1
|
Van Voorhis AF, Sherbo RS. Creating a Genetic Toolbox for the Carbon-Fixing, Nitrogen-Fixing and Dehalogenating Bacterium Xanthobacter autotrophicus. ACS Synth Biol 2024; 13:3658-3667. [PMID: 39478282 DOI: 10.1021/acssynbio.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Xanthobacter autotrophicus is a metabolically flexible microorganism with two key features: (1) The organism has adapted to grow on a wide variety of carbon sources including CO2, methanol, formate, propylene, haloalkanes and haloacids; and (2) X. autotrophicus was the first chemoautotroph identified that could also simultaneously fix N2, meaning the organism can utilize CO2, N2, and H2 for growth. This metabolic flexibility has enabled use of X. autotrophicus for gas fixation, the creation of fertilizers and foods from gases, and the dehalogenation of environmental contaminants. Despite the wide variety of applications that have already been demonstrated for this organism, there are few genetic tools available to explore and exploit its metabolism. Here, we report a genetic toolbox for use in X. autotrophicus. We first identified suitable origins of replication and quantified their copy number, and identified antibiotic resistance cassettes that could be used as selectable markers. We then tested several constitutive and inducible promoters and terminators and quantified their promoter strengths and termination efficiencies. Finally, we demonstrated that gene expression tools remain effective under both autotrophic and dehalogenative metabolic conditions to show that these tools can be used in the environments that make X. autotrophicus unique. Our extensive characterization of these tools in X. autotrophicus will enable genetic and metabolic engineering to optimize production of fertilizers and foods from gases, and enable bioremediation of halogenated environmental contaminants.
Collapse
Affiliation(s)
- Alexa F Van Voorhis
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca S Sherbo
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Shi X, Liang Y, Wen G, Evlashin SA, Fedorov FS, Ma X, Feng Y, Zheng J, Wang Y, Shi J, Liu Y, Zhu W, Guo P, Kim BH. Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174332. [PMID: 38950630 DOI: 10.1016/j.scitotenv.2024.174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutong Liang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Xinyue Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junjie Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yixing Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd, Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Byung Hong Kim
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Korea Institute of Science & Technology, Seongbug-ku, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Lee YJ, Moon BC, Lee DK, Ahn JH, Gong G, Um Y, Lee SM, Kim KH, Ko JK. Sustainable production of microbial protein from carbon dioxide in the integrated bioelectrochemical system using recycled nitrogen sources. WATER RESEARCH 2024; 268:122576. [PMID: 39395365 DOI: 10.1016/j.watres.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Given the urgency of climate change, it is imperative to develop innovative technologies for repurposing CO2 into value-added products to achieve carbon neutrality. Additionally, repurposing nitrogen-source-derived wastewater streams is crucial, focusing on sustainability rather than conventional nitrogen removal in wastewater treatment plants. In this context, microbial protein (MP) production presents a sustainable and promising approach for transforming recovered low-value resources into high-quality feed and food. We assessed MP production by hydrogen-oxidizing bacteria (HOB) utilizing CO2 and various nitrogen sources. Specifically, we investigated MP production by two different HOB strains, Cupriavidus necator H16 and Xanthobacter viscosus 7d, within an integrated water-splitting biosynthetic system that generates in situ H2 via water electrolysis. The electroautotrophically produced MPs of C. necator H16 and X. viscosus 7d exhibited amino acid contents of 555 and 717 mg protein/g cell dry weight, with 243 and 299 mg essential amino acid/g cell dry weight, respectively. They could serve as viable alternatives to conventional food/feed sources like fishmeal or soybean protein. Ammonium-rich wastewater streams are preferable for MP production in integrated bioelectrochemical systems. This study provides valuable insights into sustainable, carbon-neutral MP production using CO2, water, renewable electricity, and recycled nitrogen sources.
Collapse
Affiliation(s)
- Yeon Ji Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Cheul Moon
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Department of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
4
|
Guo S, Zhang J, Fan G, Shen A, Wang X, Guo Y, Ding J, Han C, Gu X, Wu L. Highly Efficient Nitrogen Reduction to Ammonia through the Cooperation of Plasma and Porous Metal-Organic Framework Reactors with Confined Water. Angew Chem Int Ed Engl 2024; 63:e202409698. [PMID: 38924667 DOI: 10.1002/anie.202409698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
While the ambient N2 reduction to ammonia (NH3) using H2O as hydrogen source (2N2+6H2O=4NH3+3O2) is known as a promising alternative to the Haber-Bosch process, the high bond energy of N≡N bond leads to the extremely low NH3 yield. Herein, we report a highly efficient catalytic system for ammonia synthesis using the low-temperature dielectric barrier discharge plasma to activate inert N2 molecules into the excited nitrogen species, which can efficiently react with the confined and concentrated H2O molecules in porous metal-organic framework (MOF) reactors with V3+, Cr3+, Mn3+, Fe3+, Co2+, Ni2+ and Cu2+ ions. Specially, the Fe-based catalyst MIL-100(Fe) causes a superhigh NH3 yield of 22.4 mmol g-1 h-1. The investigation of catalytic performance and systematic characterizations of MIL-100(Fe) during the plasma-driven catalytic reaction unveils that the in situ generated defective Fe-O clusters are the highly active sites and NH3 molecules indeed form inside the MIL-100(Fe) reactor. The theoretical calculation reveals that the porous MOF catalysts have different adsorption capacity for nitrogen species on different catalytic metal sites, where the optimal MIL-100(Fe) has the lowest energy barrier for the rate-limiting *NNH formation step, significantly enhancing efficiency of nitrogen fixation.
Collapse
Affiliation(s)
- Shoujun Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jiangwei Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Ao Shen
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaosong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Junfang Ding
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chenhui Han
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Limin Wu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Barman N, Kapse S, Thapa R. Electronic Descriptor to Identify the Activity of SACs for E-NRR and Effect of BF 3 as Electrolyte Ion. CHEMSUSCHEM 2024:e202400902. [PMID: 39137119 DOI: 10.1002/cssc.202400902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Electrochemical nitrogen reduction reaction (e-NRR) is an eco-friendly alternative approach to generate ammonia under ambient conditions, with very low power supply. But, developing of an efficient catalyst by suppressing parallel hydrogen evolution reaction as well as avoiding the catalysts poisoning either by hydrogen or electrolyte ion is an open question. So, in order to screen the single atom catalysts (SACs) for the e-NRR, we proposed a descriptor-based approach using density functional theory (DFT) based calculations. We investigated total 24 different SACs of types TM-Pc, TM-N3C1, TM-N2C2, TM-NC3 and TM-N4, considering transition metal (TM). We have considered mainly BF3 ion to understand the role of electrolyte and extended the study for four more electrolyte ions, Cl, ClO4, SO4, OH. Herein, to predict catalytic activity for a given catalyst we have tested 16 different electronic parameters. Out of those, electronic parameter dxz↓ occupancy, identified as electronic descriptor, is showing an excellent linear correlation with catalytic activity (R2=0.86). Furthermore, the selectivity of e-NRR over HER is defined by using an energy parameter ▵G*H-▵G*NNH. Further, the electronic descriptor (dxz↓ occupancy) can be used to predict promising catalysts for e-NRR, thus reducing the efforts on designing future single atom catalysts (SACs).
Collapse
Affiliation(s)
- Narad Barman
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| | - Samadhan Kapse
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| | - Ranjit Thapa
- Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
- Centre of Computational and Integrative Science, SRM University AP, Amaravati, Andhra Pradesh, 522240, India
| |
Collapse
|
6
|
Zhang L, Zeng L, Wang J, Wang H, Zheng D, Wang X, Li D, Zhan G. Enhanced Microbial Protein Production from CO 2 and Air by a MoS 2 Catalyzed Bioelectrochemical System. Chempluschem 2024; 89:e202400072. [PMID: 38416561 DOI: 10.1002/cplu.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon dioxide can be relatively easily reduced to organic matter in a bioelectrochemical system (BES). However, due to insufficient reduction force from in-situ hydrogen evolution, it is difficult for nitrogen reduction. In this study, MoS2 was firstly used as an electrocatalyst for the simultaneous reduction of CO2 and N2 to produce microbial protein (MP) in a BES. Cell dry weight (CDW) could reach 0.81±0.04 g/L after 14 d operation at -0.7 V (vs. RHE), which was 108±3 % higher than that from non-catalyst control group (0.39±0.01 g/L). The produced protein had a better amino acid profile in the BES than that in a direct hydrogen system (DHS), particularly for proline (Pro). Besides, MoS2 promoted the growth of bacterial cell on an electrode and improved the biofilm extracellular electron transfer (EET) by microscopic observation and electrochemical characterization of MoS2 biocathode. The composition of the microbial community and the relative abundance of functional enzymes revealed that MoS2 as an electrocatalyst was beneficial for enriching Xanthobacter and enhancing CO2 and N2 reduction by electrical energy. These results demonstrated that an efficient strategy to improve MP production of BES is to use MoS2 as an electrocatalyst to shift amino acid profile and microbial community.
Collapse
Affiliation(s)
- Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhen Zeng
- Analysis and Testing Center, South China Normal University, Guangzhou, 510006, China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
7
|
Che S, Guan X, Rodrigues R, Yu Y, Xie Y, Liu C, Men Y. Synergistic material-microbe interface toward deeper anaerobic defluorination. Proc Natl Acad Sci U S A 2024; 121:e2400525121. [PMID: 39042683 PMCID: PMC11295042 DOI: 10.1073/pnas.2400525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS), particularly the perfluorinated ones, are recalcitrant to biodegradation. By integrating an enrichment culture of reductive defluorination with biocompatible electrodes for the electrochemical process, a deeper defluorination of a C6-perfluorinated unsaturated PFAS was achieved compared to the biological or electrochemical system alone. Two synergies in the bioelectrochemical system were identified: i) The in-series microbial-electrochemical defluorination and ii) the electrochemically enabled microbial defluorination of intermediates. These synergies at the material-microbe interfaces surpassed the limitation of microbial defluorination and further turned the biotransformation end products into less fluorinated products, which could be less toxic and more biodegradable in the environment. This material-microbe hybrid system brings opportunities in the bioremediation of PFAS driven by renewable electricity and warrants future research on mechanistic understanding of defluorinating and electroactive microorganisms at the material-microbe interface for system optimizations.
Collapse
Affiliation(s)
- Shun Che
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA92521
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Roselyn Rodrigues
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA92521
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA90095
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA92521
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
8
|
Schuman Z, Xie Y, O'Keeffe S, Guan X, Sha J, Sun J, Wohlschlegel JA, Park JO, Liu C. Integrated Proteomics and Metabolomics Reveal Altered Metabolic Regulation of Xanthobacter autotrophicus under Electrochemical Water-Splitting Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058742 DOI: 10.1021/acsami.4c07363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Biological-inorganic hybrid systems are a growing class of technologies that combine microorganisms with materials for a variety of purposes, including chemical synthesis, environmental remediation, and energy generation. These systems typically consider microorganisms as simple catalysts for the reaction of interest; however, other metabolic activity is likely to have a large influence on the system performance. The investigation of biological responses to the hybrid environment is thus critical to the future development and optimization. The present study investigates this phenomenon in a recently reported hybrid system that uses electrochemical water splitting to provide reducing equivalents to the nitrogen-fixing bacteria Xanthobacter autotrophicus for efficient reduction of N2 to biomass that may be used as fertilizer. Using integrated proteomic and metabolomic methods, we find a pattern of differentiated metabolic regulation under electrochemical water-splitting (hybrid) conditions with an increase in carbon fixation products glycerate-3-phosphate and acetyl-CoA that suggests a high energy availability. We further report an increased expression of proteins of interest, namely, those responsible for nitrogen fixation and assimilation, which indicate increased rates of nitrogen fixation and support previous observations of faster biomass accumulation in the hybrid system compared to typical planktonic growth conditions. This work complicates the inert catalyst view of biological-inorganic hybrids while demonstrating the power of multiomics analysis as a tool for deeper understanding of those systems.
Collapse
Affiliation(s)
- Zachary Schuman
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jingwen Sun
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Guan X, Erşan S, Xie Y, Park J, Liu C. Redox and Energy Homeostasis Enabled by Photocatalytic Material-Microbial Interfaces. ACS NANO 2024. [PMID: 39056348 DOI: 10.1021/acsnano.4c05763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Material-microbial interfaces offer a promising future in sustainable and efficient chemical-energy conversions, yet the impacts of these artificial interfaces on microbial metabolisms remain unclear. Here, we conducted detailed proteomic and metabolomic analyses to study the regulations of microbial metabolism induced by the photocatalytic material-microbial interfaces, especially the intracellular redox and energy homeostasis, which are vital for sustaining cell activity. First, we learned that the materials have a heavier weight in perturbing microbial metabolism and inducing distinctive biological pathways, like the expression of the metal-resisting system, than light stimulations. Furthermore, we observed that the materials-microbe interfaces can maintain the delicate redox balance and the energetic status of the microbial cells since the intracellular redox cofactors and energy currencies show stable levels as naturally inoculated microbes. These observations ensure the possibility of energizing microbial activities with artificial materials-microbe interfaces for diverse applications and also provide guides for future designs of materials-microbe hybrids to guard microbial activities.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Junyoung Park
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Moon BC, Kim S, Jo YY, Park JH, Ko JK, Lee DK. Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction in Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309775. [PMID: 38552158 PMCID: PMC11165482 DOI: 10.1002/advs.202309775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 06/12/2024]
Abstract
H2-driven microbial electrosynthesis (MES) is an emerging bioelectrochemical technology that enables the production of complex compounds from CO2. Although the performance of microbial fermentation in the MES system is closely related to the H2 production rate, high-performing metallic H2-evolving catalysts (HEC) generate cytotoxic H2O2 and metal cations from undesirable side reactions, severely damaging microorganisms. Herein, a novel design for self-detoxifying metallic HEC, resulting in biologically benign H2 production, is reported. Cu/NiMo composite HEC suppresses H2O2 evolution by altering the O2 reduction kinetics to a four-electron pathway and subsequently decomposes the inevitably generated H2O2 in sequential catalytic and electrochemical pathways. Furthermore, in situ generated Cu-rich layer at the surface prevents NiMo from corroding and releasing cytotoxic Ni cations. Consequently, the Cu/NiMo composite HEC in the MES system registers a 50% increase in the performance of lithoautotrophic bacterium Cupriavidus necator H16, for the conversion of CO2 to a biopolymer, poly(3-hydroxybutyrate). This work successfully demonstrates the concept of self-detoxification in designing biocompatible materials for bioelectrochemical applications as well as MES systems.
Collapse
Affiliation(s)
- Byeong Cheul Moon
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Center for Water Cycle ResearchKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Soyoung Kim
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Young Yoon Jo
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular EngineeringYonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Energy and Environment TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Chemical and Biomolecular EngineeringYonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
- Graduate School of Energy and EnvironmentKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
11
|
Guan X, Xie Y, Liu C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids. Nat Catal 2024; 7:475-482. [PMID: 39524322 PMCID: PMC11546438 DOI: 10.1038/s41929-024-01151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2024] [Indexed: 11/16/2024]
Abstract
Hybrid systems that integrate synthetic materials with biological machinery offer opportunities for sustainable and efficient catalysis. However, the multidisciplinary and unique nature of the materials-biology interface requires researchers to draw insights from different fields. In this Perspective, using examples from the area of N2 and CO2 fixation, we provide a unified discussion of critical aspects of the material-microbe interface, simultaneously considering the requirements of physical and biological sciences that have a tangible impact on the performance of biohybrids. We first discuss the figures of merit and caveats for the evaluation of catalytic performance. Then, we reflect on the interactions and potential synergies at the materials-biology interface, as well as the challenges and opportunities for a deepened fundamental understanding of abiotic-biotic catalysis.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Sunithakumari VS, Menon RR, Suresh GG, Krishnan R, Rameshkumar N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov., isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genomics 2024; 25:424. [PMID: 38684959 PMCID: PMC11059613 DOI: 10.1186/s12864-024-10332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.
Collapse
Affiliation(s)
- V S Sunithakumari
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul R Menon
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gayathri G Suresh
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramya Krishnan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Athmic Biotech Solutions Pvt. Ltd. R&D Lab, Thiruvananthapuram, Kerala, India
| | - N Rameshkumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
14
|
Wang H, Zhang L, Tian C, Fan S, Zheng D, Song Y, Gao P, Li D. Effects of nitrogen supply on hydrogen-oxidizing bacterial enrichment to produce microbial protein: Comparing nitrogen fixation and ammonium assimilation. BIORESOURCE TECHNOLOGY 2024; 394:130199. [PMID: 38092074 DOI: 10.1016/j.biortech.2023.130199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
To investigate the effects of nitrogen source supply on microbial protein (MP) production by hydrogen-oxidizing bacteria (HOB) under continuous feed gas provision, a sequencing batch culture comparison (N2 fixation versus ammonium assimilation) was performed. The results confirmed that even under basic cultivation conditions, N2-fixing HOB (NF-HOB) communities showed higher levels of CO2 and N2 fixation (190.45 mg/L Δ CODt and 11.75 mg/L Δ TNbiomass) than previously known, with the highest biomass yield being 0.153 g CDW/g COD-H2. Rich ammonium stimulated MP synthesis and the biomass accumulation of communities (increased by 7.4 ~ 14.3 times), presumably through the enhancement of H2 and CO2 absorption. The micro mechanism may involve encouraging the enrichment of species like Xanthobacter and Acinetobacter then raising the abundance of nitrogenase and glutamate synthase to facilitate the nitrogen assimilation. This would provide NF-HOB with ideas for optimizing their MP synthesis activity.
Collapse
Affiliation(s)
- Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Fan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Song
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Wiskich A, Rapson T. Economics of Emerging Ammonia Fertilizer Production Methods - a Role for On-Farm Synthesis? CHEMSUSCHEM 2023; 16:e202300565. [PMID: 37495900 DOI: 10.1002/cssc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Prospects of recent promising methods of producing ammonia without fossil fuels are discussed. Despite demonstrating efficiency gains over previous similar approaches, the novel biological and electrochemical pathways require further large improvements to compete with electricity-powered Haber-Bosch. As some literature asserts that future production will shift to smaller scales, such as on-farm, we qualitatively discuss the economics of scale of future green ammonia production.
Collapse
Affiliation(s)
- Anthony Wiskich
- Commonwealth Science and Industry Research Organisation, Australia
| | - Trevor Rapson
- Commonwealth Science and Industry Research Organisation, Australia
| |
Collapse
|
16
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Gwon HJ, Park G, Yun J, Ryu W, Ahn HS. Prolonged hydrogen production by engineered green algae photovoltaic power stations. Nat Commun 2023; 14:6768. [PMID: 37880242 PMCID: PMC10600337 DOI: 10.1038/s41467-023-42529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Interest in securing energy production channels from renewable sources is higher than ever due to the daily observation of the impacts of climate change. A key renewable energy harvesting strategy achieving carbon neutral cycles is artificial photosynthesis. Solar-to-fuel routes thus far relied on elaborately crafted semiconductors, undermining the cost-efficiency of the system. Furthermore, fuels produced required separation prior to utilization. As an artificial photosynthesis design, here we demonstrate the conversion of swimming green algae into photovoltaic power stations. The engineered algae exhibit bioelectrogenesis, en route to energy storage in hydrogen. Notably, fuel formation requires no additives or external bias other than CO2 and sunlight. The cellular power stations autoregulate the oxygen level during artificial photosynthesis, granting immediate utility of the photosynthetic hydrogen without separation. The fuel production scales linearly with the reactor volume, which is a necessary trait for contributing to the large-scale renewable energy portfolio.
Collapse
Affiliation(s)
- Hyo Jin Gwon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Geonwoo Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - JaeHyoung Yun
- Department of Mechanical engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Hyun S Ahn
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Xie Y, Erşan S, Guan X, Wang J, Sha J, Xu S, Wohlschlegel JA, Park JO, Liu C. Unexpected metabolic rewiring of CO 2 fixation in H 2-mediated materials-biology hybrids. Proc Natl Acad Sci U S A 2023; 120:e2308373120. [PMID: 37816063 PMCID: PMC10589654 DOI: 10.1073/pnas.2308373120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
A hybrid approach combining water-splitting electrochemistry and H2-oxidizing, CO2-fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H2-mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H2-oxidizing acetogenic bacterium Sporomusa ovata that challenges such a classic view. We found that the planktonic S. ovata is more efficient in utilizing reducing equivalent for ATP generation in the materials-biology hybrids than cells grown with H2 supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO2 into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials' impact on microbial metabolism in seemingly simply H2-mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials-biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jingyu Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Shuangning Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | | | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
19
|
Yang Y, Liu LN, Tian H, Cooper AI, Sprick RS. Making the connections: physical and electric interactions in biohybrid photosynthetic systems. ENERGY & ENVIRONMENTAL SCIENCE 2023; 16:4305-4319. [PMID: 38013927 PMCID: PMC10566253 DOI: 10.1039/d3ee01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 11/29/2023]
Abstract
Biohybrid photosynthesis systems, which combine biological and non-biological materials, have attracted recent interest in solar-to-chemical energy conversion. However, the solar efficiencies of such systems remain low, despite advances in both artificial photosynthesis and synthetic biology. Here we discuss the potential of conjugated organic materials as photosensitisers for biological hybrid systems compared to traditional inorganic semiconductors. Organic materials offer the ability to tune both photophysical properties and the specific physicochemical interactions between the photosensitiser and biological cells, thus improving stability and charge transfer. We highlight the state-of-the-art and opportunities for new approaches in designing new biohybrid systems. This perspective also summarises the current understanding of the underlying electron transport process and highlights the research areas that need to be pursued to underpin the development of hybrid photosynthesis systems.
Collapse
Affiliation(s)
- Ying Yang
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
- College of Marine Life Sciences, and Frontiers Science Centre for Deep Ocean Multispheres and Earth System, Ocean University of China 266003 Qingdao P. R. China
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
20
|
Zeng JY, Wang XS, Liu XH, Li QR, Feng J, Zhang XZ. Light-driven biohybrid system utilizes N 2 for photochemical CO 2 reduction. Natl Sci Rev 2023; 10:nwad142. [PMID: 37426486 PMCID: PMC10325001 DOI: 10.1093/nsr/nwad142] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Attempting to couple photochemical CO2 reduction with N2 fixation is usually difficult, because the reaction conditions for these two processes are typically incompatible. Here, we report that a light-driven biohybrid system can utilize abundant, atmospheric N2 to produce electron donors via biological nitrogen fixation, to achieve effective photochemical CO2 reduction. This biohybrid system is constructed by incorporating molecular cobalt-based photocatalysts into N2-fixing bacteria. It is found that N2-fixing bacteria can convert N2 into reductive organic nitrogen and create a localized anaerobic environment, which allows the incorporated photocatalysts to continuously perform photocatalytic CO2 reduction under aerobic conditions. Specifically, the light-driven biohybrid system displays a high formic acid production rate of over 1.41 × 10-14 mol h-1 cell-1 under visible light irradiation, and the organic nitrogen content undergoes an over-3-fold increase within 48 hours. This work offers a useful strategy for coupling CO2 conversion with N2 fixation under mild and environmentally benign conditions.
Collapse
Affiliation(s)
| | | | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qian-Ru Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
21
|
Huang L, Cheng L, Ma T, Zhang JJ, Wu H, Su J, Song Y, Zhu H, Liu Q, Zhu M, Zeng Z, He Q, Tse MK, Yang DT, Yakobson BI, Tang BZ, Ren Y, Ye R. Direct Synthesis of Ammonia from Nitrate on Amorphous Graphene with Near 100% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211856. [PMID: 36799267 DOI: 10.1002/adma.202211856] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Indexed: 06/16/2023]
Abstract
Ammonia is an indispensable commodity in the agricultural and pharmaceutical industries. Direct nitrate-to-ammonia electroreduction is a decentralized route yet challenged by competing side reactions. Most catalysts are metal-based, and metal-free catalysts with high nitrate-to-ammonia conversion activity are rarely reported. Herein, it is shown that amorphous graphene synthesized by laser induction and comprising strained and disordered pentagons, hexagons, and heptagons can electrocatalyze the eight-electron reduction of NO3 - to NH3 with a Faradaic efficiency of ≈100% and an ammonia production rate of 2859 µg cm-2 h-1 at -0.93 V versus reversible hydrogen electrode. X-ray pair-distribution function analysis and electron microscopy reveal the unique molecular features of amorphous graphene that facilitate NO3 - reduction. In situ Fourier transform infrared spectroscopy and theoretical calculations establish the critical role of these features in stabilizing the reaction intermediates via structural relaxation. The enhanced catalytic activity enables the implementation of flow electrolysis for the on-demand synthesis and release of ammonia with >70% selectivity, resulting in significantly increased yields and survival rates when applied to plant cultivation. The results of this study show significant promise for remediating nitrate-polluted water and completing the NOx cycle.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Division of Science, Engineering and Health Study, School of Professional Education and Executive Development (PolyU SPEED), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jun-Jie Zhang
- Department of Materials Science and Nano Engineering and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haikun Wu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jianjun Su
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yun Song
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Man-Kit Tse
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Boris I Yakobson
- Department of Materials Science and Nano Engineering and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL, 60439, USA
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
22
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
23
|
Priyanka U, Lens PNL. Enhanced production of amylase, pyruvate and phenolic compounds from glucose by light-driven Aspergillus niger-CuS nanobiohybrids. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2023; 98:602-614. [PMID: 37066082 PMCID: PMC10087041 DOI: 10.1002/jctb.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 06/19/2023]
Abstract
BACKGROUND The demand for value-added compounds such as amylase, pyruvate and phenolic compounds produced by biological methods has prompted the rapid development of advanced technologies for their enhanced production. Nanobiohybrids (NBs) make use of both the microbial properties of whole-cell microorganisms and the light-harvesting efficiency of semiconductors. Photosynthetic NBs were constructed that link the biosynthetic pathways of Aspergillus niger with CuS nanoparticles. RESULTS In this work, NB formation was confirmed by negative values of the interaction energy, i.e., 2.31 × 108 to -5.52 × 108 kJ mol-1 for CuS-Che NBs, whereas for CuS-Bio NBs the values were -2.31 × 108 to -4.62 × 108 kJ mol-1 for CuS-Bio NBs with spherical nanoparticle interaction. For CuS-Bio NBs with nanorod interaction, it ranged from -2.3 × 107 to -3.47 × 107 kJ mol-1 . Further, the morphological changes observed by scanning electron microscopy showed the presence of the elements Cu and S in the energy-dispersive X-ray spectra and the presence of CuS bonds in Fourier transform infrared spectroscopy indicate NB formation. In addition, the quenching effect in photoluminescence studies confirmed NB formation. Production yields of amylase, phenolic compounds and pyruvate amounted to 11.2 μmol L-1, 52.5 μmol L-1 and 28 nmol μL-1, respectively, in A. niger-CuS Bio NBs on the third day of incubation in the bioreactor. Moreover, A niger cells-CuS Bio NBs had amino acids and lipid yields of 6.2 mg mL-1 and 26.5 mg L-1, respectively. Furthermore, probable mechanisms for the enhanced production of amylase, pyruvate and phenolic compounds are proposed. CONCLUSION Aspergillus niger-CuS NBs were used for the production of the amylase enzyme and value-added compounds such as pyruvate and phenolic compounds. Aspergillus niger-CuS Bio NBs showed a greater efficiency compared to A. niger-CuS Che NBs as the biologically produced CuS nanoparticles had a higher compatibility with A. niger cells. © 2022 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Uddandarao Priyanka
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| | - Piet NL Lens
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| |
Collapse
|
24
|
Feng X, He S, Sato T, Kondo T, Uema K, Sato K, Kobayashi H. Enrichment of hydrogen-oxidizing bacteria using a hybrid biological-inorganic system. J Biosci Bioeng 2023; 135:250-257. [PMID: 36650080 DOI: 10.1016/j.jbiosc.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Hybrid biological-inorganic (HBI) systems comprising inorganic water-splitting catalysts and aerobic hydrogen-oxidizing bacteria (HOB) have previously been used for CO2 conversion. In order to identify new biocatalysts for CO2 conversion, the present study used an HBI system to enrich HOB directly from environmental samples. Three sediment samples (from a brackish water pond, a beach, and a tide pool) and two activated sludge samples (from two separate sewage plants) were inoculated into HBI systems using a cobalt phosphorus (Co-P) alloy and cobalt phosphate (CoPi) as inorganic catalysts with a fixed voltage of 2.0 V. The gas composition of the reactor headspaces and electric current were monitored. An aliquot of the reactor medium was transferred to a new reactor when significant consumption of H2 and CO2 was detected. This process was repeated twice (with three reactors in operation for each sample) to enrich HOB. Increased biomass concomitant with increased H2 and CO2 consumption was observed in the third reactor, indicating enrichment of HOB. 16S rRNA gene amplicon sequencing demonstrated enrichment of sequences related to HOB (including bacteria from Mycobacterium, Hydrogenophaga, and Xanthobacter genera) over successive sub-cultures. Finally, four different HOB belonging to the Mycobacterium, Hydrogenophaga, Xanthobacter, and Acidovorax genera were isolated from reactor media, representing potential candidates as HBI system biocatalysts.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sijia He
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taiki Sato
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Kondo
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koyo Uema
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Sato
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Frontier Research Center for Energy and Resource (FRCER), Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hajime Kobayashi
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Frontier Research Center for Energy and Resource (FRCER), Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
26
|
Mengele A, Rau S. Learning from Nature's Example: Repair Strategies in Light-Driven Catalysis. JACS AU 2023; 3:36-46. [PMID: 36711104 PMCID: PMC9875256 DOI: 10.1021/jacsau.2c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
The continuous repair of subunits of the photosynthetic apparatus is a key factor determining the overall efficiency of biological photosynthesis. Recent concepts for repairing artificial photocatalysts and catalytically active materials within the realm of solar fuel formation show great potential in reshaping the research directions within this field. This perspective describes the latest advances, concepts, and mechanisms in the field of catalyst repair and catalyst self-healing and provides an outlook on which additional steps need to be taken to bring artificial photosynthetic systems closer to real-life applications.
Collapse
Affiliation(s)
- Alexander
K. Mengele
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Rau
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
27
|
Yu W, Pavliuk MV, Liu A, Zeng Y, Xia S, Huang Y, Bai H, Lv F, Tian H, Wang S. Photosynthetic Polymer Dots-Bacteria Biohybrid System Based on Transmembrane Electron Transport for Fixing CO 2 into Poly-3-hydroxybutyrate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2183-2191. [PMID: 36563111 DOI: 10.1021/acsami.2c18831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic semiconductor-microbial photosynthetic biohybrid systems show great potential in light-driven biosynthesis. In such a system, an organic semiconductor is used to harvest solar energy and generate electrons, which can be further transported to microorganisms with a wide range of metabolic pathways for final biosynthesis. However, the lack of direct electron transport proteins in existing microorganisms hinders the hybrid system of photosynthesis. In this work, we have designed a photosynthetic biohybrid system based on transmembrane electron transport that can effectively deliver the electrons from organic semiconductor across the cell wall to the microbe. Biocompatible organic semiconductor polymer dots (Pdots) are used as photosensitizers to construct a ternary synergistic biochemical factory in collaboration with Ralstonia eutropha H16 (RH16) and electron shuttle neutral red (NR). Photogenerated electrons from Pdots promote the proportion of nicotinamide adenine dinucleotide phosphate (NADPH) through NR, driving the Calvin cycle of RH16 to convert CO2 into poly-3-hydroxybutyrate (PHB), with a yield of 21.3 ± 3.78 mg/L, almost 3 times higher than that of original RH16. This work provides a concept of an integrated photoactive biological factory based on organic semiconductor polymer dots/bacteria for valuable chemical production only using solar energy as the energy input.
Collapse
Affiliation(s)
- Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Aijie Liu
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Yue Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Cheng R, Cui C, Luo Z. Catalysis of dinitrogen activation and reduction by a single Fe 13 cluster and its doped systems. Phys Chem Chem Phys 2023; 25:1196-1204. [PMID: 36519573 DOI: 10.1039/d2cp04619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyzing N2 reduction to ammonia under ambient conditions is known to be significant both in the fertilizer industry and life sciences. To unveil the synergy of multiple sites, here, we have studied the catalysis of ammonia synthesis using a typical Fe13 cluster and its doped systems, Fe12X (X = V, Cr, Mn, Co, Ni, Cu, Zn, Nb, Mo, Ru, and Rh). The energetics analysis showed that center substitution (X@Fe12) was favored while doping single V, Cr, Co, and Mo atoms, whereas Mn, Ni, Cu, Zn, Nb, Ru, and Rh tended to form shell-doped structures (Fe12X). Among all the 13 clusters, Fe12Nb exhibited the lowest activation energy for N2 dissociation; moreover, in the hydrogenation process, Fe12Nb could convert N2 to ammonia efficiently. We have fully illustrated the reaction dynamics and structural chemistry essence of these diverse 13-atom systems and propose Fe12Nb as an ideal candidate for catalytic ammonia synthesis.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaonan Cui
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Zha Y, Liu M, Wang J, Feng J, Li D, Zhao D, Zhang S, Shi T. Electrochemical ammonia synthesis by reduction of nitrate on Au doped Cu nanowires †. RSC Adv 2023; 13:9839-9844. [PMID: 36998524 PMCID: PMC10043758 DOI: 10.1039/d3ra00679d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Electrochemical nitrate reduction reaction (NO3−RR) to synthesize valuable ammonia (NH3) is considered as a green and appealing alternative to enable an artificial nitrogen cycle. However, as there are other NO3−RR pathways present, selectively guiding the reaction pathway towards NH3 is currently challenged by the lack of efficient catalyst. Here, we demonstrate a novel electrocatalyst for NO3−RR consisting of Au doped Cu nanowires on a copper foam (CF) electrode (Au–Cu NWs/CF), which delivers a remarkable NH3 yield rate of 5336.0 ± 159.2 μg h−1 cm−2 and an exceptional faradaic efficiency (FE) of 84.1 ± 1.0% at −1.05 V (vs. RHE). The 15N isotopic labelling experiments confirm that the yielded NH3 is indeed from the Au–Cu NWs/CF catalyzed NO3−RR process. The XPS analysis and in situ infrared spectroscopy (IR) spectroscopy characterization results indicated that the electron transfer between the Cu and Au interface and oxygen vacancy synergistically decreased the reduction reaction barrier and inhibited the generation of hydrogen in the competitive reaction, resulting in a high conversion, selectivity and FE for NO3−RR. This work not only develops a powerful strategy for the rational design of robust and efficient catalysts by defect engineering, but also provides new insights for selective nitrate electroreduction to NH3. Electrochemical nitrate reduction reaction (NO3−RR) to synthesize valuable ammonia (NH3) is considered as a green and appealing alternative to enable an artificial nitrogen cycle.![]()
Collapse
Affiliation(s)
- Yuankang Zha
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
- University of Science and Technology of ChinaHefei 230026China
| | - Min Liu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
| | - Jinlu Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
| | - Jiyu Feng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
| | - Daopeng Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
| | - Dongnan Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
- University of Science and Technology of ChinaHefei 230026China
| | - Tongfei Shi
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of SciencesHefei 230031China
- University of Science and Technology of ChinaHefei 230026China
| |
Collapse
|
30
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
31
|
Angenent SC, Schuttinga JH, van Efferen MFH, Kuizenga B, van Bree B, van der Krieken RO, Verhoeven TJ, Wijffels RH. Hydrogen Oxidizing Bacteria as Novel Protein Source for Human Consumption: An Overview. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2207270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The increasing threat of climate change combined with the prospected growth in the world population puts an enormous pressure on the future demand for sustainable protein sources for human consumption. In this review, hydrogen oxidizing bacteria (HOB) are presented as a novel protein source that could play a role in fulfilling this future demand. HOB are species of bacteria that merely require an inflow of the gasses hydrogen, oxygen, carbon dioxide, and a nitrogen source to grow in a conventional bioreactor. Cupriavidus necator is proposed as HOB for industrial cultivation due to its remarkably high protein content (up to 70% of mass), suitability for cultivation in a bioreactor, and the vast amount of available background information. A broad overview of the unique aspects of the bacteria will be provided, from the production process, amino acid composition, and source of the required gasses to the future acceptance of HOB into the market.
Collapse
|
32
|
Guan X, Erşan S, Hu X, Atallah TL, Xie Y, Lu S, Cao B, Sun J, Wu K, Huang Y, Duan X, Caram JR, Yu Y, Park JO, Liu C. Maximizing light-driven CO 2 and N 2 fixation efficiency in quantum dot-bacteria hybrids. Nat Catal 2022; 5:1019-1029. [PMID: 36844635 PMCID: PMC9956923 DOI: 10.1038/s41929-022-00867-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO2/N2-fixing bacterium Xanthobacter autotrophicus with CdTe quantum dots for light-driven CO2 and N2 fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Timothy L. Atallah
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, United States
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shengtao Lu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Bocheng Cao
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jingwen Sun
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Ke Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Justin R. Caram
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
33
|
Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system. Proc Natl Acad Sci U S A 2022; 119:e2210538119. [PMID: 36067303 PMCID: PMC9477400 DOI: 10.1073/pnas.2210538119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbes can provide a more sustainable and energy-efficient method of food and nutrient production compared to plant and animal sources, but energy-intensive carbon (e.g., sugars) and nitrogen (e.g., ammonia) inputs are required. Gas-fixing microorganisms that can grow on H2 from renewable water splitting and gaseous CO2 and N2 offer a renewable path to overcoming these limitations but confront challenges owing to the scarcity of genetic engineering in such organisms. Here, we demonstrate that the hydrogen-oxidizing carbon- and nitrogen-fixing microorganism Xanthobacter autotrophicus grown on a CO2/N2/H2 gas mixture can overproduce the vitamin riboflavin (vitamin B2). We identify plasmids and promoters for use in this bacterium and employ a constitutive promoter to overexpress riboflavin pathway enzymes. Riboflavin production is quantified at 15 times that of the wild-type organism. We demonstrate that riboflavin overproduction is maintained when the bacterium is grown under hybrid inorganic-biological conditions, in which H2 from water splitting, along with CO2 and N2, is fed to the bacterium, establishing the viability of the approach to sustainably produce food and nutrients.
Collapse
|
34
|
Lin L, Huang H, Zhang X, Dong L, Chen Y. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155559. [PMID: 35483467 DOI: 10.1016/j.scitotenv.2022.155559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen oxidizing bacteria (HOB), a type of chemoautotroph, are a group of bacteria from different genera that share the ability to oxidize H2 and fix CO2 to provide energy and synthesize cellular material. Recently, HOB have received growing attention due to their potential for CO2 capture and waste recovery. This review provides a comprehensive overview of the biological characteristics of HOB and their application in resource recovery and pollutant removal. Firstly, the enzymes, genes and corresponding regulation systems responsible for the key metabolic processes of HOB are discussed in detail. Then, the enrichment and cultivation methods including the coupled water splitting-biosynthetic system cultivation, mixed cultivation and two-stage cultivation strategies for HOB are summarized, which is the critical prerequisite for their application. On the basis, recent advances of HOB application in the recovery of high-value products and the removal of pollutants are presented. Finally, the key points for future investigation are proposed that more attention should be paid to the main limitations in the large-scale industrial application of HOB, including the mass transfer rate of the gases, the safety of the production processes and products, and the commercial value of the products.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
35
|
Lewis acid-dominated aqueous electrolyte acting as co-catalyst and overcoming N 2 activation issues on catalyst surface. Proc Natl Acad Sci U S A 2022; 119:e2204638119. [PMID: 35939713 PMCID: PMC9388088 DOI: 10.1073/pnas.2204638119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The growing demands for ammonia in agriculture and transportation fuel stimulate researchers to develop sustainable electrochemical methods to synthesize ammonia ambiently, to get past the energy-intensive Haber-Bosch process. However, the conventionally used aqueous electrolytes limit N2 solubility, leading to insufficient reactant molecules in the vicinity of the catalyst during electrochemical nitrogen reduction reaction (NRR). This hampers the yield and production rate of ammonia, irrespective of how efficient the catalyst is. Herein, we introduce an aqueous electrolyte (NaBF4), which not only acts as an N2-carrier in the medium but also works as a full-fledged "co-catalyst" along with our active material MnN4 to deliver a high yield of NH3 (328.59 μg h-1 mgcat-1) at 0.0 V versus reversible hydrogen electrode. BF3-induced charge polarization shifts the metal d-band center of the MnN4 unit close to the Fermi level, inviting N2 adsorption facilely. The Lewis acidity of the free BF3 molecules further propagates their importance in polarizing the N≡N bond of the adsorbed N2 and its first protonation. This push-pull kind of electronic interaction has been confirmed from the change in d-band center values of the MnN4 site as well as charge density distribution over our active model units, which turned out to be effective enough to lower the energy barrier of the potential determining steps of NRR. Consequently, a high production rate of NH3 (2.45 × 10-9 mol s-1 cm-2) was achieved, approaching the industrial scale where the source of NH3 was thoroughly studied and confirmed to be chiefly from the electrochemical reduction of the purged N2 gas.
Collapse
|
36
|
Analysis of the Ammonia Production Rates by Nitrogenase. Catalysts 2022. [DOI: 10.3390/catal12080844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ammonia (NH3) is produced industrially by the Haber–Bosch process from dinitrogen (N2) and dihydrogen (H2) using high temperature and pressure with an iron catalyst. In contrast to the extreme conditions used in the Haber–Bosch process, biology has evolved nitrogenase enzymes, which operate at ambient temperature and pressure. In biological settings, nitrogenase requires large amounts of energy in the form of ATP, using at least 13 GJ ton−1 of ammonia. In 2016, Brown et al. reported ATP-free ammonia production by nitrogenase. This result led to optimism that the energy demands of nitrogenase could be reduced. More recent reports confirmed the ATP-free production of ammonia; however, the rates of reaction are at least an order of magnitude lower. A more detailed understanding of the role of ATP in nitrogenase catalysis is required to develop ATP-free catalytic systems with higher ammonia production rates. Finally, we calculated the theoretical maximal ammonia production rate by nitrogenase and compared it to currently used Haber–Bosch catalysts. Somewhat surprisingly, nitrogenase has a similar theoretical maximum rate to the Haber–Bosch catalysts; however, strategies need to be developed to allow the enzyme to maintain operation at its optimal rate.
Collapse
|
37
|
Gutiérrez CF, Rodríguez-Romero N, Egan S, Holmes E, Sanabria J. Exploiting the Potential of Bioreactors for Creating Spatial Organization in the Soil Microbiome: A Strategy for Increasing Sustainable Agricultural Practices. Microorganisms 2022; 10:microorganisms10071464. [PMID: 35889183 PMCID: PMC9319577 DOI: 10.3390/microorganisms10071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Industrial production of synthetic nitrogen fertilizers and their crop application have caused considerable environmental impacts. Some eco-friendly alternatives try to solve them but raise some restrictions. We tested a novel method to produce a nitrogen bioinoculant by enriching a soil microbial community in bioreactors supplying N2 by air pumping. The biomass enriched with diazotrophic bacteria was diluted and applied to N-depleted and sterilized soil of tomato plants. We estimated microbial composition and diversity by 16S rRNA metabarcoding from soil and bioreactors at different run times and during plant uprooting. Bioreactors promoted the N-fixing microbial community and revealed a hided diversity. One hundred twenty-four (124) operational taxonomic units (OTUs) were assigned to bacteria with a greater Shannon diversity during the reactor’s steady state. A total of 753 OTUs were found in the rhizospheres with higher biodiversity when the lowest concentration of bacteria was applied. The apparent bacterial abundance in the batch and continuous bioreactors suggested a more specific functional ecological organization. We demonstrate the usefulness of bioreactors to evidence hidden diversity in the soil when it passes through bioreactors. By obtaining the same growth of inoculated plants and the control with chemical synthesis fertilizers, we evidence the potential of the methodology that we have called directed bioprospecting to grow a complex nitrogen-fixing microbial community. The simplicity of the reactor’s operation makes its application promising for developing countries with low technological progress.
Collapse
Affiliation(s)
- Carlos Fernando Gutiérrez
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental & Natural Resources, Engineering Faculty, Universidad del Valle, Meléndez Campus, Cali 76001, Colombia; (C.F.G.); (N.R.-R.)
| | - Nicolás Rodríguez-Romero
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental & Natural Resources, Engineering Faculty, Universidad del Valle, Meléndez Campus, Cali 76001, Colombia; (C.F.G.); (N.R.-R.)
| | - Siobhon Egan
- Australian National Phenome Center, Murdoch University, Perth 6150, Australia; (S.E.); (E.H.)
| | - Elaine Holmes
- Australian National Phenome Center, Murdoch University, Perth 6150, Australia; (S.E.); (E.H.)
| | - Janeth Sanabria
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental & Natural Resources, Engineering Faculty, Universidad del Valle, Meléndez Campus, Cali 76001, Colombia; (C.F.G.); (N.R.-R.)
- Australian National Phenome Center, Murdoch University, Perth 6150, Australia; (S.E.); (E.H.)
- Correspondence:
| |
Collapse
|
38
|
Cestellos-Blanco S, Chan RR, Shen YX, Kim JM, Tacken TA, Ledbetter R, Yu S, Seefeldt LC, Yang P. Photosynthetic biohybrid coculture for tandem and tunable CO 2 and N 2 fixation. Proc Natl Acad Sci U S A 2022; 119:e2122364119. [PMID: 35727971 PMCID: PMC9245687 DOI: 10.1073/pnas.2122364119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Solar-driven bioelectrosynthesis represents a promising approach for converting abundant resources into value-added chemicals with renewable energy. Microorganisms powered by electrochemical reducing equivalents assimilate CO2, H2O, and N2 building blocks. However, products from autotrophic whole-cell biocatalysts are limited. Furthermore, biocatalysts tasked with N2 reduction are constrained by simultaneous energy-intensive autotrophy. To overcome these challenges, we designed a biohybrid coculture for tandem and tunable CO2 and N2 fixation to value-added products, allowing the different species to distribute bioconversion steps and reduce the individual metabolic burden. This consortium involves acetogen Sporomusa ovata, which reduces CO2 to acetate, and diazotrophic Rhodopseudomonas palustris, which uses the acetate both to fuel N2 fixation and for the generation of a biopolyester. We demonstrate that the coculture platform provides a robust ecosystem for continuous CO2 and N2 fixation, and its outputs are directed by substrate gas composition. Moreover, we show the ability to support the coculture on a high-surface area silicon nanowire cathodic platform. The biohybrid coculture achieved peak faradaic efficiencies of 100, 19.1, and 6.3% for acetate, nitrogen in biomass, and ammonia, respectively, while maintaining product tunability. Finally, we established full solar to chemical conversion driven by a photovoltaic device, resulting in solar to chemical efficiencies of 1.78, 0.51, and 0.08% for acetate, nitrogenous biomass, and ammonia, correspondingly. Ultimately, our work demonstrates the ability to employ and electrochemically manipulate bacterial communities on demand to expand the suite of CO2 and N2 bioelectrosynthesis products.
Collapse
Affiliation(s)
- Stefano Cestellos-Blanco
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Center for the Utilization of Biological Engineering in Space, University of California, Berkeley, CA 94720
| | - Rachel R. Chan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Yue-xiao Shen
- Center for the Utilization of Biological Engineering in Space, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ji Min Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Center for the Utilization of Biological Engineering in Space, University of California, Berkeley, CA 94720
| | - Tom A. Tacken
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Rhesa Ledbetter
- Center for the Utilization of Biological Engineering in Space, University of California, Berkeley, CA 94720
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322
| | - Sunmoon Yu
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Lance C. Seefeldt
- Center for the Utilization of Biological Engineering in Space, University of California, Berkeley, CA 94720
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Center for the Utilization of Biological Engineering in Space, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanosciences Institute, Berkeley, CA 94720
| |
Collapse
|
39
|
Sans J, Arnau M, Turon P, Alemán C. Permanently polarized hydroxyapatite, an outstanding catalytic material for carbon and nitrogen fixation. MATERIALS HORIZONS 2022; 9:1566-1576. [PMID: 35357375 DOI: 10.1039/d1mh02057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAp) is a well-known ceramic material widely used in the biomedical field. This review summarizes the very recent developments on permanently polarized HAp (pp-HAp), a HAp variety with tuned electrical properties that confer remarkable catalytic activity. pp-HAp is obtained by applying a thermal stimulation polarization process (TSP), which consists on a DC electric voltage of 500 V at 1000 °C, to previously sintered HAp. The TSP not only increases the crystallinity, reducing the defects in the crystal lattice, but also creates charges that accumulate at the crystalline boundaries and at the surface of microscopic grains, boosting the electrical conductivity. Finally, the successful utilization of pp-HAp in the catalytic fixation of carbon and nitrogen from CO2 and N2 gases, respectively, is reported and the formation of different products of chemical interest (e.g. amino acids, ethanol and ammonium) as a function of the reaction conditions (i.e. feeding gases and presence/absence of UV illumination) and catalyst plasticity is discussed. pp-HAp exhibits important advantages with respect to other consolidated catalysts, which drastically increases the final energetic net balance of the reactions.
Collapse
Affiliation(s)
- Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Marc Arnau
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrassa 121, 08191, Rubí (Barcelona), Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Electricity-driven bioproduction from CO2 and N2 feedstocks using enriched mixed microbial culture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Photocatalytic Material-Microorganism Hybrid System and Its Application—A Review. MICROMACHINES 2022; 13:mi13060861. [PMID: 35744475 PMCID: PMC9230708 DOI: 10.3390/mi13060861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The photocatalytic material-microorganism hybrid system is an interdisciplinary research field. It has the potential to synthesize various biocompounds by using solar energy, which brings new hope for sustainable green energy development. Many valuable reviews have been published in this field. However, few reviews have comprehensively summarized the combination methods of various photocatalytic materials and microorganisms. In this critical review, we classified the biohybrid designs of photocatalytic materials and microorganisms, and we summarized the advantages and disadvantages of various photocatalytic material/microorganism combination systems. Moreover, we introduced their possible applications, future challenges, and an outlook for future developments.
Collapse
|
42
|
Martínez BCS, Benavides LM, Santoyo G, Sánchez-Yáñez JM. Biorecovery of Agricultural Soil Impacted by Waste Motor Oil with Phaseolus vulgaris and Xanthobacter autotrophicus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1419. [PMID: 35684191 PMCID: PMC9182674 DOI: 10.3390/plants11111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Agricultural soil contamination by waste motor oil (WMO) is a worldwide environmental problem. The phytotoxicity of WMO hydrocarbons limits agricultural production; therefore, Mexican standard NOM-138-SEMARNAT/SSA1-2012 (NOM-138) establishes a maximum permissible limit of 4400 ppm for hydrocarbons in soil. The objectives of this study are to (a) biostimulate, (b) bioaugment, and (c) phytoremediate soil impacted by 60,000 ppm of WMO, to decrease it to a concentration lower than the maximum allowed by NOM-138. Soil contaminated with WMO was biostimulated, bioaugmented, and phytoremediated, and the response variables were WMO concentration, germination, phenology, and biomass of Phaseolus vulgaris. The experimental data were validated by Tukey HSD ANOVA. The maximum decrease in WMO was recorded in the soil biostimulated, bioaugmented, and phytoremediated by P. vulgaris from 60,000 ppm to 190 ppm, which was considerably lower than the maximum allowable limit of 4400 ppm of NOM-138 after five months. Biostimulation of WMO-impacted soil by detergent, mineral solution and bioaugmentation with Xanthobacter autotrophicus accelerated the reduction in WMO concentration, which allowed phytoremediation with P. vulgaris to oxidize aromatic hydrocarbons and recover WMO-impacted agricultural soil faster than other bioremediation strategies.
Collapse
|
43
|
Zhang L, Tian C, Wang H, Gu W, Zheng D, Cui M, Wang X, He X, Zhan G, Li D. Improving electroautotrophic ammonium production from nitrogen gas by simultaneous carbon dioxide fixation in a dual-chamber microbial electrolysis cell. Bioelectrochemistry 2022; 144:108044. [PMID: 34974371 DOI: 10.1016/j.bioelechem.2021.108044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Microbial electrosynthesis is a promising technology for high-value added products generation from organic and inorganic waste. In this work, autotrophic dual-chamber microbial electrolysis cells (MECs) were set up for N2 fixation at -0.9 V vs Ag/AgCl (sat. KCl) cathodic potential under ambient conditions. Higher NH4+ production yield (average value of 0.35 µmol h-1 cm-2, normalized to cathode surface area) and higher faradaic efficiency (FE, 20.25%) were obtained with intermittent addition of N2 and CO2, while the yield and FE were only 0.018 µmol h-1 cm-2 and 4.21% in the absence of CO2. Furthermore, cyclic voltammograms (CV) explained the bioelectrochemical behavior of N2 reduction was coupled with CO2 reduction in the autotrophic MECs. Microbial community analysis and functional prediction in the cathodic chamber revealed that Xanthobacter and Hydrogenophaga played as producers for N2 and CO2 fixation and Pannonibacter acting as a decomposer for converting organic nitrogen to ammonium. This work not only provided an optional bioelectrocatalytic method for N2 fixation with negative CO2-emissions but also revealed the mechanism of simultaneous fixation of N2 and CO2 via Calvin cycle in autotrophic MECs.
Collapse
Affiliation(s)
- Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenzhi Gu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohong He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
44
|
Yu W, Bai H, Zeng Y, Zhao H, Xia S, Huang Y, Lv F, Wang S. Solar-Driven Producing of Value-Added Chemicals with Organic Semiconductor-Bacteria Biohybrid System. RESEARCH 2022; 2022:9834093. [PMID: 35402922 PMCID: PMC8972406 DOI: 10.34133/2022/9834093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
Photosynthetic biohybrid systems exhibit promising performance in biosynthesis; however, these systems can only produce a single metabolite and cannot further transform carbon sources into highly valuable chemical production. Herein, a photosynthetic biohybrid system integrating biological and chemical cascade synthesis was developed for solar-driven conversion of glucose to value-added chemicals. A new ternary cooperative biohybrid system, namely bacterial factory, was constructed by self-assembling of enzyme-modified light-harvesting donor-acceptor conjugated polymer nanoparticles (D-A CPNs) and genetically engineered Escherichia coli (E. coli). The D-A CPNs coating on E. coli could effectively generate electrons under light irradiation, which were transferred into E. coli to promote the 37% increment of threonine production by increasing the ratio of nicotinamide adenine dinucleotide phosphate (NADPH). Subsequently, the metabolized threonine was catalyzed by threonine deaminase covalently linking with D-A CPNs to obtain 2-oxobutyrate, which is an important precursor of drugs and chemicals. The 2-oxobutyrate yield under light irradiation is increased by 58% in comparison to that in dark. This work provides a new organic semiconductor-microorganism photosynthetic biohybrid system for biological and chemical cascade synthesis of highly valuable chemicals by taking advantage of renewable carbon sources and solar energy.
Collapse
Affiliation(s)
- Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Nanocell hybrids for green chemistry. Trends Biotechnol 2022; 40:974-986. [PMID: 35210123 DOI: 10.1016/j.tibtech.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022]
Abstract
Global concerns about reducing or minimizing the costs associated with toxic waste materials have driven the continuing development of green-cell-based biosynthesis methods. Inspired by the hybridization phenomenon of living organisms, recent interest has arisen in nanocell hybrids that possess multiple new functions. They have potential to propel biosynthesis into a new generation of green chemistry. This review article discusses the development of applications for nanocell hybrids in the areas of sustainable energy, clean environment, and green catalysis. Continuing advances in these hybrids will require combining knowledge from the fields of biology, physics, chemistry, material science, and engineering.
Collapse
|
46
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
47
|
Jing X, Liu X, Zhang Z, Wang X, Rensing C, Zhou S. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. WATER RESEARCH 2022; 208:117860. [PMID: 34798422 DOI: 10.1016/j.watres.2021.117860] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The present nitrogen fixation industry is usually energy-intensive and environmentally detrimental. Therefore, it is appealing to find alternatives. Here, we achieved both a synchronized biological nitrogen fixation and electric energy production by using Geobacter sulfurreducens in a microbial electrochemical system. The results showed that G. sulfurreducens was able to fix nitrogen depending on anode respiration, producing a maximum current density of 0.17 ± 0.015 mA cm-2 and a nitrogen-fixing activity of ca. 0.78 μmol C2H4 mg protein-1 h-1, thereby achieving a net total nitrogen-fixing rate of ca. 5.6 mg L-1 day-1. Specifically, nitrogen fixation did not impair coulombic efficiency. Transcriptomic and metabolic analyses demonstrated that anode respiration provided sufficient energy to drive nitrogen fixation, and in turn nitrogen fixation promoted anode respiration of the cell by increasing acetate catabolism but reducing acetate anabolism. Furthermore, we showed that G. sulfurreducens could be supplied in a bioelectrochemical system for N-deficient wastewater treatment to relieve N-deficiency stress contributing to the formation of an electroactive biofilm, thereby simultaneously achieving nitrogen fixation, current generation and dissoluble organic carbon removal. Our study revealed a synergistic effect between biological nitrogen fixation and current generation by G. sulfurreducens, providing a green nitrogen fixation alternative through shifting the nitrogen fixation field from energy consumption to energy production and having implications for N-deficient wastewater treatment.
Collapse
Affiliation(s)
- Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| | - Zhishuai Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
48
|
Wang J, Zhang S, Wang C, Li K, Zha Y, Liu M, Zhang H, Shi T. Ambient ammonia production via electrocatalytic nitrate reduction catalyzed by a flower-like CuCo 2O 4 electrocatalyst. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01656c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The flower-shaped CuCo2O4 spinel catalyst was used for electrochemical nitrate reduction in an electrolyte. Theoretical calculation shows that NO3− can be adsorbed on CuCo2O4 to form the *NOH intermediate, so as to obtain a good yield rate and FE.
Collapse
Affiliation(s)
- Jinlu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chenchen Wang
- Shanghai Nuclear Engineering Research & Design Institute Co. Ltd, Shanghai, 200233, China
| | - Ke Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yuankang Zha
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Min Liu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Tongfei Shi
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
49
|
Huang H, Li R, Li C, Zheng F, Ramirez GA, Houf W, Zhen Q, Bashir S, Liu JL. Perspective on advanced nanomaterials used for energy storage and conversion. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To drive the next ‘technical revolution’ towards commercialization, we must develop sustainable energy materials, procedures, and technologies. The demand for electrical energy is unlikely to diminish over the next 50 years, and how different countries engage in these challenges will shape future discourse. This perspective summarizes the technical aspects of nanomaterials’ design, evaluation, and uses. The applications include solid oxide fuel cells (SOFCs), solid oxide electrolysis cells (SOEC), microbial fuel cells (MFC), supercapacitors, and hydrogen evolution catalysts. This paper also described energy carriers such as ammonia which can be produced electrochemically using SOEC under ambient pressure and high temperature. The rise of electric vehicles has necessitated some form of onboard storage of fuel or charge. The fuels can be generated using an electrolyzer to convert water to hydrogen or nitrogen and steam to ammonia. The charge can be stored using a symmetrical supercapacitor composed of tertiary metal oxides with self-regulating properties to provide high energy and power density. A novel metal boride system was constructed to absorb microwave radiation under harsh conditions to enhance communication systems. These resources can lower the demand for petroleum carbon in portable power devices or replace higher fossil carbon in stationary power units. To improve the energy conversion and storage efficiency, we systematically optimized synthesis variables of nanomaterials using artificial neural network approaches. The structural characterization and electrochemical performance of the energy materials and devices provide guidelines to control new structures and related properties. Systemic study on energy materials and technology provides a feasible transition from traditional to sustainable energy platforms. This perspective mainly covers the area of green chemistry, evaluation, and applications of nanomaterials generated in our laboratory with brief literature comparison where appropriate. The conceptual and experimental innovations outlined in this perspective are neither complete nor authoritative but a snapshot of selecting technologies that can generate green power using nanomaterials.
Collapse
Affiliation(s)
- Hsuanyi Huang
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - Rong Li
- Nano-Science & Technology Research Center, College of Science, Shanghai University , Shanghai 200444 , PR China
| | - Cuixia Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology , 287 Langongping Rd, Qilihe District , Lanzhou , Gansu , PR China
| | - Feng Zheng
- Nano-Science & Technology Research Center, College of Science, Shanghai University , Shanghai 200444 , PR China
| | - Giovanni A. Ramirez
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - William Houf
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - Qiang Zhen
- Nano-Science & Technology Research Center, College of Science, Shanghai University , Shanghai 200444 , PR China
| | - Sajid Bashir
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - Jingbo Louise Liu
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
- Texas A&M Energy Institute , Frederick E. Giesecke Engineering Research Bldg., 3372 TAMU , College Station , TX 77843-3372 , USA
| |
Collapse
|
50
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|