura A, Ishida H, Compostella F, Kida H, Kumanogoh A, Bamba T, Izumi Y, Yamasaki S. Identification of α-galactosylceramide as an endogenous mammalian antigen for iNKT cells. J Exp Med 2025; 222:e20240728. [PMID: 39704712 DOI: 10.1084/jem.20240728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are unconventional T cells recognizing lipid antigens in a CD1d-restricted manner. Among these lipid antigens, α-galactosylceramide (α-GalCer), which was originally identified in marine sponges, is the most potent antigen. Although the presence of α-anomeric hexosylceramide and microbiota-derived branched α-GalCer is reported, antigenic α-GalCer has not been identified in mammals. Here, we developed a high-resolution separation and detection system, supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS), that can discriminate hexosylceramide diastereomers (α-GalCer, α-GlcCer, β-GalCer, or β-GlcCer). The B16 melanoma tumor cell line does not activate iNKT cells; however, ectopic expression of CD1d was sufficient to activate iNKT cells without adding antigens. B16 melanoma was unlikely to generate iNKT cell antigens; instead, antigen activity was detected in cell culture serum. Activity-based purification and SFC/MS/MS identified dihydrosphingosine-based saturated α-GalCer as an antigenic component in serum, bile, and lymphoid tissues. These results show the first evidence for the presence of potent antigenic α-GalCer in mammals.
Collapse
Affiliation(s)
- Yuki Hosono
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Kasai
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University , Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University , Gifu, Japan
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
- Center for Advanced Modalities and DDS, Osaka University , Suita, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
- Center for Advanced Modalities and DDS, Osaka University , Suita, Japan
| |
Collapse
|
3
|
Cheng TY, Praveena T, Govindarajan S, Almeida CF, Pellicci DG, Arkins WC, Van Rhijn I, Venken K, Elewaut D, Godfrey DI, Rossjohn J, Moody DB. Lipidomic scanning of self-lipids identifies headless antigens for natural killer T cells. Proc Natl Acad Sci U S A 2024; 121:e2321686121. [PMID: 39141352 PMCID: PMC11348285 DOI: 10.1073/pnas.2321686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024] Open
Abstract
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Srinath Govindarajan
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Catarina F. Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Wellington C. Arkins
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Koen Venken
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CardiffCF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| |
Collapse
|
4
|
York AG, Skadow MH, Oh J, Qu R, Zhou QD, Hsieh WY, Mowel WK, Brewer JR, Kaffe E, Williams KJ, Kluger Y, Smale ST, Crawford JM, Bensinger SJ, Flavell RA. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 2024; 627:628-635. [PMID: 38383790 PMCID: PMC10954550 DOI: 10.1038/s41586-024-07098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.
Collapse
Affiliation(s)
- Autumn G York
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Mathias H Skadow
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Quan D Zhou
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Wei-Yuan Hsieh
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Walter K Mowel
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - J Richard Brewer
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Kevin J Williams
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- UCLA Lipidomics Laboratory, Los Angeles, CA, USA
| | - Yuval Kluger
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Stephen T Smale
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.
- UCLA Lipidomics Laboratory, Los Angeles, CA, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Kuen DS, Hong J, Lee S, Koh CH, Kwak M, Kim BS, Jung M, Kim YJ, Cho BS, Kim BS, Chung Y. A Personalized Cancer Vaccine that Induces Synergistic Innate and Adaptive Immune Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303080. [PMID: 37249019 DOI: 10.1002/adma.202303080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
To demonstrate potent efficacy, a cancer vaccine needs to activate both innate and adaptive immune cells. Personalized cancer vaccine strategies often require the identification of patient-specific neoantigens; however, the clonal and mutational heterogeneity of cancer cells presents inherent challenges. Here, extracellular nanovesicles derived from alpha-galactosylceramide-conjugated autologous acute myeloid leukemia (AML) cells (ECNV-αGC) are presented as a personalized therapeutic vaccine that activates both innate and adaptive immune responses, bypassing the need to identify patient-specific neoantigens. ECNV-αGC vaccination directly engages with and activates both invariant natural killer T (iNKT) cells and leukemia-specific CD8+ T cells in mice with AML, thereby promoting long-term anti-leukemic immune memory. ECNV-αGC sufficiently serves as an antigen-presenting platform that can directly activate antigen-specific CD8+ T cells even in the absence of dendritic cells, thereby demonstrating a multifaceted cellular mechanism of immune activation. Moreover, ECNV-αGC vaccination results in a significantly lower AML burden and higher percentage of leukemia-free survivors among cytarabine-treated hosts with AML. Human AML-derived ECNV-αGCs activate iNKT cells in both healthy individuals and patients with AML regardless of responsiveness to conventional therapies. Together, autologous AML-derived ECNV-αGCs may be a promising personalized therapeutic vaccine that efficiently establishes AML-specific long-term immunity without requiring the identification of neoantigens.
Collapse
Affiliation(s)
- Da-Sol Kuen
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826, Seoul, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, 08826, Seoul, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826, Seoul, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826, Seoul, Republic of Korea
| | - Minkyeong Kwak
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, 22012, Incheon, Republic of Korea
| | | | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, 08826, Seoul, Republic of Korea
| | - Yoon-Joo Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Byung-Sik Cho
- School of Chemical and Biological Engineering, Seoul National University, 08826, Seoul, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, 08826, Seoul, Republic of Korea
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, 22012, Incheon, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, 08826, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826, Seoul, Republic of Korea
| |
Collapse
|
6
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
7
|
González-Cuesta M, Lai ACY, Chi PY, Hsu IL, Liu NT, Wu KC, García Fernández JM, Chang YJ, Ortiz Mellet C. Serine-/Cysteine-Based sp 2-Iminoglycolipids as Novel TLR4 Agonists: Evaluation of Their Adjuvancy and Immunotherapeutic Properties in a Murine Model of Asthma. J Med Chem 2023; 66:4768-4783. [PMID: 36958376 PMCID: PMC10108363 DOI: 10.1021/acs.jmedchem.2c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Glycolipids with TLR4 agonistic properties can serve either as therapeutic agents or as vaccine adjuvants by stimulating the development of proinflammatory responses. Translating them to the clinical setting is hampered by synthetic difficulties, the lack of stability in biological media, and/or a suboptimal profile of balanced immune mediator secretion. Here, we show that replacement of the sugar fragment by an sp2-iminosugar moiety in a prototypic TLR4 agonist, CCL-34, yields iminoglycolipid analogues that retain or improve their biological activity in vitro and in vivo and can be accessed through scalable protocols with total stereoselectivity. Their adjuvant potential is manifested in their ability to induce the secretion of proinflammatory cytokines, prime the maturation of dendritic cells, and promote the proliferation of CD8+ T cells, pertaining to a Th1-biased profile. Additionally, their therapeutic potential for the treatment of asthma, a Th2-dominated inflammatory pathology, has been confirmed in an ovalbumin-induced airway hyperreactivity mouse model.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41012, Spain
| | - Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - I-Ling Hsu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Nien-Tzu Liu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ko-Chien Wu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, Américo Vespucio 49, Sevilla E-41092, Spain
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41012, Spain
| |
Collapse
|
8
|
Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng TY, Aylan B, Grootemaat AE, Raman S, Botella L, Ishikawa E, O'Sullivan MP, O'Leary S, Mayfield JA, Buter J, Minnaard AJ, Fortune SM, Murphy LO, Ory DS, Keane J, Yamasaki S, Gutierrez MG, van der Wel N, Moody DB. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest 2023; 133:161944. [PMID: 36757797 PMCID: PMC10014106 DOI: 10.1172/jci161944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.
Collapse
Affiliation(s)
- Melissa Bedard
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanne van der Niet
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gregory Babunovic
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Seónadh O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Buter
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Daniel S Ory
- Casma Therapeutics, Cambridge, Massachusetts, USA
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicole van der Wel
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
10
|
Caputa G, Matsushita M, Sanin DE, Kabat AM, Edwards-Hicks J, Grzes KM, Pohlmeyer R, Stanczak MA, Castoldi A, Cupovic J, Forde AJ, Apostolova P, Seidl M, van Teijlingen Bakker N, Villa M, Baixauli F, Quintana A, Hackl A, Flachsmann L, Hässler F, Curtis JD, Patterson AE, Henneke P, Pearce EL, Pearce EJ. Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metab 2022; 34:747-760.e6. [PMID: 35508110 DOI: 10.1016/j.cmet.2022.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/24/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
Abstract
Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.
Collapse
Affiliation(s)
- George Caputa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Imaging Facility, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Michal A Stanczak
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Angela Castoldi
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jovana Cupovic
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Aaron J Forde
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Petya Apostolova
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, 40225 Duesseldorf, Germany
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matteo Villa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Francesc Baixauli
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Andrea Quintana
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Alexandra Hackl
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lea Flachsmann
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jonathan D Curtis
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Annette E Patterson
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
11
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
12
|
Woods K, Cait A, Gell K, Naidoo K, Brown C, Carpenter E, Gasser O. Goat milk-derived lipids restrain NKT cell-dependent eosinophilic inflammation in a murine model of atopic dermatitis. J Invest Dermatol 2022; 142:2541-2543. [PMID: 35300974 DOI: 10.1016/j.jid.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Katherine Woods
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katie Gell
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Karmella Naidoo
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Caitlin Brown
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| |
Collapse
|
13
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
14
|
Burchill L, Williams SJ. From the banal to the bizarre: unravelling immune recognition and response to microbial lipids. Chem Commun (Camb) 2022; 58:925-940. [PMID: 34989357 DOI: 10.1039/d1cc06003a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microbes produce a rich array of lipidic species that through their location in the cell wall and ability to mingle with host lipids represent a privileged class of immune-active molecules. Lipid-sensing immunity recognizes microbial lipids from pathogens and commensals causing immune responses. Yet microbial lipids are often heterogeneous, in limited supply and in some cases their structures are incompletely defined. Total synthesis can assist in structural determination, overcome supply issues, and provide access to high-purity, homogeneous samples and analogues. This account highlights synthetic approaches to lipidic species from pathogenic and commensal bacteria and fungi that have supported immunological studies involving lipid sensing through the pattern recognition receptor Mincle and cell-mediated immunity through the CD1-T cell axis.
Collapse
Affiliation(s)
- Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Vogt S, Mattner J. NKT Cells Contribute to the Control of Microbial Infections. Front Cell Infect Microbiol 2021; 11:718350. [PMID: 34595131 PMCID: PMC8477047 DOI: 10.3389/fcimb.2021.718350] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Innate (-like) T lymphocytes such as natural killer T (NKT) cells play a pivotal role in the recognition of microbial infections and their subsequent elimination. They frequently localize to potential sites of pathogen entry at which they survey extracellular and intracellular tissue spaces for microbial antigens. Engagement of their T cell receptors (TCRs) induces an explosive release of different cytokines and chemokines, which often pre-exist as constitutively expressed gene transcripts in NKT cells and underlie their poised effector state. Thus, NKT cells regulate immune cell migration and activation and subsequently, bridge innate and adaptive immune responses. In contrast to conventional T cells, which react to peptide antigens, NKT cells recognize lipids presented by the MHC class I like CD1d molecule on antigen presenting cells (APCs). Furthermore, each NKT cell TCR can recognize various antigen specificities, whereas a conventional T lymphocyte TCR reacts mostly only to one single antigen. These lipid antigens are either intermediates of the intracellular APC`s-own metabolism or originate from the cell wall of different bacteria, fungi or protozoan parasites. The best-characterized subset, the type 1 NKT cell subset expresses a semi-invariant TCR. In contrast, the TCR repertoire of type 2 NKT cells is diverse. Furthermore, NKT cells express a panoply of inhibitory and activating NK cell receptors (NKRs) that contribute to their primarily TCR-mediated rapid, innate like immune activation and even allow an adaption of their immune response in an adoptive like manner. Dueto their primary localization at host-environment interfaces, NKT cells are one of the first immune cells that interact with signals from different microbial pathogens. Vice versa, the mutual exchange with local commensal microbiota shapes also the biology of NKT cells, predominantly in the gastrointestinal tract. Following infection, two main signals drive the activation of NKT cells: first, cognate activation upon TCR ligation by microbial or endogenous lipid antigens; and second, bystander activation due to cytokines. Here we will discuss the role of NKT cells in the control of different microbial infections comparing pathogens expressing lipid ligands in their cell walls to infectious agents inducing endogenous lipid antigen presentation by APCs.
Collapse
Affiliation(s)
- Stefan Vogt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Almeida CF, Smith DGM, Cheng TY, Harpur CM, Batleska E, Nguyen-Robertson CV, Nguyen T, Thelemann T, Reddiex SJJ, Li S, Eckle SBG, Van Rhijn I, Rossjohn J, Uldrich AP, Moody DB, Williams SJ, Pellicci DG, Godfrey DI. Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proc Natl Acad Sci U S A 2021; 118:e2104420118. [PMID: 34417291 PMCID: PMC8403964 DOI: 10.1073/pnas.2104420118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αβ T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αβTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dylan G M Smith
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115
| | - Chris M Harpur
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Elena Batleska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Catriona V Nguyen-Robertson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tram Nguyen
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tamara Thelemann
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Scott J J Reddiex
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, 3584CL Utrecht, Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Adam P Uldrich
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115;
| | - Spencer J Williams
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia;
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
17
|
Naruo M, Negishi Y, Okuda T, Katsuyama M, Okazaki K, Morita R. Alcohol consumption induces murine osteoporosis by downregulation of natural killer T-like cell activity. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1370-1382. [PMID: 34214248 PMCID: PMC8589379 DOI: 10.1002/iid3.485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Introduction Chronic alcohol consumption (CAC) can induce several deleterious effects on the body, including the promotion of osteoporosis; however, the immunological mechanism underlying alcohol‐induced osteoporosis is still unclear. Methods We administered alcohol to mice for 4 weeks as the experimental CAC model and analyzed the bone and immune cells that are located in the vicinity of a bone. Results IL‐4 is known to be a suppressive factor for osteoclastogenesis, and we found that natural killer T (NKT)‐like cells, which showed NK1.1‐positive, CD3‐positive, and α‐galactosylceramide‐loaded CD1d tetramer‐negative, produced IL‐4 more effectively than CD4+ T and natural killer (NK) cells. The alcohol consumption facilitated a significant decrease of bone mineral density with the upregulation of nuclear factor of activated T cells 1 and receptor activator of NF‐κB ligand expression. Meanwhile, we confirmed that alcohol consumption suppressed the activity of antigen‐presenting cells (APCs) and NKT‐like cells, leading to decreased IL‐4 secretion. Moreover, these harmful effects of alcohol consumption were reduced by simultaneous treatment with a glycolipid antigen OCH. Conclusions Our results indicate that the inactivation of innate immune cells, APCs, and NKT‐like cells are likely to be crucial for alcohol‐induced osteoporosis and provide a new therapeutic approach for preventing osteoporosis.
Collapse
Affiliation(s)
- Munehiro Naruo
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan.,Department of Orthopaedic Surgery, Tomei Atsugi Hospital, Kanagawa, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Midori Katsuyama
- Department of Legal Medicine Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
18
|
Borràs-Tudurí R, Alcaide A, Aspeslag S, Usero L, Serra C, Roura-Mir C, Elewaut D, Llebaria A. New Paradigm in NKT Cell Antigens: MCS-0208 (2-(Hydroxymethyl)phenylthio-phytoceramide) - an Aryl-Phytoceramide Compound with a Single Hydroxyl Group Stimulates NKT Cells. ChemMedChem 2021; 16:2491-2496. [PMID: 33821540 PMCID: PMC8453509 DOI: 10.1002/cmdc.202000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/10/2021] [Indexed: 11/07/2022]
Abstract
Natural Killer T (NKT) cells play an important role in the immune response and can be activated by glycolipids presented by CD1d protein. We present MCS‐0208, an unprecedented arylthioether‐phytoceramide able to induce potent invariant NKT (iNKT) cell activation, notably when tested in human iNKT cells. This arylsphingolipid analog has a simple phenyl group containing a single hydroxyl substituent as a surrogate of the sugar ring. The phenylthioether structure contrasts with α‐galactosylceramide (1), the prototypical glycolipid used to induce iNKT cell stimulation, where the galactose 2’‐OH and 3’‐OH substituents are accepted as the minimal footprint and considered critical for NKT T cell receptor (TCR) recognition. A computational study supports the recognition of aromatic compound by the CD1d and TCR proteins as radically new structures for NKT cell stimulation.
Collapse
Affiliation(s)
- Roser Borràs-Tudurí
- Medicinal Chemistry and Synthesis (MCS) Laboratory, Institut de Química Avançada de Catalunya (IQAC) Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Anna Alcaide
- Medicinal Chemistry and Synthesis (MCS) Laboratory, Institut de Química Avançada de Catalunya (IQAC) Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sandrine Aspeslag
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Lorena Usero
- Laboratori d'Immunologia Cel⋅lular Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona Bellaterra, 08193, Barcelona, Spain
| | - Carmen Serra
- Medicinal Chemistry and Synthesis (MCS) Laboratory, Institut de Química Avançada de Catalunya (IQAC) Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carme Roura-Mir
- Laboratori d'Immunologia Cel⋅lular Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona Bellaterra, 08193, Barcelona, Spain
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Amadeu Llebaria
- Medicinal Chemistry and Synthesis (MCS) Laboratory, Institut de Química Avançada de Catalunya (IQAC) Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
19
|
Su KW, Shreffler WG, Yuan Q. Gastrointestinal immunopathology of food protein-induced enterocolitis syndrome and other non-immunoglobulin E-mediated food allergic diseases. Ann Allergy Asthma Immunol 2021; 126:516-523. [PMID: 33667639 DOI: 10.1016/j.anai.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide a concise summary of the current literature regarding gastrointestinal immunopathology of food protein-induced enterocolitis syndrome (FPIES) and other non-immunoglobulin E (IgE)-mediated food allergic diseases. DATA SOURCES Data were extracted from PubMed, MEDLINE, and ScienceDirect databases. STUDY SELECTIONS Original articles, review articles, and guidelines published in the past 5 years in peer-reviewed journals were first summarized. The original articles cited were then reviewed and relevant results were extracted. RESULTS Patients with FPIES and non-IgE-mediated food allergic diseases developed vomiting, diarrhea, and food aversion expelled food allergen from their bodies. Aside from T helper type 2 (TH2) immunity, TH1, TH17, innate immunity, and epithelial mucosal barrier defect were also found to be important in the pathogenesis. Eosinophils, widely identified in the biopsy samples, were key players or were late-recruited cells for tissue repairs in those diseases. Intestinal dysbiosis and their metabolites stimulated enterochromaffin cells or enteroendocrine cells to produce serotonin, interfering with intestinal motility and subsequently affecting brain function. FPIES and non-IgE-mediated food allergic diseases were likely part of the atopic march. Allergic inflammation in intestinal mucosa might result in subsequent inflammation in the airway mucosa, suggesting the theory of "one mucosa, one disease." CONCLUSION The immune responses of FPIES and non-IgE-mediated food allergic diseases were not limited to the gastrointestinal tract, but also trigger wider inflammatory responses beyond it. Further research will be required to determine the systemic effect and intestinal microbiome of those diseases.
Collapse
Affiliation(s)
- Kuan-Wen Su
- Department of Pediatrics, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Wayne G Shreffler
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Qian Yuan
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
20
|
Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy. Nat Commun 2021; 12:1201. [PMID: 33619275 PMCID: PMC7900115 DOI: 10.1038/s41467-021-21480-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Glycolipids are complex glycoconjugates composed of a glycan headgroup and a lipid moiety. Their modular biosynthesis creates a vast amount of diverse and often isomeric structures, which fulfill highly specific biological functions. To date, no gold-standard analytical technique can provide a comprehensive structural elucidation of complex glycolipids, and insufficient tools for isomer distinction can lead to wrong assignments. Herein we use cryogenic gas-phase infrared spectroscopy to systematically investigate different kinds of isomerism in immunologically relevant glycolipids. We show that all structural features, including isomeric glycan headgroups, anomeric configurations and different lipid moieties, can be unambiguously resolved by diagnostic spectroscopic fingerprints in a narrow spectral range. The results allow for the characterization of isomeric glycolipid mixtures and biological applications. Glycolipids are glycoconjugates with important biological functions, but techniques for their analysis are deficient. Here, the authors report the use of cryogenic gas-phase infrared spectroscopy to investigate isomerism in a set of immunologically relevant glycolipids, and show that their structural features can be accurately resolved based on a narrow spectral fingerprint region.
Collapse
|
21
|
Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C, McIntire LB, John V, Gylys KH, Bilousova T. Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Disease Brain Tissue Reveals Disease-Associated Signatures. Front Pharmacol 2021; 12:766082. [PMID: 34925024 PMCID: PMC8675946 DOI: 10.3389/fphar.2021.766082] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aβ. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.
Collapse
Affiliation(s)
- Whitaker Cohn
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Huang
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sujyoti Chandra
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laura Beth McIntire
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
23
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
24
|
Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20:756-770. [DOI: 10.1038/s41577-020-0345-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
25
|
Structural Dynamics of the Lipid Antigen-Binding Site of CD1d Protein. Biomolecules 2020; 10:biom10040532. [PMID: 32244759 PMCID: PMC7226365 DOI: 10.3390/biom10040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD1 molecules present lipid antigens to T-cells in early stages of immune responses. Whereas CD1‒lipid‒T-cell receptors interactions are reasonably understood, molecular details on initial trafficking and loading of lipids onto CD1 proteins are less complete. We present a molecular dynamics (MD) study of human CD1d, the isotype that activates iNKT cells. MD simulations and calculations of properties and Poisson-Boltzmann electrostatic potentials were used to explore the dynamics of the antigen-binding domain of the apo-form, CD1d complexes with three lipid–antigens that activate iNKT cells and CD1d complex with GM2AP, a protein that assists lipid loading onto CD1 molecules in endosomes/lysosomes. The study was done at pH 7 and 4.5, values representative of strongly acidic environments in endosomal compartments. Our findings revealed dynamic features of the entrance to the hydrophobic channels of CD1d modulated by two α helices with sensitivity to the type of lipid. We also found lipid- and pH-dependent dynamic changes in three exposed tryptophans unique to CD1d among the five human CD1 isotypes. On the basis of modelled structures, our data also revealed external effects produced by the helper protein GM2AP only when it interacts in its open form, thus suggesting that the own assistant protein also adapts conformation to association with CD1d.
Collapse
|
26
|
Cuevas-Zuviría B, Mínguez-Toral M, Díaz-Perales A, Garrido-Arandia M, Pacios LF. Dynamic plasticity of the lipid antigen-binding site of CD1d is crucially favoured by acidic pH and helper proteins. Sci Rep 2020; 10:5714. [PMID: 32235847 PMCID: PMC7109084 DOI: 10.1038/s41598-020-62833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
CD1 molecules present lipid antigens for recognition by T-cell receptors (TCRs). Although a reasonably detailed picture of the CD1-lipid-TCR interaction exists, the initial steps regarding lipid loading onto and exchange between CD1 proteins remain elusive. The hydrophobic nature of lipids and the fact that CD1 molecules are unable to extract lipids from membranes raise the need for the assistance of helper proteins in lipid trafficking. However, the experimental study of this traffic in the endosomal compartments at which it occurs is so challenging that computational studies can help provide mechanistic insight into the associated processes. Here we present a multifaceted computational approach to obtain dynamic structural data on the human CD1d isotype. Conformational dynamics analysis shows an intrinsic flexibility associated with the protein architecture. Electrostatic properties together with molecular dynamics results for CD1d complexes with several lipids and helper proteins unravel the high dynamic plasticity of the antigen-binding site that is crucially favoured by acidic pH and the presence of helper proteins.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Marina Mínguez-Toral
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain.
| |
Collapse
|
27
|
Kusaka H, Kita S, Tadokoro T, Yoshida K, Kasai Y, Niiyama H, Fujimoto Y, Hanashima S, Murata M, Sugiyama S, Ose T, Kuroki K, Maenaka K. Efficient preparation of human and mouse CD1d proteins using silkworm baculovirus expression system. Protein Expr Purif 2020; 172:105631. [PMID: 32213313 DOI: 10.1016/j.pep.2020.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
CD1d is a major histocompatibility complex (MHC) class I-like glycoprotein and binds to glycolipid antigens that are recognized by natural killer T (NKT) cells. To date, our understanding of the structural basis for glycolipid binding and receptor recognition of CD1d is still limited. Here, we established a preparation method for the ectodomain of human and mouse CD1d using a silkworm-baculovirus expression system. The co-expression of human and mouse CD1d and β2-microglobulin (β2m) in the silkworm-baculovirus system was successful, but the yield of human CD1d was low. A construct of human CD1d fused with β2m via a flexible GS linker as a single polypeptide was prepared to improve protein yield. The production of this single-chained complex was higher (50 μg/larva) than that of the co-expression complex. Furthermore, differential scanning calorimetry revealed that the linker made the CD1d complex more stable and homogenous. These results suggest that the silkworm-baculovirus expression system is useful for structural and biophysical studies of CD1d in several aspects including low cost, easy handling, biohazard-free, rapid, and high yielding.
Collapse
Affiliation(s)
- Hiroki Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kouki Yoshida
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshiyuki Kasai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Harumi Niiyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shigeru Sugiyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan; Faculty of Science & Technology, Kochi University, Kochi, 780-8520, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
28
|
Shamin M, Benedyk TH, Graham SC, Deane JE. The lipid transfer protein Saposin B does not directly bind CD1d for lipid antigen loading. Wellcome Open Res 2019; 4:117. [PMID: 31667358 PMCID: PMC6807164 DOI: 10.12688/wellcomeopenres.15368.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Lipid antigens are presented on the surface of cells by the CD1 family of glycoproteins, which have structural and functional similarity to MHC class I molecules. The hydrophobic lipid antigens are embedded in membranes and inaccessible to the lumenal lipid-binding domain of CD1 molecules. Therefore, CD1 molecules require lipid transfer proteins for lipid loading and editing. CD1d is loaded with lipids in late endocytic compartments, and lipid transfer proteins of the saposin family have been shown to play a crucial role in this process. However, the mechanism by which saposins facilitate lipid binding to CD1 molecules is not known and is thought to involve transient interactions between protein components to ensure CD1-lipid complexes can be efficiently trafficked to the plasma membrane for antigen presentation. Of the four saposin proteins, the importance of Saposin B (SapB) for loading of CD1d is the most well-characterised. However, a direct interaction between CD1d and SapB has yet to be described. Methods: In order to determine how SapB might load lipids onto CD1d, we used purified, recombinant CD1d and SapB and carried out a series of highly sensitive binding assays to monitor direct interactions. We performed equilibrium binding analysis, chemical cross-linking and co-crystallisation experiments, under a range of different conditions. Results: We could not demonstrate a direct interaction between SapB and CD1d using any of these binding assays. Conclusions: This work strongly indicates that the role of SapB in lipid loading does not involve direct binding to CD1d. We discuss the implication of this for our understanding of lipid loading of CD1d and propose several factors that may influence this process.
Collapse
Affiliation(s)
- Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Tomasz H. Benedyk
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
29
|
von Gerichten J, Lamprecht D, Opálka L, Soulard D, Marsching C, Pilz R, Sencio V, Herzer S, Galy B, Nordström V, Hopf C, Gröne HJ, Trottein F, Sandhoff R. Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J Lipid Res 2019; 60:1892-1904. [PMID: 31484693 DOI: 10.1194/jlr.ra119000236] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a β(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike β-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Robert Pilz
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Valentin Sencio
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
30
|
Shamin M, Benedyk TH, Graham SC, Deane JE. The lipid transfer protein Saposin B does not directly bind CD1d for lipid antigen loading. Wellcome Open Res 2019; 4:117. [PMID: 31667358 PMCID: PMC6807164 DOI: 10.12688/wellcomeopenres.15368.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 10/15/2023] Open
Abstract
Background: Lipid antigens are presented on the surface of cells by the CD1 family of glycoproteins, which have structural and functional similarity to MHC class I molecules. The hydrophobic lipid antigens are embedded in membranes and inaccessible to the lumenal lipid-binding domain of CD1 molecules. Therefore, CD1 molecules require lipid transfer proteins for lipid loading and editing. CD1d is loaded with lipids in late endocytic compartments, and lipid transfer proteins of the saposin family have been shown to play a crucial role in this process. However, the mechanism by which saposins facilitate lipid binding to CD1 molecules is not known and is thought to involve transient interactions between protein components to ensure CD1-lipid complexes can be efficiently trafficked to the plasma membrane for antigen presentation. Of the four saposin proteins, the importance of Saposin B (SapB) for loading of CD1d is the most well-characterised. However, a direct interaction between CD1d and SapB has yet to be described. Methods: In order to determine how SapB might load lipids onto CD1d, we used purified, recombinant CD1d and SapB and carried out a series of highly sensitive binding assays to monitor direct interactions. We performed equilibrium binding analysis, chemical cross-linking and co-crystallisation experiments, under a range of different conditions. Results: We could not demonstrate a direct interaction between SapB and CD1d using any of these binding assays. Conclusions: This work establishes comprehensively that the role of SapB in lipid loading does not involve direct binding to CD1d. We discuss the implication of this for our understanding of lipid loading of CD1d and propose several factors that may influence this process.
Collapse
Affiliation(s)
- Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Tomasz H. Benedyk
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
31
|
Rakhshandehroo M, van Eijkeren RJ, Gabriel TL, de Haar C, Gijzel SMW, Hamers N, Ferraz MJ, Aerts JMFG, Schipper HS, van Eijk M, Boes M, Kalkhoven E. Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1157-1167. [PMID: 31051284 DOI: 10.1016/j.bbalip.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. β-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert J van Eijkeren
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tanit L Gabriel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin de Haar
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Sanne M W Gijzel
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nicole Hamers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Henk S Schipper
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Marianne Boes
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Compton BJ, Farrand KJ, Tang CW, Osmond TL, Speir M, Authier-Hall A, Wang J, Ferguson PM, Chan STS, Anderson RJ, Cooney TR, Hayman CM, Williams GM, Brimble MA, Brooks CR, Yong LK, Metelitsa LS, Zajonc DM, Godfrey DI, Gasser O, Weinkove R, Painter GF, Hermans IF. Enhancing T cell responses and tumour immunity by vaccination with peptides conjugated to a weak NKT cell agonist. Org Biomol Chem 2019; 17:1225-1237. [PMID: 30656346 DOI: 10.1039/c8ob02982b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activated NKT cells can stimulate antigen-presenting cells leading to enhanced peptide antigen-specific immunity. However, administration of potent NKT cell agonists like α-galactosylceramide (α-GalCer) can be associated with release of high levels of cytokines, and in some situations, hepatotoxicity. Here we show that it is possible to provoke sufficient NKT cell activity to stimulate strong antigen-specific T cell responses without these unwanted effects. This was achieved by chemically conjugating antigenic peptides to α-galactosylphytosphingosine (α-GalPhs), an NKT cell agonist with very weak activity based on structural characterisation and biological assays. Conjugation improved delivery to antigen-presenting cells in vivo, while use of a cathepsin-sensitive linker to release the α-GalPhs and peptide within the same cell promoted strong T cell activation and therapeutic anti-tumour responses in mice. The conjugates activated human NKT cells and enhanced human T cell responses to a viral peptide in vitro. Accordingly, we have demonstrated a means to safely exploit the immunostimulatory properties of NKT cells to enhance T cell activation for virus- and tumour-specific immunity.
Collapse
Affiliation(s)
- Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol 2019; 17:e3000169. [PMID: 30822302 PMCID: PMC6420026 DOI: 10.1371/journal.pbio.3000169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/15/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)–dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides—namely monosialoganglioside GM3 and disialoganglioside GD3—as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells. Although the existence of self-antigens for invariant Natural Killer T (iNKT) cells is widely accepted, their precise nature remains a matter of debate. This study shows that two mammalian ganglioside species activate iNKT cells in a CD1d-dependent manner. Invariant natural killer T (iNKT) cells are a population of unconventional T lymphocytes that activate rapidly during inflammation due to their innate-like features. They are unconventional since they do not react to peptidic antigens (Ags) presented by classical major histocompatibility complex (MHC) molecules; instead, they recognize lipid-based Ags in the context of the MHC class I-like molecule CD1d. While numerous Ags of microbial origins have been described, their endogenous Ags are far less understood and remain a matter of strong debate. Here, we report that engagement of an innate receptor on the Ag-presenting cells leads to modulation of their lipid metabolism. This results in an enrichment of particular glycosphingolipid species that differ in both the nonpolar tail and polar head structures. Among those, two species have the potential to activate iNKT cells in a CD1d-dependent manner after further intracellular modifications. Based on these data, we propose a concept that iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced changes in CD1d-expressing cells. Given the presence of closely related molecules in some pathological conditions such as cancer, it will be interesting to evaluate the biological relevance of these Ags in disease states.
Collapse
|
34
|
Janssens J, Bitra A, Wang J, Decruy T, Venken K, van der Eycken J, Elewaut D, Zajonc DM, van Calenbergh S. 4"-O-Alkylated α-Galactosylceramide Analogues as iNKT-Cell Antigens: Synthetic, Biological, and Structural Studies. ChemMedChem 2018; 14:147-168. [PMID: 30556652 DOI: 10.1002/cmdc.201800649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 02/03/2023]
Abstract
Invariant natural killer T-cells (iNKT) are a glycolipid-responsive subset of T-lymphocytes that fulfill a pivotal role in the immune system. The archetypical synthetic glycolipid, α-galactosylceramide (α-GalCer), whose molecular framework is inspired by a group of amphiphilic natural products, remains the most studied antigen for iNKT-cells. Nonetheless, the potential of α-GalCer as an immunostimulating agent is compromised by the fact that this glycolipid elicits simultaneous secretion of Th1- and Th2-cytokines. This has incited medicinal chemistry efforts to identify analogues that are able to perturb the Th1/Th2 balance. In this work, we present the synthesis of an extensive set of 4"-O-alkylated α-GalCer analogues, which were evaluated in vivo for their cytokine induction. We have found that conversion of the 4"-OH group to ether moieties decreases the immunogenic potential in mice relative to α-GalCer. Yet, the benzyl-modified glycolipids are able to produce a distinct pro-inflammatory immune response. The crystal structures suggest an extra hydrophobic interaction between the benzyl moiety and the α2-helix of CD1d.
Collapse
Affiliation(s)
- Jonas Janssens
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.,Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Tine Decruy
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,VIB Inflammation Research Center, UGent-VIB Research Building FSVM, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Koen Venken
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,VIB Inflammation Research Center, UGent-VIB Research Building FSVM, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Johan van der Eycken
- Laboratory for Organic and Bioorganic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000, Ghent, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,VIB Inflammation Research Center, UGent-VIB Research Building FSVM, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), 9420 Athena Circle, La Jolla, CA, 92037, USA.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics (FFW), Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
35
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
36
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
37
|
Chennamadhavuni D, Saavedra-Avila NA, Carreño LJ, Guberman-Pfeffer MJ, Arora P, Yongqing T, Pryce R, Koay HF, Godfrey DI, Keshipeddy S, Richardson SK, Sundararaj S, Lo JH, Wen X, Gascón JA, Yuan W, Rossjohn J, Le Nours J, Porcelli SA, Howell AR. Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chem Biol 2018; 25:571-584.e8. [PMID: 29576533 PMCID: PMC6025895 DOI: 10.1016/j.chembiol.2018.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents.
Collapse
Affiliation(s)
| | | | - Leandro J Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Millennium Institute on Immunology and Immunotherapy, Programa de Inmunologia, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tang Yongqing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging at the University of Melbourne, Melbourne, Australia
| | - Santosh Keshipeddy
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Stewart K Richardson
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Srinivasan Sundararaj
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José A Gascón
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jérôme Le Nours
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Amy R Howell
- Department of Chemistry, The University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
38
|
Lee-Sarwar K, Kelly RS, Lasky-Su J, Moody DB, Mola AR, Cheng TY, Comstock LE, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Laranjo N, Gold DR, Bunyavanich S, Savage JH, Weiss ST, Brennan PJ, Litonjua AA. Intestinal microbial-derived sphingolipids are inversely associated with childhood food allergy. J Allergy Clin Immunol 2018; 142:335-338.e9. [PMID: 29729303 DOI: 10.1016/j.jaci.2018.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Kathleen Lee-Sarwar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Alex R Mola
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | | | - George T O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Megan T Sandel
- Department of Pediatrics, Boston Medical Center, Boston, Mass
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Diane R Gold
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; the Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Supinda Bunyavanich
- Department of Pediatrics - Allergy/Immunology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica H Savage
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Patrick J Brennan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
39
|
Negishi Y, Ichikawa T, Takeshita T, Takahashi H. Miscarriage induced by adoptive transfer of dendritic cells and invariant natural killer T cells into mice. Eur J Immunol 2018. [DOI: 10.1002/eji.201747162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and ImmunologyNippon Medical School Tokyo Japan
- Department of Obstetrics and GynecologyNippon Medical School Tokyo Japan
| | - Tomoko Ichikawa
- Department of Obstetrics and GynecologyNippon Medical School Tokyo Japan
| | | | - Hidemi Takahashi
- Department of Microbiology and ImmunologyNippon Medical School Tokyo Japan
| |
Collapse
|